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ABSTRACT. In this paper, using Halpern type iteration, we prove a strong con-
vergence theorem for finding a common element of the set of common fixed points
for a finite family of generalized demimetric mappings and the set of common so-
lutions of generalized variational inequality problems for a finite family of inverse
strongly monotone mappings in a Hilbert space. Using this result, we obtain
well-known and new strong convergence theorems in a Hilbert space.

1. INTRODUCTION

Let F be a smooth Banach space, let C' be a nonempty, closed and convex subset
of E and let n be a real number with n € (—o0,1). A mapping U : C — E with
F(U) # 0 is called n-demimetric [28] if

2(z —q,J(z — Uz)) > (1 = )|z — Uz|®

for all x € C' and g € F(U), where F(U) is the set of fixed points of U and J is the
dualty mapping on E. Then we have from [28] that the set F'(U) of fixed points of U
is closed and convex. Using this property, we proved weak and strong convergence
theorems in Hilbert spaces and Banach spaces; see [15, 27, 28, 29, 31]. Very recently,
Kawasaki and Takahashi [11] generalized the concept of demimetric mappings as
follows: Let 6 be a real number with # # 0. Then a mapping U : C — FE with
F(U) # 0 is called generalized demimetric [11] if

(1.1) O(x —q,J(x — Uz)) > ||z — Uz|?

for all z € C and ¢ € F(U). This mapping U is called 6-generalized demimetric.
We can also prove that the set F'(U) of fixed points of such a mapping U is closed
and convex; see [11].

On the other hand, in 1967, Halpern [8] gave an iteration process as follows: Take
xo,x1 € C arbitrarily and define {x,} recursively by

Tnt1 = anxo + (1 —ap)Tx,, VneN,
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where {a,, } is a sequence in [0, 1]. There are many investigations of Halpern iterative
process for finding fixed points of nonexpansive mappings. Takahashi [29] proved a
strong convergence theorem of Halpern type iteration for demimetric mappings in
a Hilbert space.

In this paper, using Halpern type iteration, we prove a strong convergence the-
orem for finding a common element of the set of common fixed points for a finite
family of generalized demimetric mappings and the set of common solutions of
generalized variational inequality problems for a finite family of inverse strongly
monotone mappings in a Hilbert space. Using the result, we obtain well-known and
new strong convergence theorems in a Hilbert space. In particular, we extend the
result of Takahashi [29] to that of generalized demimetric mappings in a Hilbert
space.

2. PRELIMINARIES

Throughout this paper, let N be the set of positive integers and let R be the set
of real numbers. Let E be a real Banach space with norm | - || and let E* be the
dual space of E. We denote the value of y* € E* at x € E by (z,y*). The duality
mapping J from E into 2" is defined by

Jr={a" € E": (z,2") = |z||* = ||="[|*}

for every x € E. Let U = {x € E : ||z|]| = 1}. The norm of F is said to be Gateaux
differentiable if for each z,y € U, the limit

o) ety — ]
t—0 t
exists. In this case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and FE is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a
single-valued bijection and in this case, the inverse mapping J ! coincides with the
duality mapping J, on E*. For more details, see [23] and [24].

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. When {z,}
is a sequence in H, we denote the strong convergence of {x,} to x € H by x,, » x
and the weak convergence by x,, — x. We have from [25] that for any =,y € H and
AER,

(2:2) lz + yll* < Il + 2y, @ + ),

(2.3) IAa + (1= Nyl = Alz]* + (1= Nly* = 21 = Nz — y|>.
Furthermore, we have that for x,y,u,v € H,
(2.4) 2(r —y,u—v) = [lz — o> + |y — ull® =l = ul® = [ly —v]*.

Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping
T : C — H is called nonexpansive if | Te—Ty|| < ||z—y| forall z,y € C. A mapping
T :C — H with F(T) # 0 is called quasi-nonexpansive if ||Tz — y|| < ||z — y|| for
all z € C and y € F(T). If T : C — H is quasi-nonexpansive, then F(T) is closed
and convex; see [10]. For a nonempty, closed and convex subset D of H, the nearest
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point projection of H onto D is denoted by Pp, that is, ||x — Ppz|| < || — y|| for
all z € H and y € D. Such a mapping Pp is called the metric projection of H onto
D. We know that the metric projection Pp is firmly nonexpansive, i.e.,

|Ppz — Ppy||* < (Ppx — Ppy, = —y)
for all z,y € H. Furthermore, (z — Ppx,y — Ppx) < 0 holds for all x € H and
y € D; see [23, 25]. Using this inequality and (2.4), we have that
(2.5) |Ppz — y|* + || Ppa — z|)? < |z —y|?, VzeH, yeD.

More information on the metric projection and on firmly nonexpansive mappings
can be found in the book by Goebel and Reich [7]. Let H be a Hilbert space and
let C' be a nonempty, closed and convex subset of H. A mapping A : C — H is
called inverse strongly monotone if there exists o > 0 such that

<£L’ - yan - Ay> > OéHA.I' - Ay”27 any eC.

