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A THOULESS-LIKE EFFECT IN THE DYSON HIERARCHICAL
MODEL WITH CONTINUOUS SYMMETRY

PAVEL BLEHER AND PETER MAJOR

ABSTRACT. In this paper we study Dyson’s classical r-component hierarchical
model with a Hamiltonian function which has a continuous O(r)-symmetry, r > 2.
This is a one-dimensional ferromagnetic model with a long range interaction
potential U(i,5) = —1(d(i,))d~2(i, ), where d(i, j) denotes the hierarchical dis-
tance. We are interested in the case when I, = [(2"), n = 1,2, ..., is an increasing
sequence, with a sub-exponential growth as n — oo. For a class of free measures,
we prove a conjecture of Dyson. This conjecture states that the convergence of
the series I;7' +1; " + - -+ is a necessary and sufficient condition of the existence
of phase transition in the model under consideration, and the spontaneous mag-
netization vanishes at the critical point, i.e., there is no Thouless’ effect. We
find, however, that the distribution of the normalized mean spin at the critical
temperature 7. tends to the uniform distribution on the unit sphere in R” as
the volume tends to infinity, a phenomenon which resembles the Thouless effect.
We prove that the limit distribution of the normalized mean spin is Gaussian
for T' > T,, and it is non-Gaussian for 7' < T.. We also show that the density
of the limit distribution of the normalized mean spin for 7" < T, is a nice ana-
lytic function which can be found from the unique solution of a nonlinear fixed
point integral equation. Finally, we determine some critical asymptotics and
show that the divergence of the correlation length and magnetic susceptibility is
super-polynomial as T" — T..

1. INTRODUCTION. FORMULATION OF THE MAIN RESULTS

In this paper we investigate Dyson’s hierarchical vector-valued model with contin-
uous symmetry. The model consists of spin variables o(j) € R", j € N={1,2,...},
where r > 2. We define the hierarchical distance d(-,-) on N as

d(j, k) = 2"k~ for j £k
with
n(j, k) = {minn: there is an integer [ such that (I —1)2" < j,k < 2"}
if j#k,
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and d(j,j) = 0. The Hamiltonian of the ferromagnetic Dyson’s hierarchical -
component model in the volume V,, = {1,2,...,2"} is
I(d(j, k :
(1) Hao) =~ S I oo,
: d*(j, k)
1<j<k<2n

where o(j)o(k) denotes a scalar product in R”, and [(¢) is a positive function. In
this paper we will be interested in the case when [(t) is a positive increasing function
such that
. 1)

lim [(t) = oc; lim —* =0, forall e > 0.

t—00 t—oo €
Since the hierarchical distance d(j, k) for j # k takes the values 2", n =0,1,2,...,
only, we consider the function I(t) for ¢ = 2" only and define

I = 1(2).

Let v(dx) be a probability measure on R". Then the Gibbs measure in V,, at a
temperature 7' > 0 with free boundary conditions and the free measure v(dx) is
defined as

27L

pn(dx; T) = Z, 1 (T) exp{—BHa(x)} [ v(dx;), B=T""
j=1

We will assume that the free measure v(dx) is invariant with respect to the group
O(r) of orthogonal transformations, i.e., ¥(UA) = v(A) for all U € O(r) and all
Borel sets A € B(R"). Then the Gibbs measure p, (dx;T) is O(r)-invariant as well,

Un(UA1, ... ,UAn;T) = pnp(Ag,...,Aon;T), forall U € O(r),
A;€BRT), j=1,...,2"

In [12], Dyson proved the following theorem (see also [13]). Assume that » = 3, and
v(dx) is a uniform measure on the unit sphere in R?. This is the classical Heisenberg
hierarchical model.

Theorem 1.1. (see [12]). The classical Heisenberg hierarchical model has a phase
transition if

(1.2) B=) 1" <.
n=1

It has a long-range order so long as § > B.

Dyson also formulated the following conjecture (see [12]): “It also seems likely
that for sequences l,, which are positive and increasing with n the condition (1.2)
is necessary for a phase transition in Heisenberg hierarchical models.” The goal of
this paper is to prove Dyson’s conjecture for a class of hierarchical models and to
study the limit distribution of the normalized mean spin both below and above the
critical temperature if condition (1.2) holds. Dyson’s proof is a clever application
of correlation inequalities. Our approach is based on an analytical study of the
renormalization group transformation for the hierarchical models.

The renormalization group (RG) approach to the Dyson hierarchical models was
initiated in the works of Bleher and Sinai [8]— [10] (see also the monograph [18] and
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the review [2], and references therein). The Dyson hierarchical models are of a great
interest because for this model the RG transformation reduces to a nonlinear integral
equation, and this allows a study of critical phenomena unavailable in other models.
The works of Bleher and Sinai were concerned with the critical phenomena and
phase transitions in the scalar Dyson hierarchical models. They were extended to the
study of critical phenomena and phase transitions in the vector Dyson hierarchical
models with continuous symmetry in the works of Bleher and Major [3]- [7]. The
present paper is a continuation of the works [3]- [7].

We apply a perturbation technique which works if the free measure v(dx) is a
small perturbation of the Gaussian measure. Hence, we cannot treat the case when
v(dx) is a uniform measure on the unit sphere. On the other hand, we will consider
arbitrary spin dimension r > 2. We will focus on free measures v(dx), which have a
density function p(x) on R" such that p(x) is close, in an appropriate sense, to the
density function

2 4
X x
(1.3) Po(x) :C’(n)exp{—|2| —n4|}
with a sufficiently small parameter x > 0. Precise conditions on p(x) are given
below. We also will assume some regularity conditions about the sequence 1, = [(2")
(see below).
We are investigating the following question. Let p,(x,T) denote the density func-

2n
tion of the mean spin 27" > o(j), where (o(1),...,0(2")) is a p,(T)-distributed

j=1
random vector. Because of the rotational invariance of the model, the function
pn(x,T) is a function of |x|. We are interested in the limit behaviour of the func-
tion p,(x,T) as n — oo, with an appropriate normalization. In our papers [3]— [7]

this problem was considered for the Hamiltonian

Holo)=— Y ——o()o(h),

< d*(j, k)

where 1 < a < 2. Observe that if & < 1 then the thermodynamic limit of the model
does not exist, and if & > 2 then there is no phase transition, hence the range
1 < a < 2 is natural. We distinguished in [3]- [7] the three cases for a:

(i) 1<a<3/2, (ii) a=3/2,and (iii) 3/2 < a < 2.

The difference between these cases appears in the asymptotic behavior of p,, (x,T")
at small 7. When T is small the spontaneous magnetization M (T') is positive, and
the function p,(x,7") is concentrated in a narrow spherical shell near the sphere
|x| = M(T). The question is what the width of this shell is and what the limiting
shape of p,(x,T) is like along the radius after an appropriate rescaling. In case
(i), the width is of the order of 2=/2 and the limit shape of p,(x,T) is Gaussian
(see [3]). In case (ii), there is a logarithmic correction in the asymptotics of the
width, but the limit shape is still Gaussian (see [6]). In case (iii), the width of the
shell has a nonstandard asymptotics of the order of 27(2-®) and the limit shape of
pn(x,T) along the radius (after a rescaling) is a non-Gaussian function which is a
solution of a nonlinear integral equation (see [5] and the review [4]). In the present




104 PAVEL BLEHER AND PETER MAJOR

paper we are interested in the marginal potential I(d(j, k))/d?(j, k), with an extra
factor () of a sub-polynomial growth.

Before formulating the main results we would like to discuss the importance of
Dyson’s condition (1.2). In the case of the Ising hierarchical model (r = 1), Dyson
proved in [12] that there exists a “weakest” interaction function [(¢) for which the
hierarchical model (1.1) has a phase transition. This function is I(¢t) = loglogt,
which corresponds to I, = logn. Dyson has proved that if

In

lim =0,
n—oo logn

then the spontaneous magnetization is equal to zero for all temperatures T° > 0.
On the other hand, if

ln
logn

> ¢ for all n > 0 with some ¢ > 0,

then the spontaneous magnetization is positive at sufficiently low temperatures
T > 0. In the borderline model, when

I, = Jlogn, J >0,

Dyson proved that the spontaneous magnetization M (7T') has a jump at the critical
temperature T,. The existence of the jump for the 1D Ising model with long-range
interaction was first predicted by Thouless (see [19], and also the works [21] of
Anderson, Yuval and [16] of Hamann and references therein) for the translationally
invariant Ising model with the interaction

(1.4) H(o) = —Z(m.
7.k

This phenomenon (the jump of M(T') at T = T,) is called the Thouless effect. The
existence of a phase transition in the ferromagnetic one-dimensional Ising model
with 1/(j — k)? interaction energy was proved by Frohlich and Spencer in [15]. A
rigorous proof of the existence of the Thouless effect in the Ising model with the
inverse square interaction (1.4) was given by Aizenman, J. Chayes, L. Chayes, and
Newman [1]. Simon proved in [17] the absence of continuous symmetry breaking in
the one-dimensional r-component Heisenberg model with the interaction (1.4), in
the case when r > 2.

Dyson formulated a general heuristic principle in [12] which tells us when one
should expect the Thouless effect in a 1D long-range ferromagnetic model: It should
occur for the “weakest” interaction (if it exists) for which a phase transition ap-
pears. Dyson wrote that in the hierarchical model “in the Ising case, there exists a
borderline model I,, = logn which is the ‘weakest’ ferromagnet for which a transi-
tion occurs, and this borderline model shows a Thouless effect. In the Heisenberg
case there exists no borderline model, since there is no ‘most slowly converging’
series (1.2). Thus we do not expect to find a Thouless effect in any one-dimensional
Heisenberg hierarchical ferromagnet.” This conjecture of Dyson, about the ab-
sence of a Thouless effect in the Heisenberg case, plays a very essential role in our
investigation. We show that in the class of the r-component hierarchical models
under consideration, the spontaneous magnetization M (T) approaches zero as T
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approaches the critical temperature, i.e., there is no Thouless effect. On the other
hand, we observe a phenomenon which resembles the Thouless effect: at T = T, the
rescaled distribution

1/2
M (T.)pn (M (T.)x, T,) dx, M, (T) = (/RT |X|2pn(X7T) dx> ,

approaches, as n — 00, a uniform measure on the unit sphere in R", r > 2. Thus,
although the spontaneous magnetization M(7T,) = lim M,(T.) is equal to zero
n—oo

at the critical point, the distribution of the normalized mean spin converges to
a uniform measure on the unit sphere. This is a “remnant” of the spontaneous
magnetization at the critical temperature 7.

To formulate our results we will need some conditions on the sequence [, =
[(2"). We need different conditions on /,, in different theorems. We formulate the
conditions we shall later apply.

Conditions on the sequence [,,, n =0,1,2,.... Let us introduce the notation
l
Ch=-——, n=0,1,..., with [_; =1.
ln—l

Condition 1.
(1.5) lo=1;, 1<¢,<1.01 forall n; lim ¢, = 1.

n—o0

Remark. The requirement [p = 1 is not a real condition, it can be reached by a
rescaling of the temperature. We use it just for a normalization.

Condition 2.
oo
. -1 _
nlgrololn g lj = 00.
Jj=n

Moreover, the above condition is uniform in the following sense: For all € > 0 there
are some numbers K(g) > 0 and L(g) > 0 such that

n+K(e)

Iy Z et
j=n

for all n > L(e).
Condition 3.

n n 72
su l [t < 00.
B LD
— j=k
Condition 4.
o0
>t > 400k
n=1
Condition 5.
l
" >q forall n=0,1,2,..., andallk=1,...,L.

ln-‘,—k
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The numbers x,7 > 0, and L € N in these conditions will be chosen later. An
example of sequences [, satisfying Conditions 1-5 is given in the following proposi-
tion.

Proposition 1.2. The sequence
(1.6) ln=(14+an)*, a>0, A>1,

satisfies Conditions 2 and 3 for all a > 0 and X > 1. There exists a number
apg = ag(A) > 0 such that this sequence satisfies Condition 1 for all 0 < a < ag,
a number a1 = aj(k,A\) > 0 such that this sequence satisfies Condition 4 for all
0 < a < a1, and finally there exists a number ag = as(7], L) > 0 such that this
sequence satisfies Condition 5 for all 0 < a < as.

Thus, for all A > 1 there exists a number
as = az(\, k,7, L) = min{ao(N), a1(k, ), a2(n7, L)} >0

such that for all 0 < a < ag, the sequence (1.6) satisfy Conditions 1—5. We prove
Proposition 1.2 in Appendix B below. Now we describe the class of initial densities
we shall consider.

Class of initial densities. We say that a probability density p(x) on R” belongs
to the class Py if

2 4
(1.7) p(x) = C(1 +&(]x]%)) exp <_|x2\ —K |)Z|) ,
where C > 0 is a norming factor, and
(1.8) Hs(t)||c4(R1) < 0.01.

Now we formulate our main results. We denote by py(x,T’) the distribution of
the mean spin 27"[o(1) + - - - + 0(2")] with respect to the Gibbs measure p, (dx;T)
and put

(1.9) () = ([ ixPon .7 ax) "

By pn(x,T) we denote the rescaled density function

(1'10) ﬁn(xa T) = MQ(T)pn(Mn(T))Q T)

and by 7, 7(dx) the corresponding probability distribution

(1.11) U, 7(dx) = pp(x,T) dx.

Formulation of the main results. We fix a sufficiently small positive number

n which will be the same through the whole paper. For instance, n = 107! is a
good choice. Define the following number N = N(n):

(1.12) N =min{n: I, > n'}.

Assume that an arbitrary number 7 in the interval 0 < 77 < 7 is fixed. (The number
7 appears in Condition 5).
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Theorem 1.3. (Necessity of Dyson’s condition). Let us consider the case when

o0
g Il = oo
n=1

Then there exists a number ko = ko(N) such that for all 0 < k < kg the following
statements hold.

Assume that the density p(x) = % belongs to the class P, and the sequence
{ln, n > 0} satisfies Conditions 1-3. Then there exists a constant L = L(7, k) such
that if the sequence {l,, n > 0} satisfies Condition 5, then for all T > 0, there
exists the limat

(1.13) lim 2"M2(T) = x(T) > 0.

n—oo

In particular, the spontaneous magnetization satisfies the relation
M(T) = lim M,(T) = 0.
n—oo

In addition, the distribution Uy, 7(dx) tends weakly to the r-dimensional standard
normal distribution as n — oo.

To formulate our results for the case when the Dyson condition (1.2) holds, we
define a function p,(¢,T) by the formula

(1'14) pn(xa T) = Cn(T)_lﬁnGX‘vT)a

for t = |x| > 0 and p,(¢,7) = 0 for ¢ < 0. The norming constant C,,(T") is chosen
in such a way that p,(¢,7) is a probability density function, i.e.

/ Pn(t,T)dt = 1.
0

We will call p,(t,T) the probability density of the mean spin distribution along the
radius.

In Parts 2 and 3 we will describe the limit behaviour of an appropriate rescaling
of the probability density p,(t,T") for T'= T, and T' < T,.. Then we will formulate
a Corollary which gives a good asymptotics for the norming constants C,(T) in
(1.14). In such a way we get a good asymptotics for the probability density functions
pn(x,T) for T < T,. To do this we introduce the notations

NE,(T) = / gt T) dt,

(1.15) < s
Vn(T)—( / (t—Mn(T))an(t,T)dt> ,

—00

and the rescaled probability density
(1.16) Tn(t, T) = Vio(T)pn (MH(T) LV (T)t, T)

which can be rewritte in an equivalent form as

(1.17) n(t,T) = lT) . <t _v%;()T)’ T) .
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Observe that, in general, M, (T) and M, (T), which is defined in (1.9), are different,
but as we will see later,

lim [M,(T) — M,(T)] = 0.

n—o0

Our aim is to prove that in the case when the Dyson condition (1.2) holds, there

exists a critical temperature T, such that the spontaneous magnetization M(T') =
lim M, (T) is positive for T' < T, and it is zero for T' > T,. For T' < T, the density
n—o0

~

function py, (¢, T') is concentrated near the point ¢t = M, (T), and the function m, (¢, 1)
represents a rescaled distribution of p, (¢,7') near this point. We want to prove that
n(t,T) tends to a limit w(t) as n — oo. It turns out that this limit does exist, and
the limit function 7 (¢) is a nice analytic function, although it is non-Gaussian. The
function 7 (t) is expressed in terms of a solution of a nonlinear fixed point equation,
and the next proposition concerns the existence of such a solution. Introduce the
space of probability densities p(t) on the line

A= {p(t): /_: e“lp(t) dt < oo for some e = e(p(t)) > O} .

Consider also the subspace Ay C A,

Ao = {p(t): p(t) € A, /Z Ip(t) dt = 0}.

Proposition 1.4. There exists a unique probability density function g € Ay which
satisfies the following fized point equation:

2 2 r—1 [v|?
g(t) = — / e'vg<t——u—|—
( ) WTI UER17V6RT71 4 2

(1.18)

The density g(t) can be extended to an entire function on the complex plane, and
for real t it satisfies the estimate

(1.19) 0<g(t) < Ceexp{—(2—¢)|t|]}, foralle>0.

For a proof of Proposition 1.4 see the proof of Lemmas 12 and 13 in [5]. It is
worth noticing that the Fourier transform of g,

i© - [ ey (t) dr,

solves the equation

(1.20) 9(&) = ————=
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Using the probability density g(t) of Proposition 1.4, we introduce a probability
density 7(t) on the line of the form
(1.21) T(t) = ce 2P 3g(bt — a),

where the numbers b > 0, ¢ > 0, and a are chosen in such a way that

(1.22) /OO m(t)dt =1, /Oo t(t)dt =0, /oo t2r(t) dt = 1.

—00 —0o0 —00
Observe that such a, b, ¢ exist and are unique. Indeed, after the change of variable
u = bt — a, the second equation in (1.22) gives a as

ffooo ue*2“/3g(u) du
ffooo e~2u/3g(u) du

Then the first and third equations determine b and ¢ uniquely from the system,

c [
/ e—2(u+a)/39(u) du = 1,

(1.23) a=—

b
(1.24) e
5] / (u + a)?e 2FD/3g () du = 1.

Estimate (1.19) secures the convergence of the integrals in (1.23) and (1.24).
Now we formulate

Theorem 1.5. Assume that
oo

(1.25) > it <o
n=1

Then there exists a number kg = ko(IN), where N is defined in (1.12), such that for
all 0 < k < kg the following statements hold.

Assume that the density p(x) = % belongs to the class Py, and the sequence
{ln, n > 0} satisfies Conditions 1-4. Then there exists a constant L = L(7, k) such
that if the sequence {l,, n > 0} satisfies Condition 5, then there exists a critical

temperature T, > 0 with the following properties:
(1) If T > T, then
(1.26) lim 2"M2(T) = x(T) > 0,

n—ro0
and the distribution v, 7(dx) tends weakly, as n — oo, to the r-dimensional
standard normal distribution. The function x(T') in (1.26) satisfies the fol-
lowing estimates near the critical point: There exists a temperature Ty > T
and numbers Co > C1 > 0 such that for all Ty > T > T, there exists a
number n(T) such that

O Y L <T-T. <0y i
(127) k=n(T) k=n(T)
on(T) on(T)
Cl < X(T) < 02 .

la(r) la(r)
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(2)
(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)
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(The number £(T) = 2T) is the correlation length.)
At T =T, hm M, (T,) = 0 (there is no Thouless’ effect), and moreover

lim L, 'M,(T.) =1,

n—oo

where M, (T) is defined in (2.12), and
1/2

r—1
s —1
n 6 le
j=n

(Condition (1.25) implies that li_)rn L,=0.)

