Yokohama Publishers
ISSN 2189-3764 ONLINE JOURNAL

A STRONG CONVERGENCE THEOREM BY HALPERN TYPE ITERATION FOR A FINITE FAMILY OF GENERALIZED DEMIMETRIC MAPPINGS IN A HILBERT SPACE

WATARU TAKAHASHI, CHING-FENG WEN, AND JEN-CHIH YAO

Dedicated to Professor Boris Mordukhovich on the occasion of his 70th birthday

Abstract

In this paper, using Halpern type iteration, we prove a strong convergence theorem for finding a common element of the set of common fixed points for a finite family of generalized demimetric mappings and the set of common solutions of generalized variational inequality problems for a finite family of inverse strongly monotone mappings in a Hilbert space. Using this result, we obtain well-known and new strong convergence theorems in a Hilbert space.

1. Introduction

Let E be a smooth Banach space, let C be a nonempty, closed and convex subset of E and let η be a real number with $\eta \in(-\infty, 1)$. A mapping $U: C \rightarrow E$ with $F(U) \neq \emptyset$ is called η-demimetric [28] if

$$
2\langle x-q, J(x-U x)\rangle \geq(1-\eta)\|x-U x\|^{2}
$$

for all $x \in C$ and $q \in F(U)$, where $F(U)$ is the set of fixed points of U and J is the dualty mapping on E. Then we have from [28] that the set $F(U)$ of fixed points of U is closed and convex. Using this property, we proved weak and strong convergence theorems in Hilbert spaces and Banach spaces; see [15, 27, 28, 29, 31]. Very recently, Kawasaki and Takahashi [11] generalized the concept of demimetric mappings as follows: Let θ be a real number with $\theta \neq 0$. Then a mapping $U: C \rightarrow E$ with $F(U) \neq \emptyset$ is called generalized demimetric [11] if

$$
\begin{equation*}
\theta\langle x-q, J(x-U x)\rangle \geq\|x-U x\|^{2} \tag{1.1}
\end{equation*}
$$

for all $x \in C$ and $q \in F(U)$. This mapping U is called θ-generalized demimetric. We can also prove that the set $F(U)$ of fixed points of such a mapping U is closed and convex; see [11].

On the other hand, in 1967, Halpern [8] gave an iteration process as follows: Take $x_{0}, x_{1} \in C$ arbitrarily and define $\left\{x_{n}\right\}$ recursively by

$$
x_{n+1}=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \in \mathbb{N},
$$

[^0]where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$. There are many investigations of Halpern iterative process for finding fixed points of nonexpansive mappings. Takahashi [29] proved a strong convergence theorem of Halpern type iteration for demimetric mappings in a Hilbert space.

In this paper, using Halpern type iteration, we prove a strong convergence theorem for finding a common element of the set of common fixed points for a finite family of generalized demimetric mappings and the set of common solutions of generalized variational inequality problems for a finite family of inverse strongly monotone mappings in a Hilbert space. Using the result, we obtain well-known and new strong convergence theorems in a Hilbert space. In particular, we extend the result of Takahashi [29] to that of generalized demimetric mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, let \mathbb{N} be the set of positive integers and let \mathbb{R} be the set of real numbers. Let E be a real Banach space with norm $\|\cdot\|$ and let E^{*} be the dual space of E. We denote the value of $y^{*} \in E^{*}$ at $x \in E$ by $\left\langle x, y^{*}\right\rangle$. The duality mapping J from E into $2^{E^{*}}$ is defined by

$$
J x=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}
$$

for every $x \in E$. Let $U=\{x \in E:\|x\|=1\}$. The norm of E is said to be Gâteaux differentiable if for each $x, y \in U$, the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.1}
\end{equation*}
$$

exists. In this case, E is called smooth. We know that E is smooth if and only if J is a single-valued mapping of E into E^{*}. We also know that E is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection and in this case, the inverse mapping J^{-1} coincides with the duality mapping J_{*} on E^{*}. For more details, see [23] and [24].

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. When $\left\{x_{n}\right\}$ is a sequence in H, we denote the strong convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and the weak convergence by $x_{n} \rightharpoonup x$. We have from [25] that for any $x, y \in H$ and $\lambda \in \mathbb{R}$,

$$
\begin{gather*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle \tag{2.2}\\
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \tag{2.3}
\end{gather*}
$$

Furthermore, we have that for $x, y, u, v \in H$,

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} \tag{2.4}
\end{equation*}
$$

Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping $T: C \rightarrow H$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. A mapping $T: C \rightarrow H$ with $F(T) \neq \emptyset$ is called quasi-nonexpansive if $\|T x-y\| \leq\|x-y\|$ for all $x \in C$ and $y \in F(T)$. If $T: C \rightarrow H$ is quasi-nonexpansive, then $F(T)$ is closed and convex; see [10]. For a nonempty, closed and convex subset D of H, the nearest
point projection of H onto D is denoted by P_{D}, that is, $\left\|x-P_{D} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in D$. Such a mapping P_{D} is called the metric projection of H onto D. We know that the metric projection P_{D} is firmly nonexpansive, i.e.,

$$
\left\|P_{D} x-P_{D} y\right\|^{2} \leq\left\langle P_{D} x-P_{D} y, x-y\right\rangle
$$

for all $x, y \in H$. Furthermore, $\left\langle x-P_{D} x, y-P_{D} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in D$; see $[23,25]$. Using this inequality and (2.4), we have that

$$
\begin{equation*}
\left\|P_{D} x-y\right\|^{2}+\left\|P_{D} x-x\right\|^{2} \leq\|x-y\|^{2}, \quad \forall x \in H, y \in D \tag{2.5}
\end{equation*}
$$

More information on the metric projection and on firmly nonexpansive mappings can be found in the book by Goebel and Reich [7]. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A mapping $A: C \rightarrow H$ is called inverse strongly monotone if there exists $\alpha>0$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

Such a mapping A is called α-inverse strongly monotone. If $A: C \rightarrow H$ is α-inverse strongly monotone and $0<\lambda \leq 2 \alpha$, then $I-\lambda A: C \rightarrow H$ is nonexpansive. In fact, we have that for all $x, y \in C$,

$$
\begin{align*}
\|(I-\lambda A) x & -(I-\lambda A) y\left\|^{2}=\right\| x-y-\lambda(A x-A y) \|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+\lambda^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda \alpha\|A x-A y\|^{2}+\lambda^{2}\|A x-A y\|^{2} \tag{2.6}\\
& =\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}
\end{align*}
$$

Thus, $I-\lambda A: C \rightarrow H$ is nonexpansive; see $[1,19,25]$ for more results of inverse strongly monotone mappings. The variational inequalty problem for $A: C \rightarrow H$ is to find a point $u \in C$ such that

$$
\begin{equation*}
\langle A u, x-u\rangle \geq 0, \quad \forall x \in C \tag{2.7}
\end{equation*}
$$

The set of solutions of (2.7) is denoted by $V I(C, A)$. We also have that, for $\lambda>0$, $u=P_{C}(I-\lambda A) u$ if and only if $u \in V I(C, A)$. In fact, let $\lambda>0$. Then, for $u \in C$,

$$
\begin{aligned}
u=P_{C}(I-\lambda A) u & \Longleftrightarrow\langle(I-\lambda A) u-u, u-y\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle-\lambda A u, u-y\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle A u, u-y\rangle \leq 0, \quad \forall y \in C \\
& \Longleftrightarrow\langle A u, y-u\rangle \geq 0, \quad \forall y \in C \\
& \Longleftrightarrow u \in V I(C, A) .
\end{aligned}
$$