Such a mapping A is called a-inverse strongly monotone. If A: C — H is a-inverse
strongly monotone and 0 < A < 2a, then I — AA : C — H is nonexpansive. In fact,
we have that for all z,y € C,

(I = AA)z — (I —AA)y|?* = ||z — y — A(Az — Ay)|?
= ||z —ylI> — 2\Maz — y, Az — Ay) + N?|| Az — Ay||?

(2.6) < |lz = ylI* = 22al| Az — Ay|]® + A?[| Az — Ay|®
= llz = yl* + AA - 20) | Az — Ay|?
< [lz = yl*.

Thus, I — AA : C — H is nonexpansive; see [1, 19, 25] for more results of inverse
strongly monotone mappings. The variational inequalty problem for A : C — H is
to find a point u € C such that

(2.7) (Au,z —u)y >0, VxeC.

The set of solutions of (2.7) is denoted by VI(C, A). We also have that, for A\ > 0,
u= Po(I — AA)u if and only if u € VI(C, A). In fact, let A > 0. Then, for u € C,
u=Po(l —AA)u<= (I = \A)u—u,u—y) >0, VyeC

— (-Mu,u—y) >0, VyeC
— (Au,u—y) <0, Vyel
— (Au,y —u) >0, VYyelC
= uecVICA).

Let G be a mapping of H into 27. The effective domain of G is denoted by
D(@G), that is, D(G) = {x € H : Gz # (0}. A multi-valued mapping G is said to
be a monotone operator on H if (x — y,u —v) > 0 for all z,y € D(G), u € Gz,
and v € Gy. A monotone operator G on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For

a maximal monotone operator G on H and r > 0, we may define a single-valued
operator J, = (I +rG)~': H — D(G), which is called the resolvent of G for r. We
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denote by A, = (I — J,) the Yosida approximation of G for r > 0. We know from
[24] that
(2.8) Arx € GJrx, Yxe H, r>0.
Let G be a maximal monotone operator on H and let
G l0={re H:0¢cGxr}.
Then G~10 = F(J,) for all » > 0 and the resolvent J,. is firmly nonexpansive, i.e.,
(2.9) |Jox — Jyl|* < (x —y, oo — Joy), Va,y € H.
We also know the following lemma from [22].

Lemma 2.1 ([22]). Let H be a Hilbert space and let G be a mazimal monotone
operator on H. Forr >0 and x € H, define the resolvent J.x. Then the following

holds:
s—1t

(Jox — Jyx, Jgx — z) > || Jox — Jyz||?
for all s,t >0 and x € H.

From Lemma 2.1, we have that
(2.10) [az = Juzl| < (A= pl /) [z — Tzl
for all A\, u > 0 and = € H; see also [6, 23].

Using the ideas of [20, 33], Alsulami and Takahashi [2] proved the following
lemma.

Lemma 2.2 ([2]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let G : H — 2 be a mazimal monotone mapping and let
Jy = (I +XG)~! be the resolvent of G for A\ > 0. Let k >0 and let U : C — H be a
k-inverse strongly monotone mapping. Suppose that G'0NU 0 # 0. Let \,r > 0
and z € C. Then the following are equivalent:

(i) z=J\(I —rU)z;

(i) 0 e Uz + Gz;

(iii) z € G"tonUt0.

Let E be a smooth Banach space, let C' be a nonempty, closed and convex subset
of E and let 6 be a real number with # # 0. Then a mapping U : C — FE with
F(U) # 0 is called generalized demimetric [11] if it satisfies (1.1), i.e.,

O{x —q,J(x —Ux)) 2 ||z — Uz|?
for all z € C and ¢ € F(U), where J is the duality mapping on E.

Examples We know examples of generalized demimetric mappings.

(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let k be a real number with 0 < k < 1. A mapping U : C' — H is called a
k-strict pseudo-contraction [5] if

Uz —Uyl* < |lo = yl* + kl|z — Uz — (y — Uy)|I?
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for all z,y € C. If U is a k-strict pseudo-contraction and F(U) # (), then U is
2. -generalized demimetric; see [11].

(2) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping U : C' — H is called generalized hybrid [12] if there exist o, 5 € R
such that

(211)  allUz = Uyl|* + 1 = o)z = Uyl® < B|Uz - yII* + (1 - B)l|lz — y]|*

for all ,y € C. Such a mapping U is called («a, f)-generalized hybrid. If U is
generalized hybrid and F(U) # (), then U is 2-generalized demimetric; see [11]. In
fact, setting x =u € F(U) and y = x € C in (2.11), we have that

allu=Uz|® + (1 = a)|lu = Uz|* < Bllu - z[* + (1 = B)|lu — 2|
and hence
Uz —ul® < o —ul.
From ||Ux — u? = Uz — z||®> + ||z — u||* + 2(Uz — x, 2 — u), we have that
e —u,x — Uz) > ||z — Uz|?

for all z € C and u € F(U). This means that U is 2-generalized demimetric.

Notice that the class of generalized hybrid mappings covers several well-known
mappings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is
nonspreading [13, 14] for « =2 and g =1, i.e.,

2|Ta = Ty|* < T —y|* + | Ty — «|?, Va,yeC.
It is also hybrid [26] for a = % and 8 = %, ie.,
3T — Tyl < o — yl? + |T2 — yl> + | Ty — 2, ¥,y € C.

In general, nonspreading and hybrid mappings are not continuous; see [9].