Let us define the rescaled version p,(t) of the probability density function
on(t,T;) as

where M, (T) is defined in (1.15), and

SRl 2z :
(Observe that ILm dp, = 00 by Condztzon 2 on {l,}.) The function p,(t) is
defined on the half-line [—d,,, o). Then
Jim{|pn () — = (8)[| = 0,
where the probability density w(t) is defined in equations (1.21), (1.22) and

FOI=3 su { /s | ¢ >‘ }

j=0t=~dn i

If T < T., then the numbers M,(T) and V,(T) defined in formula (1.15)
satisfy the following relations: The limit

lim M, (T) = M(T) >0
n—oo
exists, and
CL|IT — T.|M? < M(T) < Co|T — T,|"/>.
In addition,

>0

. br

with the number b appeared in formula (1.21), and
lin [ma(t,T) — (t)]| = 0.

where the probability densities m,(t,T) and w(t) are defined in equations
(1.16) and (1.21), (1.22), respectively, and || f(t)|| is defined in (1.53), with

My (T
dn = TE77 -
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Theorems 1.3 and 1.5 are the central results of the present paper. Let us make

some remarks about Theorem 1.5. Relations (1.26) and (1.28) imply that

M(T) = lim M,(T)=0, forallT>T.,

n—oo
i.e. the spontaneous magnetization M (T) vanishes at T" > T.. Relation (1.35)
implies that
lim M(T) =0,
T—T.

with the classical critical exponent 1/2 for the magnetization.

The number 7(7) in (1.27) is very important for our investigation in the subse-
quent sections. It shows how many iterations of the recursive equation (renormal-
ization group transformation) is needed to reach the “high temperature region” (see
Section 3 below for precise definitions). The quantity &(7) = 2°(7) is the correlation
length. Usually the correlation length has a power-like asymptotics {(7T") < |T'—T¢|™
as T — T, where v is the critical exponent of the correlation length (see, e.g., [14]
or [20]). It follows from (1.27) that in the case under consideration, £(7') grows
super-polynomially as 7' — T.". For instance, if [, is a sequence determined by
equation (1.6) then &(T') grows like exp [Co(T — Tc)l/(’\_l)]. Similarly, (1.27) im-
plies that the magnetic susceptibility x(T') diverges super-polynomially as T' — T.".

Relation (1.36) shows that the mean square deviation of the mean spin along the
radius behaves, when n — oo, as

bT
Vn(T) ~ 3M(T)ln’ T<Te,
so that it goes to zero very slowly as n — oo (comparing with the standard behavior
of C27"/2). In fact, it goes to zero sub-polynomially with respect to the number
of spins 2". And according to (1.31), at T = T, the scaled mean square deviation
of the mean spin along the radius, d;!, goes to zero even slower, than at 7' < T,
namely,

-1
2b -
-1 -1
k=n

On the other hand, observe that by (1.32) and (1.37) the limit distribution density
7(t) of the normalized mean spin along the radius is the same for all 7' < T, and
for T' =T, as well.

Let us say some words about our methods. The questions we investigate in this
paper lead to a problem of the following type: We have a starting probability density
function py(x,7T") which depends on a parameter T, the temperature, and we apply
the powers of an appropriately defined nonlinear operator Q to it. This operator
Q is the renormalization group operator. We want to describe the behavior of the
sequence of functions p,(x,7) = Q"po(x,T), n = 1,2,.... In particular, we want
to understand how the behavior of this sequence of functions p,(x,T), n =1,2,...,
depends on the parameter 7. Our investigation shows that if the function p,(x,T)
is essentially concentrated around the origin, then a negligible error is committed
when pp4+1(x,T) = Qpn(x,T) is replaced by the convolution of the function p,(x,T)
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with itself, and this is the case for all n if the parameter T' is large. The replacement
of the operator Q by the convolution is called the high temperature approximation.

On the other hand, if the function p,(x,T) is essentially concentrated in a nar-
row shell far from the origin, and this is the case for all n if the parameter T is
small, then another good approximation of the function p,41(x,7T) = Qupn(x,T) is
possible. This is called the low temperature approximation. The high temperature
approximation actually means the application of the standard methods of classical
probability theory. The low temperature approximation applied in this paper is a
natural modification of the methods in our paper [5] where a similar problem was
investigated. But in the present paper we have to make a more careful and detailed
analysis. The reason for it is that while in [5] it was enough to investigate only
very low temperatures 7', now we have to follow carefully when the high and when
the low temperature approximation is applicable. Moreover, — and this is a most
important part of this paper, — to describe the behavior of the functions p,(-,T)
for all temperatures T" we have to follow the behavior of these functions also in the
case when neither the high nor the low temperature approximation is applicable.
This is the so called intermediate region. (See Section 3 for precise definitions.)

We study the intermediate region in Section 5. There we show that if the function
pn(x,T) “is not very far from the origin”, namely, the low temperature approxi-
mation is not applicable for it, then the functions p,r(x,T) are getting closer and
closer to the origin as the index n + k is increasing. Moreover, after finitely many
steps k the high temperature approximation is already applicable, and the num-
ber of steps k we need to get into this situation can be bounded by a constant
independent of the parameter T'. The proof given in Section 5 contains arguments
essentially different from the rest of the paper. Here we heavily exploit that the
numbers ¢, = lkl are very close to one. Informally speaking, the sequence of num-
bers ¢, — 1 behaves like a small parameter, and this “small parameter” enables us
to handle our model near the critical temperature.

The setup of the rest of the paper is the following. In Section 2 we give an
analytic reformulation of the problem and connect Dyson’s condition (1.2) with an
approximate recursive formula for some quantities M, (7T) related to the spontaneous
magnetization (see (2.20) below). In Section 3 we introduce a notion of low and high
temperature regions together with an intermediate region. Then we formulate the
basic auxiliary theorems about the characterization of these regions. In Sections 4, 5,
and 6 we prove the main estimates concerning the low temperature region, the
intermediate region, and the high temperature region, respectively. In Section 7 we
prove the convergence of the recursive iterations to the fixed point for all T' < T.
Finally, in Section 8 we prove Theorem 3.4 concerning some asymptotics near the
critical point T, and derive Theorems 1.3 and 1.5 from the auxiliary theorems.

2. ANALYTIC REFORMULATION OF THE PROBLEM. STRATEGY OF THE PROOF

The hierarchical structure of the Hamiltonian (1.1) leads to the following recursive
equation for the density functions p,(x,T") (see, e.g., Appendix A to the paper [5]):

(2.1)  pp1(x,T) = Cu(T) /T exp (lT"(X2 _ u2)> pn(x—u,T)pp(x+u,T)du
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for n > 0, where po(x,T) = po(x) is defined in (1.7),
I, =1(2"),

and C),(T) is an appropriate norming constant which turns p,1(x,T") into a density
function. We are interested in the asymptotic behaviour of the functions p,(x,7)
as n — oo. For the sake of simplicity we will assume that ¢(¢) = 0 in (1.7), so that
po(x) coincides with (1.3). All the proofs below are easily extended to the case of
nonzero £(t) satisfying estimate (1.8).

Define
ln

9y
ln—l

(2.2) Cn = n=0,1,... with [ =1,

o0 D
(2.3) An:1+ZC"T“---C”%:1+l;122—fln+j, n=0,1,....
j=1

j=1
Then
(2.4) l, = H cj, mn=>0,
=0
and
ln ATL
(2.5) Ay = 1, + 2Hntl

2
Indeed, by (2.3),

lnAp =l + i 2_jln+j - i 2_jl”+j’
=0

j=1
hence
= I~ lns1An
(2.6) nAn —ln =Y 2771, = 3 > 2l = %
j=1 =0
and (2.5) follows.
Define
Anln 2
(2.7 . T) = 8, (1) e (2457 ) (VT )

where A, (7T") > 0 is a norming constant such that

/ an(x,T) dx = 1.

Let
(2.8) W =01+4)l, n=012...
Then it follows from equations (2.1) and (2.5) that
1 n
29) G T) = 5 / e w T)ga(x + 0, T) du,
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Also, by (1.3),

(2.10) q(x,T) =

2 4
exp {(C()AO — T)ﬁ — KT2’X’} .

1
Zo(T) 2 4

The norming constants Z,,(T") in the previous formulas are determined by the con-
dition that

/ an(x,T)dx = 1.

Thus, the functions ¢,(x,7T") are defined recursively by formulas (2.9) and (2.10).
Our goal is to derive an asymptotics of the functions ¢,(x,T") as n — co. Then the
asymptotics of the functions py,(x,7") can be found by means of formula (2.7). The
advantage of the functions ¢,(x,7’) is that their recursive equation (2.9) does not
depend on T'.

The method of paper [5] can be adapted in the study of the low temperature
approximation. We shall follow this approach. Due to the rotational symmetry
of the Hamiltonian (1.1), the function ¢,(x,7") depends only on |x|. Define the
function g, (¢,T), t € R, n =0,1,2,..., such that

(2.11) an(x, T) = Cn(T) @n(|x], T),
with a norming constant C,,(T") such that
/ Gn(t.T) dt = 1.
0

We will define
an(t,T)=0 for t<O.

Put also
(2.12) M, (T) = / tq,(t,T)dt, n=0,1,...,
0
and define the rescaled probability density functions
1 t
(2.13) fot,T) = —Gn | Mu(T) + —,T), teR', n=0,1,....
c(m) c(m)
Then
(2.14) G (8. T) = e fy (e (¢ = My (T), T,
and

/Z falt,T)dt =1, /oo tfa(t, T)dt = 0.

—00
The order parameter M, (T") in (2.12) is very convenient for the asymptotic recursive
analysis. Later we will relate it to the parameters M, (T) and M, (T) introduced in
formulae (1.9) and (1.15), respectively.

A low temperature approximation can be applied in the case when M, (T) is
relatively large, comparing with the size of the neighborhood of M,,(T') in which the
function f,(¢,T") is essentially concentrated. In this case we follow the behaviour
of the pair (f,(t,T), My (T)). To describe this procedure introduce the notation
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c={c™, n=0,1,...}. The rotational invariance of the function g, (-, T) suggests
the definition of the operator

_ U2
Qs = [ exp{v2}
’ u€R!, veR™—1 )

t u \?  v2
(n) 4T - _
e ¢(M+c(n+l)+c(n)) Y

t u \2  v2
(n) v " A
xflc \/(M + D c(")> + o) M dudv.

Formula (2.9) together with the definition of the function f,(¢,T) yields that

t cn+1) _
Int1 <Mn(T) + c("+1)’T> = 7.0 n M (1) I (8 T)
with -
zu(0) = | QS oo falt T)
—c(n+D) M, (T)

The norming constant Z,(7T") is determined by the condition

/ G (£, T) dt = 1.
0

Define also
1 o0 _
2.15 mu(T) = my,(fn(t,T)) = tQy n(t,T) dt
219 malD) =) = g [ Qb T)
and )
oty (6 T) = e i QC g, (1) Jn (4 1 (1), T).
Then

mp(T)

(216) S (6T) = Q5 ayyfa(t.T) and My () = My (T) + 055

To formulate a good approximation of the operator QZ, My (T)? let us introduce

the numbers

(n) (1+ Ap)l

(& n)ln
2.1 Cn, = = , =1,2,....
(2.17) T T A4 Ay )l

The arguments of the function f in the definition of the operator th Mo

2 2
" o o u N v
(2.18) g (tu,v) = ¢ (M t c(n>> T M)

can be well approximated by a simpler expression because of the estimate

t 2 4 t2 2
00t u,v) — ( +u+ 2‘;\4> M u >

<1
e = 100 <c(")M3 MDY
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which holds for |t| < %C("“)M, lu| < %c(”)M and v2 < ¢ M?2. This estimate sug-
gests that for low temperatures T', when M,,(T') is not small, the operator be Mo (T)

can be well approximated by the operator Ty Mo (T) defined as

_ t V2
T® t,T :/ eV’ <_ +u+,T)
MMn(T)f( ) u€R!, veR"—1 / Cn+1 2MH(T)

2

t v
_ ——— T dudv.
Xf<5n+1 u+2Mn(T)’ ) e

(2.19)

The elaboration of the above indicated method will be called the low temperature
approximation. It works well when M,,(T') is much larger than the range where the
function f,(¢t,T) is essentially concentrated. For n = 0 the starting value My(7T)
at very low temperatures 7" > 0 is very large. In this case the low temperature
expansion can be applied. As we shall see later, the approximation of sz Mo (T) by

Ti, a7y Yields that

r—1
2.20 My ((T) ~M,(T) — —————,
which, in turn, implies that
2 2y "L
(2.21) My (T) ~ M;(T) Ok

It follows from (2.3) and (1.5) that
(2.22) 2 < A, < 2.03, lim A, = 2,

n—oo
hence if Condition 1 is satisfied, then not only lim ¢, = 1, but also lim ¢, = 1,
n—00 n—00
and by (2.8),

cn) ()
(2.23) 3<% <303,  lim S =3.
ln n—oo [,
This allows us to rewrite (2.21) as
—1
(2.24) M4 (T) ~ MAT) =~

This formula underlines the importance of the Dyson condition (1.2).
Namely, if the series

(2.25) B= i It

n=1

converges then M, (T) remains large for all n if T > 0 is small. Indeed, assume that
T < coAp/2. Then it follows from (2.10) that MZ(T) > C(kT?)~!, hence by (2.24),
neglecting the error term,

r—1
6

M2(T) > M3(T) — DLt CkT) T -Cr> 1
n=0
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for all n if T > 0 is small, which was stated. On the other hand, if the series (2.25)
diverges, then for some n, M, (T) becomes small, and the approximation (2.20)
becomes inapplicable.

The low temperature approximation can be applied when M, (7)) is not small.
When M,,(T') is small a different approximation is natural. If the function ¢, (x,T)

. . : o —-1/2
is essentially concentrated in a ball whose radius is much less than (c(")) / , then

a small error is committed if the kernel function e=<"%” in formula (2.9) is omitted.
This means that the formula expressing ¢,+1(x) by ¢,(x) can be well approximated
through the convolution ¢,+1(X) = gn * ¢n(x). This approximation will be called
the high temperature approrimation. If the high temperature approximation can be
applied for ¢, (x,T), then the function g,+1(x,T") is even more strongly concentrated
around zero. Hence, as a detailed analysis will show, if at a temperature 7" it can
be applied for a certain ng, then it can be applied for all n > ng.

Finally, there are such pairs (n,T") for which the function ¢, (x,7T) can be studied
neither by the low nor by the high temperature approximation. We call the set of
such pairs an intermediate region. We shall prove that if the sequence ) sufficiently
slowly tends to infinity and the function g, (x,7T’) is out of the region where the low
temperature approximation is applicable, then the density function ¢,11(x,7") will
be more strongly concentrated around zero than the function g, (x,7’). Moreover, in
finitely many steps the function g, (x,7") will be so strongly concentrated around
zero that after this step the high temperature approximation is applicable. It is
important that the number of steps k needed to get into the high temperature
region can be bounded independently of the parameter 7'

The main part of the paper consists of an elaboration of the above heuristic
argument.

3. FORMULATION OF AUXILIARY THEOREMS

To describe the region where the low temperature approximation will be applied
we define some sequences 3, (T") which depend on the temperature T'. Define recur-
sively,

(V))?
ﬂN(T) = (2]\;)7

(3.1) 2
Brn1(T) = < n2+1 + Uﬁz((nj;)> Bn(T) + ]\/[;(()T) for n > N,

where the number N is defined in (1.12), ¢, in (2.17) and M, (T) in (2.12). As
it will be seen later, these numbers measure how strongly the functions f,(z,T)
are concentrated around zero. We define the low temperature region, where low
temperature approximation will be applied.

Definition of the low temperature region. A pair (n,T) is in the low temper-
ature region if the following properties (1) and (2) hold.
(1) 0 < T < cpAo/2, where Ay was defined in (2.3).
(2) Either 0 < n < N with the number N introduced in (1.12) or n > N and
Bna(D) < 1 with the number n appearing also in (1.12).

C(nfl)
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The temperature T is in the low temperature region if the pair (n,T) is in the low
temperature region for all numbers n. Let us remark that by (2.4) and (1.5)

n
1<, =]]¢ <1017,
j=1

hence by (2.23),
(3.2) 3< ™ <3.03-1.01"
Therefore, by (3.1),

BN(T)  N) 1
. = < <
(3:3) M v =g =T
hence the pair (N + 1,7) is in the low temperature region if 7' < ¢gAp/2. Since
Br+1(T) > M%?T) the pair (n,T) can get out of the low temperature region only if
M,,(T') becomes very small.
To define the high temperature region introduce the notations

o) = ()0 (257),

D2(T) = /T- x?hy (x,T) dx.

(3.4)

where the function ¢, (x,T) is defined in (2.7). Let us also introduce the probability
measure H,, T,

(3.5) H, r(A) :/ hn(x,T)dx, A CR",
A

on R".

Definition of the high temperature region. A pair (n,T) is in the high temper-
ature region if D*(T) < e~V with the number n in formula (1.12), where D(T)
is defined in (3.4). The temperature T is in the high temperature region if there
exists a threshold index no(T') such that (n,T) is in the high temperature region for
all n > no(T).

It may happen that a pair (n,T) belongs neither to the low nor to the high tem-
perature region. Then we say that (n,T) belongs to the intermediate region. Let
us remark that we introduced two numbers N and 7 in formula (1.12), and in the
formulation of the subsequent results N and 7 will denote these numbers. The
following result is very important for us.

Theorem 3.1. There exists a number kg = ko(N) such that for all 0 < kK < Ky
(where k appears in formula (1.3)) and 0 < 77 < n there is a number L = L(7, k)
for which the following is true. Assume that Conditions 1 and 5 (with 7 and this
number L = L(7,k)) hold. We consider such temperatures T' for which there are
numbers n such that the pair (n,T) does not belong to the low temperature region.
Let 2(T) > 0 be the smallest number n with this property.
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If the pair (n(T),T) does not belong to the high temperature region (which means
that (n(T'),T) is in the intermediate region), then there exist some numbers K =
K(7q,k) >0, n=n(n,k) >0, and k = k(7, k) € N such that

~— —~

Dl (T) < K, 1< Dipy(T) < e M,
This implies in particular that the pair (R(T') + k,T) with this index k belongs to
the high temperature region.

We shall also prove the following corollary of Theorem 3.1. (See the Remark after
the proof of Lemma 6.1.)

Corollary. Under the conditions of Theorem 3.1 all temperatures T > 0 belong
either to the low or to the high temperature region. If the Dyson condition (1.2)
holds, then all sufficiently low temperatures belong to the low and all sufficiently
high temperatures to the high temperature region. If the Dyson condition (1.2) is
violated, then all temperatures T' > 0 belong to the high temperature region.

The next theorem concerns the low temperature region.

Theorem 3.2. There exists a number kg = ko(IN) such that for all 0 < Kk < Ko
the following is true. Assume that the Dyson condition (1.2) and Conditions 1 and
2 hold. Assume that the temperature T is in the low temperature region. Then the
numbers My (T) defined in (2.12) have a limit,

(3.6) ILm M, (T) = M (T),
and
2 a2
(3.7) tim M) = M) _
n=eo p—g 1
=X
k=n
In addition,
(3.8) I L () =g =0
where
2 .
& f(t)
(3.9) 1f @) = sup el | ===,
; £>— () My, (T) at

J

fu(t,T) is introduced in (2.13), and the probability density g(t) is defined as a
solution of the fived point equation (1.18).