Let G be a mapping of H into 2^{H}. The effective domain of G is denoted by $D(G)$, that is, $D(G)=\{x \in H: G x \neq \emptyset\}$. A multi-valued mapping G is said to be a monotone operator on H if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in D(G), u \in G x$, and $v \in G y$. A monotone operator G on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator G on H and $r>0$, we may define a single-valued operator $J_{r}=(I+r G)^{-1}: H \rightarrow D(G)$, which is called the resolvent of G for r. We
denote by $A_{r}=\frac{1}{r}\left(I-J_{r}\right)$ the Yosida approximation of G for $r>0$. We know from [24] that

$$
\begin{equation*}
A_{r} x \in G J_{r} x, \quad \forall x \in H, r>0 \tag{2.8}
\end{equation*}
$$

Let G be a maximal monotone operator on H and let

$$
G^{-1} 0=\{x \in H: 0 \in G x\}
$$

Then $G^{-1} 0=F\left(J_{r}\right)$ for all $r>0$ and the resolvent J_{r} is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|J_{r} x-J_{r} y\right\|^{2} \leq\left\langle x-y, J_{r} x-J_{r} y\right\rangle, \quad \forall x, y \in H \tag{2.9}
\end{equation*}
$$

We also know the following lemma from [22].
Lemma 2.1 ([22]). Let H be a Hilbert space and let G be a maximal monotone operator on H. For $r>0$ and $x \in H$, define the resolvent $J_{r} x$. Then the following holds:

$$
\frac{s-t}{s}\left\langle J_{s} x-J_{t} x, J_{s} x-x\right\rangle \geq\left\|J_{s} x-J_{t} x\right\|^{2}
$$

for all $s, t>0$ and $x \in H$.
From Lemma 2.1, we have that

$$
\begin{equation*}
\left\|J_{\lambda} x-J_{\mu} x\right\| \leq(|\lambda-\mu| / \lambda)\left\|x-J_{\lambda} x\right\| \tag{2.10}
\end{equation*}
$$

for all $\lambda, \mu>0$ and $x \in H$; see also $[6,23]$.
Using the ideas of [20, 33], Alsulami and Takahashi [2] proved the following lemma.

Lemma 2.2 ([2]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $G: H \rightarrow 2^{H}$ be a maximal monotone mapping and let $J_{\lambda}=(I+\lambda G)^{-1}$ be the resolvent of G for $\lambda>0$. Let $\kappa>0$ and let $U: C \rightarrow H$ be a κ-inverse strongly monotone mapping. Suppose that $G^{-1} 0 \cap U^{-1} 0 \neq \emptyset$. Let $\lambda, r>0$ and $z \in C$. Then the following are equivalent:
(i) $z=J_{\lambda}(I-r U) z$;
(ii) $0 \in U z+G z$;
(iii) $z \in G^{-1} 0 \cap U^{-1} 0$.

Let E be a smooth Banach space, let C be a nonempty, closed and convex subset of E and let θ be a real number with $\theta \neq 0$. Then a mapping $U: C \rightarrow E$ with $F(U) \neq \emptyset$ is called generalized demimetric [11] if it satisfies (1.1), i.e.,

$$
\theta\langle x-q, J(x-U x)\rangle \geq\|x-U x\|^{2}
$$

for all $x \in C$ and $q \in F(U)$, where J is the duality mapping on E.
Examples We know examples of generalized demimetric mappings.
(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H and let k be a real number with $0 \leq k<1$. A mapping $U: C \rightarrow H$ is called a k-strict pseudo-contraction [5] if

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}+k\|x-U x-(y-U y)\|^{2}
$$

for all $x, y \in C$. If U is a k-strict pseudo-contraction and $F(U) \neq \emptyset$, then U is $\frac{2}{1-k}$-generalized demimetric; see [11].
(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A mapping $U: C \rightarrow H$ is called generalized hybrid [12] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$
\begin{equation*}
\alpha\|U x-U y\|^{2}+(1-\alpha)\|x-U y\|^{2} \leq \beta\|U x-y\|^{2}+(1-\beta)\|x-y\|^{2} \tag{2.11}
\end{equation*}
$$

for all $x, y \in C$. Such a mapping U is called (α, β)-generalized hybrid. If U is generalized hybrid and $F(U) \neq \emptyset$, then U is 2-generalized demimetric; see [11]. In fact, setting $x=u \in F(U)$ and $y=x \in C$ in (2.11), we have that

$$
\alpha\|u-U x\|^{2}+(1-\alpha)\|u-U x\|^{2} \leq \beta\|u-x\|^{2}+(1-\beta)\|u-x\|^{2}
$$

and hence

$$
\|U x-u\|^{2} \leq\|x-u\|^{2}
$$

From $\|U x-u\|^{2}=\|U x-x\|^{2}+\|x-u\|^{2}+2\langle U x-x, x-u\rangle$, we have that

$$
2\langle x-u, x-U x\rangle \geq\|x-U x\|^{2}
$$

for all $x \in C$ and $u \in F(U)$. This means that U is 2-generalized demimetric.
Notice that the class of generalized hybrid mappings covers several well-known mappings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading $[13,14]$ for $\alpha=2$ and $\beta=1$, i.e.,

$$
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C
$$

It is also hybrid [26] for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$, i.e.,

$$
3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C
$$

In general, nonspreading and hybrid mappings are not continuous; see [9].
(3) Let E be a mooth, strictly convex and reflexive Banach space and let C be a nonempty, closed and convex subset of E. Let P_{C} be the metric projection of E onto C. Then P_{C} is 1-generalized demimetric; see [11].
(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone operator with $B^{-1} 0 \neq \emptyset$. Then the metric resolvent J_{λ} for $\lambda>0$ is 1 -generalized demimetric; see [11].
(5) Let H be a Hilbert space, let C be a nonempty subset of H and let T be a mapping from C into H. Suppose that T is Lipschitzian, that is, there exists $L>0$ such that

$$
\|T x-T y\| \leq L\|x-y\|
$$

for all $x, y \in C$. Let $S=(L+1) I-T$. Then S is $(-2 L)$-generalized demimetric; see $[11,30]$.
(6) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H and let $\alpha>0$. If B be an α-inverse strongly monotone mapping from C into H with $B^{-1} 0 \neq \emptyset$, then $T=I+B$ is $\left(-\frac{1}{\alpha}\right)$-generalized demimetric; see $[11,30]$.

The following lemmas are important and crucial in the proof of our main result.

Lemma 2.3 ([11]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty, closed and convex subset of E. If a mapping $U: C \rightarrow E$ is θ-generalized demimetric and $\theta>0$, then U is $\left(1-\frac{2}{\theta}\right)$-demimetric.
Lemma 2.4 ([11]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty, closed and convex subset of E. Let θ be a real number with $\theta \neq 0$. Let T be a θ-generalized demimetric mapping of C into E. Then $F(T)$ is closed and convex.

Lemma 2.5 ([11]). Let E be a smooth Banach space, let C be a nonempty subset of E and let θ be a real number with $\theta \neq 0$. Let T be a θ-generalized demimetric mapping from C into E and let $k \in \mathbb{R}$ with $k \neq 0$. Then $(1-k) I+k T$ is θk generalized demimetric from C into E.

We also know the following lemma from [31]:
Lemma 2.6 ([31]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $k \in(-\infty, 1)$ and let T be a k-demimetric mapping of C into H such that $F(T)$ is nonempty. Let λ be a real number with $0<\lambda \leq 1-k$ and define $S=(1-\lambda) I+\lambda T$. Then S is a quasi-nonexpansive mapping of C into H.