(3) Let E be a mooth, strictly convex and reflexive Banach space and let C' be
a nonempty, closed and convex subset of E. Let Po be the metric projection of E
onto C. Then Pr is 1-generalized demimetric; see [11].

(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B~10 # (). Then the metric resolvent .J for
A > 0 is 1-generalized demimetric; see [11].

(5) Let H be a Hilbert space, let C' be a nonempty subset of H and let T" be a
mapping from C' into H. Suppose that T is Lipschitzian, that is, there exists L > 0
such that

[Tz — Tyl < Lijz -y

for all z,y € C. Let S = (L +1)I —T. Then S is (—2L)-generalized demimetric;
see [11, 30].

(6) Let H be a Hilbert space, let C' be a nonempty, closed and convex subset of
H and let a > 0. If B be an a-inverse strongly monotone mapping from C into H
with B~10 # (), then T =1 + B is (—é)—generalized demimetric; see [11, 30].

The following lemmas are important and crucial in the proof of our main result.
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Lemma 2.3 ([11]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. If a mapping U : C = E
is 0-generalized demimetric and 0 > 0, then U is (1 — %)-demimetm’c.

Lemma 2.4 ([11]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E£. Let 6 be a real number
with @ # 0. Let T be a 0-generalized demimetric mapping of C into E. Then F(T)
15 closed and convez.

Lemma 2.5 ([11]). Let E be a smooth Banach space, let C' be a nonempty subset
of E and let 0 be a real number with 0 # 0. Let T be a 0-generalized demimetric
mapping from C into E and let k € R with k # 0. Then (1 — k)I + kT is 0k-
generalized demimetric from C into E.

We also know the following lemma from [31]:

Lemma 2.6 ([31]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let k € (—o0,1) and let T' be a k-demimetric mapping of C
into H such that F(T) is nonempty. Let \ be a real number with 0 < A < 1—k and
define S = (1 — XN)I + \T. Then S is a quasi-nonexpansive mapping of C into H.

We also know the following lemmas from Aoyama, Kimura, Takahashi and Toyoda
[3], Xu [35] and Maingé [16].

Lemma 2.7 ([3], [35]). Let {s,} be a sequence of nonnegative real numbers, let {ca,}
be a sequence in [0,1] with Y o7 | oy, = 00, let {B,} be a sequence of nonnegative
real numbers with Y7 | B, < 0o, and let {7} be a sequence of real numbers with

lim sup,,_,oc Yn < 0. Suppose that
Sn+1 < (1 - an)sn + apyn + ﬁn

foralln=1,2,.... Then lim, o Sn, = 0.

Lemma 2.8 ([16]). Let {I},} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I7,,} of {I,} which satisfies
Iy, < I'y,41 for all i € N. Define the sequence {T(n)}n>n, of integers as follows:

7(n) = max{k <n: I} < Ik},
where ng € N satisfies {k < ng: Iy < I'ty1} # 0. Then, the following hold:

(i) 7(no) < 7(no+1) <--- and 7(n) — oo;
(11) FT(TL) < FT(TL)+1 and Fn < F’r(n)-{-lv Yn > ny.

3. STRONG CONVERGENCE THEOREM

In this section, we prove a strong convergence theorem of Halpern type iteration
for finding a common element of the set of common fixed points for a finite family
of generalized demimetric mappings and the set of common solutions of general-
ized variational inequality problems for a finite family of inverse strongly monotone
mappings in a Hilbert space. Let H be a Hilbert space and let C' be a nonempty,
closed and convex subset of H. A mapping U : C' — H is called demiclosed if, for
a sequence {x,} in C such that z,, = w and z,, — Uz,, — 0, w = Uw holds. For
example, if C' is a nonempty, closed and convex subset of H and T is a nonexpansive
mapping of C' of H, then T is demiclosed; see [4] and [25, p. 114].
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Theorem 3.1. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {01,...,0p} C R and {u1,...,un} C (0,00). Let {TJ}J]\/L1 be a
finite family of 0;-generalized demimetric and demiclosed mappings of C into H and
let {k:j}j]\/il be a finite family of real numbers with 0;k; > 0. Let {B;}}, be a finite
family of p;-inverse strongly monotone mappings of C into H. Let G be a maximal
monotone operator on H and let Jy = (I + AG)™! be the resolvent of G for A > 0.
Assume that

NMLF(T) N (N (Bi + G)10) # 0.

Let {uy} be a sequence in C such that u, — u. For x1 =z € C, let {zp,} C C be a
sequence generated by

Zn = Z]J\il & (L= A + AnTj)an,
wy = SN oidy, (I = 1, By) e,
Tnt1 = Opn + (1 = 0y) (Po(an®y + Bnzn + awn)), Vn €N,
where a,b,c € R, {\,} C R, {n,} C (0,00), {&1,...,&m} {o1,...,on} C (0,1) and
{an}, {Bn}, {1}, {0n} C (0,1) satisfy the following conditions:
(1) for anyn € N and j € {1,..., M},

A 1 1
< < 2mij { } b<n, <2mi :
0<a< = min ok Burknr 0<b<n, <2min{y N}

(3) 0< ¢ < om, B vn <1 and an + B + 70 = 1;