Part (3) of Theorem 1.5, with the exception of estimate (1.35), follows from
Theorem 3.2 and the additional relation My, (T') > 0 if T' < T, which follows from
the results in Theorem 3.4 formulated at the end of this section. Indeed, we can
express the function p,(x,7T) in terms of f,(¢,7). Namely, by (2.7), (2.11), and
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(2.14)
_ AL, |x|?
pu(x,T) = L, (T) exp <—21[|>
(3.10) o
><fn<ﬁ(!><| VT M(T)) )
with an approriate norming constant L,(7T). Let us write that |[x[?> =

(VT M, (T) + |x| — VT M, (T))?, hence

Anln|x|? _ Anly 9
exp <—211 = exp 2T [TM (T)

F2VT Mo(T) (x| — VT Mo(T)) + (x| — VT Mo (T))’] }

and substitute it into (3.10). This leads to the equation

- — M, (T)
3.11 W(x,T) = LY [ M,T
(3.11) pal.T) n()f< .
with an appropriate norming constant I:n(T), where
! i JT
M,(T) = T M,(T), Vo(T) = ———,
1) = VIM(T). D)=
- t Anlt
n t’T — n 77T TS n t’T )
) = (5 T) e (2 - m)
Aplnt?
t,T) = —/—————
R EO) DT )
Observe that by (2.22) and (2.23)
lim Anln_ 2 lim A =0
nooo cm 3’ n—00 2(0(”))2M%(T) o
hence (3.8) implies that there is some Cy > 0 such that
- I oes||
JinoloHMn(T)f”@’T) Cog (t)e =0,
where )
& f(t)
oI =3 s s | 200
;&&Nwﬁ) dti

This also implies that there exist some real number a and C’ > 0 such that

/
.12 li - f(t—aT)—C' — —2t/3) —
(3.12) Jim HMn(T)f (t—a,T)-Cg(t—a)e 0,
with such numbers @ and C’ > 0 for which the relations
/ C'g(t — a)e /3 dt = 1 and / C'tg(t —a)e P dt =0

hold.
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Let us define for all b > 0 the function m(t|b) = C’bg(bt — a)e2""/3 dt. These
functions satisy the relations

/ C’bw(t|b)dt:1and/ C'btr(t|b) dt =

Moreover, the number b > 0 can be chosen in such a way that the identity

/ C'ot*n(tib)dt = b2 / C'b(bt)*w(t|b) dt
= b_/ C't2g(t —a)e?Bdt =1

also holds. Let us define the function m(t) = = (¢|b) with this parameter b. In
such a way we constructed a function 7(¢) that satisfies relations (1.21) and (1.22).
Moreover, if we define the functions

(3.13) Tn(t,T) = Co(T) fr(bt — a,T)

with these numbers a and b and with such a norming constant C,(7") for which

o0
/ Fu(t, T)dt =1,

then these functions satisfy the relation

(3.14) lim |7, (t) — 7(t)]|' =0

n—o0

because of relations (3.12). Because of (3.14) we also have [* 7, (t,T)dt = 1,
nh_{Iolo o5 ti(t, T) dt = 0, nh_)n;@ [25 27, (¢, T)dt = 1, and because of (3.11) and

(3.13)
ﬁn(ta T) = C?Q(T)_lpn((bt - a)VN(T) + Mn(T)a T)
= an(T)pn(bt - G)VN(T) + Mn(T)’ T)'

(The normalization constant in the second identity of the last formula is determined
by the fact that both p,(t,T") and 7,t,T) are probability density functions).
Hence

/Oo ti,(t, T)dt = bV, (T) /Oo tpn (bt — a) Vi (T) + M, (T),T) dt

(3.15) = / Tz M”lfg)(;)aV"(T) Pu(t,T) dt
= Mn(T) — Mn(T) + af/n(T) —0 asn— o0
bV (T) ’
and
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_ - 2
VAT) + ((Ma(T) = M (T)) + aVi(T))
(3.16) = = —1 asn— oo
b2V2(T)
Relations (3.15) and (3.16) together with Theorem 3.2, the inequqailty Moo (T') >
0 and the definition of the quantities M, (T") and V,,(T') imply relations (1.34) and
(1.36). Indeed, by Theorem 3.2 lim M,(T) = M(T) with M(T) = VT My (T), and

since V,,(T) — 0 as n — oo relation (3.15) implies that li_>m (M, (T) — M,(T)) = 0.
n—oo
Formula (1.34) follows from these relations with the above defined number M (T).

Relations (3.15) and (3.16) together imply that li_)m “;”g; = b. On the other hand,

. -, . c(n) T T . .
nh—>Holo L Vo(T) nh_{goTc(n)\/TMn(T) = 3arcry- Lhese relations imply (1.36).

Finally to prove relation (1.37) let us observe how the functions m,(¢t,7) and
7n(t, T) can be expressed with the help of the function p,(¢,T). Besides, both are
probability density functions, and the integrals [*° 7, (t,T) dt and [*_¢*7, (¢, T) dt
tend to zero and 1 as n — oo, while the correponding integrals for 7, (¢,T") are equal
exactly to these limit values for all parameters n. This implies that the identity
Tn(t, T) = (1+en)Tn((1+en)t+06,, T') with such numbers e, = ,(T") and 6, = 6,,(T")
for which lim &, =0, and lim §, = 0. It can be proved with the help of this ob-

n—oo n—oo
servation that relation (3.14) remains valid if we replace the functions 7, (t,7) by

7 (t,T) in it, and this means that formula (1.37) is valid.

Now we formulate a theorem about the high temperature region. Put

r/2
- (n) (n)
— 9—n/2 —n/2 Y c
(3.17) hn(x,T) =2 Gn (2 X,T) < on ) hn < on X,T) ,

and define the probability measures
(3.18) H,7(A) = / ho(x,T)dx, A CR’
A

on R".

Theorem 3.3. There exists a number ko = ko(N) such that for all 0 < kK < kg and
0 < 7] < n there exists a number L = L(7], k) such that the following is true. Assume
that Conditions 1 and 5 (with 7 and this L = L(7.k)) hold, and T is in the high
temperature region. Then the measures IjIn’T defined in (3.18) converge weakly to
the normal distribution on R™ with expectation zero and covariance matriz o(T)1
with some o?(T) > 0, where I denotes the identity matriz.

If T belongs to the high temperature region, but the pair n = (0,T") does not belong
to it, (i.e. the temperature T is not too high), then the inequality

9n(T) on(T)
1y <00 < O
also holds with some Cy > C1 > 0, where n(T) is defined in Theorem 3.1.

(3.19)

Remark. Not only the convergence of the measures ﬁn,T but also the convergence of
their density functions h,(x,7T) could be proved. But the proof of the convergence
of the distribution is simpler, and it is also sufficient for our purposes.
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Corollary. Let H,, 1 denote the probability measure on R" with the density function
272, (272N T X, T).

Under the conditions of Theorem 3.3 the measures ﬁn,T have the same Gaussian
limit as the measures H, 1 defined in Theorem 3.3 as n — oo.

Our last theorem concerns the critical point. We want to show that there is a
critical temperature 7, such that above it all temperatures belong to the high and
below it all temperatures belong to the low temperature region. We also want to
describe the situation in the neighborhood of the critical temperature in more detail.
In Theorem 3.4 we state such a result.

Theorem 3.4. There exists a number kg = ko(IN) such that for all 0 < kK < Ky
there exists a number L = L(7, k) such that the following is true. Assume that
Conditions 1-4 are satisfied. Then for a fired n the set of temperatures T for
which (n,T') belongs to the low temperature region forms an interval (0,71,], and
the sequence T, n = 1,2,..., is monotone decreasing in n. Define the critical
temperature T, as the limit, T, = nlLH;O Tn. Then coAo/4 > T, > 0. The function

My (T) = nlgr;o M, (T) ezists in the interval (0,T;], and for a fized n the function

M, (T) is strictly decreasing on the interval (0,T,]. The relation M« (T,) = 0 holds.
If T, +¢>1T > T, with some € > 0, then the inequality

o0 [e.9]

1
(3.20) 1 Y o <T-T.<C > -
k=a(T) k=n(T)

1
k)

holds with some appropriate numbers Co > Cy > 0, where n(T) is defined in Theo-
rem 3.1. If T, — e < T < T, with a sufficiently small € > 0, then

(3.21) C1(T. — T)Y? < Myo(T) < Co(T. — T2,

4. BASIC ESTIMATES IN THE LOW TEMPERATURE REGION

In this section we give some basic estimates on the function f,(x,T) and its
derivatives (with respect to the variable z) if the pair (n,T) is in the low temperature
region. These estimates state in particular, that in the definition of the functions
fn(x,T) the right scaling was chosen. With the scaling in formula (2.13) the function
fn(x,T) is essentially concentrated in a finite interval whose size depends only on
M, (T). Both the results and proofs are closely related to those of Sections 3—6 in
paper [5].

First we consider the case of small indices 0 < n < N, where the number N
defined in (1.12) (cf. Section 4 in [5]), and we begin with n = 0. Assume that
T < cpAp/2 and k > 0 is small (exact conditions on the smallness of x will be given
later). In this case the function go(x,T) has its maximum in the points Mq(T) (see
(2.10)), where

cn — T\ 1/2
(4.1) i) = (05T
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is a large number. From (2.10) we obtain that

1 /- T
(4.2) mQO (MO(T) =+ @=T>

where

2
o] x 2 T
43)  Zo(T) = ~oco =D\ ) (M o) [
(4.3) o(T) /MO(T) exp (Aoco )<c(0)> ( + 20(0)M0(T)) ’

It can be proved by means of the identity
(44)  O(M(T) — Mo(T))

f ¢© Ngo(T) T €XP { (codo — (T) (1 + c(O)Mo )2}
2 2
ffc(O)MO( )exp{ (Aoco —T) (ﬁ) (1 + W) } dx

that
(4.5) | Mo(T) — Mo(T)

‘ const.
~ Mo(T)
where My(T) is defined (2.12). This shows that My(T') is a very good approximation

to My(T). Straightforward calculation yields with the help of formulas (4.1) and
(4.3) that

< const. vk T,

(0)
(4.6) Zo(T) — (Z\/%T) < const. & T,

0Co —
and from (4.1)—(4.6) we obtain that

0 A()C(] T T\ 2
(4.7) a< v exp{(AocoT) <?0) })}
< const. ke —2lel/c@ lz| <logr™, j=0,1,2,
and
(A()CO — T) 1'2

(4.8) for z > —c(O)MO(T), j=0,1,2.

A relatively small error is committed if M, is very large and the arguments
EiMn (z,u,v) (defined in formula (2.18)) of the function f,, in the operator Q;’%an
are replaced by x+u. Exploiting this fact one can prove, using a natural adaptation
of the proof of Proposition 1 of paper [5], the following

Proposition 4.1. There exists a number ko = ko(N) such that if

(i) 0 < Kk < Ko, and
(11) 0<T< CoA0/2,
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then the relations
oI n T N2
w (fn(x7T) - \/77_ C(n) exXp { (AOCO - T) (m) }) '

< B(n)ﬁl/A‘e*ZnH‘x'/c(n), if x| <2 "logr™, j=0,1,2,

aa;jfn(a?,T) < B(n)exp{—(AOCZT)CQ(:) 2 +(")]\423L(T) }
for & > ="M, (T), j=0,1,2,
and
(4.9) | M (T) — Mo(T)| < B(n)V/& T

hold for all 0 < n < N with the function Mo(T) defined in (4.1) and a function
B(n) which depends neither on T nor on k.

We formulate and prove, similarly to paper [5], certain inductive hypotheses about
the behaviour of the functions f,(x,T) for n > N if the pair (n,7T) is in the low
temperature region. In the formulation of these hypotheses we apply the sequence
Bn(T) defined in (3.1) and the sequence «,(7T") defined as

an(T) = gy
(4.10) <+ - JED

an1(T) ()

)an(T)+]\1/22L_(IT2) for n > N.

To formulate the inductive hypotheses we also introduce a regularization of the
functions fy,(z,T).

Definition of the regularization of the functions f,(z,T). Let us fiz a C*-

Junction p(x), —co < x < o0, such that p(z) =1 for || < 1, 0 < p(z) <1

if 1 <2 <2 and @(x) =0 for || > 2. Then the regularization of the function
fulaT) is

x+ By

z,T)=A —_—

on(fn(2,T)) = Ane (100\/6(7)

with norming constants A, and B, such that

/OO Son(fn(va)) de =1, /OO CCSOn(fn(a%T))dx =0.

—00 —00

) folz+ B, T),

Now we formulate the inductive hypotheses.
Hypothesis /(n).

& fo(x,T) C 1 z?
et /amwp{ Bu(T) 2“c<n>Mn<T>‘}

forj=0,1,2, x> —c™M,(T),

with a universal constant C > 0. One could choose, e.g., C = 10?0,
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Hypothesis J(n).

Gufalt i) <~ e 2
Onln t+l$, ST (3 S| S —F/—,
T+ an(T)P NGRRGR]

where

Gufult +i5,T) = / T f (2, T)) da

Corollary of Proposition 4.1. Under the conditions of Proposition 4.1, the
inductive hypotheses I(n) and J(n) hold for n = N with a universal constant C > 0
in hypothesis I(n). (For instance, one can choose C = 10°.)

Before formulating the main result of this Section, we introduce the operators T,.
They are appropriate scaling of the operators Ty, Mo (T) defined in formula (2.19), but

these operators will be applied only for the regularization of the functions f,(z,T)
and not for the functions fy,(z,T") themselves. Put

2 2
Tnen(fu(z,T)) = 'rl/ e’
u€R! veRr—1

Cn+1T 2

x r—1 v
(4.11) X Pn (f" <an+1 AM,(T) +“*z‘an(TVT»

T r—1 v2
N —ut—— 7)) dudv,
X (f <+ @) T ) >> v

with the constants ¢, defined in (2.17) and the number V(S"~2) introduced in
Proposition 1.4. The main result of this section is the following

Proposition 4.2. There exists ko = ko(N) > 0 such that if

(i) the inductive hypotheses I(n) and J(n) hold for the function f,(x,T),
(ii) 0 < Kk < Ko, (kK appears in formula (1.3)), and
(iii) the pairs (m,T) belong to the low temperature region for all
0<m<n,

then the inductive hypotheses I(n+1) and J(n+1) hold for the function fny1(x,T).
Also there exist universal constants Cy, K1, Ko and K3 such that the following
estimates hold:

M1 (T) = Mp(T) — 40(7:)]:45(1#) + 7Z((n?’
(4.12) Bn1(T)

Where |’Yn(T)’ S C:LW /Bn+1(T)

< ﬁn-ﬁ-l (T)

(4.13) 1< @

S K17
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(¢) For x> —c™tDM, (T) and j =0,1,2,

4
2 . T) ~ Tl ol 1] < 220
Bn+1 ( ) ¢

(4.14)

.%'2
2z
X[exp{ WH ‘ e MnH(T)‘}

+ exp {M}
/Bn—l—l(T)

(d) Forz € R! and j =0,1,2,3,4,

8j KgCQ 2‘11’
(4.15) '8 5 Tron(fu(z, T))‘ > Wexp {_Bn—&-l(T)}

The proof of Proposition 4.2 is based on the observation that the operator T,
approximates the operator Q° M, (T) Very well, and it has a relatively simple struc-

ture. Namely, it can be written by writing the vectors v € R"~! in formula (4.11)
in spherical coordinates in the form

4 00 )
Tn@n(fn(IE,T)) = __1)/(; wT—Qe—w
2

Cnr1 ("

2x w? r—1
©n(fn) * Pn(fn) <En+1 + M, (T) - 2Mn(T)7T> dw,

where w = |v|. Then we get with the substitution Mwi(zT) = u that

Toon(fu(z,T)) = c+1F1/ Mo (T)( My (T)u) " =3)/2e=Mn(T)u
n 2

nl ) 5 onl) (b= 2;4;(;) )i

2 2z r—1
416 n\Jn n\Jn k_ — - 9
(4.16) e (n) % enlfn) * Kz, ) <Cn+1 2Mn(T)>
where + denotes convolution, k, ) () = ky,m(=2), and kpp,(r)(z) =
M (T)k (M (T)z) with k(z) = e~ k(z) = 222" for 2 > 0, and k(z) = 0
VT r(47)

for x <0.

The operator T, has a certain contraction property which can be expressed in
the Fourier space. the Fourier transform of T,,@,(fn(§,T")) can be expressed with
the help of formula (4.16). One gets that

T (fn(6:T))
A(r — e, ~ Cn Cn 2
—ow (e (amr) [on (0 (B57))]
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exp{ (7;1]\41)‘(3714—1 } - )
(4.17) = o o (0 (56 T))
(1 + 'zanr(l’f“))
In this calculation we have exploited that k(z) is the density function of the gamma
distribution with parameter 7;—1, whose characteristic function equals (1—i&)~("=1)/2,
It follows from formula (4.17) that T, . (fn(x,T')) is the density function of a ran-
dom variable with expectation zero.

The proof of Proposition 4.2 is a natural adaptation of the proof of the corre-
sponding result (of Proposition 3) in paper [5]. Hence we only explain the main
points and the necessary modifications.

Because of the inductive property I(n) f,(z,T) is essentially concentrated in a
neighbourhood of the origin of size \/5,(T"), and if (n,T’) is in the low temperature

: . . ||
domain and n > 0 is chosen sufficiently small, then 100\2(7 < 15 for |z] < \/Bn(T),

and the function f,(z,T) (disregarding the scaling with the numbers A,, and B,,)
is not changing in the typical region by the regularization of the function f,(x,T).
This is the reason why such a regularization works well.

The proof of Proposition 4.2 contains several estimates. First we list those re-
sults whose proof apply the bound on f,(x,T) formulated in the Inductive hypoth-
esis I(n). One can bound the differences

o - :
QS 1 T) = QS gy, ) (Lemma 4 in [3]),
8j N C TC :
507 Quar, @) Pn(fa(2, 1)) = T or, 1y P (fu(2, T))) - (Lemma 5 in [5]),
with the help of Property I(n) similarly to paper [5]. The absolute value of these
expressions can be bounded for all € > 0 by

Bn Ci(e)C? 201-¢) a? ’
o) Ry TP\ e BT | ML (T)

with some appropriate constant Cy(e) > 0 if f,,(x,T) satisfies Condition I(n).
The main difference between these estimates and the analogous results in pa-
per [5] is that the upper bounds given for the above expressions contain a small

multiplying factor (51)) In paper [5] the multiplying factors 2= and 1/¢(™ appear

instead of this term. In the proof of this paper we had to make some modifications,
because while in paper [5] only very low temperatures were considered when M, (T")
is strongly separated from zero, now we want to give an upper bound under the
weaker condition formulated in the definition of the low temperature region. The
proofs are very similar. The only essential difference is that in the present case the
typical region, where a good asymptotic approximation must be given is chosen as
the interval |z| < 10V, i.e. it does not depend on the value of M, (T').

Also the expression Qfl Mo (T) fn(x,T) can be bounded together with their first

two derivatives with the help of Property I(n) in the same way as in Lemma 3 of
paper [5]. But this estimate is useful only for large z. It can be proved, similarly
to the proof of the corresponding result in paper [5] (lemma 7) that the scaling
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constants which appear in the formulas expressing Q;, Mo (T) through sz Mo (T) and

T,, through sz M, (T) Are very close to each other. Here again the multiplying factor

B Z(g) appears in the error term instead of the multiplying factor 1/¢(™ in paper [5].

This Lemma 7 in [5] is a technical result which expresses the difference of the
functions T7 /7 F1 (z) and T} /- 1 F2 (z) together with its derivatives if we have

a control on the difference of the original functions Fj(x) and Fy(z). We gain such
kind of information from the inductive hypothesis I(n). They give a good control
on the difference f,+1(z,T) — Thon(fnu(z,t)). The consequences of these results
are formulated in Proposition 2 in paper [5]. These results also imply an estimate
on the Fourier transforms @ni1(fnt1(€,T)) — Tn@n(fn(§,T))) and Tnn(fn(§, T))
and also on their analytic continuation. This is done in lemma 8 in paper [ [5]. Now

again the analogous result holds under the conditions of the present paper with the
Bn(T)

cn) *
Tp@n(fn(€,T)) in such a way is relatively weak, it is useful only for large &.

The above results are not sufficient to prove Proposition 4.2. In particular, they
do not explain why the right scaling was chosen in the definition of the function
fn(z,T). Their role is to bound the error which is committed when Q;’ M (T) fulz,T)
is replaced by Ty, (fn(x,T)). The function Ty, (fn(z,T)) together with its deriva-
tives and Fourier transform can be well bounded by means of formula (4.17) and the
inverse Fourier transform. In the estimations leading to such bounds the inductive
hypothesis J(n) plays a crucial role. The proof of Lemma 9 in paper [5] can be
adapted to the present case without any essential difficulty. But, the parameters
Qy, Brn and ¢ must be replaced by ay, (7)), 5, (T) and ¢,41 in the present case.

Proposition 4.2 can be proved similarly to its analog, Proposition 3 in paper [5].
The notation must be adapted to the notation of the present paper. Besides, the
small coefficient ¢—"/2 appearing in the proof of Proposition 3 in [5] must be replaced

n The estimate obtained for

difference that the term ¢~ must be replaced

by fiﬁ—@ There is one point where a really new argument is needed in the proof.

This argument requires a more detailed discussion. It is the proof of relation (4.13),
i.e. of the fact that «,(T") and (,(T") have the same order of magnitude. Their ratio
must be bounded by a number independent of 7. The proof of the analogous result
in paper [5] exploited the fact that in the model of that paper the sequence (™)
tended to infinity exponentially fast. In the present case this property does not hold
any longer, hence a different argument is needed. The validity of relation (4.13) has
a different cause for relatively small and large indices n.