We also know the following lemmas from Aoyama, Kimura, Takahashi and Toyoda [3], Xu [35] and Maingé [16].
Lemma 2.7 ([3], [35]). Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers, let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, let $\left\{\beta_{n}\right\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_{n}<\infty$, and let $\left\{\gamma_{n}\right\}$ be a sequence of real numbers with $\limsup { }_{n \rightarrow \infty} \gamma_{n} \leq 0$. Suppose that

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} \gamma_{n}+\beta_{n}
$$

for all $n=1,2, \ldots$ Then $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 2.8 ([16]). Let $\left\{\Gamma_{n}\right\}$ be a sequence of real numbers that does not decrease at infinity in the sense that there exists a subsequence $\left\{\Gamma_{n_{i}}\right\}$ of $\left\{\Gamma_{n}\right\}$ which satisfies $\Gamma_{n_{i}}<\Gamma_{n_{i}+1}$ for all $i \in \mathbb{N}$. Define the sequence $\{\tau(n)\}_{n \geq n_{0}}$ of integers as follows:

$$
\tau(n)=\max \left\{k \leq n: \Gamma_{k}<\Gamma_{k+1}\right\}
$$

where $n_{0} \in \mathbb{N}$ satisfies $\left\{k \leq n_{0}: \Gamma_{k}<\Gamma_{k+1}\right\} \neq \emptyset$. Then, the following hold:
(i) $\tau\left(n_{0}\right) \leq \tau\left(n_{0}+1\right) \leq \cdots$ and $\tau(n) \rightarrow \infty$;
(ii) $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$ and $\Gamma_{n} \leq \Gamma_{\tau(n)+1}, \forall n \geq n_{0}$.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem of Halpern type iteration for finding a common element of the set of common fixed points for a finite family of generalized demimetric mappings and the set of common solutions of generalized variational inequality problems for a finite family of inverse strongly monotone mappings in a Hilbert space. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A mapping $U: C \rightarrow H$ is called demiclosed if, for a sequence $\left\{x_{n}\right\}$ in C such that $x_{n} \rightharpoonup w$ and $x_{n}-U x_{n} \rightarrow 0, w=U w$ holds. For example, if C is a nonempty, closed and convex subset of H and T is a nonexpansive mapping of C of H, then T is demiclosed; see [4] and [25, p. 114].

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of $H . \operatorname{Let}\left\{\theta_{1}, \ldots, \theta_{M}\right\} \subset \mathbb{R}$ and $\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset(0, \infty)$. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of θ_{j}-generalized demimetric and demiclosed mappings of C into H and let $\left\{k_{j}\right\}_{j=1}^{M}$ be a finite family of real numbers with $\theta_{j} k_{j}>0$. Let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H. Let G be a maximal monotone operator on H and let $J_{\lambda}=(I+\lambda G)^{-1}$ be the resolvent of G for $\lambda>0$. Assume that

$$
\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right) \neq \emptyset
$$

Let $\left\{u_{n}\right\}$ be a sequence in C such that $u_{n} \rightarrow u$. For $x_{1}=x \in C$, let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
w_{n}=\sum_{i=1}^{N} \sigma_{i} J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n} \\
x_{n+1}=\delta_{n} u_{n}+\left(1-\delta_{n}\right)\left(P_{C}\left(\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}\right)\right), \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $a, b, c \in \mathbb{R},\left\{\lambda_{n}\right\} \subset \mathbb{R},\left\{\eta_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) for any $n \in \mathbb{N}$ and $j \in\{1, \ldots, M\}$,
$0<a \leq \frac{\lambda_{n}}{k_{j}} \leq 2 \min \left\{\frac{1}{\theta_{1} k_{1}}, \ldots, \frac{1}{\theta_{M} k_{M}}\right\}, 0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\} ;$
(2) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$;
(4) $\lim _{n \rightarrow \infty} \delta_{n}=0$ and $\sum_{i=1}^{\infty} \delta_{n}=\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)$, where $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)} u$.

Proof. Since B_{i} is μ_{i}-inverse strongly monotone and $0<b \leq \eta_{n} \leq 2 \mu_{i}$ for all $i \in\{1, \ldots, N\}$, we have that $J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)$ is nonexpansive from (2.6) and (2.9) and hence $F\left(J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)\right)$ is closed and convex. Since

$$
F\left(J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)\right)=\left(B_{i}+G\right)^{-1} 0
$$

from Lemma 2.2, we have that $\left(B_{i}+G\right)^{-1} 0$ is closed and convex. Furthermore, we know from Lemma 2.4 that $F\left(T_{j}\right)$ is closed and convex. Therefore, we have that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)$ is nonempty, closed and convex. Thus, we obtain that $P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)}$ is well defined.

We know from Lemma 2.5 that $\left(1-k_{j}\right) I+k_{j} T_{j}$ is $\theta_{j} k_{j}$-generalized demimetric. From Lemma 2.3 and $\theta_{j} k_{j}>0$, we have that $\left(1-k_{j}\right) I+k_{j} T_{j}$ is $\left(1-\frac{2}{\theta_{j} k_{j}}\right)$ demimetric in the sense of Takahashi [28]. Since

$$
0<\frac{\lambda_{n}}{k_{j}} \leq \frac{2}{\theta_{j} k_{j}}=1-\left(1-\frac{2}{\theta_{j} k_{j}}\right)
$$

and

$$
\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}=\left(1-\frac{\lambda_{n}}{k_{j}}\right) I+\frac{\lambda_{n}}{k_{j}}\left(\left(1-k_{j}\right) I+k_{j} T_{j}\right)
$$

we have from Lemma 2.6 that $\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}$ is quasi-nonexpansive. Thus, we have that for $z \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)$,

$$
\begin{align*}
\left\|z_{n}-z\right\| & =\left\|\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}-z\right\| \\
& \leq \sum_{j=1}^{M} \xi_{j}\left\|\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}-z\right\| \tag{3.1}\\
& \leq \sum_{j=1}^{M} \xi_{j}\left\|x_{n}-z\right\|=\left\|x_{n}-z\right\|
\end{align*}
$$

Furthermore, since $J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)$ is nonexpansive, we have that

$$
\begin{align*}
\left\|w_{n}-z\right\| & =\left\|\sum_{i=1}^{N} \sigma_{i} J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}-z\right\| \\
& \leq \sum_{i=1}^{N} \sigma_{i}\left\|J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}-z\right\| \tag{3.2}\\
& \leq \sum_{i=1}^{N} \sigma_{i}\left\|x_{n}-z\right\|=\left\|x_{n}-z\right\|
\end{align*}
$$

Put $y_{n}=P_{C}\left(\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}\right)$. Then we have that

$$
\begin{align*}
\left\|y_{n}-z\right\| & \leq\left\|\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}-z\right\| \\
& \leq \alpha_{n}\left\|x_{n}-z\right\|+\beta_{n}\left\|z_{n}-z\right\|+\gamma_{n}\left\|w_{n}-z\right\| \tag{3.3}\\
& \leq \alpha_{n}\left\|x_{n}-z\right\|+\beta_{n}\left\|x_{n}-z\right\|+\gamma_{n}\left\|x_{n}-z\right\| \\
& =\left\|x_{n}-z\right\| .
\end{align*}
$$

Using this, we get that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\delta_{n}\left(u_{n}-z\right)+\left(1-\delta_{n}\right)\left(y_{n}-z\right)\right\| \\
& \leq \delta_{n}\left\|u_{n}-z\right\|+\left(1-\delta_{n}\right)\left\|y_{n}-z\right\| \\
& \leq \delta_{n}\left\|u_{n}-z\right\|+\left(1-\delta_{n}\right)\left\|x_{n}-z\right\|
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded, there exists $M>0$ such that $\sup _{n \in \mathbb{N}}\left\|u_{n}-z\right\| \leq M$. Putting $K=\max \left\{\left\|x_{1}-z\right\|, M\right\}$, we have that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. In fact, it is obvious that $\left\|x_{1}-z\right\| \leq K$. Suppose that $\left\|x_{k}-z\right\| \leq K$ for some $k \in \mathbb{N}$. Then we have that

$$
\begin{aligned}
\left\|x_{k+1}-z\right\| & \leq \delta_{k}\left\|u_{k}-z\right\|+\left(1-\delta_{k}\right)\left\|x_{k}-z\right\| \\
& \leq \delta_{k} K+\left(1-\delta_{k}\right) K=K
\end{aligned}
$$