Then {x,} converges strongly to a point zy € ﬂjj\ilF(Tj) N(NY,(B;+G)710), where
20 = Fad per)nol, (Bi+G)-10)U-
Proof. Since B; is p;-inverse strongly monotone and 0 < b < 5, < 2pu; for all
i € {1,...,N}, we have that J, (I —n,B;) is nonexpansive from (2.6) and (2.9)
and hence F(J,, (I —n,B;)) is closed and convex. Since

F(Jy,(I = maBi)) = (Bi + G)7'0

from Lemma 2.2, we have that (B; + G)~'0 is closed and convex. Furthermore, we
know from Lemma 2.4 that F'(T}) is closed and convex. Therefore, we have that
ﬂ]]\/ilF(T]) N (NN, (B; + G’)_10). is nonempty, closed and convex. Thus, we obtain
that Pﬂ;‘ilF(Tj)ﬂ(ﬂﬁil(Bi+G)‘10) is well defined.

We know from Lemma 2.5 that (1 — k;)I + k;T} is 6,kj-generalized demimet-
ric. From Lemma 2.3 and 6;k; > 0, we have that (1 — k;)I + k;T} is (1 — %)—

demimetric in the sense of Takahashi [28]. Since

and

An An
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we have from Lemma 2.6 that (1 — A,)I + A\, Tj is quasi-nonexpansive. Thus, we
have that for z € N}, F(Tj) N (N, (B + G)~10),

M
2 — 2]l = || Z§J<(1 = M)+ MTj)zn — 2
j=1

M
(3.1) < DG = M) + ATy, — 2|
j=1
M
<D &illen — 2l = llzn — 2l
j=1

Furthermore, since J, (I — n,B;) is nonexpansive, we have that

N
lwn =2l = 1Y 0idn, (I = 1 Bi)zn — 2|
i=1

N
(3.2) <> ailldn, (I = maBi)a, — 2|
i=1
N
<> aillzn = 2|l = llzn — =l
i=1

Put y, = Po(an®n + Bnzn + Ynwy). Then we have that

Hyn - ZH < Han:ﬂn + Bnzn + Ynwn — Z”
(3.3) < anl|zn — 2| + Ballzn — 2l + ynllwn — 2|
< apllzyn = 2[| + Bullzn — 2| + o llTn — 2|

= llzn — 2.
Using this, we get that

|Znt1 — 2| = (|60 (un — 2) + (1 = 65) (yn — 2)||
< Op flun — 2[[ + (1 = 0n) [lyn — ||
<, ||un — Z” + (1 — 5n) ||.7Jn — Z” .

Since {u,, } is bounded, there exists M > 0 such that sup,cy ||un, —z|| < M. Putting
K = max{||z1 — z||, M}, we have that ||z, — z|| < K for all n € N. In fact, it is
obvious that ||z; — z|| < K. Suppose that ||z — z|| < K for some k € N. Then we
have that

2k — 2| < Ok |lug — 2] + (1 = 0p) |k — 2|
<K+ (1—-0p)K =K.
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By induction, we obtain that ||x, — z|| < K for all n € N. Then {z,} is bounded.
Take zp = PDJMZIF(T],)Q(OL(BiJrG)_lO)u. Using [18], we have that
lyn—20l* < llan@n + Brzn + awn — 20|
= anl|zn = 20l|* + Bullzn — 20ll* + Ynllwn — 20/
— anfBnllzn — xn”Q — o Ynllwn — anQ — YnBnllzn — wnHz
< apllan — ZOH2 + Bllzn — ZoH2 + Y llzn — ZOH2
— anfBllzn = nll® = anynllwn — zall* = v Ball2n — wnll?
= ||z — 20|l = anfBallzn = 2nll* = anynllwn — znll* = v Ball2n — wnll?
and hence
1Znr1 = 20l* = 1|8n(un — 20) + (1 = 6n) (yn — 20)II”
< Onllun — 20l* + (1 = &a)lyn — 20|
< Gullun — 20l[* + llyn — 20|
< Gnllun — zo® + [l — 20
— anBnllzn — anQ — anYnlwn — anz — YnBull2n — wnHz'
Using 0 < ¢ < ap, Bn,Yn < 1, we have that
Cszn_zn”Z + CQHwn - anQ + CQHzn - wnuz
(3.4) < anbhllzn — zall® + annllwn — znll* + YnBnllzn — wal®
< Gnllun — 20ll* + |z — 201 = |Zns1 — 20>
We also have that
i1 = ]l = [ontn + (1= 80}y — 0]
< bullun =l + (1= 8 lyn — o
< Onllun — znll + lyn — znll
(3.5) < Onllun = nll + llon@n + Bnzn + mwn — |
< Onllun = znll + 1Bn(zn — zn)ll + llyn(wn — zn) ||
< Onllun — ol + lzn — 2ol + [[wn — zn |-
We will divide the proof into two cases.
Case 1: Put I}, = ||z, — 20||? for all n € N. Suppose that there exists a natural

number N such that I}, < I, for all n > N. In this case, lim,_,, I}, exists and
then limy, oo (41 — I3) = 0. Using 6, — 0, we have from (3.4) that

(3.6) lim |z, —x,|| =0, lm |w, — 2] =0, lim ||z, —wy| =0.
n—o0 n—o00 n—00
From (3.5), we also have that