For large n it can be shown that both (,(7") and «,(7) have the same order of
magnitude as M,, 2(T), and for large n these relations imply (4.13). If n is relatively
small and M (T) is large, then M, 2(T) is much less than a,(T) and 3, (7). In this
case the above indicated argument does not work, but it can be proved that for
such indices n the numbers f3,(T") are decreasing exponentially fast, and the proof
of relation (4.13) for such n is based on this fact.

To distinguish between small and large indices n define the number

. 100
N(T) = {mlnn: n >N, and B,41(T) < W}’
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(4.18) (N1(T) = oo if there is no such n).

where the number N was defined in formula (1.12). We shall later see that N1 (7T") <
oo for all 0 < T < ¢gAp/2.
First we prove relation (4.13) under the additional condition n < Ny (7). In this

C2
case Bry1(T) < 54 Bm(T) + 5m( ) for m < n, and because of Condition 1

(4.19) B (T) < gﬂm(T) if m < Ni(T)
for all N <m <n.
1 (1 o (T
Hence BC<7$1+(1>) < % ﬁcm(m))’ (m> (%) CN ’

m+1Jr Bm (T)
1< 7ﬁm+1(T) < max ™) Bm(T) 1013

i (T)  — C?m /57?77(5) am(T)?

< max (exp{ c(m7)1 } 5m(T) 1013)
for N <m <n, and

T T g T
LLH( ) < max <BN< ), 1013> exp 4 o Z Bn(T) < K.
i1 (T) an(T) 2\ en(T)
The above argument together with the observation that Sy (T") > M ]Q2(T ) if the

parameter ¢t > 0 in (1.3) is sufficiently small and 7' < ¢y Ap/2 imply that N < N1(T),

and the pair (n,T) is in the low temperature region for all n < N1(T'). The latter

property follows from the fact that by formula (4.19) the sequence B ”<( )) is monotone

decreasing for N <n < Ny(T).
In the case n > Ny (T') we can prove by induction with respect to n together with
the inductive proof of Proposition 4.2 that

100 )
5n+1(T) < M%(T) if n > N1 (T)
(4.20) and (n,T) is in the low temperature region.

By applying formula (4.20) for n — 1 and the fact that (n,7T) is in the low tem-
perature region we get that the term v,_1(7") in formula (4.12) can be bounded
as
Bn(T) 10 1

W (1) < <
c(n) FalT) < nMn_l(T) — 8C1My—1(T)

(4.21) Yn-1(T)] <

with the same number Cy which appears in (4.12) if the number 7 > 0 was chosen
sufficiently small. Then formula (4.12) implies that M, (T) < M, +1(T). Hence we
get by applying again formula (4.20) with n — 1 that M, (T) < M,,—1(T), and

10 200 n 10 < 100
MZ(T) — 3M§ (T)  MHT) — MZ(T)

Busa(T) < 26 (T) +
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This means that formula (4.20) also holds for n. Relation (4.20) together with the
definition of the sequence a,(T") imply that for n > Ny (T')

10—12
ME(T)

i.e. formula (4.13) is also valid for n > Ny (T) if (n,T) is in the low temperature
domain. With the help of this argument Proposition 4.2 can be proved by an
adaptation of the proof of the corresponding result in [5].

We formulate and prove a lemma which describes some properties of the numbers
Brn(T) in the cases when n < Ni(T') or n > N;(T'). Several parts of it were already
proved in the previous arguments.

Lemma 4.3. Let 0 < T < cpAo/2. If the parameter k > 0 in formula (1.3) is
sufficiently small, then the following statements are valid:

(1) The number N1(T) defined in (4.18) is finite, and N1(T) > N.

(2) The pair (N1(T),T) is in the low temperature region.

(3) The relations (4.19), (4.20) hold.

(4) If n > N1(T) and (n,T) is in the low temperature region then

Ap41 (T) > > 10_14/8n(T)’

3 1
4.29 M(T) - ——> < M, ((T) < M(T) — ————— .
( ) ( ) SC(n)Mn(T) = +1( ) ( ) 86(")Mn(T)
(5) If N <n < Ny(T) then
M, (T ! 2) " M T
— — <
n( ) 46(")MH(T) n <3> >~ n+1( )
(4.23)
1 2 (n—N)/2
< M, (T =
< MnlT) = g,y T <3>

(6) We have that
(4.24) Ni(T) — N < 10log(1/sT?).
(7) If M,(T) < 10 then n > N1(T).

Proof of Lemma 4.3. Formulas (4.19) and (4.20) were already proved in the previous
argument, and since (N, T) is in the low temperature region, i.e. Bn(T) > nclV,
relation (4.19) implies that (n,7T’) is in the low temperature region for all N <n <
Ni(T'). Formula (4.22) follows from formula (4.21) with the replacement of n — 1
by n and formula (4.12). By relation (4.19) 8,(T) < (2)" " it N < n < N(T).
Hence it follows from (4.12) that

/Bn-‘rl (T) ﬁn-&-l (T)

(4'25) Mn+1(T> < Mn(T) +
c(n) c(n)

oy (n-N)/2

and even relation (4.23) holds in this case.

Relation (4.25) and the estimate obtained for 3,(T) imply that M2(T) <
(Mn(T) 4+ 1)2 < 2MZ(T) and Bpi1(T)M2(T) < 2M3(T) (g)"—N if n < Ny(T).
This relation together with the definition of the index N;i(7") defined in (4.18) im-

ply that 2M3Z(T) (%)n_N > 100 if n < Ni(T). Applying the last formula for
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3 MR(T) 2

n = Ni(T) — 1 we get that (N1(T) — 1 — N))log5 < log —£5—=. Since M7 (T) ~
const. ﬁ this relation implies that N (7') is finite, and moreover it satisfies (4.24).
Finally, if the inequalities M,,(T") < 10 and n < N(T") held simultaneously, then the
inequality M2(T)Bn41(T) < 100 (%)H_N < 100 would also hold. This relation con-
tradicts to the assumption n < N;(7"). Hence also the last statement of Lemma 4.3
holds. O

The previous results enable us to describe the different behaviour of the model in
the cases when the Dyson condition (1.2) is satisfied and when it is not. This will be
done in Lemma 4.4. It shows that if (1.2) is not satisfied then for all T' there is a pair
(n,T') which does not belong to the low temperature region, while if (1.2) is satisfied,
then all sufficiently low temperatures T belong to the low temperature region. In
the latter case the asymptotic behaviour of the spontaneous magnetization M, (7T')
can be described for large n. The description of the behaviour of the function
gn(z,T) in the case when T' does not belong to the low temperature region needs
further investigation, and this will be done in Sections 5 and 6. A more detailed
investigation of the case when T' belongs to the low temperature region will be done
in Section 7. We finish this section with the proof of a result about the behaviour
of the magnetization M, (T") at low temperatures 7" > 0 which will be useful in the
subsequent part of the paper.

Lemma 4.4. Let 0 < T < ¢9Ap/2, and let the parameter k > 0 be sufficiently
small. If the Dyson condition (1.2) is not satisfied, then for all T > 0 there is some
n =n(T) for which (n,T) does not belong to the low temperature region. If, on the
other hand, condition (1.2) is satisfied, then T belongs to the low temperature region
for sufficiently small T > 0. In this case relation (3.6) and, under the additional
Condition 2, also relation (3.7) hold.

Proof of Lemma 4.4. It follows from formulas (4.22) and (4.23) that

1
8c(n)
if n > N1(T') and the pair (n,T) is in the low temperature region, and

(4.26) L M2 () - MET) < -

N C(n)

1 2\"N
———=—10( (My(T) + 1) < M (T) = M(T)
(4.27) 2 <3> "

<—1 10 <2>n_N (Mn(T) + 1)
= 2c 3 N
if N <n < Ni(T). Formula (4.26) can be obtained by taking square in formula
(4.22) and observing that c™ M, (T)? > 10n~'. Formula (4.27) can be deduced
similarly from (4.23) by observing first that the right-hand side of (4.23) implies
that M, (T) < Mn(T) + 1 for N <n < Ni(T).

Formulas (4.26) and (4.27) imply that if a temperature 7 > 0 is in the low
temperature region, then

Zn: 1o 8(M%(T) — M*(T)) + 30(Mn(T) +1) < 8M%(T) + 30(My(T) + 1)

=~ c(”) -
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for all n > N, where the number N is defined in (1.12). Since the right-hand side
of the last formula does not depend on n, this implies that (1.2) holds.
In the other direction, if (1.2) holds, then since by Proposition 4.1

lim My(T) = Tlim Mny(T) = oo,
—00

T—o0

there is some number T < cpAp/2 such that for all temperatures 0 < T < T
oo
M3Z(T) > Sn;V d%) + 30M,(T) + 31. If T > 0 satisfies the above inequality, then

the left-hand side of the inequalities (4.26) and (4.27) imply that if the pair (n,T)
is in the low temperature domain and n > Ny(7'), then

M2(T) > M2(T) — 8;:; C(in)so(Mn(T) 1)) > 1

Hence M2(T) > 1 for all n, and T is in the low temperature region.
Let T' > 0 be in the low temperature region. If n > m > Ny (T'), then by (4.26)

1

|M3(T) _Mrzn(T)‘ < Z C( )*

k=m

Since in this case Condition 1 holds, the last relation implies that M2(T), n =
1,2,..., is a Cauchy sequence, and relation (3.6) holds. We claim that if Condition 2
also holds, then for any £ > 0

-1 —1-
CIE R a2 (1) - ME(T) < - E

(4.28) 5 S T odm

if n > n(e). Relation (3.7) is a consequence of (4.28). Relation (4.28) can be
deduced from (4.12) and (4.20) if we show that for any temperature 7' > 0 in the
low temperature region

=0.

(4.29) lim Fu(T)

n—o00 c(n)
Relation (4.29) holds under Condition 2, since by (4.26) in this case for all n >
Ni(T),

2 . 2 2 1 > 1
My(T) 2 lim (MZ(T) = Mj(T)) > 3 > oL

and
-1
Bn(T) 100 (n) >0 1

Under Condition 2 the last expression tends to zero as n — oo. This implies
formula (4.28). Lemma 4.4 is proved. O

k
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5. ESTIMATES IN THE INTERMEDIATE REGION. THE PROOF OF THEOREM 3.1

In this section we give some estimates on g, (x,7") when the pair (n,T) belongs
neither to the low nor to the high temperature region and prove Theorem 3.1 with
their help.

Let us consider the number 7 = 7(7T) introduced in the formulation of Theo-
rem 3.1, namely

7(T) = min{n: D3(T) < 671/772}.

In Lemmas 5.1 and 5.2 we shall prove some estimates about a scaled version of
the function gz(7)(x,T), where ¢, (x,T) was defined in (2.7). In Lemma 5.1 the
case T' < ¢gAp, and in Lemma 5.2 the case T > cyAg will be considered. Lemmas
5.1 and 5.2 yield some estimates on the tail-behaviour of a scaled version of the
function gz (7)(x,T). This will be needed to start an inductive procedure for all
n > n(T') which state that the functions ¢,(x,T) become more and more strongly
concentrated around zero as the index n is increasing. This procedure is based on
Lemmas 5.3 and 5.4. The role of Lemma 5.3 is to give an appropriate lower bound
for the norming constant Z,(7') in the definition of the function ¢,(x,7"). Then
in Lemma 5.4 we prove some contraction property of the operator which maps
an appropriate scaled version of the distribution function with density function
const. g,—1(|x|,T) to an appropriate scaled version of the distribution function
with density const. g,(|x|,T), x € R". The proof of Lemma 5.4 will exploit the
rotation symmetry of the model. Theorem 3.1 will be proved by means of these
lemmas.

To formulate these results we introduce some notations. Let us introduce the
functions

N _ —r/2 X
(5.1) b (x,T) = (CWT))) n (WT> , X€R,
Cn

and measures
(5.2) H,7(A) = / ho(x,T)dx, A CR",
A

in the space R". Define also the function
(5.3) H,7(R) = Hyr({x: |x| > R}) for R>0.

The functions iLmT and measures fImT are similar to the functions h,, 7 and measures
H,, 1 defined in (3.4) and (3.5). The only difference is that the scaling of ¢, (x,T") in
(5.2) and (5.3) is made by means of ¢™(7)) instead of ¢(™. If Condition 5 is satisfied
with a sufficiently small 7 and sufficiently large L(7,T"), and n — n(T") is not too
large, then the approximation of ¢(™ by ¢(™(™) is sufficiently good for our purposes.
Hence it will be enough to have a good control on the measure ﬁn,T. In Lemma 5.3
we give a bound on it for large |x| and in Lemma 5.4 we prove an estimate which
enables to bound ﬁan(R) for small R too.

With the help of these results we can prove that starting from n = n(7T) after
finitely many steps k the pair (n+#k,T) is in the high temperature region. Moreover,
this number k can be bounded from above independently of the temperature 7.
First we formulate Lemma 5.1.
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Lemma 5.1. Under the conditions of Proposition 4.2, the function
hiry(x,T) defined in (3.4) satisfies the inequality

K 2
(5.4) hﬁ(T) (X,T) < exp {7] - |)1(0} if T< C()A[)/2

with an appropriate K > 0. For T < ¢ygAg/2 the pair (n(T),T) does not belong to
the high temperature region, and there exists some 11 = 1(n) such that the function
H,7(-) defined in (5.8) satisfies the inequality

(5.5) Horyr (1) <1/2, if T < cgdo/2,

i.e. for T < coAo/2 there is a ball with its center in the origin whose radius depends
only on n, and whose ffﬁ(T)ﬁT measure is greater than 1/2.

Proof of Lemma 5.1. Let us introduce the function

- 1
hn(z,T) = (7n< z 7T>7 z >0
c(") c(”)

with the function g, introduced in (2.11). Observe that

/ (2, T) das = 1.
0

Let us apply Proposition 4.2 with the choice n = n(7T") — 1. Since hypothesis I(n)
holds for n = n, we obtain that

1'2

) M) (T)

K
fam (@, T) < B o KPP T
573(7“)_1 (T) /Bﬁ(T) (T)
if 2 >~ N oy (T)

with some universal constant K > 0. It follows from this relation that the function
iy (2, T) = Ve D) frop) (v (D) g — M) M, (T)), T) satisfies the inequality

hary(z,T) < K e\
n T, = Y
@ Bacry-1(T)

2x +

1 < (A(T)) @’
exp c M) (T) —
Bary(T) a(r)(T)

The inequalities Gz (7)(T) > nc™™) and Baer)-1(T) < ne™™M=1) hold.
Ba(r)(T) My (T)
a(m)—1(T)? Myy—1(T
Brery(T) Mgy (T)? are separated both from zero and infinity, hence

(T)

Lemma 4.3 implies that the fractions 7 3 and

=

ol const.
Bary—1(T) = n
c(ﬁ(T))Mﬁ(T) (T) - const.
Bary(T) 1
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and

1
> .
Meyry(T) /By (T) 20

These inequalities together with the last relation imply that
(5.6) hiory (@, T) < ef/me=2%/20 4 >,
with an appropriate K > 0. Since

(5.7) hary(x,T) = C(T)Bﬁ(T)(‘X‘vT)7 x € R,

with an appropriate number C(T') > 0, estimate (5.4) can be deduced from (5.6) if
we give a good upper bound for the constant C(T') in (5.7). Observe that because
of (5.7)

(5.8) o)~ = /R i) (x|, T) dx = Vol(ST_l)/O & hiyry(x, T) d,
hence

cmt = Vol(s™h /0 & hiyry(z, T) do

v

R
Vol(S"HR™1 (1— /O iy (2, T) d:z:)

for any R > 0. On the other hand, by formula (5.6)

R_ 1
_ T < =
/O hn(T)(xa )d.%‘ =9

if0 < T <cpAp/2and R < e~ K/ with a sufficiently large K > 0. Hence C(T)~! >
%Vol(S’"‘l)e_K(T_l). This means that C(T) < eX7/7 in (5.7), and inequality (5.4)
follows from (5.6).

We shall prove that 7(T") does not belong to the high temperature region with the
help of the following estimate on D?L(T) (T'). In its proof we shall apply formula (5.8).

D%(T) (1) = - |X|2hﬁ(T) (x,T)dx = Vol(ST_l)/O :ETHhﬁ(T) (z,T)dx

= C(T)VOI(ST_I)/ xr+1i_zﬁ(T)(x,T)d:E
0

00 3 (r+1/(r—1)
> O(T)Vol(s™) ( / "y (. T) d:c)
0
00 B 2/(r—1)
= </ xr_lhﬁ(T) (z,T) dx)
0
oo 2 9
0

Since MEL > ,8711721 if n > N+ 1, N+ 1 is in the low temperature region if T' <

. . . M,
coAo/2, (see (3.3) and the subsequent sentence in our discussion), and "

My (1)1

IN
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const., hence

AMT)  const.
>

D%(T) (T) > Mg(T)C(ﬁ(T)) > const.

Br(T) n
This implies that 7(¢) is not in the high temperature region. O

In the next Lemma 5.2 we shall formulate some properties of the function h,,(x,7")
defined in (3.4) in the case n = 0. For the sake of a better discussion we define the
function hy,(z,T), x > 0, by the formula hy(z,T) = h,(|x],T), and from now on
hy(z, T) means this function. (It differs slightly from the function h,,(x,T) applied
in the proof of Lemma 5.1 where a different norming constant was applied.)

If T > c¢pAp/2, then n(T) = 0, and

Bﬁ(T)(|X],T) = const. qp ((c(o)_l/Qx, T) ,

where go(x,7) is defined in (2.10). Hence

_ 1 Agco — T 2 5 xt .

with the norming constant (for the function hy(7y(z, 7))

o Aoco — T\ z2 zt
R Aoco =T\ 2% g @
(5.10)  Zo(T) = Vol(S" 1) /0 x eXp{( 0 ) g L 4(0(0))2} dr.

Using formulas (5.9) and (5.10), we will prove the following

Lemma 5.2. There is a constant kg = ko(N) > 0 such that if 0 < k < Ko,
Condition 1 is satisfied, and T > coAo/2, then n(T) =0, and

- 1 T coA
B < r/2 L 2 . > 0410
(5.11) hay (2, T) < const. T"/< exp { - 20 } if T > 5
- Tz? coA
_ r/2 La . 0410
(5.12) haery(z,T) < const. T"/=exp { 520) } if T > 5

(5.13) Bﬁ(T) (z,T) < const. e~ Tz?/4 if T > 10Ag, and z > T-1/3,

The const. in formulas (5.11)—(5.18) depend only on the dimension r of the model.
The pair (n(T),T) belongs to the high temperature region if T is very large, e.g.

if T > 6*1/7’9, and it does not belong to it if T > 0 is relatively small, e.g. if

T < 710 If (A(T),T) does not belong to the high temperature region, then the

function hyy(x,T) defined in formula (3.4) satisfies the inequality

(5.14) ha(r) (x,T) < exp{K(n, r) — a|x|*}

with a constant « = a(n) > 0 and an appropriate number K(n, k) depending only
on k and 1. In this case there is a constant B = B(n, k) > 0 in such a way that the
quantity Hy 1y () defined in (5.3) satisfies the inequality

(5.15) Hyryr(B) <

N =
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This means that if the pair (n(T),T) is not in the high temperature region (and
T > coAo/2), then there is a radius B = B(n, k) such that the Hyr)  measure of
the ball {z: |z| < B(n,k)} is bigger than 1/2.

If (A(T), T) = (0,T) is in the high temperature region, then
(5.16) flﬁ(T)’T(fL’) < K167K2’729”2 forall x >0
with some universal constants K1 > 0 and Ky > 0.

Proof of Lemma 5.2. First we estimate the norming factor Zy(T") from below. Let
us observe that

Agco — T 22 9 x4 9 1 1
P T e G DR TE O

if kT22 < 1 and Condition 1 holds. Hence

> > —10T22,

r—1 1/VKT r—1_—10Tx2
(5.17) Zo(T) > Vol(S") x" e dx
0

1/VE ,r—1,-10z?
= Vol (Sr_l)/ % dx > const. T /2,
0 Tr/

Now, if T' > ¢y Ap/2, then

Ao = Ta? o @t 1T Ta? s (Ta?)*
0 2 ope = T3 LN o T 1 o

_ T n 1
T 20" T
and combining this with (5.17), we obtain (5.11).

The estimate Acco=T 2> _ 2z < T o) g (5.12).