By induction, we obtain that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ is bounded. Take $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)} u$. Using [18], we have that

$$
\begin{aligned}
& \left\|y_{n}-z_{0}\right\|^{2} \leq\left\|\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}-z_{0}\right\|^{2} \\
& =\alpha_{n}\left\|x_{n}-z_{0}\right\|^{2}+\beta_{n}\left\|z_{n}-z_{0}\right\|^{2}+\gamma_{n}\left\|w_{n}-z_{0}\right\|^{2} \\
& -\alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}-\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}-\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-z_{0}\right\|^{2}+\beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\gamma_{n}\left\|x_{n}-z_{0}\right\|^{2} \\
& -\alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}-\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}-\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2} \\
& =\left\|x_{n}-z_{0}\right\|-\alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}-\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}-\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left\|x_{n+1}-z_{0}\right\|^{2}= & \left\|\delta_{n}\left(u_{n}-z_{0}\right)+\left(1-\delta_{n}\right)\left(y_{n}-z_{0}\right)\right\|^{2} \\
\leq & \delta_{n}\left\|u_{n}-z_{0}\right\|^{2}+\left(1-\delta_{n}\right)\left\|y_{n}-z_{0}\right\|^{2} \\
\leq & \delta_{n}\left\|u_{n}-z_{0}\right\|^{2}+\left\|y_{n}-z_{0}\right\|^{2} \\
\leq & \delta_{n}\left\|u_{n}-z_{0}\right\|^{2}+\left\|x_{n}-z_{0}\right\|^{2} \\
& \quad-\alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}-\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}-\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2} .
\end{aligned}
$$

Using $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$, we have that

$$
\begin{align*}
& c^{2}\left\|x_{n}-z_{n}\right\|^{2}+c^{2}\left\|w_{n}-x_{n}\right\|^{2}+c^{2}\left\|z_{n}-w_{n}\right\|^{2} \\
& \quad \leq \alpha_{n} \beta_{n}\left\|z_{n}-x_{n}\right\|^{2}+\alpha_{n} \gamma_{n}\left\|w_{n}-x_{n}\right\|^{2}+\gamma_{n} \beta_{n}\left\|z_{n}-w_{n}\right\|^{2} \tag{3.4}\\
& \quad \leq \delta_{n}\left\|u_{n}-z_{0}\right\|^{2}+\left\|x_{n}-z_{0}\right\|^{2}-\left\|x_{n+1}-z_{0}\right\|^{2} .
\end{align*}
$$

We also have that

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| & =\left\|\delta_{n} u_{n}+\left(1-\delta_{n}\right) y_{n}-x_{n}\right\| \\
& \leq \delta_{n}\left\|u_{n}-x_{n}\right\|+\left(1-\delta_{n}\right)\left\|y_{n}-x_{n}\right\| \\
& \leq \delta_{n}\left\|u_{n}-x_{n}\right\|+\left\|y_{n}-x_{n}\right\| \\
& \leq \delta_{n}\left\|u_{n}-x_{n}\right\|+\left\|\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}-x_{n}\right\| \tag{3.5}\\
& \leq \delta_{n}\left\|u_{n}-x_{n}\right\|+\left\|\beta_{n}\left(z_{n}-x_{n}\right)\right\|+\left\|\gamma_{n}\left(w_{n}-x_{n}\right)\right\| \\
& \leq \delta_{n}\left\|u_{n}-x_{n}\right\|+\left\|z_{n}-x_{n}\right\|+\left\|w_{n}-x_{n}\right\| .
\end{align*}
$$

We will divide the proof into two cases.
Case 1: Put $\Gamma_{n}=\left\|x_{n}-z_{0}\right\|^{2}$ for all $n \in \mathbb{N}$. Suppose that there exists a natural number N such that $\Gamma_{n+1} \leq \Gamma_{n}$ for all $n \geq N$. In this case, $\lim _{n \rightarrow \infty} \Gamma_{n}$ exists and then $\lim _{n \rightarrow \infty}\left(\Gamma_{n+1}-\Gamma_{n}\right)=0$. Using $\delta_{n} \rightarrow 0$, we have from (3.4) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|z_{n}-w_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

From (3.5), we also have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

For $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)} u$, we show that

$$
\limsup _{n \rightarrow \infty}\left\langle u-z_{0}, x_{n}-z_{0}\right\rangle \leq 0
$$

Put $s=\lim \sup _{n \rightarrow \infty}\left\langle u-z_{0}, x_{n}-z_{0}\right\rangle$. Without loss of generality, there exists a subsequence $\left\{x_{l}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
s=\lim _{l \rightarrow \infty}\left\langle u-z_{0}, x_{l}-z_{0}\right\rangle
$$

and $\left\{x_{l}\right\}$ converges weakly to some point w. On the other hand, since T_{j} is $\theta_{j^{-}}$ generalized demimetric and hence $\left(1-k_{j}\right) I+k_{j} T_{j}$ is $\theta_{j} k_{j}$-generalized demimetric for all $j \in\{1, \ldots, M\}$, we have from $\theta_{j} k_{j}>0$ that, for $z \in \cap_{j=1}^{M} F\left(T_{j}\right)$,

$$
\begin{aligned}
& \left\langle x_{n}-z, x_{n}-z_{n}\right\rangle=\left\langle x_{n}-z, x_{n}-\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}\right\rangle \\
& =\sum_{j=1}^{M} \xi_{j}\left\langle x_{n}-z, x_{n}-\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}\right\rangle \\
& =\sum_{j=1}^{M} \xi_{j}\left\langle x_{n}-z, x_{n}-\left(\left(1-\frac{\lambda_{n}}{k_{j}}\right) I+\frac{\lambda_{n}}{k_{j}}\left(\left(1-k_{j}\right) I+k_{j} T_{j}\right)\right) x_{n}\right\rangle \\
& =\sum_{j=1}^{M} \xi_{j}\left\langle x_{n}-z, \frac{\lambda_{n}}{k_{j}} x_{n}-\frac{\lambda_{n}}{k_{j}}\left(\left(1-k_{j}\right) I+k_{j} T_{j}\right) x_{n}\right\rangle \\
& =\sum_{j=1}^{M} \xi_{j} \frac{\lambda_{n}}{k_{j}}\left\langle x_{n}-z, x_{n}-\left(\left(1-k_{j}\right) I+k_{j} T_{j}\right) x_{n}\right\rangle \\
& \left.\quad \geq \sum_{j=1}^{M} \xi_{j} \frac{\lambda_{n}}{k_{j}} \frac{1}{\theta_{j} k_{j}} \| x_{n}-\left(\left(1-k_{j}\right) I+k_{j} T_{j}\right)\right) x_{n} \|^{2} \\
& =\sum_{j=1}^{M} \xi_{j} \frac{\lambda_{n}}{k_{j}} \frac{1}{\theta_{j} k_{j}} k_{j}^{2}\left\|x_{n}-T_{j} x_{n}\right\|^{2} \\
& = \\
& =\sum_{j=1}^{M} \xi_{j} \frac{\lambda_{n}}{\theta_{j}}\left\|x_{n}-T_{j} x_{n}\right\|^{2} .
\end{aligned}
$$

We have from $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$ and $\frac{\xi_{j} \lambda_{n}}{\theta_{j}}>0$ that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j} x_{n}\right\|=0, \quad \forall j \in\{1, \ldots, M\} .
$$

Since T_{j} is demiclosed for all $j \in\{1, \ldots, M\}$, we have $w \in \cap_{j=1}^{M} F\left(T_{j}\right)$.