(3.7) lim ||@p41 — zn] = 0.
n— oo
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For zp = Pmé\ilF(Tj)m(mivzl(BiJrG)_lO)u, we show that

lim sup(u — zg, , — 29) < 0.
n—oo

Put s = limsup,,_,.,(u — 20, 2n — 20). Without loss of generality, there exists a
subsequence {x;} of {z,} such that

s = lim (u — zp,x; — 20)
l—00

and {x;} converges weakly to some point w. On the other hand, since T} is 6;-
generalized demimetric and hence (1 — k;)I + k;T; is 0;k;-generalized demimetric
for all j € {1,..., M}, we have from 60;k; > 0 that, for z € ﬂjj\ilF(Tj),

M
(xn — 2,Tpn — zn> = <ZL‘n — 2, Tn — ij((l - )\n)I + )‘nTJ)xn>
j=1

M
— Z§j<xn — 2,2 — (1 = M) + X)) zy)

j=1

=Sz (1= 20) 042 (4 kT )
_j:1 i Tn — 2,y k:j kj g L | )xn
_§5.< e (T e

_j:1 i\ Tp — 2, k‘j T, k‘j j 15 ) Tn

XA
= Zgjl@n —2z,2n — (1= ki) + k;Tj)zn)

M
>3 L (1 )T+ T

j=1 J ij]
M
ZZ&EW%H% Tjn||
7j=1
M
An
= >~ Ty
j=1

We have from lim,,_, ||z, — 2, || = 0 and gjeﬂ > 0 that
J
lim ||z, —Tjx,|| =0, Vje{l,...,M}.
n—oo

Since Tj is demiclosed for all j € {1,..., M}, we have w € ﬂjj‘ilF(T])
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Let us show that w € NY.,(B; + G)~10. Since J,, (I — 1, B;) is nonexpansive for
alli € {1,..., N}, we have from (2.4) that, for z € N}, (B; + G)~10,

N
20Xy — 2,y — W) = 2<1:n — 2,Tp — Z oiJy, (I — nnBi)l‘n>
i=1
N
= Z 2Uz'<$n — Z2,Tn — J77n (I - nnBi)$n>
=1

N
= oillzn = Iy, (I = 0 Bi)a|?
=1

+lzn — 2|12 = | o, (I = 9 Bi)an — 2||)
N
> > oillan = Jy (= ma Bl
=1

We have from lim, 0 ||wy, — 2, || = 0 that

|zn — I, (I —uBi)xn|| =0, Vie{l,...,N}.

lim
n—oo
Consider a subsequence {n;} of {n,} corresponding to the sequence {x;}. Since the
subsequence {n;} of {n,} is bounded, there exists a subsequence {n,} of {n;} such
that limp oo, =n and 0 < b <y < 2min{u1,...,un}. For such 7, we have from
(2.10) that for any i € {1,...,N},
len — Jn(I = nBi)an|l < [lzn — Jp, (I = 1m0 Bi)wnl|
+ o (I = nuBi)an — Iy, (I = 1Bi)aal
+ [ In, (I = nBi)zn, — Jy(I — nBi)p|
< lzn = Jpy, (I = 10 Bi) ]|
I = mmBi)zn — (I = nBi)aal
+ [ In (I = nBi)n, — Jy(I — nBi)p|
< lwn = Jo, (I = Bi)zall + |nn — nll| Bl

I B (0= Bl

On the other hand, we have that for y € C and i € {1,..., N},
bl Biznll < mnl|Biznl| = [[nnBizn||
= Hxn - (y - nnBiy) +y - nnBiy - (xn - nnBzxn)H
< llon =yl + ml Biyll + [[(I = mBi)y — (I — nuBi)xa||
<o =yl + max{p1, ..., un}HIBiyll + [ly — 2.

Since {x, } is bounded, we have that {B;z,} is bounded for all i € {1,..., N}. Thus
we have that

||xh_J77(I_nBl>th :07 Vi € {177N}

lim
h—o0
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Since {x,} converges weakly to w and J,,(I—nB;) is demiclosed for all i € {1,..., N},
we have w € F(J,(I —nB;)). From Lemma 2.2, we have w € N}, (B; + G)~10.
Therefore, we have

w e NL F(T;) N (N, (B; + G)~10).
Since {z;} converges weakly to w € ﬂjj‘ilF(T]) N(NY,(B;+G)710), we have that

s = lim (u — 2,2 — 20) = (u — 20, w — 20) < 0.
l—00

Since Xp41 — 20 = On(un — 20) + (1 — 8p)(yn — 20), we have from (2.2) that
[Zn11—201> < (1= 60)*lyn — 201> + 265 (un — 20, Tni1 — 20)
< (1= 8n)llzn — 20/1* + 265 (un — w, 2041 — 20)
+ 205 (u — 20, Tp+1 — 20)
= (1= 6n)llzn — ZOHQ + 265 (up — U, Tnt1 — 20)
+ 20, (u — 20, Tnt1 — Tn) + 205 (U — 20, Ty, — 20).
Since 220:1 0n = 00, we obtain from Lemma 2.7 that x, — 2.
Case 2: Suppose that there exists a subsequence {I},, } of the sequence {I},} such
that I5,, < I,,41 for all ¢ € N. In this case, we define 7: N — N by
T(n) =max{k <n: [} < Ik}