0 2 4(c(0)2 = 2.00)
If T > 104, then
Agco — T a2 , at T , T, TV 13
i L G B8 B >
FORD KT 10y = g < 4% TR for |x| > T /7,

which together with (5.17) imply inequality (5.13).

Furthermore, (5.13) implies that if 7" > e~/ then the pair (0,T) belongs to the
high temperature region. Indeed, if we estimate the integral expressing D3(T), then
by this relation the contribution of the domain {x: |x| > T'/3} to this integral is
very small. On the other hand, the contribution of the domain {x: |x| < T~'/3} is
less than T~2/3 which is also very small in this case. To see that for T' < 771 the
pair (0,7") does not belong to the high temperature domain it is enough to observe
that in this case by formula (5.12) the Hp 7 measure of the ball {x: |[x| < !9} is
less than const. T7/2n'%0" < 1/2. Hence in this case D3(T) > 7?90, (We get this
estimate by restricting the integral expressing D3(T') to the domain {x: |x| > n'%}).
This means that 7" is not in the high temperature region.

Inequality (5.11) together with the fact that if the pair (0,7") does not belong to
the high temperature region then T' < e~ 1/’ imply relations (5.14) and (5.15).

Since T > n~1% if the pair (0,7) is in the high temperature region, relation
(5.13) implies relation (5.16). Lemma 5.2 is proved. O
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To formulate Lemmas 5.3 and 5.4 we rewrite formula (2.9) for the functions
hpn(z,T) defined in (5.1). It has the form

R 1 c(n) 5| : R
(5.18)  hpt1(x,T) = Zn(T) /T exp {_c(ﬁ(T))u } hn(x —u, T)hp(x +u,T) du
with
() . .
(5.19) Zn(T) = / exp § — <% p hp(x — u, T)hy(x 4+ u, T) dudx
R™ xR c(n(T))
for all n > n(T).

Let us also introduce the moment generating function of the measures H, r,
defined in (5.2):

opr(u) = / euxﬁn’T(X) dx, ueR",

where ux denotes scalar product. By studying the properties of the moment gen-
erating function ¢, 7(u), we get an upper bound for the function H, r(R) for large
values R. Namely, we have the following result:

Lemma 5.3. There exists some ko = ko(N) such that for all 0 < kK < Ko and
0 < 77 < n (with the numbers N and n defined in (1.12)) the following relations
hold. If we have such a positive integer L for which Conditions 1 and 5 (with 7
and this number L) are satisfied, then for all such temperatures T > 0 for which the
number n(T) exists, and the pair(n(T),T) does not belong to the high temperature
region, the inequality

(5.20) Hayrypr(R) < e 2057 ifR>D and 0 <1< L

holds with appropriate constants > 0 and D > 0, and also the norming factor
Zn(T) in (5.19) can be estimated as

(5.21) Zﬁ(T)+l(T) > D1 f07” 0< l < L

with some constant D1 > 0. These constants can be chosen as some functions of k
and 7, i.e. o = a(k,7), D = D(k,7) > 0 and Dy = D1(k,7) > 0. This means in
particular that they do not depend on the temperature T'.

Proof of Lemma 5.3. 1t follows from formulas (5.4) and (5.14) that

2
Pr(T) r(u) < exp {Ko + u} for all u € R”
’ Q

with some Ko = Ko(n,x) > 100 and o = a(n) > 0. It can be seen by induction
with respect to [ that

u2

(5.22) On(r)+1,7(1) < exp {QZKl + 21@} foral 0 << LandueR"

with some Ky > 0 and

log Zy(1y11-1,1

(5.23) K =K_— 5 ,

1<I< L
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Indeed, the function lAzﬁ(T)HH’T(X, T)) is increased if the kernel term exp {— %UQ}

is omitted from the integral in (5.18), and the integral turns into the convolution
2ﬁﬁ(T) LT * ﬁﬁ(T) +17(2x) after this change. By computing this convolution with the
help of the inductive hypothesis and dividing it by Z5 (71,41 We get an upper bound
for (1) 4i41,7(u). Formulas (5.22) and (5.23) follow from these calculations. We
will prove formulas (5.20) and (5.21) from these relations by induction for [ together
with the inductive hypothesis that

(5.24) K, <B forall0<I<L

with some constants B > 10 depending only on x and 7.
Observe that formula (5.22) with the choice of vectors of the form (u,0), u € R,

u > 0,0 € R""!. implies that the function I{Iﬁ(T)+l7T(R) defined in formulas (5.2)
and (5.3) satisfies the inequality

) R
Hyrypr(R) < rHymyqar <{X = (z1,x2) ER", 71 > \/;>
R 2
< rexp {_ur +2'K; + ;a}

N

for all real numbers u. In particular,

A l RQOC
(525) Hﬁ(T)-H,T(R) S T exp {2 <Kl - 47") }
with the choice u = 221%. Hence
A 4 1B 1
(5.26) Hyryr ( r(r+)> <re?TP < 2
«

with the number B > 0 appearing in (5.24). Formula (5.26) implies that

~ 4r(r+1)B 1
Hyryr <{X1 xeR", x| < a}) > 5

For z € R" and u > 0 let K(z,u) = {x: x € R", |x — z| < u} denote the ball with
center z and radius . Since the ball {x: x € R, |z| < A‘T(Tf)B} can be covered

by C(r)B(an)~! balls of radius /7, where C(r) > 0 depends only on r, there is a

A~

ball K (z, /1) of radius 1/ whose H,, 7 measure (this measure was defined in (5.2))
is greater than %. Hence

R . _ - o°n
Hﬁ(T)—i—l,T X Hﬁ(T)+l,T (K(Z, V) x K(z, \M)) > m:
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and because of Condition 5 the expression Z,(T') defined in (5.19) can be estimated
for n =n(T) + 1 as follows:

(R(T)+1) ( _ )2
c X—u
Zs T) > 2_T/ exp ———

()+1(T) K (2 /7) ue K (2,47) { (T) 4 }

X iLﬁ(T)-i—l,T(X)hﬁ(T)-i-l,T(u) dx du
> 6_5ﬁﬁ(T)+l,T X f{ﬁ(T)—H,T (K (Za \/ﬁ) x K (Z7 \/ﬁ))
292
>N
— (C(r)B)?
In the above estimation we have exp101ted that because of Condition 5 and Condi-

SR+ AT+ (x— u)

tion 1 & 75— < %, hence <7 <5ifx e K( V1) and u € K (z,/7).
-5 2

The last relation implies (5.21) Wlth D, = W, although we still have to

show that the number D; (depending on B) can be bounded by a number which
does not depend on the parameter 7. We show with the help of (5.21), (5.23) and
the inductive hypothesis (5.24) that K; < (1 —2~(+1)B if the number B is chosen

as B = max (2K, K*), where K* is the larger solution of the equation x = 2log %21

e~ 9272

with Dy = C(O‘)” . This means that B in (5.24) can be chosen as a number not

depending on T
Indeed, this relation holds for [ = 0, and if it holds for [ — 1, then
2
K <(1—2")p o=+l (B —2log g) <(1-2"+HB
1
it B> K*.
This implies (5.21) (with the constant D; not depending on 7" and the validity of
the inductive hypothesis (5.24) for 0 <[ < L. Finally, relation (5.20) follows from
(5.24) and (5.25). Lemma 5.3 is proved. O

Formulas (5.18) and (5.19) can be rewritten for the function H, 7(R) defined in

(5.3) as
A ¢
Hn+1T / / exp{ ( ) 2}
|x|>R JueR"
(5.27) X By (x—u T)hp(x +u, T) dudx
' o c(") (x —u)?
|29 >R Juerr *p c®(T)) 4
XHnT(dX) nT(du
with

A" (x—u)? |
zm) = [ N / ewexp{—c(nm) 5 () A ().

for all B > 0. We apply these formulas in the proof of the following Lemma 5.4.
The proof of Lemma 5.4 also exploits the rotational invariance of the measure H,, .
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Lemma 5.4. Let the conditions of Lemma 5.8 hold. Then there exist some numbers
d=06(7,D1) >0 and M = M (7, D1) > 0 depending only on the numbers Dy in
formula (5.21) and 7 in Condition 5 in such a way that
N 1~ N
Hyrypip1,0(L=0)R) < §Hﬁ(T)+l,T((1 —6)R) + MHyp)47(R))

(5.28) for all R>0 and 0 <1< L.

Proof of Lemma 5.4. Observe that

U{x|] > (1 — 0)R, arg(x,u) < a}U{|u] < (1 —0)R, arg(x,u) > a}

for all R >0 and 0 < § < 1 with a = 2arccos(1 — §). Indeed, if |X5%| > (1 — §)R,
then either |x| > R or |u| > R or both |x| and |u] is less than R, but in this case
either |x| > (1 —0)R or |u] > (1 — ¢)R, and the angle between the vectors x and
u must be small. On the other hand, because of the rotational invariance of the
measure H,, 7

ﬁﬁ(T)—&-l,T X ﬁﬁ(T)—i—l,T {(x,y): [x] = (1 = )R, arg(x,u) < a})
(07N o~
Hyrypr({x: x| = (1 -0)R}) = ;Hﬁ(T)H,T((l —0)R).

The last two relations together with (5.27) and the inequality & < /¢ imply that

A~

(5.29) Hiyry4i41,7((1 = 0)R)

X+u

(1 6>R} C {Ix] > RYU {ju] > B)

<

™

1 A N
< 5oy (Va1 = )R) + 2y 10(R))
Relation (5.28) follows from (5.29) and (5.21) if we choose § > 0 so small that the
inequality % < % holds. Lemma 5.4 is proved. O

Next we prove Theorem 3.1 with the help of the previous results.

Proof of Theorem 3.1. First we give a good estimate on Hy(7)4;(R) if the conditions
of Lemma 5.3 hold with a sufficiently large L = L(k,7) and [ < L is sufficiently
large. For this goal we introduce the following quantities.

Put P(j,1) = P(j,1,T) = Hyry11((1 = 6)YD), j = 0,1,..., 0 < I < L with the
number D appearing in (5.20) and 0 in Lemma 5.4. Clearly, P(j,1) < 1 for all j
and [. By Lemma 5.4

1

and by relation (5.20) P(0,1) < e=®2'D*/57if | < L. Hence there is a constant ko > 0

in such a way that P(0,ky +1) < (%)l if kg +1 < L. Because of this relation, the
inequality P(j,1) < 1 and formula (5.30) there is a constant k; > ko in such a way

that P(1,k +1) < 5 (2)" and P(1,k +1) < (2)" if ks +1 < L. Similarly, there is
a constant ko such that P(2,ke+1) < 3%\4 (%)l, and P(2,ko+1) < (%)l ifko+1 < L.
This procedure can be continued, and we get a sequence kg < k; < kg < --- in such



A THOULESS-LIKE EFFECT 143

a way that the inequality P(p,k, +1) < (%)l holds if k, +{ < L. The numbers k,
depend only on the parameter x in (1.3) and the number 7 in Condition 5. The
above procedure can be continued till k, < L. In such a way we have proved that
for all fixed j >0

l
Hanyor (0 -67D) =€) (3 )

if 0 <1 < L. The above relation together with formula (5.20) imply that if Con-
dition 5 holds with a sufficiently large constant L = L(7,t), then an integer k > 0
can be chosen independently of the parameter 7' in such a way that

el/m’ R2
/5
Indeed, by (5.20) relation (5.31) holds for R > D if I > k; with some kj > 0 and
by the previous inequality for all j = 1,2,... it also holds for (1-60)D <R<
(1 —4)~'D if | > K'j with a sufficiently large k’j >. On the other hand, it is
enough to demand this inequality for finitely many indices j, since relation (5.31)

3
61/;/51{2 < log?2.
Since the measure H,, 7 defined in (3.5) satisfies the relation

(5.31) flﬁ(T)H,T(R) < 2exp {— } forall R >0 and k <1 < L(7n,t).

automatically holds if

. (1)) N 7]
Hﬁ(T)+l,T{X3 x| > R} = Hyryr WR < Hary+i,r gR

relation (5.31) implies that
(5.32) Hyryqr(R) < 2exp {—el/”3R2} foral R>0, and I" <1< L

with some appropriate [* > 0. Relation (5.32) implies in particular that D?L(T) L)<

e~V ie. ((T)) 4 1,T) is in the high temperature region if I* < [ < L. The in-
equality D%(T) (T') < K follows from (5.20) with [ = 0.

To complete the proof of Theorem 3.1 we have to give a lower bound for D?L(T) +k (7).
Let us introduce the following notation: Given two positive numbers Ry > R; > 0
let K(R1, R2) = {x: x € R", Ry < |z| < Ry} denote the annulus between the con-
centrical balls with center in the origin and radii Ry and Ry. We claim that for any
0 <1 < L there exist some positive numbers R;(l) = Ry1(l,7, k), Ra2(l) = Ra(l,7, k)
and A(l) = A(l,7,x) > 0 such that the measure of the annulus determined by these
numbers satisfies the inequality

(5.33) Hry (K (R1(1), Ro() 2 A(l), 0<1<L

if the pair (n(T),T) does not belong to the high temperature region. Observe
that the relation between the measures ﬁ,—z(T)H’T and Hp(1)4,7 implies that rela-
tion (5.33) also holds for Hy (4 7(K(R1(k), R2(k)) (ie. the function H(-) can be
replaced by H(-) in formula (5.33)) if the radii Ra(k) and R;(k) > 0 are multi-
plied with an appropriate number. This implies that the variance D%(T) g Can be
bounded from below by a positive number which depends only on k£ and 7. Hence
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we can choose e.g. k = L = L(k,7) as the number k satisfying the properties
demanded in Theorem 3.1.

We shall prove a slightly stronger statement than relation (5.33) which will be
useful in later applications. We shall prove that

I
R 1 3
(5.34) Hyryr | K ERL <\2[> Ry >A(l), 0<I<LL,

with some numbers Ry > Ry > 0 and A(l) > 0 if the pair (0,7") does not belong
to the high temperature region. The numbers R; can be chosen in such a way that
Rj = Rj(n:’@: J=12

Let us first observe that relation (5.34) holds for | = 0 if #(7T) is not in the
high temperature region. This follows from relations (5.4) and (5.5) in the case
T < ¢pAp/2 and from (5.11) and (5.15) if T" > ¢9Ap/2, but (a(T"),T) does not
belong to the high temperature region. Indeed, formulas (5.5) and (5.15) make
possible to choose the number Rj in such a way that the Hy 1) r measure of the
ball with center in the origin and radius Re = Ra(n) is greater than 1/2. By formulas
(5.4) and (5.11) we can choose the number R; = Rj(n) in such a way that by cutting
out from this ball the ball with radius R and center in the origin the remaining
annulus K(R;, R2) has a measure greater than 1/4. In the case T' > ¢ A/2 we also
exploited in the above argument that 7' cannot be very large if (2(7),T) is not in
the high temperature region. By Lemma 5.2 T' < e~ /7" in this case.

We claim that
(5.35)  Hpr)ri41,r (K (ZZI, ?R2>> > B(Ry, Ry, 1) Hyry40,7 (K(Ry, Ry))?

for all 0 <! < L and Ry > R; > 0 and an appropriate constant
B(Rla RQa ﬁ) > 0.
Relation (5.34) follows from (5.35) and the fact that it holds for [ = 0.
In the proof of relation (5.35) we exploit the relation

0y

X+u
2

3

{(u,x):uER’",xeRT,glg 2,§§arg(x,u)§2}

D {(u,x): ucR" xR, R <|x|,|ul < Ry, ggarg(x,u) < g}

It follows from relation (5.19) that Zy 1)1 (T) < 1, since we get an upper bound
for it by omitting the kernel term exp {—%ﬂ} from the integral in (5.19).

Hence the previous relation together with (5.27) and the rotational invariance of
the measure Hy(1)4, 7 yield that

. Ri V3 1
H- l K 5 7R2 = // R
UT)+HALT ( ( 27 2 )) Zamy+1+1(T) J LRy =0 |> B x uerr

AT+ (% — u)2 -
exp{_ &(n(T) ( 4 ) Hir)1,r (%) Hyy(r) 11,7 ( d)
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e 13/
- \FR2>
g

32/77// n(T)+lT(dX) n(T)+lT(du)
Ro>|x|,|u|>Ry, 5 <arg(x,u)<%

2
=C(r)e” Q/HHﬁ(T)—l—l,T( (Ri1, Ry))?
with an appropriate constant C'(r) > 0. The last estimate implies relation (5.35)
with B(Ry, Ry, 7) = C(r)e 13/1. Theorem 3.1 is proved. O

2%’ ueR?, Hiry1.0(dx) Hyry o0 (du)

|/\
93
m\:i N

6. ESTIMATES IN THE HIGH TEMPERATURE REGION. THE PROOF OF THEOREM
3.3

To study the behaviour of the function f,(x,T) in the high temperature region
we need a starting index n = n(T') for which a good estimate is known about the
tail behaviour of the measure Hj () 7. We also need a lower bound for the variance
D2(T) defined in (3.4) for n > @(T). This requirement will be also taken into
consideration in the definition of 7(7"). Let us first define the number

l
(6.1) lo = lo(T) = min{ I: <‘f> Ry < %

if the pair (0,7) is not in the high temperature region, where 7 appeared in Condi-
tion 5, and the number Ry was introduced in formula (5.34). Now define

0 if (0,7) is in the high temperature region

n(T) + | with the smallest [ satisfying both (5.32) and the
inequality [ > Iy with Iy defined in (6.1)
if (0,7T) is not in the high temperature region.

(6.2) A(T) =

It follows from the results of the previous section that for a temperature T which
is not in the low temperature region the inequality 0 < 7(T) — n(T) < L(7,t) holds
if the number L in Condition 5 is chosen sufficiently large. The measure Hj 1)
introduced in formula (3.5) is strongly concentrated around the origin. Indeed,
formulas (5.16) and (5.32) give a good estimate for the Hy(7) 7 measure of the sets
{x: |x| < R} for all R > 0.

Let us introduce the moments of the functions hj(7)4(x,T) defined in (3.4).

M (l,T) = |x\ hary(x,T)dx 1>0, k>1.

We shall estimate the moments Ms(l,T") and My(I,T). It follows from relations
(5.16) and (5.32) that
(6.3) My(0,T) <n* and My(0,T) <n* with n* =e ¥/

for all T' > 0 which is not in the low temperature region. To get lower bounds for
the second moments My (I, T) let us introduce the truncated second moments

My (1,T) = Moy, (10,Z,T> / ) % hacr)(x, T) dx.

<1o
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It follows from (5.13) if (0,7) is in the high temperature region and from (5.34) and
the definition of n(7") if (0,7) is not in the high temperature region that

Ms4.(0,T) > 0, for all T' > cyAg/2
My :.(0,T) > 17, if T'> cpAp/2 and (0,T) is not in the
(6.4) high temperature region

with some 7 = 7(7, k) > 0. First we shall bound M (l,T) and My(l,T) from above

in Lemma (6.1) for all [ > 0. Then the second moment M (l,T) will be bounded

from below in Lemma 6.2. These estimates enable us to prove the central limit

theorem for g;(7)4(w,T) by means of the characteristic function technique.
Simple calculation yields that

2" 2 X
Mp(1+1,T) = /e“ x[Fh - —uT
b ¢

(6.5) hiryri | —=——=+1u,T | dxdu
Cr(T)+1+1

for all I > 0 and k > 1 with

ZZ(T) = 2r/€_UQhﬁ(T)+l (X — u,T>

Ci(T)+1+1
X

(6.6) hﬁ(T)+[ ———+u,T | dxdu

CR(T)+1+1

with the constants ¢,, n = 1,2,... defined in (2.17). These formulas will be used
in the proof of the following

Lemma 6.1. Under the conditions of Theorem 3.3 the inequalities

(6.7) MALT) < o (;)’

l
(6.8) 2(T) > (Eﬁ(T)-i-l)r/z (1 —8y/n* <2> ) ,
(6.9) (1+1,T) < 7”2““ (1+10f< ))MQZT)

(A(T)+1) ((T)+1)
B A L [ A
(6.10) M>(1,T)<2-2 pEIE) n* and My, T)<5-4 ( (A(T)) ) n

hold for all 1 > 0 with the same number n* which appears in (6.3).