Let us show that $w \in \cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0$. Since $J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right)$ is nonexpansive for all $i \in\{1, \ldots, N\}$, we have from (2.4) that, for $z \in \cap_{1=1}^{N}\left(B_{i}+G\right)^{-1} 0$,

$$
\begin{aligned}
& 2\left\langle x_{n}-z, x_{n}-w_{n}\right\rangle=2\left\langle x_{n}-z, x_{n}-\sum_{i=1}^{N} \sigma_{i} J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}\right\rangle \\
&= \sum_{i=1}^{N} 2 \sigma_{i}\left\langle x_{n}-z, x_{n}-J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}\right\rangle \\
&= \sum_{i=1}^{N} \sigma_{i}\left(\left\|x_{n}-J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}\right\|^{2}\right. \\
&\left.\quad+\left\|x_{n}-z\right\|^{2}-\left\|J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}-z\right\|^{2}\right) \\
& \geq \sum_{i=1}^{N} \sigma_{i}\left\|x_{n}-J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}\right\|^{2} .
\end{aligned}
$$

We have from $\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0$ that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n}\right\|=0, \quad \forall i \in\{1, \ldots, N\}
$$

Consider a subsequence $\left\{\eta_{l}\right\}$ of $\left\{\eta_{n}\right\}$ corresponding to the sequence $\left\{x_{l}\right\}$. Since the subsequence $\left\{\eta_{l}\right\}$ of $\left\{\eta_{n}\right\}$ is bounded, there exists a subsequence $\left\{\eta_{h}\right\}$ of $\left\{\eta_{l}\right\}$ such that $\lim _{h \rightarrow \infty} \eta_{h}=\eta$ and $0<b \leq \eta \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}$. For such η, we have from (2.10) that for any $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
\left\|x_{h}-J_{\eta}\left(I-\eta B_{i}\right) x_{h}\right\| \leq & \left\|x_{h}-J_{\eta_{h}}\left(I-\eta_{h} B_{i}\right) x_{h}\right\| \\
& +\left\|J_{\eta_{h}}\left(I-\eta_{h} B_{i}\right) x_{h}-J_{\eta_{h}}\left(I-\eta B_{i}\right) x_{h}\right\| \\
& +\left\|J_{\eta_{h}}\left(I-\eta B_{i}\right) x_{h}-J_{\eta}\left(I-\eta B_{i}\right) x_{h}\right\| \\
\leq & \left\|x_{h}-J_{\eta_{h}}\left(I-\eta_{h} B_{i}\right) x_{h}\right\| \\
& +\left\|\left(I-\eta_{h} B_{i}\right) x_{h}-\left(I-\eta B_{i}\right) x_{h}\right\| \\
& \quad+\left\|J_{\eta_{h}}\left(I-\eta B_{i}\right) x_{h}-J_{\eta}\left(I-\eta B_{i}\right) x_{h}\right\| \\
\leq \| & \left\|x_{h}-J_{\eta_{h}}\left(I-\eta_{h} B_{i}\right) x_{h}\right\|+\mid \eta_{h}-\eta\left\|B_{i} x_{h}\right\| \\
& \quad+\frac{\left|\eta_{h}-\eta\right|}{\eta}\left\|J_{\eta}\left(I-\eta B_{i}\right) x_{h}-\left(I-\eta B_{i}\right) x_{h}\right\| .
\end{aligned}
$$

On the other hand, we have that for $y \in C$ and $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
b\left\|B_{i} x_{n}\right\| & \leq \eta_{n}\left\|B_{i} x_{n}\right\|=\left\|\eta_{n} B_{i} x_{n}\right\| \\
& =\left\|x_{n}-\left(y-\eta_{n} B_{i} y\right)+y-\eta_{n} B_{i} y-\left(x_{n}-\eta_{n} B_{i} x_{n}\right)\right\| \\
& \leq\left\|x_{n}-y\right\|+\eta_{n}\left\|B_{i} y\right\|+\left\|\left(I-\eta_{n} B_{i}\right) y-\left(I-\eta_{n} B_{i}\right) x_{n}\right\| \\
& \leq\left\|x_{n}-y\right\|+\max \left\{\mu_{1}, \ldots, \mu_{N}\right\}\left\|B_{i} y\right\|+\left\|y-x_{n}\right\| .
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ is bounded, we have that $\left\{B_{i} x_{n}\right\}$ is bounded for all $i \in\{1, \ldots, N\}$. Thus we have that

$$
\lim _{h \rightarrow \infty}\left\|x_{h}-J_{\eta}\left(I-\eta B_{i}\right) x_{h}\right\|=0, \quad \forall i \in\{1, \ldots, N\}
$$

Since $\left\{x_{h}\right\}$ converges weakly to w and $J_{\eta}\left(I-\eta B_{i}\right)$ is demiclosed for all $i \in\{1, \ldots, N\}$, we have $w \in F\left(J_{\eta}\left(I-\eta B_{i}\right)\right)$. From Lemma 2.2, we have $w \in \cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0$. Therefore, we have

$$
w \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)
$$

Since $\left\{x_{l}\right\}$ converges weakly to $w \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)$, we have that

$$
s=\lim _{l \rightarrow \infty}\left\langle u-z_{0}, x_{l}-z_{0}\right\rangle=\left\langle u-z_{0}, w-z_{0}\right\rangle \leq 0
$$

Since $x_{n+1}-z_{0}=\delta_{n}\left(u_{n}-z_{0}\right)+\left(1-\delta_{n}\right)\left(y_{n}-z_{0}\right)$, we have from (2.2) that

$$
\begin{aligned}
\left\|x_{n+1}-z_{0}\right\|^{2} & \leq\left(1-\delta_{n}\right)^{2}\left\|y_{n}-z_{0}\right\|^{2}+2 \delta_{n}\left\langle u_{n}-z_{0}, x_{n+1}-z_{0}\right\rangle \\
\leq & \left(1-\delta_{n}\right)\left\|x_{n}-z_{0}\right\|^{2}+2 \delta_{n}\left\langle u_{n}-u, x_{n+1}-z_{0}\right\rangle \\
& \quad+2 \delta_{n}\left\langle u-z_{0}, x_{n+1}-z_{0}\right\rangle \\
= & \left(1-\delta_{n}\right)\left\|x_{n}-z_{0}\right\|^{2}+2 \delta_{n}\left\langle u_{n}-u, x_{n+1}-z_{0}\right\rangle \\
\quad & +2 \delta_{n}\left\langle u-z_{0}, x_{n+1}-x_{n}\right\rangle+2 \delta_{n}\left\langle u-z_{0}, x_{n}-z_{0}\right\rangle .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} \delta_{n}=\infty$, we obtain from Lemma 2.7 that $x_{n} \rightarrow z_{0}$.
Case 2: Suppose that there exists a subsequence $\left\{\Gamma_{n_{i}}\right\}$ of the sequence $\left\{\Gamma_{n}\right\}$ such that $\Gamma_{n_{i}}<\Gamma_{n_{i}+1}$ for all $i \in \mathbb{N}$. In this case, we define $\tau: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\tau(n)=\max \left\{k \leq n: \Gamma_{k}<\Gamma_{k+1}\right\} .
$$

Then we have from Lemma 2.8 that $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$. Thus we have from (3.4) that for all $n \in \mathbb{N}$,

$$
\begin{align*}
c^{2} \| x_{\tau(n)}- & z_{\tau(n)}\left\|^{2}+c^{2}\right\| w_{\tau(n)}-x_{\tau(n)}\left\|^{2}+c^{2}\right\| z_{\tau(n)}-w_{\tau(n)} \|^{2} \\
& \leq \delta_{\tau(n)}\left\|u_{\tau(n)}-z_{0}\right\|^{2}+\left\|x_{\tau(n)}-z_{0}\right\|^{2}-\left\|x_{\tau(n)+1}-z_{0}\right\|^{2} \tag{3.8}\\
& \leq \delta_{\tau(n)}\left\|u_{\tau(n)}-z_{0}\right\|^{2} .
\end{align*}
$$

Using $\alpha_{\tau(n)} \rightarrow 0$, we have from (3.8) that

$$
\lim _{n \rightarrow \infty}\left\|z_{\tau(n)}-x_{\tau(n)}\right\|=0, \lim _{n \rightarrow \infty}\left\|w_{\tau(n)}-x_{\tau(n)}\right\|=0, \lim _{n \rightarrow \infty}\left\|z_{\tau(n)}-w_{\tau(n)}\right\|=0
$$