Then we have from Lemma 2.8 that I'(,) < I’7(;)41- Thus we have from (3.4) that
for all n € N,

CQHxT(n)_ZT(n) H2 + C2||w7'(n) — Lr(n) ||2 + C2||Z7‘(7’L) - wr(n)||2
2
(38) < 5T(TL)HUT(1’L) - ZO||2 + HIT(n) - ZOH - HxT(n)—Fl - ZO||2
< 57(1@)““7’(71) - ZO||2'

Using a(,y — 0, we have from (3.8) that

nh—>H;o ”ZT(n) - xT(n)” =0, nh_?;o HwT(n) — Lr(n) =0, nh_{go HZT(’IZ) - wr(n)” =0.
As in the proof of Case 1, we have from limy, 0 [|27(n) — Tr(n)l| = 0 that
(3'9) lim ”x‘r(n) - T]{L'T(n)” =0, Vje {17 R M}

n—o0

As in the proof of Case 1, we also have that

(3.10) m |2 ()41 — Zr(n) || = 0.

n—oo
For zp = Pmé\ilF(Tj)m(mivzl(BiJrG)_lO)u, let us show that

lim sup(zo — u, () — 20) > 0.
n—oo

Put s = limsup,,_, (20 — U, T7(») — 20). Without loss of generality, there exists a
subsequence {7} of {z,(n)} such that s = limy (20 — u, 2y — 20) and {z,()}
converges weakly to some point w € C. Since T} is demiclosed for all j € {1,..., M},
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we have from (3.9) that w € ﬁ \F(T;). Let us show that w € NY (B; + G)~*

As in the proof of Case 1, we have from limy, o0 [|wr(n) — T7(n)ll = O that
nle H.CC Jﬂr(n) ([ — nr(n)Bi)xT(n)H =0, Vie {1, e ,N}.

Consider a subsequence {nra)} of {nrn)} corresponding to the sequence {z ()}
Since the subsequence {n.;} of {n;u)} is bounded, we have that there exists
a subsequence {n;)} of {n,} such that limp oo nr) = nand 0 < b < n <
2min{p1,...,un}. As in the proof of Case 1, we have that for any i € {1,..., N},

27 ny — Jn(L = nBi) 2oyl

< ey = In,o L = Mrny Bi)ze(y |
+ ey (L = Ny Bi) T () — Iy (4 — 01Bi) 7y |l
+ ey (L = nBi)r(ny — Jy(L = nBi)z, )|

< ||w7( Jﬂr(h)(I Nr h)B )T, H
+ (I = nry Bi)wrny — (I — UBz)ﬂ?T(h)H
+ ey L = nBi)r(ny — Jy(I — nBi)zr )|

< MNzrmy = Iney L = 0eyBi) ey | + [0y — nll| Bizr(ay

‘777 h) — 77’
+ #HJ,](] —nBi)xrny — (I —nBi)zr -

Thus we have that
hllrglo |z7n) — Jn(I = nBi)z- |l =0, Vie{l,...,N}
Since {z,()} converges weakly to w and J,,(I —nB;) are demiclosed, we have w €
NN, (B; + G)~10. Therefore, we have
w e NI F(Ty) N (N (Bi + G)~10).
Then we have

s = lim (20 — u, 2,y — 20) = (20 — u,w — 29) > 0.
=00

As in the proof of Case 1, we also have that
27 (my4+1 = 2001 < (1= Sru)l|rm) = 2001 + 267 (m) (rn) = U Tr(m)1 — 20)
+ 25T(n)< = 20, Tr(n)4+1 — Tr(n)) T 207(n) (U — 20, Tr(n) — 20)-
From I () < I’ (n)4+1, We have that

o (n)HxT(n) - 20”2 < 267(71) <u'r(n) — U Tr(n)+1 — ZO>
+ 25T(TL) <u — 20y Lr(n)+1 — xT(n)) + 267‘(71) <u = R0y Lr(n) — ZO>'
Since 0,(,) > 0, we have that

127(n) — 20I1” < 2(tr(n) = Uy Tr(ny41 — 20)
+ 2<U — 20, Lr(n)+1 — IET(n)) + 2<u = 205 Tr(n) — Z()>.
Thus we have that

lim sup er(n) — on2 <0
n—oo
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and hence ||z, — 20/ — 0. From (3.10), we have also that z,(,) — 2()4+1 — 0.
Thus ||7-(,)41 — 20]| = 0 as n — co. Using Lemma 2.8 again, we obtain that
[2n = 2ol < [[#7(n)+1 — 20l = O

as n — 0o. This completes the proof. O

4. APPLICATIONS

In this section, we apply Theorem 3.1 to obtain well-known and new strong con-
vergence theorems in Hilbert spaces. Let H be a Hilbert space and let f be a proper,

lower semicontinuous and convex function of H into (—oo, 0c0]. The subdifferential
Of of f is defined as follows:

Of(x)={z€ H: f(z) +(z,y —x) < f(y), Vy € H}

for all x € H. From Rockafellar [21], we know that 0f is a maximal monotone
operator. Let C' be a nonempty, closed and convex subset of H and let i be the
indicator function of C, i.e.,

. 0, xeC,

ic(z) = {

oo, z¢C.