Proof of Lemma 6.1. Relation (6.7) holds for I = 0 by relation (6.3). We shall prove
that if relation (6.7) holds for an integer [, then relations (6.8) and (6.9) also hold for
this {. Then we prove that if relations (6.7) and (6.9) hold for some [, then relation
(6.7) holds also for I 4+ 1. These statements imply relations (6.7), (6.8) and (6.9).
We prove them with the help of the following calculations.
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It follows from formulas (6.5) and (6.6) that

- r/2 —u
(6.11) Mk(z+1,T)=(C7“TZ)l+(f;)1)/exp{—(X y )2}

X+u K
2

_ k/2

(Cﬁ(T)—i—l—‘rl) / hiry+1(%, T hiyery 41 (u, T) dx da
_ (k+r)/2
(Cﬁ(T)+l+1)
- 2kZ)(T)

forall />0 and k> 1, and

Z(T) = T)++1) //GXP{ x_u)z}

iy +1(%, T)hiiry41 (w0, T) dx du
)72/ M 0T)

|x|<Mao(1,T)/4, ju|<Mo(1,T)1/4
hn(T)+l(X7 T)hn(T)Jrl (uv T) dx du

(Ca(rysir1)2e VIRED) (] —2/ hi(ry1(x, T)dx
x> Mo (L)1

/2 =44/ M2(L,T)

/m+mmmﬂwﬂmmHmTMmm

v

(Ca(T) 4141

v

v

(Ca(r)+141)"

1—

2 2
\/W /|X2M2(1,T)1/4 o hr) (%, T) dX) :
Hence
Zi(T) 2 (Ca(ryrien)Pe” WV IERED) (1 —2 Mz(l,T)).

The last relation and formula (6.7) for [ together imply that

Z(T) > @wwmfﬂ0—5ﬂ®@ﬂ)0—2ﬂ@@ﬂ)
> (Caeryie1)” (1 - SW)
> (Car)+it1)" <1—8\F< >>

and this is relation (6.8) for the number [. Relation (6.11) for £ = 2 and formula
(6.8) for I together yield that

(@aryi1) FT2
22,(T)

SuTytt )““ <1+10f< ))MQZT)

and this is formula (6.9) for [. Finally, if  is chosen sufficiently small, then formulas
(6.7) and (6.9) for [ imply (6.7) for [ + 1. Thus formulas (6.7) — (6.9) are proved.

My(1+1,T) <

My(1,T)

IN
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The first relation in (6.10) follows from the first relation in (6.3) and (6.9). For-
mula (6.11) with the choice k =4, (6.8) and the first formula in (6.10) imply that

(Eﬁ(T)-i-l—&-l ) (r+4)/2
82)(T)

1 5\
gE%(T)HH (1 +10v/n* (6) ) (38Ma(1,T)* + My(1, 7))

. 2
5 4l (C(n(T)-H—H)) 2 My(1,T)

My(14+1,T) < (3M(1,T)* + My(1,T))

IN

IN

) TG

The second relation in (6.10) follows by induction from the last inequality and the
second inequality in (6.3). Lemma 6.1 is proved. O

Remark. The Corollary formulated after Theorem 3.1 follows from Theorem 3.1,
formula (6.10) and Lemma 4.4. Indeed, if T is not in the low temperature, then by
Theorem 3.1 the pair (7(7"),T") with the definition of 7(7) given in (6.1) is in the
high temperature domain. By formula (6.10) all pairs (n,T"), n > #(T'), are in the
high temperature region, i.e. if 7' > 0 is not in the low temperature region, then it
is in the high temperature region. The remaining statements of the Corollary are
contained in Lemma 4.4.

In the next lemma we prove an estimate from below for Ms(l,T).

Lemma 6.2. Put

(7(T))
2 _ol €
o*(L,T) =2 (A (T)+)
Under the conditions of Theorem 3.3 the limit

a%(T) = lim o*(1,T) > 0
l—00

My(1,T), 1>0.

exists, and it is positive for all T > 0. If n(T) # 0, i.e. if (0,T) is not in the high
temperature region, then there exist two constants Co > C1 > 0 depending only on
the parameter 1 in formula (6.4) in such a way that the inequalities

(6.12) C, <&X(T) < Cy

hold. The upper bound in (6.12) holds for all T > 0 which is not in the low temper-
ature region.

Proof of Lemma 6.2. The hard part of the proof is to show that ¢(I,T) has a non-
negative liminf. It follows simply from formula (6.6) that Z;(T") < (éﬁ(T)_i_lH)r/Q. A
natural lower bound for Ms(l,T") can be obtained in the following way. By formula
(6.5) and the upper bound for Z;(T)

2

Mo+ 1,T) > Gnrypisn / - HT“

hia(r)+1(%; T)hisery 1 (0, T) dx du

= %(Ti# <2M2(Z,T) - / x + ul? <1 - e*(x’Y)Q/‘l)
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hia(ry+1(%; T) sy (0, T) dx du>
Ci 1
> SO (an(,7) - [ s uPhe - ul?

hiary+1(%, T)hiyry 1 (w0, T) dx du)

c 1
> SO (1) [ 0+
hiiry+1(%, T)hiiry 1 (0, T) dx du)
(6.13) = SO 0L (T — ML T)).

2

However, this estimate is useful only if we know that the right-hand side in it is
non-negative. We do not know such an estimate for small I, hence in this case we
apply a different argument. Clearly

Mz(l, T) Z M2,tr. (l7 T)a

where My, (I,T) is the truncated moment. On the other hand, we get by using an

argument similar to the previous calculation and making the observation

X+ u < i
2 |7 10

{(x, u): x € R, ueR", ¢r)141

1
D {(X u):xeRueR? x| < — 10 yJul < 0 ,arg (x, u)CI}
with I = (&, 27) U (32, 2F) that
2 X+u 2
My (14+1,T) > Eﬁ(T)+l+1/ e~ (w4 5
Cn<T>+L+1’ 2 ‘—10
hn(T)+l(X7 T)hn(T)+l (11, T) dx du
X+u 2
> Cﬁ(T)+l+1€_1/100/
2
|x|<10,\u|<10,arg(x,u)cl
i) +1(% T)hiyry 4 (0, T) dxdu
_ Cﬁ(Tzl+l+l 6—1/100/ (X2-|-112)
|x|<10,\u|<10,arg(x u)Cl
hﬁ(T)+l(X T)hi(ry1i (0, T) dxdu
1
Ci(T)+1+1€ 1/10 *5M2 . (1, T) > 36T Y41 Mo (1, T).
The last estimate implies that
(6.14)
2, ; A(T)) l _ ((T)) l - 2\ !
o ( ,T) = WMQ( T) 2 WMQ tI‘( T) - <3> M27tr.(0,T).
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On the other hand, it follows from (6.13) and the second inequality in (6.10) that

(A(T))
WM4(Z7 T)

A(T)+1) l
> o2(1,T) — 50n* <i> .

Because of (6.14) and (6.4) an index [ > 0 can be chosen in such a way that

o2 +1,T) > oo(1,T) — 211

5n* o

1 > o?(1,T) — -
(6 5) Z 0 (la ) 2lCﬁ(T)+l+1 c(A(T))

l
a?(1,T) > 1000n* (Z) :

and if the pair (0,7) is not in the high temperature region, then we may choose !
so that [ < K(7,k) with some appropriate K (7, k). Hence relation (6.15) implies
that

Pl +1+1,T) (I +1T) 1 (3 :
o2(I,T) = o2(1,T) 20\4) °

This relation and the bound on ¢?(I,T) imply that lilm inf 02(1,T) > 0, and this
—00

lim inf can be bounded by a positive number which depends only on 7 and  if (0,7)
is not in the high temperature region. The analogous result for lim sup follows from
(6.9). To complete the proof it is enough to show that the liminf is actually lim.
To prove this let us observe that for any € > 0 and N > 0 there is some m > N
such that o?(m,T) < linrr_hiorgf 02(n,T) +¢. Then by formula (6.9)

n l
*(n,T) < o*(m,T) ][] <1 +10+/n* (2) )

l=m

A

< liminfo?(n,T) +2¢, n>m
n—oo

for any e > 0 if N = N(¢) is chosen sufficiently large. Lemma 6.2 is proven. O

To prove Theorem 3.3 let us introduce the characteristic functions
on(s,T) = / e*h,(x,T)dx, secR"

and moments
Mk(n7T) = ‘X‘kﬁn(XaT) dx,
RT

where the function h(x,T) was defined in (3.17). Clearly,

) N
Ni(n, T) = <02(n)> Mi(n — #(T),T) if n > #(T).

In particular, My(n,T) = %az(n —n(T),T). We shall prove Theorem 3.3 by
means of the usual characteristic function technique. The following lemma plays a
crucial role in the proof.

Lemma 6.3. Under the conditions of Theorem 3.3 the relation

) ,
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holds with the constant 5%(T) appearing in Lemma 6.2, and

52TV
(6.17) nh_)rglo‘s‘tia log on, (s,T') + C(n(T))U (T) 5|~ 0
for all A > 0.
Proof of Lemma 6.3. Relation (6.16) follows from Lemma 6.2, and it follows from the

on(T)

second relation in (6.10) that My(n,T) < 5 < (MT») n*. Hence the characteristic

function ¢ can be estimated as

_ 2
~ 52 2”( )
on(s,T) — (1 — Mg(n,T)2>‘ < < way | " *Is|t

for n > n(T) and s € R".

In the proof of formula (6.18) we exploit that [(s, X)hp(x,T)dx = 0 and
[(3,%)3hy(x,T) dx = 0 because of the rotational symmetry of hy,(x, T). The coeffi-
cient of |s|* in (6.18) is bounded by a constant (depending on T'), and the coefficient
at |s|? converges to the positive constant (nET))) 52(T). Hence formula (6.18) implies

that for any € > 0,

(6.18)

i (T) 2

(6.19) log ¢n (3, T) + Wzﬂm% <e ifn>nsand|s| <6
(&

with some n; = nji(e,T) and § = (¢, T"). By a rescaled version of the recursive
formula (2.9) we can write

™ (x — u)?
@n+1(\/§S’T) = ZntT) /exp{ (X + u) i?’l)}

(%, T) by (0, T) dx du

4 ™ (x — u)2
= ZntT) |:90n (S,T)2 _ /625(x+u) (1 — exp { z(L.Qn ) })

(%, T)hp (0, T) dx du}

with

c™(x —u)?| - -
Zn(T) = /exp{—iw)} b (%, T)hp(u, T) dx du.

The estimates

, () (x — u)?2 - -
/ezs(x‘w) (1 — exp {—W}) hin (%, T)hp(u, T) dx du

() (x — )2 ] ()
< /Ci"%“)h (x, T) (w0, T) dx du = 26 S M (n. T)

and similarly
cm
1>7Z,(T)>1- 5 2n]\@(n,T)
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hold. Hence

(n) 2 T o) i T
¢ SO S + n 2 n
nM2(n7T) < (Pn+1(\/§S,T) < ( )(n> 2:27 ( )
2 1 — £ My (n, T)

30% (Sv T) -

The term %Mg(n,T) is much less than (%)n for large n. If we have a positive
lower bound on ¢, (s) then we get by fixing some K > 0 and taking logarithm in

the last relation that

2 n
(6.20) ‘log On+1 (\/§S,T> — 2log gon(s,T)‘ < (3) if n > ng and @, (s,T) >

==

with some ng = na(K,T). Formula (6.17) can be deduced from (6.19) and (6.20).
Indeed, define an index k by the relation A < §2F/2 < \/2A with the numbers A
and 0 in (6.17) and (6.18). Put K = 2¢~2" "% M)A/ anq jet ¢ < g Choose
a number ng such that ( )m < e, and let us consider such indices n for which
n > max(ny(e,T), no(K,T ) 3). Then simple induction yields that

cea(5) (- () =

1
and |45 (s.T)| > -

2ﬁ(T) L g2
Pn+j (Sa T) + (A (T)) g (T) 5

K
for j < k and |s| < §27/2. Since ¢ can be chosen arbitrary small in the last relation,
it implies (with j = k) relation (6.17). Lemma 6.3 is proved. O

Theorem 3.3 follows from Lemmas 6.2 and 6.3. Indeed, Lemma 6.3 implies that

the measures H,, T converge in distribution to the normal law with expectation zero

and covariance <z ET))) &2(T)I. The bounds obtained for the variance follow from

Lemma 6.2 and the observation that the difference n(T) —n(T') can be bounded by
a number depending only on % and k.

Let us finally show that Corollary to Theorem 3.3 follows from Theorem 3.3. By
formulas (2.7), and (3.17) we can write

(6.21) 2 "pn (272 Tx, T) = C(n) exp {—;’ﬁ’f x2} hn(x,T)

with an appropriate norming constant C(n). Observe that the expressions at both
sides of this identity are density functions, the measures with density function
hn(x,T) have a limit as n — oo, the term {- 2n+1x2} is bounded, and it tends
to 1 uniformly in any compact set as n — oo. These facts imply that C'(n) — 1
n (6.21), and the measures with density functions 2~"p, (2~"/2v/Tx, T) have the
same limit as the measures with density functions Bn(x, T). Hence the Corollary of
Theorem 3.3 holds. O

7. ESTIMATES IN THE LOW TEMPERATURE REGION. THE PROOF OF THEOREM
3.2

The proof of Theorem 3.2 heavily exploits the results of Section 4. These results
show that the replacement of the operator Q, whose application makes possible
to compute the function f,1(x,T) by its linearization T, causes only a negligible
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error. Formula (4.17) enables one to investigate the operator T, in the Fourier
space. In such a way good estimates can be obtained for the Fourier transform of a
regularized version of the function fy,+1(x,T). The results of Theorem 3.2 can be
proved by means of these estimates with the help of inverse Fourier transformation.

It is simpler to work with an appropriately scaled version of the functions f, (x,T).

Put
. 1

) = 5 9 (s 7)

eulne ) = 500 (50 (37757 )

We defined the function @, (f,(x,T)) by means of the definition of the regularization
of the function f,(x,T) introduced in Section 4.
Let us also introduce the functions

bl 1) = 3T (50 (375257 )-

The estimates of Proposition 4.2 and relation (4.17) can be rewritten for these new
functions. We shall rewrite formulas (4.14) and (4.15) only in the case when n >
N1 (T') with the number N;(7T) defined in formula (4.18), i.e. in the case when 3,,(T)
and M, 1(T) have the same order of magnitude. In this case M,,(T)+/Bn+1(T) < 10,

and

o -
’(‘):cj (frg1(z,T) — ¢n+1(fn(37:T)))’
2
- Bul) [ { L |y 2% _lal
(7.1) < K, T | P 10 2x + ) + exp 5
n T) _ ]
< Kzﬂd(”))e A0 > MR (T), =012,

and

o9
(7-2) an—l—l(fn(.T,T))‘ < K3€_|x|/57 TE Rla 7=0,1,2,3,4,

with some universal constants K, K9 and K3. Formula (4.17) can be rewritten as

QLn-H (fn(fa T)) = Tn@n(fn(Mn(T)fv T))

(7.3) exp {i%&} z,

=9 +1

R )

. —1)/2 tn
(1+i%5e) ’

We claim that under the conditions of Theorem 3.2,

o7
@ (fn(x>T) - @(fn($7T)))

j=0,1,2.
Indeed, by relations (7.1) and (7.2)

lim sup el?l/20 — ¢,

(7.4) 0 4> e MR (T)

J
afnu*,T)‘ <e 100 =012, if &> —MMET),

(7.5) —
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and @, (fn(x,T)) is the appropriate scaling of the function

i (\/C(T)MH(T)> o (Jc(T)Mn(T)> '

Under the conditions of Theorem 3.2, formula (4.29) holds, which implies that

lim V™M, (T) = .

n—o0

This fact together with (7.5) allow us to give a good bound on the difference between

the functions @, (fn(z,T)) and ¢ (\/C(T)Ln(T)) fn (W‘Ln(’f))
Relation (7.4) can be deduced from this bound and formula (7.5).

It follows from Lemma 4.4 that ILm MA}:&(@ = 1. Relations (7.1) and (7.4)

together with this fact imply that
&7

O (djn(fn—l(xa T)) - @n(fn(ma T)))

j=0,1,2.

lim sup ‘ el®l/20 =,

Now we prove, using an adaptation of the proof of Lemmas 14 and 15 in [5],
that the Fourier transforms of the functions ¥y41(fn(z,T)) converge to the Fourier
transform of the function g(z), and this convergence is uniform in all compact
domains. First we prove a modified version of this statement, where 1), is replaced
with @, in a small neighbourhood of the origin. We want to work with the functions
log ©n(fn(&,T))). To do this, observe first that for n > N1 (T') there is some constant
A > 0 such that all functions ¢, 1(fn(&,T))) are separated from zero in the interval
€] < A. Indeed,

- Gu(fueT)) < / 7€ 1@ (fule, T))) da

IN

/ €l12|@n(fulz, T))) dz < const. [¢].

Similarly,

Hence a constant A > 0 can be chosen in such a way that

o9
‘ < C(j) forall j >0andn > Ni(T).

N | —

Sup Imax <|1_§(£)|a sSup |1_¢n(fn(£aT))|> <

|€§1<24 n>N1(T)

These estimates imply that
2

) sup sup | 2 10w 5016, T))| < C(T),
gl<a |08

with a constant C(T") < oo independent of n. We claim that
2 2

O logGnlfulesT)) — L 1og ()

oe? Wer: — 0 asn — oo.

(7.8) sup
l€l<A
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To prove (7.8) let us first observe that li_}rn ¢n = 1 by Condition 1. By (7.6),
n o0

2
oe?

lim sup
T gl<A

(108 a1 (falE. 7)) — 10g G (s (€, T»)' _o,
and because of the estimates obtained for the derivatives of ¢, (¢, T)

2
108 B l61,7)) — o Pulu(6a )| < comst e — &
if [ <Aand |§ <A

for all large indices n with a constant independent of n. Taking logarithm and then
differentiating twice in formulas (7.3) and (1.20) we get with the help of the above
observations that

2 2
EEZ 2¢2 log Pny1(frr1(€,T))) — & logg(ﬁ)’
1 2 2
< 3 50 [ 0B B (6. T) = o836+ 5D

with some sequence nh_)ngo 0n(T) = 0. This relation together with (7.7) imply (7.8).
Since

SloRb e T = flowa] =0

/3 £=0 Cdg £=0

and log én(fn(OvT))) = logf](()) =0,

relation (7.8) also implies that

(7.9) lim sup [0,(fn(€,T))) = §(£)] = 0.

O lg <A
Moreover, relation (7.9) holds for all A > 0. This can be proved similarly to the
argument of Lemma 15 in [5]. One has to observe that because of the structure
of formulas (7.3) and (1.20), the relation ¢, — 1 as n — oo, the continuity of the
function g(§) and the relation

Bt (ol T)) = Gnsa (fra (€, T))| =0,

lim sup
n—oo |£|<OO

the validity of relation (7.9) in an interval |£| < A also implies its validity in the
interval €] < (2 —¢)A for any € > 0. In relation (7.9) the function @, (f.(¢,7)))
can be replaced by ¥,+1(fn(§,T)), i-e. the relation

(7.10) lim sup [dns1(fa(€, 7)) = 5(6)| = 0

N0 Ig|<A

holds for all A > 0. It can be proved from (7.10), by means of inverse Fourier
transformation, that

o’
(7.11) lim sup ’M@bnﬂ(fn(x,T))) — 79(3:) =0, j=0,1,2

n—o0 ‘$|<OO
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To prove (7.11) we need, besides the estimate (7.10), some bound about the decrease
of the functions (&) and ¢, 11(fn(€,T))) as € — £oo. The estimate (1.19) gives
a good bound for the Fourier transform of the function g(z). We can get a good
estimate for the Fourier transform of the function t¢n41(fn(z,7)) with the help
of the inductive hypothesis J(n) in Section 4 and relation (7.3). Rewriting the
inductive hypothesis J(n) for the function @, (fr(z,T)) we get with the help of some
standard calculation that the Fourier transform ¢, 1(fn(&, 7)) decreases at infinity
faster than |¢|™%. These estimates are sufficient for the proof of (7.11). Relations
(7.11) and (7.1) give an estimate on the function f,(z,7) and its derivatives, which

is equivalent to (3.8). Theorem 3.2 is proved. O

8. ESTIMATES NEAR THE CRITICAL POINT. THE PROOF OF THEOREMS 3.4, 1.3,
AND 1.5

Our previous results suggest that M2 ,(T) ~ MX(T) — (n), hence the deriv-

2
ative djvfﬁ(T), as a function of n, changes very little if the pair (n,7) is in the

low domain region (observe that ¢(™ does not depend on T). Therefore, it is nat-

2
ural to expect that IMe(T) 4o of constant order below the critical value T., and

M2 (T) — M2(T.) ~ const. (T, — T) for T < T.. If T, denotes the smallest
T for which the pair (n,T) leaves the low temperature region at the n-th step,
then the following heuristic argument may suggest the magnitude of Tn — T4 for
large n. Since both ™ M2(T;,) ~ n~! and c("“'l)MzH(TnH) ~ 171, besides this
MY (Tpi1) = M2 (Toy1) ~ 255, M2(Thy1) — M2(Ty) ~ 255 On the other hand,

M2(Ty11) — M2(Ty,) ~ Tyq1 — Ty, This argument suggests that Tj,.q — T, ~ Q’”Cfnl)

[e.9]
and T, — T, ~ 2 (k) In this section we justify these heuristic arguments. The
k=

proofs are based on the following result:

Theorem 8.1. There exists ko = ro(N) such that if (i) 0 < k < ko in formula
(1.7), (ii) Conditions 1—4 are satisfied, (i1i) 0 < T < coAo/2, and (iv) the integer
n > 1 has the property that the pair (n,T) belongs to the low temperature region,
then for all 0 < T < T the pair (n,T) also belongs to the low temperature region,
and the following inequalities hold for T <T':
a.) If 0 <n < N, then
Ch dMn_H(T) Cy .