As in the proof of Case 1, we have from $\lim _{n \rightarrow \infty}\left\|z_{\tau(n)}-x_{\tau(n)}\right\|=0$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{\tau(n)}-T_{j} x_{\tau(n)}\right\|=0, \quad \forall j \in\{1, \ldots, M\} \tag{3.9}
\end{equation*}
$$

As in the proof of Case 1, we also have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{\tau(n)+1}-x_{\tau(n)}\right\|=0 \tag{3.10}
\end{equation*}
$$

For $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)} u$, let us show that

$$
\limsup _{n \rightarrow \infty}\left\langle z_{0}-u, x_{\tau(n)}-z_{0}\right\rangle \geq 0
$$

Put $s=\limsup \sin _{n \rightarrow \infty}\left\langle z_{0}-u, x_{\tau(n)}-z_{0}\right\rangle$. Without loss of generality, there exists a subsequence $\left\{x_{\tau(l)}\right\}$ of $\left\{x_{\tau(n)}\right\}$ such that $s=\lim _{l \rightarrow \infty}\left\langle z_{0}-u, x_{\tau(l)}-z_{0}\right\rangle$ and $\left\{x_{\tau(l)}\right\}$ converges weakly to some point $w \in C$. Since T_{j} is demiclosed for all $j \in\{1, \ldots, M\}$,
we have from (3.9) that $w \in \cap_{j=1}^{M} F\left(T_{j}\right)$. Let us show that $w \in \cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0$. As in the proof of Case 1, we have from $\lim _{n \rightarrow \infty}\left\|w_{\tau(n)}-x_{\tau(n)}\right\|=0$ that

$$
\lim _{n \rightarrow \infty}\left\|x_{\tau(n)}-J_{\eta_{\tau(n)}}\left(I-\eta_{\tau(n)} B_{i}\right) x_{\tau(n)}\right\|=0, \quad \forall i \in\{1, \ldots, N\}
$$

Consider a subsequence $\left\{\eta_{\tau(l)}\right\}$ of $\left\{\eta_{\tau(n)}\right\}$ corresponding to the sequence $\left\{x_{\tau(l)}\right\}$. Since the subsequence $\left\{\eta_{\tau(l)}\right\}$ of $\left\{\eta_{\tau(n)}\right\}$ is bounded, we have that there exists a subsequence $\left\{\eta_{\tau(h)}\right\}$ of $\left\{\eta_{\tau(l)}\right\}$ such that $\lim _{h \rightarrow \infty} \eta_{\tau(h)}=\eta$ and $0<b \leq \eta \leq$ $2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}$. As in the proof of Case 1 , we have that for any $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
\| x_{\tau(h)}-J_{\eta}\left(I-\eta B_{i}\right) x_{\tau(h)} & \| \\
\leq \| & x_{\tau(h)}-J_{\eta_{\tau(h)}}\left(I-\eta_{\tau(h)} B_{i}\right) x_{\tau(h)} \| \\
& \quad+\left\|J_{\eta_{\tau(h)}}\left(I-\eta_{\tau(h)} B_{i}\right) x_{\tau(h)}-J_{\eta_{\tau(h)}}\left(I-\eta B_{i}\right) x_{\tau(h)}\right\| \\
& \quad+\left\|J_{\eta_{\tau(h)}}\left(I-\eta B_{i}\right) x_{\tau(h)}-J_{\eta}\left(I-\eta B_{i}\right) x_{\tau(h)}\right\| \\
\leq \| & x_{\tau(h)}-J_{\eta_{\tau(h)}}\left(I-\eta_{\tau(h)} B_{i}\right) x_{\tau(h)} \| \\
& \quad+\left\|\left(I-\eta_{\tau(h)} B_{i}\right) x_{\tau(h)}-\left(I-\eta B_{i}\right) x_{\tau(h)}\right\| \\
& \quad+\left\|J_{\eta_{\tau(h)}}\left(I-\eta B_{i}\right) x_{\tau(h)}-J_{\eta}\left(I-\eta B_{i}\right) x_{\tau(h)}\right\| \\
\leq \| & x_{\tau(h)}-J_{\eta_{\tau(h)}}\left(I-\eta_{\tau(h)} B_{i}\right) x_{\tau(h)}\left\|+\left|\eta_{\tau(h)}-\eta\right|\right\| B_{i} x_{\tau(h)} \| \\
& \quad+\frac{\left|\eta_{\tau(h)}-\eta\right|}{\eta}\left\|J_{\eta}\left(I-\eta B_{i}\right) x_{\tau(h)}-\left(I-\eta B_{i}\right) x_{\tau(h)}\right\| .
\end{aligned}
$$

Thus we have that

$$
\lim _{h \rightarrow \infty}\left\|x_{\tau(h)}-J_{\eta}\left(I-\eta B_{i}\right) x_{\tau(h)}\right\|=0, \quad \forall i \in\{1, \ldots, N\}
$$

Since $\left\{x_{\tau(h)}\right\}$ converges weakly to w and $J_{\eta}\left(I-\eta B_{i}\right)$ are demiclosed, we have $w \in$ $\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0$. Therefore, we have

$$
w \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right) .
$$

Then we have

$$
s=\lim _{l \rightarrow \infty}\left\langle z_{0}-u, x_{\tau(l)}-z_{0}\right\rangle=\left\langle z_{0}-u, w-z_{0}\right\rangle \geq 0
$$

As in the proof of Case 1, we also have that

$$
\begin{aligned}
\left\|x_{\tau(n)+1}-z_{0}\right\|^{2} \leq & \left(1-\delta_{\tau(n)}\right)\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2 \delta_{\tau(n)}\left\langle u_{\tau(n)}-u, x_{\tau(n)+1}-z_{0}\right\rangle \\
& +2 \delta_{\tau(n)}\left\langle u-z_{0}, x_{\tau(n)+1}-x_{\tau(n)}\right\rangle+2 \delta_{\tau(n)}\left\langle u-z_{0}, x_{\tau(n)}-z_{0}\right\rangle
\end{aligned}
$$

From $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$, we have that

$$
\begin{aligned}
\delta_{\tau(n)} \| x_{\tau(n)}- & z_{0} \|^{2} \leq 2 \delta_{\tau(n)}\left\langle u_{\tau(n)}-u, x_{\tau(n)+1}-z_{0}\right\rangle \\
& +2 \delta_{\tau(n)}\left\langle u-z_{0}, x_{\tau(n)+1}-x_{\tau(n)}\right\rangle+2 \delta_{\tau(n)}\left\langle u-z_{0}, x_{\tau(n)}-z_{0}\right\rangle .
\end{aligned}
$$

Since $\delta_{\tau(n)}>0$, we have that

$$
\begin{aligned}
\left\|x_{\tau(n)}-z_{0}\right\|^{2} \leq & 2\left\langle u_{\tau(n)}-u, x_{\tau(n)+1}-z_{0}\right\rangle \\
& +2\left\langle u-z_{0}, x_{\tau(n)+1}-x_{\tau(n)}\right\rangle+2\left\langle u-z_{0}, x_{\tau(n)}-z_{0}\right\rangle
\end{aligned}
$$

Thus we have that

$$
\limsup _{n \rightarrow \infty}\left\|x_{\tau(n)}-z_{0}\right\|^{2} \leq 0
$$

and hence $\left\|x_{\tau(n)}-z_{0}\right\| \rightarrow 0$. From (3.10), we have also that $x_{\tau(n)}-x_{\tau(n)+1} \rightarrow 0$. Thus $\left\|x_{\tau(n)+1}-z_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Using Lemma 2.8 again, we obtain that

$$
\left\|x_{n}-z_{0}\right\| \leq\left\|x_{\tau(n)+1}-z_{0}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. This completes the proof.