Then i : H — (—00, 00] is a proper, lower semicontinuous and convex function on
H and then the subdifferential dic of ic is a maximal monotone operator. Thus
we can define the resolvent Jy of dic for A > 0, i.e.,

I = (I + )\aic)_ll'
for all x € H. We have that, for any z € H and u € C,

u=J\r <= x €u+ Nicu <= x € u+ ANcu
<~z —u € ANcu

1
(4.1) <:>X(1:fu,vfu>§0, Yvel

= (zr—u,v—u) <0, YveC
<— u = Por,

where Ncw is the normal cone to C' at u, i.e.,
Neu={z€ H:(z,v—u) <0, Vv e C}.

We know the following lemmas obtained by Marino and Xu [17] and Kocourek,
Takahashi and Yao [12]; see also [32, 34].

Lemma 4.1 ([17, 32]). Let H be a Hilbert space and let C' be a nonempty, closed
and convex subset of H. Let k be a real number with 0 <k <1 andletU :C — H
be a k-strict pseudo-contraction. If x, — z and x, — Uz, — 0, then z € F(U).

Lemma 4.2 ([12, 34]). Let H be a Hilbert space, let C' be a nonempty, closed and
conver subset of H and let U : C' — H be generalized hybrid. If x, — z and
Ty — Uxy — 0, then z € F(U).
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We first prove a strong convergence theorem for a finite family of strict pseudo-
contractions and a finite family of inverse strongly monotone mappings in a Hilbert
space.

Theorem 4.3. Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let {s1,...,sp} C [0,1) and {p1,...,un} C (0,00). Let
{T]}ﬁ\il be a finite family of s;-strict pseudo-contractions of C into H. Let {B;}},
be a finite family of p;-inverse strongly monotone mappings of C into H. Let G
be a mazimal monotone operator on H and let Jy = (I + AG)~! be the resolvent
of G for X\ > 0. Let {u,} be a sequence in C such that u, — u. Assume that
ﬁjj\ilF(T]) N (NY,(Bi + G)710) # 0. For any x1 = = € C, define {x,} as follows:

2, = Ej]\il E((1 = M)+ MTy)an,
Wp = Zz]L iy, (I = 1 Bi)Tn,
Tn+1 = 5nun + (1 - 5n) (PC(O‘nxn + ann + 'ann)),

where a,b,c € R, {\,} C R, {n,} C (0,00), {&1,...,&m},{01,...,0n} C (0,1) and
{an}, {Bn}, {1}, {6n} C (0,1) satisfy the following conditions:

(1) for anyn € N,

0<a<A <min{l —sy,...,1—sy}, 0<b<mn, <2min{u1,...,un};

(2) S & =1and oL 00 = 1;

(3) 0 < c<an,Bn,vn <1 and ap+ Bn+ v =1 for alln € N;

(4) limy 00 6, =0 and Y ;2 6y = 00.
Then {z,} converges strongly to zy € ﬂjﬂilF(T]) N (MY, (B; + G)710), where 29 =
Bt p(ry)n(n, (Bi+G)-10) U

Proof. Since Tj is a sj-strict pseudo-contraction of C' into H such that F(T}) # 0,

from (1) in Examples, T} is %Sj—generalized demimetric. Take k; = 1 in Theorem

3.1. Then we get that ﬁ = 1 —s; in Theorem 3.1. Furthermore, from Lemma
4.1, T} is demiclosed. Thus, we have the desired result from Theorem 3.1. O

We prove a strong convergence theorem for a finite family of generalized hybrid
mappings and a finite family of inverse strongly monotone mappings in a Hilbert
space.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {u1,...,un} C (0,00). Let {Tj}j]\/il be a finite family of generalized
hybrid mappings of C into H and let {Bi}fil be a finite family of p;-inverse strongly
monotone mappings of C into H. Let G be a mazximal monotone operator on H
and let Jy = (I +AG)~! be the resolvent of G for A > 0. Let {u,} be a sequence in
C such that u, — u. Assume that

NMLF(T) N (N (Bi + G)10) # 0.
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For any 1 =z € C, define {x,} as follows:

Zn = Z]J\il G = AT + ATz,
Wn = ZZJ\L1 oiPc(I — 1, B;) oy,
Tpt1 = Oy + (1 — 5n)(Pc(anxn + Bnzn + vnwn)),
where a,b,c € R, {\,} C R, {n,} C (0,00), {&1,...,&m},{o1,...,on} C (0,1) and
{an}, {Bn}, {m} {0n} C (0,1) satisfy the following conditions:
(1) for anyn € N,

0<a<A <1 0<b<n, <2min{p,...,un};

2) S 6 =1 and S = 1

3) 0<c<an,lnym<landan+ By + v, =1 foralln € N;

4) limy 00 0, = 0 and Y 2, Op = 00.