NI < = IT < NGIE with some oo > Cy > C1 > 0.
b.) If n > N, then

dMyy 1 (T)  dMy(T) <1 r—1 6n(T)>

4l ’

ar dT ) M2(T)

ﬁnJrl( )

where |0, (T)| < C——+= St D)

Bn(T') with some appropriate C' > 0.

We will prove Theorem 8.1 in Appendix A below with the help of Proposition
A which is proved also there. This result can be interpreted in an informal way as
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the “differentiation” of the asymptotic identity (4.12). The main difficulty in the
proof of Proposition A is to bound the error caused by the linear approximation of
the operator Q, by T, when differentiating with respect to T'. To overcome this
difficulty we need a good control not only on the functions f,(z,T) but also on
their derivatives 8% fn(z,T). Hence we have to work out the estimation of these
derivatives. In particular, we have to find the inductive hypotheses describing their
behaviour. These are the analogs of the inductive hypotheses I(n) and J(n) formu-
lated in Section 4. It demands fairly much work to work out the details, but after
the formulation and proof of these inductive hypotheses the proof of Proposition A
is simple.

Proof of Theorem 3.4. We prove with the help of Proposition A that if the conditions
of Theorem 3.4 hold, 0 < T < ¢gAp/2 and the pair (n — 1,T) belongs to the low
temperature region, then there exist some constants 0 < Cy < Cy independent of T'
such that

Ci _  dMZ(T) _ G

8.1 .
(8.1) KT3 < dT K13

forall0 < T <T.

For 0 <n < N (n,T) is in the low temperature region for 0 < T' < ¢pA4p/2. In
this case Properties K (n)—K4(n) hold by Proposition A, and the validity of (8.1)
for n = 0 follows from relations (4.1), (4.5) and (A.1). Its validity for 0 <n < N can
be proved by induction with the help of Properties Kj(n) and K3(n), 1 <n < N.

To prove formula (8.1) for n > N first we show that

dr c(n) - dr
dMg(T> B (T) 2

for all T < T and n > N with an appropriate K > 0. Relation (8.2) is a consequence

of Part b) of Proposition A, formula (4.12), the inequality 3,.1(T)M2(T) > 10 and

Brn+1(T)
c(”)

the relation < nif (n,T) is in the low temperature domain. Indeed, since

CAMRL(T) _( ma(D) N T\ dMAD)
dT (DM, (T) C(n+1)dM+T(T) dr -’

these relations imply that

=t A
4T DMR(T) T )0, (T)
1+ r—1 _ 721+1(T) dM7(T)
4e(m 1) M2(T) (clnt1))2 ar
_dM2(T)

- dr
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§_<1_ R B (T) )

4T OMR(T) T )2 0, (T)

r—1 2 (T)\ dM2(T)
1 ntl LAY
( * 4t M2(T) +C c(n+1)? > dT

In this calculation we have exploited that ¢»*VM2(T) > 5’”;( )MQ(T) > 1.
The left and right-hand side of this inequality can be bounded by

2 2
- n+1(T) dMn(T)
(ux St ) LT

and formula (8.2) can be deduced from these relations.

For N < n < Ny(T) with the number N;(7T) defined in relation (4.18) relation
(8.1) follows from (8.2) and (4.19). Since by (4.20) B,+1M2(T) < 100 if n > Ny(T)
and the pair (n,T) is in the low temperature domain, to prove formula (8.1) with
the help of (8.2) for n > N;(T) it is enough to show that

- 1
2 _—
k=N1(T) (W MR(T))

and (n,T) is in the low temperature domain

< Lifn> Ni(T)

1 1
Z 108, 1 (T) = Tone™

and M(T) = M3(T) + (M{(T) = MZ(T)) > {5005 + Z 507

with a constant L > 0 independent of T' and n. Since M2 (T ) >

n

E ;2 < const. E 1 5 <L
kno(r) (W ME(T)) k=) () §5 1
c —

]:k c(])

because of Condition 3. Hence formula (8.1) holds.

It follows from (1.2), Condition 4, and the results of Section 4 that all T' > ¢y Ay /4
belong to the high temperature region. Indeed, it follows from formulas (4.26),
(4.27), (4.1), (4.5) and (4.9), that if 7" > 0 is in the low temperature region, then

[e'e] 0 1
< M2(T) < _ <—5 =) ——
0 < MZ(T) < MF(T) — 30(Mn(T n; 3 ,.{Tz n; 8¢

o0

1/2
foralln > N, and T < (Z 24:(n)> . Hence Condition 4 implies that T <

n=1
cpAp /4.
It follows from (8.2) that for a fixed n the function M2(T) is strictly monotone
decreasing. Hence a simple induction with respect to n yields that the function
Br(T) is a monotone increasing, continuous function of 7" for all n > N. Put

(8.3) T, = sup{T: (T, n) is in the low temperature region}.
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The sequence T}, is monotone decreasing, hence the limit T, = li_>m T, exists, and
n

o
by Lemma 4.4 T, > 0 under Dyson’s condition (1.2). We want to show that

[e.9] o0

1 1
(8.4) 1Y) g <h-T.<C) .

k=n k=n

Since we can handle the sequence M, (T") better than the sequence 3, (T") we also
introduce besides the sequence T}, defined in (8.3) the sequence T'(n)

T(n):sup{T:Mg(T)z 100 }

We will show that

(8.5) Torx <T(n) < Ty

for all sufficiently large n with an appropriate K > 0, and
C C

(8.6) L <Tm)—Tn+1)< -2
c(m) c(m)

with some appropriate Cy > C7 > 0 for all sufficiently large n. Because of
Condition 5 relation (8.4) follows from (8.5) and (8.6) together with the relation
lim T, =T..

n—oo

If T <T(n), and m < n then either m < Ny(T') with the number N;(T") defined
in (4.18) or By41(T) < % < Ml,%O(OT) < ™y, This implies that for T < T'(n) the
pair (m,T) is in the low temperature region for all m < n, and T'(n) < T,,. This is
the right-hand side of relation (8.5).

To prove its left-hand side observe that because of Condition 5 there is some K

such that

n+K—1 1 100
2 5w 7 g
for all sufficiently large n with appropriate K > 0. We claim that for 7' > T'(n)
the pair (n + K,T) is not in the low temperature region. This relation implies the
left-hand side of (8.5). If (n + K,T) were in the low temperature region, then we
would get with the help of formula (4.26) that

n+K

& 100 3 1 100 100 _

2 2 _ - _ _
Mn-i—K(T) < Mn(T) Z &¢(n) < C(”)77 8c(n) < c(n)n c(”)n

k=n k=n

and this is a contradiction.

To prove formula (8.6) let us first observe that because of the continuity and
strict monotonicity of the function M2(T), M2(T(n)) = C%S)On. It follows from the
last statement of Lemma 4.3 and formula (8.1) that N1(T') < n for all T'(n) —e <
T < T(n) with an appropriately small € > 0. (The number N;(T') was defined in
(4.18).). Hence we get with the help of formula (8.1) that for sufficiently large n
and T'(n) —e <T < T(n)

100 2 ~ 100 1

m*@ﬁLCl(T(”)*T) < iy *@JrCl(T(”)*T)
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< M (T)
100 1 -
< - —
S Sy 8 +Co(T(n) = 1T)
100 1

< W ~ 9 +Co(T(n) = T)
with some appropriate constants Cy > C; > 0. Hence the solution of the equation

M2 (T) = % satisfies the inequality Ki < ¢ (T — T'(n)) < K, with appro-

priate constants Ky > Kj > 0. Since the solution of this equation is T'(n + 1), this
fact implies relation (8.6).

It is not difficult to see that 7, is in the low temperature region. Since the
inequality M7 (T.) = M3(T(n))+(Mg(T.)— MZ(T(N))) < 5=+ const. (T(n)—T.)

holds for all large n because of (8.1), lim M,(T.) = 0. Then relation (8.1) implies
n—oo
that

Ci(T. = T)) < M (T.) — M}(T) < Co (T, — T)
with some positive constants Cy > Cy > 0if T, > T > T, — . Letting n tend to

infinity in the last relation we get formula (3.21). Since formula (8.4) is equivalent
to (3.20) Theorem 3.4 is proved. O

Proof of Theorem 1.3. By Corollary of Theorem 3.1, if the Dyson condition (1.2)
is violated then all temperatures 7' > 0 belong to the high temperature region. By
Corollary of Theorem 3.3 relation (1.13) holds, and the measures 7, 7(dz) tends to
the standard normal distribution as n — oo. Theorem 1.3 is proved. U

Proof of Theorem 1.5.

Part 1). The convergence of 7, 7(dz) to the r-dimensional standard Gaussian distri-
bution and relation (1.26) follow from Corollary of Theorem 3.3. The asymptotics
(1.27) follows from (3.19) and (3.20).

Part 2). Formula (1.28) follows from (3.7), and the convergence of 7, 1, (dz) to
the uniform distribution on the sphere follows from Theorems 3.2 and 3.4. Namely,
Theorem 3.4 tells us that the critical temperature T, belongs to the low temperature
region. Then formula (3.8) proves that the probability distribution 7, 1, (dz) con-
verges to the uniform distribution on the sphere. As a matter of fact, (3.8) proves
much more: it proves the convergence at T = T, of the distribution of normalized
fluctuations of the mean spin along the radius to a limit. Indeed, by (3.8),

1 t
1‘ n 7TC - t = U,
ni“oloHMnm)f <Mn<Tc> > g“H 0
where )
@)
£ = sup el | £ ‘
jz;) 1> —e(m) M2 (T) dt’

and the probability density g(t) is defined as a solution of the fixed point equation
(1.18). By (2.13),

1 t
fn(taTc) = qn Mn(Tc) + 7Tc 5
C(n) C(n)
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hence

(jn (MH(TC) + C(n)]\; (T.)’ TC)

lim - —g(t)|| =0.
n—00 c(") Mn(Tc)

To obtain a scaling limit of ¢, near M,,(T.), let us rewrite the latter formula as

(8.7) e (M) (14 G ) T

—qg(t)|| =0.

Let us evaluate the asymptotics of ¢(™ M2(T.) as n — co. By (3.7),

MX(T, -1
(8.8) lim g(f =
n—00 Zk’:n Gl 2
since Moo(Te) = 0. Define
— 1
. A =1l Yy —.
(8.9) kZ o
By Condition 2 on the sequence {l,},
(8.10) lim A, = oo.
n—oo
By (2.23)
()
lim — =3,
n—oo [,
hence o 1
lim =k=ne® 1
and by (8.8), (8.9),
M2(T, M2(T.)l, -1
(8.11) tim Mne) oy MaTe)ln 71

which relation is equivalent to (1.28). Therefore,

WMAT,) r—1

n—00 An 2

Substituting this limit into (8.7), we obtain that

2M,(T,) t
— M(TH\1+—— 1, T | —g(t
This implies that the probability density Z,(T.)"! G, (M, (T.)z,T.) is localized in a
neighborhood of order A, ! of the point 1, and after the proper scaling it converges
to g (t) as n — oo.

Let us consider now the scaling limit of the probability density p,(z,7.). By

equations (2.7) and (2.11),

(8.12) lim

n—o0

= 0.

Al Tt a?

pn(vac) = Zn(Tc)il exp <_ 9

) (j’n(Tcil/Za%TC)) x 2 07
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where Z,(T.)~! is a norming factor, hence
pn(Tcl/zMn (Te)x, Te)
Apl, M2(T.)x?
2
Applying the same scaling as in (8.12), we obtain that

Pn (Tcl/2 M, (T.) (1 + —T_f S ) ,Tc>
2 \n

2
2
-1 n(TC) t
(8.13) =Zn(Te) " exp | — 5 (1 + 1 >\n>

= Z,(T.) ' exp (- ) Gn (M (T.)x, T.).

Consider the expression in the exponent,

2
Anln M2(T) (1 Lt )_Anan2<Tc> 24,1, MA(T2)t
r—1y -
2 n

(8.14) 2 2 (r — 1)\,
2Anl, M2(T,)t?
(r—1)222
By (8.11), (2.22) and (8.10)
24,1, M2(T. 2 24,1, M2(T.
(8.15) lim 2AntnMa(Te) 2 0 24 M(TE)

n—oo (1 — 1)\, 37 mooo (r—1)2X2

The constant term in (8.14) is not important, because it changes in (8.13) the
norming constant only. Therefore, from (8.12)-(8.15) we obtain that

_ t

(8.16) lim Hz;L L@ TYAML(T) (1 + | e | — g (t)H = 0.
n—oo = )\n

This implies that

2T M, (T) t
lim || 22— s TV M, (T | 1 T.

/

=0,

(8.17)
— 77 e @B (1)

where Z~1e=(/3)g (t) is a probability density (this determines the constant Z), and

@’ f(t)
dti ‘

2

(8.18) O =Y sup el

7=0 =5

Substituting t for (bt — a) in (8.17), we obtain that

(8.19) lim ‘ %pn (An <1 + ;)) —7(t)

!/

=0,

n—o0 n n
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where A,, > 0 is some constant. Since

/_Ztﬁ” <Mn(Tc) (1 * ;n>> -0 /_Zm(t) =0

we can replace A, by M,(T.) in (8.19). This proves equation (1.32).

Part 3). The results of Part 3) of Theorem 3 were already proved with the excep-
tion of relation (1.35) in the discussion after the formulation of Theorem 3.2. But
relation (1.35) is a direct consequence of relation (3.21) proved in Theorem 3.4 and
the identity M(T) = VT My (T) for T < T, which was also proved in the above
discussion. Theorem 1.5 is proved. O

APPENDIX A. THE PROOF OF THEOREM &.1

To prove Theorem 8.1 we need good estimates on the partial derivatives

0

gn(x’ T) = ainn(xv T)’

of a scaled version of the functions g,(x,7). This can be done similarly to the
estimation of the functions f,(z,T), done in Section 4. First we give estimates
for the starting function go(z,T), then prove that similar estimates hold for small
indices n, more explicitly for n < N with the index N defined in (1.12). Then
inductive hypotheses can be formulated and proved for the functions g,(z,T). In
Section 4 we have introduced certain operators Q,,, their normalization Q,, and the
linearization of these operators denoted by T,, and T,. The inductive hypotheses
formulated there were closely related to the properties of these operators. Now we
want to work similarly. To do this we have to introduce some new operators. We
introduce certain operators R,, and R,, which are the derivatives of the operators
Q,, and Q,, with respect to the variable 7. We also need their linear approximation
which we shall denote by U,, and U,,. We have to study the action of these operators
on the functions g, (z,T) = a% fn(x,T) and their Fourier transform.

An appropriate description of the asymptotic behaviour of the starting functions
fo(xz,T) and numbers My(T') were already given in formulas (4.2) — (4.8). Some
more calculation yields, with the help of some formulas in Section 4, the following
estimates for the derivatives of the magnetization My(T") and the norming constant

Zo(T) if T < C()Ao/z.

% (Mo(T) — MO(T))‘ < const. /.
Cy dMy(T) Cy .
(A.1) JRT? < T < R T? with some oo > Cy > Cy > 0,
and

dT 2(Ag — T)3/2
The derivatives of the functions go(x,T") and fo(z,T) satisfy the inequalities

‘qu(anMo(T),T) \/W(xz_Q( 1 )>6(A0T)962

oT Y Ag—T

< const. VK.

' dZo(T) VT
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1

< const. k¥4, if |z| < logk!,
and
6@0(1’ + M()(T), T) (A() — T) x?
A2 < — 2
(A.2) 5T < Cexp 1 x + ME(T)
for z > —My(T).
We shall apply the notation
Ofn(z, T
(A.3) gn(as,T):f(;;), n=0,1,....

Since fo(z,T) = qo(z + Mo(T'),T) the previous estimates together with the results
of Section 4 yield a sufficiently good control on go(z,7"). The functions g,(x,T),

n=1,2,..., can be estimated inductively with respect to the parameter n.
Put 5 _
Ry, fo(2,T) = T Z,Mn(T)fn(va)
and
Rofo(@T) = 52Q ay, o1y Ja, T) = gt (@.7).
Then
(A.4) Rofu(@,T) = R fule, T) + RY fu (e, T)
with

exp{—UQ—v }fn(€c+ (x,u,v),T)

(n)

RV f (2, T) = 2/
ueR!, veRr—1
9n (EZ’X/IH(T) (:Eﬂ U, V)a T) du dV,

where the functions g, (z,T) and EZ’ER(T)(;U,u, v),T) were defined in (A.3) and
(2.18), and

_ >
R%Q)fn(m,T) = —2L€R1 VERT-lexp {_c(”) — v2} fa (KZLH(T)(m,u,V),T)

hon (2, u, v, T)%fn(EZ’XA,n(T) (x,u,v),T)dudv

with
ovc (x,u, V)
hn(x,u, v, T) = — nM"(a;
- M) (T)v?
x U 2 v2
(Mn(T) + g — C<T>) +

2 ) )
V@) 4 = 25) 4 2+ (Ml + e )
The function g,+1(x,T) can be expressed as
gnt1(z,T) = Rpfalz,T)
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R folz +mn(T),T)  2%Quful@+ma(T),T) dm,(T)
Zn(T) Zy(T) ar
_Qufa(z +mu(T),T) dZy(T)
Z2(T) dT

o
Zn(T) = / Q. fn(z,T)dx
—c(M M, (T)

If the parameter £ > 0 in formula (2.10) is sufficiently small, then gy(x,T") and the
functions g, (x,T), n < N, can be estimated similarly to the proof of Proposition 4.1
or Proposition 1 in [5]. Relation (A.7) formulated below can be deduced from
formula (A.2) similarly to the proof of Lemma 1 of that paper. Then an argument
similar to the proof of Lemma 2 in [5] enables one to prove formula (A.6) formulated
below. In this argument one can observe that a negligible error is committed if in the
integrals appearing in the definition of R, fn(a: T) the arguments Zc’i M (T )(x U, V)

:I:u Some calculation also shows that

we commit a negligible error by replacing Rn fn(x,T) with %. In such a

defined in formula (2.18) are replaced by

Cn,
way we get that

gn(ZL', T) -

N0l 2(Ag —T) 27

2"z
e {0 - 22}
CTL

Ao — T 27/ <x2 1 c(")2>

Ag—T) 2™ 22

< 1/4 (Ao

< C(n)k exp{ ™ + T%(T)‘}

A6 if 2] < 27" log k™!

(A.6) || gL,

(Ag—T) 2" x?
' n ’ S - Z - n 9

(A7) gn(z,T)| < C(n) eXp{ s T for & > — M, (T)
M, (T) — My(T)| < C(n)s'/? Zn(t < C(n)K/?
|Mn(T) — Mo(T)| < C(n)s, (t) — \/Aoi—‘

with some constant C(n) which may depend on n but not on the parameter s of
the model.