4. Applications

In this section, we apply Theorem 3.1 to obtain well-known and new strong convergence theorems in Hilbert spaces. Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex function of H into $(-\infty, \infty]$. The subdifferential ∂f of f is defined as follows:

$$
\partial f(x)=\{z \in H: f(x)+\langle z, y-x\rangle \leq f(y), \forall y \in H\}
$$

for all $x \in H$. From Rockafellar [21], we know that ∂f is a maximal monotone operator. Let C be a nonempty, closed and convex subset of H and let i_{C} be the indicator function of C, i.e.,

$$
i_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

Then $i_{C}: H \rightarrow(-\infty, \infty]$ is a proper, lower semicontinuous and convex function on H and then the subdifferential ∂i_{C} of i_{C} is a maximal monotone operator. Thus we can define the resolvent J_{λ} of ∂i_{C} for $\lambda>0$, i.e.,

$$
J_{\lambda} x=\left(I+\lambda \partial i_{C}\right)^{-1} x
$$

for all $x \in H$. We have that, for any $x \in H$ and $u \in C$,

$$
\begin{align*}
u= & J_{\lambda} x \\
& \Longleftrightarrow x-u+\lambda \partial i_{C} u \Longleftrightarrow x \in u+\lambda N_{C} u \\
& \Longleftrightarrow \frac{1}{\lambda}\langle x-u, v-u\rangle \leq 0, \forall v \in C \tag{4.1}\\
& \Longleftrightarrow\langle x-u, v-u\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow u=P_{C} x,
\end{align*}
$$

where $N_{C} u$ is the normal cone to C at u, i.e.,

$$
N_{C} u=\{z \in H:\langle z, v-u\rangle \leq 0, \forall v \in C\} .
$$

We know the following lemmas obtained by Marino and Xu [17] and Kocourek, Takahashi and Yao [12]; see also [32, 34].

Lemma 4.1 ([17, 32]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let k be a real number with $0 \leq k<1$ and let $U: C \rightarrow H$ be a k-strict pseudo-contraction. If $x_{n} \rightharpoonup z$ and $x_{n}-U x_{n} \rightarrow 0$, then $z \in F(U)$.

Lemma 4.2 ([12, 34]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H and let $U: C \rightarrow H$ be generalized hybrid. If $x_{n} \rightharpoonup z$ and $x_{n}-U x_{n} \rightarrow 0$, then $z \in F(U)$.

We first prove a strong convergence theorem for a finite family of strict pseudocontractions and a finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of $H . \operatorname{Let}\left\{s_{1}, \ldots, s_{M}\right\} \subset[0,1)$ and $\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset(0, \infty)$. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of s_{j}-strict pseudo-contractions of C into H. Let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H. Let G be a maximal monotone operator on H and let $J_{\lambda}=(I+\lambda G)^{-1}$ be the resolvent of G for $\lambda>0$. Let $\left\{u_{n}\right\}$ be a sequence in C such that $u_{n} \rightarrow u$. Assume that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right) \neq \emptyset$. For any $x_{1}=x \in C$, define $\left\{x_{n}\right\}$ as follows:

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
w_{n}=\sum_{i=1}^{N} \sigma_{i} J_{\eta_{n}}\left(I-\eta_{n} B_{i}\right) x_{n} \\
x_{n+1}=\delta_{n} u_{n}+\left(1-\delta_{n}\right)\left(P_{C}\left(\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}\right)\right)
\end{array}\right.
$$

where $a, b, c \in \mathbb{R},\left\{\lambda_{n}\right\} \subset \mathbb{R},\left\{\eta_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) for any $n \in \mathbb{N}$,

$$
0<a \leq \lambda_{n} \leq \min \left\{1-s_{1}, \ldots, 1-s_{M}\right\}, 0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}
$$

(2) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all $n \in \mathbb{N}$;
(4) $\lim _{n \rightarrow \infty} \delta_{n}=0$ and $\sum_{i=1}^{\infty} \delta_{n}=\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)$, where $z_{0}=$ $P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)} u$.

Proof. Since T_{j} is a s_{j}-strict pseudo-contraction of C into H such that $F\left(T_{j}\right) \neq \emptyset$, from (1) in Examples, T_{j} is $\frac{2}{1-s_{j}}$-generalized demimetric. Take $k_{j}=1$ in Theorem 3.1. Then we get that $\frac{2}{\theta_{j} k_{j}}=1-s_{j}$ in Theorem 3.1. Furthermore, from Lemma 4.1, T_{j} is demiclosed. Thus, we have the desired result from Theorem 3.1.

We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a finite family of inverse strongly monotone mappings in a Hilbert space.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of $H . \operatorname{Let}\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset(0, \infty) . \operatorname{Let}\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of generalized hybrid mappings of C into H and let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H. Let G be a maximal monotone operator on H and let $J_{\lambda}=(I+\lambda G)^{-1}$ be the resolvent of G for $\lambda>0$. Let $\left\{u_{n}\right\}$ be a sequence in C such that $u_{n} \rightarrow u$. Assume that

$$
\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right) \neq \emptyset .
$$

For any $x_{1}=x \in C$, define $\left\{x_{n}\right\}$ as follows:

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n}, \\
w_{n}=\sum_{i=1}^{N} \sigma_{i} P_{C}\left(I-\eta_{n} B_{i}\right) x_{n}, \\
x_{n+1}=\delta_{n} u_{n}+\left(1-\delta_{n}\right)\left(P_{C}\left(\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}\right)\right),
\end{array}\right.
$$

where $a, b, c \in \mathbb{R},\left\{\lambda_{n}\right\} \subset \mathbb{R},\left\{\eta_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) for any $n \in \mathbb{N}$,

$$
0<a \leq \lambda_{n} \leq 1,0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\} ;
$$

(2) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all $n \in \mathbb{N}$;
(4) $\lim _{n \rightarrow \infty} \delta_{n}=0$ and $\sum_{i=1}^{\infty} \delta_{n}=\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)$, where $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0\right)^{u}}$.

Proof. Since T_{j} is a generalized hybrid mapping of C into H such that $F\left(T_{j}\right) \neq \emptyset$, from (2) in Examples, T_{j} is 2 -generalized demimetric. Take $k_{j}=1$ in Theorem 3.1. Then we get that $\frac{2}{2}=1$ in Theorem 3.1. Furthermore, from Lemma $4.2, T_{j}$ is demiclosed. Therefore, we have the desired result from Theorem 3.1.

We prove a strong convergence theorem for a finite family of Lipschitzian mappings and a finite family of nonexpansive mappings in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $\left\{L_{1}, \ldots, L_{M}\right\} \subset(0, \infty)$ and let $\left\{S_{j}\right\}_{j=1}^{M}$ be a finite family of L_{j} Lipschitzian mappings of C into H and let $\left\{U_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of C into H. Let $\left\{u_{n}\right\}$ be a sequence in C such that $u_{n} \rightarrow u$. Assume that $\cap_{j=1}^{M} F\left(\frac{S_{j}}{L_{j}}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right) \neq \emptyset$. For any $x_{1}=x \in C$, define $\left\{x_{n}\right\}$ as follows:

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1+\lambda_{n} L_{j}\right) I-\lambda_{n} S_{j}\right) x_{n} \\
w_{n}=\sum_{i=1}^{N} \sigma_{i}\left(\left(1-\eta_{n}\right) I+\eta_{n} U_{i}\right) x_{n} \\
x_{n+1}=\delta_{n} u_{n}+\left(1-\delta_{n}\right)\left(P_{C}\left(\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}\right)\right)
\end{array}\right.
$$

where $\left\{\lambda_{n}\right\},\left\{\eta_{n}\right\} \subset \mathbb{R},\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1),\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\} \subset$ $(0,1)$ and $a, b, c \in \mathbb{R}$ satisfy the following conditions:
(1) $0<a \leq \frac{\lambda_{n}}{-1} \leq \min \left\{\frac{1}{L_{1}}, \ldots, \frac{1}{L_{M}}\right\}, 0<b \leq \eta_{n} \leq 1$ for all $n \in \mathbb{N}$;
(2) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all $n \in \mathbb{N}$;
(4) $\lim _{n \rightarrow \infty} \delta_{n}=0$ and $\sum_{i=1}^{\infty} \delta_{n}=\infty$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in \cap_{j=1}^{M} F\left(\frac{S_{j}}{L_{j}}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right)$, where $z_{0}=P_{\cap_{j=1}^{M} F\left(\frac{S_{j}}{L_{j}}\right) \cap\left(\cap_{i=1}^{N} F\left(U_{i}\right)\right)} u$.