Then {x,,} converges strongly to a point zy € ﬂjj\ilF(Tj) N(NY,(B;+G)~10), where
20 = Pyt pay)n(o, (B+6)-10)U-

(
(
(

Proof. Since Tj is a generalized hybrid mapping of C' into H such that F(T}) # 0,

from (2) in Examples, T} is 2-generalized demimetric. Take k; = 1 in Theorem

3.1. Then we get that % = 1 in Theorem 3.1. Furthermore, from Lemma 4.2, Tj is

demiclosed. Therefore, we have the desired result from Theorem 3.1. O

We prove a strong convergence theorem for a finite family of Lipschitzian map-
pings and a finite family of nonexpansive mappings in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {Ly,...,Lap} C (0,00) and let {Sj}jj‘/il be a finite family of L;-
Lipschitzian mappings of C into H and let {Ui}fil be a finite family of nonexpansive
mappings of C into H. Let {u,} be a sequence in C' such that u, — u. Assume
that ﬂjﬂilF(%) N(NY L, F(U;)) # 0. For any v1 = x € C, define {x,} as follows:

20 = 300y &((1 4 A L)T = M),
W = sz\il ai(L = np)I + nuUs) oy,
Tn+1 = 5nun + (1 - 5n)(PC(anxn + ﬁnzn + ’ann))y

where {)‘n}7 {77n} CR, {51, s 7’£M}’ {Ulv s >UN} - (Oa 1)} {an}a {BH}U {7n}7 {511} -
(0,1) and a,b,c € R satisfy the following conditions:

1) O<a§i—qgmin{ﬁ,...,ﬁu},O<b§nn§1f0ralln€N;

(
(2) 353006 =1 and XX 05 = 1;
(3) 0<c<anBny<land an+ By +y =1 foralln € N;
(4) limp—y00 6 =0 and Y ;2 6, = 0.
Then the sequence {xy} converges strongly to zy € HJ{IF(%) N(NY, F(U)), where
zo=P 55 LU
L.
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Proof. Since S; is Lj-Lipschitzian and F(71) # 0, Tj = (L; + 1)I — S is —2L;-
generalized demimetric. Take k; = —1 in Theorem 3.1. Then we have that 0,;k; =
2L; and

I =A)I+NT5 =1 =Xy + ML + X)L — XSj = (1 + A\ Lj) L — NS
Furthermore, from Lemma 4.1, T} is demiclosed. In fact, if z,, — z and z,, =T}z, —

0, then
gj(fn — Tjan) = IZ(ijn — Ljz,) = an - = 0.

Since % is nonexpansive and hence demiclosed, we have that z € F( %) = F(Ty).
Since U; is nonexpansive, B; = I — U; is a %—inverse strongly monotone mapping.
Putting G = 0 in Theorem 3.1, we have that J,, = I and

ML (Bi + Q)10 = Ny (Bi) 710 = NiL F(U7).
Furthermore, we have that

I—nuBi=1—n,(I-U;)=(1—n)I+n.Ui.
Therefore, we have the desired result from Theorem 3.1. O

Finally, using Theorem 3.1, we obtain the following theorem by Takahashi [29].

Theorem 4.6 ([29]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let {t1,...,tp} C (—00,1) and {p1,...,un} C (0,00). Let
{T]}J]\i1 be a finite family of tj-demimetric and demiclosed mappings of C' into H
and let {Bi}i]\il be a finite family of p;-inverse strongly monotone mappings of C
into H. Assume that ﬂjj\ilF(T]) N(NY,VI(C, B;)) # 0. Let {un} be a sequence in
C such that u, — u. For x1 =x € C, let {x,} C C be a sequence generated by

2n =300 G((1 = M) + A T))zn,
Wp, = sz\il UiPC(I - nnBz)xnp
Tpt1 = Oply + (1 — 0y,) (Pc(ana?n + Bpzn + ’ynwn)), Vn € N,
where a,b,c € R, {\,},{m} C (0,00), {&1,..., &} {o1,-..,on} C (0,1) and

{an}, {Bn}, {m}: {0n} C (0,1) satisfy the following conditions:

(1) for any n € N,

0<a<A <min{l—ty,....,1—ty}, 0<b<mn, <2min{uy,...,un};

(2) ZjLi& =1 and Tl o = 1;

(3) 0 < c<an,Bn,vn <1 and ap + Bn+ v =1 for alln € N;

(4) limy—y00 6, =0 and Y ;2 6, = 0.
Then {z,} converges strongly to a point zy € ﬂ;‘ilF(T]) N(NY,VI(C, B;)), where
Z0 = Pm}ilF(Tj)m(mLVI(C,B,.))U'
Proof. Since Tj is a tj-demimetric mapping of C into H such that F(T;) # 0,
T; is %tj—generalized demimetric. Take k; = 1 in Theorem 3.1. Then we get
that e%j = 1 —t; in Theorem 3.1. Put G = dic in Theorem 3.1. Then we have
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from (4.1) that for n, > 0, J,, = Pc. Furthermore, we have (9i¢)™10 = C and
(B; + 0ic)~'0 = VI(C, B;). In fact, we have that, for any z € C,

2 € (B;+ di¢) ™10 <= 0 € Biz + dic=
<— 0€ B;z+ N¢z
<—— —B;z € N¢oz
< (—Bjz,v—2) <0, VveC
< (Biz,v—2) >0, YveC
— 2 e VI(C,B,).

Therefore, we have the desired result from Theorem 3.1. Il
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