The previous results are sufficient to handle the functions g, (x,T") for small in-
dices n < N. To work with indices n > N we have to introduce, similarly to the
argument in Section 4, the regularization of the functions g, (z,T'), the linearization
U,, and U, of the operators R,, and R,, and to describe their action in the Fourier
space.

Define the regularization of the function g, (x,T') as

890n(fn(xaT)).

(438) Pnlgal@,T)) = P
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We want to approximate the operator R,, with a simpler operator U,, in analogy
with the approximation of Q,, by T,. Then we formulate and prove some inductive
hypothesis about the behaviour of the operators R,, and U,.

A natural approximation of the operators R,, and R,, by some operators U,, and
U,, can be obtained by differentiating T,,(fn(z,T)) and T,@n(fn(z, T)) with re-
spect to the variable T". These considerations suggest the definition of the operators

= 2 x v?
Un@n(fn(l'vT)) = Q/ueRl,veRTl € Pn (fn <5n+1 +u+ Mm(T)’T>>
X V2 T
oo (o (5 -0+ sy 7))
o M(T) 9 v2
~arapae (4 (e~ mnm 7)) } dudv

with the functions g, (x,T") and ¢, (gn(z,T)) defined in (A.3) and (A.8) and

Unon(fol(z,T)) = U,(ll)gon(fn(x,T)) + U£L2)‘Pn(fn(x7T))

with
ngl)@n(fn(ZEaT)) =z T_? 3
en1D(F5H)V(5772)
2 x r—1 v2 ))
e Vol ful —+u-— + ,T
/ueRl,veRTl 7 <f <0n+1 AMn(T) ~ 2My(T)
x r—1 v2
n n | = —u-— , T ,
7 (9 <+ T D) 2T )) dudv
and

2 " _ 8
enlhle ) = R V()

/ o (D) e T
u€R!, veRr—1 4M7’2L (T) 2MH(T)2
T r—1 v2
o <f” <c+1 T mn,m t 2Mn<T>’T>>
0 T r—1 v?2
Frdl (f” <+ L 2Mn<T>’T>> dudv.

We can calculate the Fourier transform of the functions U,pn(fn(z,T)),

U}, cpn(fn(x T)) and U,(f)gon(fn(:v,T)) by expressing them with the help of con-
volutions. This is similar to the proof of formula (4.17). In the calculations we

exploit the following identity. As simple integration by parts shows 8%90”( fn(8) =
[ 2 o, (fo()) dz = —i€@(fn(€)). Hence we get that

U@l ful€,T))
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Gt CCFIV(S™™2) @ (fu (526T)) ( n (EnﬂfaT))

B 2 o 2P \In\ 7
(1+ ism¢)
2T V(S™2) MIUT) . @2 (fn (B52E,T))

+i

L+ gt é

8 M, (T)? ( ><r+1)/2’

(A9) UP@,(fa(¢,T))
(r—1)én+1€ }

2@{% i (52 o (),
M (T)

and
a _ / exp { i T-Lent 1)5”“5
Flfnl6,T)) = Cﬂgmgf(ﬂ<l%i%ZSEimg
(A10) & (5 (Ben)) (1- 1+Lz¢>'

The above relation can also be extended to a larger set of the variables £ in the
complex plane by means of analytic continuation.
Now we formulate the inductive hypotheses we want to prove in the Appendix.

Property Ki(n).

dM,(T)
4T > 0.
Property Ka(n).
0
(e T = |ghuteT)

dM,
|

(T) 1
FW{_ B.(T)

if 2 > —c™ M, (T)

an
2 -
$+MMﬂA

with a universal constant K.
Property K3(n).
\gn(x, T) - Un—l@n—l(fn—l(-ra T))’
Ba(T) 14
o) Py T B(T)

if 2 > —c™ M, (T)

dM,(T)
<K’dT

m2
2
x*d@Maw‘

with a universal constant K. The inequality remains valid if the function gy, (x,T)
is replaced by its reqularization oy (gn(x,T)).
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The following property K (n) which gives a bound on the Fourier transform of
©n(gn(x,T)) is an analog of Property J(n).

Property Ky(n).

oulan(-is ) = | [ onlante ) o] < D)2 D |
i |s] < ——2 .
Br+1(T)

In Property K4(n) we formulated a weaker estimate than in J(n). It is enough
to have a good bound on the moment generating function, i.e. on the analytic
continuation of the Fourier transform to the imaginary axis together with the trivial
estimate @, (gn(—is +t,T)| < &n(gn(—is, T) for all ¢.

The main result of the Appendix is the following Proposition A.

Proposition A. Let the properties Ki(m), Ko(m), Ks(m) and K4(m) hold in a
neighbourhood of a parameter T’ together with the property 5’27,53” < n (with the same
small number n > 0 which appeared in the proof of Propositions 4.1 and 4.2) for all
N <m < mn, and let also the inductive hypotheses I(n) and J(n) be also satisfied.
Then the properties K1(n + 1), Ka(n+ 1), K3(n+ 1) and K4(n + 1) also hold for
this parameter T'. The expression

_d <mn(T)— r—1 > _ dm,(T) N r—1 dM,(T)

dr AM,(T) dr AM2(T) dT

satisfies the inequality

on(T)

ar | ey (@)

with an appropriate C > 0, where m,(T) was defined in (2.15).

(A.ll) ‘5n(T)’ < C ‘ dMn(T) ‘ ﬂn-ﬁ-l(T)

If we want to apply Proposition A, then first we have to show that properties
Ki(n), K2(n), K3(n) and K4(n) hold for n = N if T < ¢pAg/2. This can be done
with the help of an argument similar to the proof in the Corollary of Lemma 1 in [5].

Property K7 (V) holds since de’Y[(T) hardly differs from %T(T). Property Ko(IN) can
be proved by means of relations (A.6) and (A.7). In the proof of Property K3(N)
still the following additional observation is needed. Relation (A.6) remains valid
if the function gy (z,T) = Ry fn-1(z,T) is replaced by Uneon—_1(fy-1(z,T)) in
this formula. (The term de’}(T) on the right-hand side of the inductive hypotheses
do not play an important role for n = N. It is strongly separated from zero if
T S 00A0/2.)

Relation K4(N) can be proved again with the help of formulas (A.6), (A.7) and
the relations

[ ntgnta 1))tz = [ apalgalaT))dz =0,

These relations imply that the value of the function @, (gn(s,T) and of its first
derivative is zero in the point s = 0. Hence it is enough to give a good estimate of
the second derivative of @y, (gn(s,T).

Let us formulate the following Corollary of Proposition A.
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Corollary. Under the Conditions of Theorem 3.4 the set of the points T for which
(n,T) is in the low temperature region is an interval (0,T,) for all m > 0. The
inductive hypotheses Ki(n), Ka(n), K3(n) and K4(n) hold for all T € (0,T},).

Proof of the Corollary. The Corollary simply follows from Proposition A by means
of induction with respect to n. In this induction we assume the statement of the
Corollary for a fixed n together with the assumption that (,(7") is monotone in-
creasing in the variable T for 0 < T < T,. The Corollary and the additional
assumption hold for n = N with Ty = ¢pAp/2. If properties Ki(n), Ka(n),
K3(n) and K4(n) hold for n, then because of Property Ki(n) the function M, (T) is
monotone decreasing and ,+1(7") is monotone increasing in the variable 7. Then
Tyy1 = min(T,, max(T: Sp41(T) < 1)), and by Proposition A the statements of
the Corollary hold for n + 1. O

Before turning to the proof of Proposition A we prove Theorem 8.1 with its help.

Proof of Theorem 8.1. The proof of Part a.) is contained in the previous estimates
of the Appendix. Part b.) can be obtained by differentiating the second formula in
(2.16), and applying formula (A.11). O

Proof of Proposition A. Some calculation yields that because of properties K4(n),
J(n) relations (A.9) and (A.10) the Fourier transforms

UDen(fal6, 7)), UPGn(fal6,T))
satisfy the inequalities
OO Gu(fult +is,T))|
dMn(T)‘ (EnJrl

2 3/2
dT 9 5) Bn(T)

o { <Ciﬂgnm " M31<T>> } 1+a1<T>t

-

and
UDn(fult +is,T))|
G| M, (T))] & 15(T) 1
< n+1 n 2 2 n+1~n 2
= sy Ot >eXp{< 2 *M,%m)s }
1
(1+ an(DP) (1= 555)

for |s| < - A

Cn+14/ ﬁnJrl (T) '

The function ¢, (gn(z,T")) can be computed by means of the application of the
inverse Fourier transformation and by replacement of the domain of integration
from the real line to the line

2
z=isignt ———— +t, te R} .
ﬁn—l—l(T)
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We get, by applying the above estimates for the Fourier transforms fjg) and fJg)
! 2
and exploiting the relation % < ok B (T)? dMg# together with the fact

that the constants o, (T") and (3, (T) introduced in the definition of Properties I(n)
and J(n) have the same order of magnitude that

aM,(T) _ -
(A12) [Unpn(fnlar, T))] <~ DD ooty
a () f 1
dr 5n+1(T)
The estimates obtained for fJng) and Ijg) yield, with the choice £ = 0 and some
calculation that

< —Ky

2 + o
v C(n+1)Mn+1(T) )

o , 9 dM,(T .
[Onpnlfu(—is )| < 2 Py (rypregeetunms
2
(A.13) if | <~
Bn+2(T)

(In the proof of Property K4(n + 1) it will be important that the right-hand side
of (A.13) is less than the expression at the right-hand side of the formula which
defines Property Ki(n +1).)

We need a good estimate on the difference of Ry, fr (2, T) — Upn(fn(z,T)) and
its Fourier transform. These expressions can be bounded similarly to the proof of
the corresponding inequalities in the proof of Proposition 3 in paper [5]. One has to
compare the difference of the corresponding terms in the expressions Q. on (fn(z,T))
and Ry, o, (fn(2z,T)). Some calculation yields that

(a10) |zu(r) = S| < BE) o (1) 4 | < ) T,
0] Dt
d 1 Bur1(T) M, (T)

Relation (A.11) is a consequence of (A.15). Property Ki(n + 1) can be deduced
from the above inequalities, since

L dMa(T)  dMR(T) 1 dmn(T)
dT - dT c(n+1) 4T
dM,(T) 1 1 Ba(T)
> _
= T ar (1 D) <4M3(T) R
_ 1dM,(T)
= T2 dr

Now we turn to the proof of Property K3(n + 1). We do it by estimating the
errors we make by replacing the terms in the sum at the right-hand side of (A.5)
by their natural approximation if we replace R, f(z,T) by Uppn(fn(z,T)). (We
also use formula (A.4) in that calculation.) We get, by applying again inequalities
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(A.14) and (A.15) together with the estimates obtained for f,(x,T"), similarly to
the proof of the estimates in the lemmas needed for the proof of Lemma 3 in [3]
that

annx+mn( ) )dZ( )’

Z2(T) dT
1 BnlD) ' W), { ’}
K- | Tar \/7 ">M (T)

if & > —c"U M, (T),

2 Qufn(x +mn(T),T) dma(T) 8(r—1) M!(T)
Z,(T) AT oD (50 V(572) 4M2(T)

/ €_V280n<fn( x e r—1 n v? ,T>>
u€R!, veR"—1 Cn+1 4Mn(T) 2Mn(T)

0 x r—1 v?2

%Sﬁn <fn <5n+1 — U — 1M, (T) + 2Mn(T)7T)> du dv
5 Bn(T) | dMn(T) —1.5 z?
K= ‘ dT ’ P { NZRG) '2“3 o, (1) ‘}

if £ > —c" M, (T),

and

X

8
Zn(T) G D (F5H)V (S772) 2M(T)

2
9 42 x r—1 v
n n\| Z +u— , T
/ueRl,veRu” i <f <+ T IML(T) T 20 (T) ))
0 T r—1 v2
a_¥Fn n - - 7T d d
oz <f (cnﬂ U ML(T) T 2M(T) >> uav

R e e )

if £ > —c" M, (T).

‘R%”fn(x +ma(T),T) M;,(T)

To prove Property Ks3(n + 1) we still need an estimate which compares the terms

R fo(z + mn(T), T)
Zn(T)

and U gon(fn(a: T)).

We claim that

RY fo(2 + ma(T), T)
Zy(T)

—_uyuw <

pLtatal
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ox 1.5

VA
This estimate can be proved by means of Property K3(n). With the help of this re-
lation it can be shown that a negligible error is committed if in the integrals defining
Rgl)fn(x—i-mn(T), T) and ULy, (f,(z,T)) the functions g, and ¢, (gy,) are replaced
by the function U, p,—1(fn—1). After this replacement the proof of Theorem 3.2
can be adapted, since we can bound not only the function U, p,—1(fn—1), but also
its partial derivative with respect to the variable z.

These estimates together imply Property K3(n + 1), and some calculation shows
that a version of Property Ks(n + 1), where the function g,41(z,T) is replaced by
its regularization @,11(gn+1(x,T)) is also valid. Since we gave a good estimate on
Unon(fn(x,T)) in (A.12), some calculation yields the proof of Property Ka(n+1).
It remained to prove Property Ky(n + 1).

Because of (A.13) and (A.15) (The latter formula together with (2.15) and (2.16)
imply that formula (A.13) remain valid with a slightly bigger coefficient if the term

d]\/il”T(T) is replaced by %ﬂ in it), it is enough to give a good bound on the

2

X
9
T M)

‘} if 2 > —c"Y M, (T).

difference @1 1(gnt1(—is)) — Up@n(fu(—is)) to prove property K4(n+1). This can
be done in the following way:

By applying the modified property of K3(n + 1), where the function g,41(x) is
replaced by @n+19n+1(z) we get that

2 [rrtmantis ) - Buguatis )|

S/Q;Q ¥ia Mexp{(|t|ﬁn+l(n>x}d$

B2 (T) a2

< _er—-: ‘-
s K c(n+1l) 4T
; _ 2
sl = 755w
Since

Pn+1 (gn+1 (Oa T)) - ﬁn(:bn(fn(ov T))

8 ~
= % (¢n+1(§n+1(*i8, T) - Un@n(fn(*ZS7 T)) = O,

s=0

the last relation implies that

Brt1(T) 372 dMy(T) 2

@n+1(f]n+1(*i5,T) *Unsbn(fn(*isaT) <-K c(n+1) BnJrl dT

if |[s] < —2—. This estimate together with relation (A.13) imply Propert
| | > \/m g ( ) ply perty

Ky(n + 1) if the number 1 which is an upper bound for B,1(T)/c™tV) is chosen
sufficiently small. Proposition A is proved. U
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APPENDIX B. THE PROOF OF PROPOSITION 1.2

Condition 1. We have that for n > 1,

1< 1+an A
C = —_— .
" 1+an-1)

Observe that ¢, is decreasing and

lim ¢, =1, en<cr=(1+4+ a))‘.

n—oo

This implies Condition 1.
Condition 2. We have that

i N K(1 +an)*
(1+an))‘jz;1(1+aj) A > a +(a(:;+l){))/\ — K

as n — 0o. This implies Condition 2.

Condition 3. For k < n/2 we estimate

n

Y L= (1+ak)*> (14aj) > C(L+ak) 1+ ak) M =C(1+ak)™
j=k j=k

and for k > n/2 and n > j > k we estimate

lklj_l > C() >0

hence
LY 1> Coln—k+1).
=k
Thus,
n n -2 n/2 n
LY LY <Y (4+ak)?+C5% Y (n—k+1)7<Ch
k=1 =k k=1 k=n/2

Condition 3 is checked.

Conditions 4 and 5 are obvious. O

Acknowledgements. An essential part of this work was done at the Mathematis-
ches Forschungsinstitut Oberwolfach, where the authors enjoyed their participation
in the program “Research in Pairs”. They are thankful to the Mathematisches
Forschungsinstitut for kind hospitality and the Volkswagen—Stiftung for support of
their stay at Oberwolfach. The research of the first author (P.B.) was supported in
part by the National Science Foundation, Grant No. DMS-1565602, the research
of the second author was supported by the Hungarian Foundation NKFI-EPR, No.
K-125569. These supports are gratefully acknowledged.



174

(1]
2]
8l

(14]
(15]
[16]
(17]
18]
[19]
20]

21]

PAVEL BLEHER AND PETER MAJOR

REFERENCES

M. Aizenman, J.T. Chayes, L. Chayes and C. M. Newman, Discontinuity of the magnetization
in one-dimensional 1/|x — y|* Ising and Potts models, J. Statist. Phys. 50 (1988), 1-40.

P. M. Bleher, Hierarchical models and renormalization group: Critical phenomena in the Dyson
hierarchical model and renormalization group, European Phys. J. 37 (2012), 605-618.

P. M. Bleher and P. Major, Renormalization of Dyson’s hierarchical vector valued ¢* model at
low temperatures, Commun. Math. Phys. 95 (1984), 487-532.

P. M. Bleher and P. Major, Critical phenomena and universal exponents in statistical physics.
On Dyson’s hierarchical model, Annals of Probability 15 (1987), 431-477.

P. M. Bleher and P. Major, The large-scale limit of Dyson’s hierarchical vector valued model
at low temperatures. The non-Gaussian case. I. Limit theorem for the average spin, Ann. Inst.
H. Poincaré Phys. Théor. 49 (1988), 1-85.

P. M. Bleher and P. Major, The large-scale limit of Dyson’s hierarchical vector valued model at
low temperatures. The non-Gaussian case. II. Description of the large-scale limit, Ann. Inst.
H. Poincaré Phys. Théor. 49 (1988).

P. M. Bleher and P. Major, The large-scale limit of Dyson’s hierarchical vector-valued model
at low temperatures. The marginal case ¢ = v/2, Commun. Math. Phys. 125 (1989), 43-69

P. M. Bleher and Ya.G. Sinai, Investigation of the critical point in models of the type of Dyson’s
hierarchical models, Commun. Math. Phys. 33 (1973), 23-42.

P. M. Bleher and Ya.G. Sinai, Critical indices for systems with slowly decaying interaction,
Sov. Phys. JETP 40 (1975), 195-197.

P. M. Bleher and Ya.G. Sinai, Critical indices for Dyson’s asymptotically-hierarchical models,
Commun. Math. Phys. 45 (1975), 247-278.

F. J. Dyson, Ezistence of a phase transition in a one-dimensional Ising ferromagnet, Commun.
Math. Phys. 12 (1969), 91-107.

F. J. Dyson, An Ising ferromagnet with discontinuous long-range order, Commun. Math. Phys.
21 (1971), 269-283.

F. J. Dyson, Ezistence and nature of phase transitions in one-dimensional Ising Ferromagnets,
in: Mathematical Aspects of Statistical Mechanics (Proc. Sympos. Appl. Math., New York,
1971), SIAM-AMS Proceedings, vol. V, Amer. Math. Soc., Providence, R.I., 1972, pp. 1-12.
M. E. Fisher, The theory of equilibrium critical phenomena, Reports on Progress in Physics
30 (1967), 615-730.

J. Frohlich and Th. Spencer, The phase transition in the one-dimensional Ising model with
1/r? interaction energy, Comm. Math. Phys. 84 (1982), 87-101.

D. R. Hamann, Fluctuation theory of dilute magnetic alloys, Phys. Rev. Letters 23 (1969),
95-98.

B. Simon, Absence of continuous symmetry breaking in a one-dimensional n~2 model, J.
Statist. Phys. 26 (1981), 307-311.

Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results, International Series in Natural
Philosophy, 108. Pergamon Press, Oxford-Elmsford, N.Y., 1982.

D. J. Thouless, Long-range order in one-dimensional ising systems, Phys. Rev. 187 (1969),
732-733.

K. G. Wilson and J. Kogut, The renormalization group and the e-expansion, Phys. Rep. 12C
(1974), 75-199.

G. Yuval and P.W. Anderson, Ezact results for the Kondo problem: One-body theory and
extension to finite temperature, Phys. Rev. B1 (1970), 1522-1528.

Manuscript received December 23 2019
revised August 10 2020



A THOULESS-LIKE EFFECT 175

PAVEL BLEHER
Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202,
USA

FE-mail address: pbleher@iupui.edu

PETER MAJOR
Alfréd Rényi Institute of Mathematics, Budapest, P.O.B. 127 H-1364, Hungary
E-mail address: major@renyi.hu