Proof. Since S_{j} is L_{j}-Lipschitzian and $F\left(\frac{S_{j}}{L_{j}}\right) \neq \emptyset, T_{j}=\left(L_{j}+1\right) I-S_{j}$ is $-2 L_{j}$ generalized demimetric. Take $k_{j}=-1$ in Theorem 3.1. Then we have that $\theta_{j} k_{j}=$ $2 L_{j}$ and

$$
\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}=\left(1-\lambda_{n}+\lambda_{n} L_{j}+\lambda_{n}\right) I-\lambda_{n} S_{j}=\left(1+\lambda_{n} L_{j}\right) I-\lambda_{n} S_{j}
$$

Furthermore, from Lemma 4.1, T_{j} is demiclosed. In fact, if $x_{n} \rightharpoonup z$ and $x_{n}-T_{j} x_{n} \rightarrow$ 0 , then

$$
\frac{1}{L_{j}}\left(x_{n}-T_{j} x_{n}\right)=\frac{1}{L_{j}}\left(S_{j} x_{n}-L_{j} x_{n}\right)=\frac{S_{j}}{L_{j}} x_{n}-x_{n} \rightarrow 0
$$

Since $\frac{S_{j}}{L_{j}}$ is nonexpansive and hence demiclosed, we have that $z \in F\left(\frac{S_{j}}{L_{j}}\right)=F\left(T_{j}\right)$.
Since U_{i} is nonexpansive, $B_{i}=I-U_{i}$ is a $\frac{1}{2}$-inverse strongly monotone mapping. Putting $G=0$ in Theorem 3.1, we have that $J_{\eta_{n}}=I$ and

$$
\cap_{i=1}^{N}\left(B_{i}+G\right)^{-1} 0=\cap_{i=1}^{N}\left(B_{i}\right)^{-1} 0=\cap_{i=1}^{N} F\left(U_{i}\right)
$$

Furthermore, we have that

$$
I-\eta_{n} B_{i}=I-\eta_{n}\left(I-U_{i}\right)=\left(1-\eta_{n}\right) I+\eta_{n} U_{i}
$$

Therefore, we have the desired result from Theorem 3.1.
Finally, using Theorem 3.1, we obtain the following theorem by Takahashi [29].
Theorem 4.6 ([29]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let $\left\{t_{1}, \ldots, t_{M}\right\} \subset(-\infty, 1)$ and $\left\{\mu_{1}, \ldots, \mu_{N}\right\} \subset(0, \infty)$. Let $\left\{T_{j}\right\}_{j=1}^{M}$ be a finite family of t_{j}-demimetric and demiclosed mappings of C into H and let $\left\{B_{i}\right\}_{i=1}^{N}$ be a finite family of μ_{i}-inverse strongly monotone mappings of C into H. Assume that $\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right) \neq \emptyset$. Let $\left\{u_{n}\right\}$ be a sequence in C such that $u_{n} \rightarrow u$. For $x_{1}=x \in C$, let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=\sum_{j=1}^{M} \xi_{j}\left(\left(1-\lambda_{n}\right) I+\lambda_{n} T_{j}\right) x_{n} \\
w_{n}=\sum_{i=1}^{N} \sigma_{i} P_{C}\left(I-\eta_{n} B_{i}\right) x_{n} \\
x_{n+1}=\delta_{n} u_{n}+\left(1-\delta_{n}\right)\left(P_{C}\left(\alpha_{n} x_{n}+\beta_{n} z_{n}+\gamma_{n} w_{n}\right)\right), \quad \forall n \in \mathbb{N}
\end{array}\right.
$$

where $a, b, c \in \mathbb{R},\left\{\lambda_{n}\right\},\left\{\eta_{n}\right\} \subset(0, \infty),\left\{\xi_{1}, \ldots, \xi_{M}\right\},\left\{\sigma_{1}, \ldots, \sigma_{N}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\} \subset(0,1)$ satisfy the following conditions:
(1) for any $n \in \mathbb{N}$,

$$
0<a \leq \lambda_{n} \leq \min \left\{1-t_{1}, \ldots, 1-t_{M}\right\}, 0<b \leq \eta_{n} \leq 2 \min \left\{\mu_{1}, \ldots, \mu_{N}\right\}
$$

(2) $\sum_{j=1}^{M} \xi_{j}=1$ and $\sum_{i=1}^{N} \sigma_{i}=1$;
(3) $0<c \leq \alpha_{n}, \beta_{n}, \gamma_{n}<1$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all $n \in \mathbb{N}$;
(4) $\lim _{n \rightarrow \infty} \delta_{n}=0$ and $\sum_{i=1}^{\infty} \delta_{n}=\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0} \in \cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)$, where $z_{0}=P_{\cap_{j=1}^{M} F\left(T_{j}\right) \cap\left(\cap_{i=1}^{N} V I\left(C, B_{i}\right)\right)} u$.
Proof. Since T_{j} is a t_{j}-demimetric mapping of C into H such that $F\left(T_{j}\right) \neq \emptyset$, T_{j} is $\frac{2}{1-t_{j}}$-generalized demimetric. Take $k_{j}=1$ in Theorem 3.1. Then we get that $\frac{2}{\theta k_{j}}=1-t_{j}$ in Theorem 3.1. Put $G=\partial i_{C}$ in Theorem 3.1. Then we have
from (4.1) that for $\eta_{n}>0, J_{\eta_{n}}=P_{C}$. Furthermore, we have $\left(\partial i_{C}\right)^{-1} 0=C$ and $\left(B_{i}+\partial i_{C}\right)^{-1} 0=V I\left(C, B_{i}\right)$. In fact, we have that, for any $z \in C$,

$$
\begin{aligned}
z \in\left(B_{i}+\partial i_{C}\right)^{-1} 0 & \Longleftrightarrow 0 \in B_{i} z+\partial i_{C} z \\
& \Longleftrightarrow 0 \in B_{i} z+N_{C} z \\
& \Longleftrightarrow-B_{i} z \in N_{C} z \\
& \Longleftrightarrow\left\langle-B_{i} z, v-z\right\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow\left\langle B_{i} z, v-z\right\rangle \geq 0, \forall v \in C \\
& \Longleftrightarrow z \in V I\left(C, B_{i}\right) .
\end{aligned}
$$

Therefore, we have the desired result from Theorem 3.1.

References

[1] S. M. Alsulami and W. Takahashi, The split common null point problem for maximal monotone mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal. 15 (2014), 793-808.
[2] S. M. Alsulami and W. Takahashi, A strong convergence theorem by the hybrid method for finite families of nonlinear and nonself mappings in a Hilbert space, J. Nonlinear Convex Anal. 17 (2016), 2511-2527.
[3] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350-2360.
[4] F. E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann. 175 (1968), 89-113.
[5] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.
[6] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105-116.
[7] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[8] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
[9] T. Igarashi, W. Takahashi and K. Tanaka, Weak convergence theorems for nonspreading mappings and equilibrium problems, in Nonlinear Analysis and Optimization (S. Akashi, W. Takahashi and T. Tanaka Eds.), Yokohama Publishers, Yokohama, 2008, pp. 75-85.
[10] S. Itoh and W. Takahashi, The common fixed point theory of singlevalued mappings and multivalued mappings, Pacific J. Math. 79 (1978), 493-508.
[11] T. Kawasaki and W. Takahashi, A strong convergence theorem for countable families of nonlinear nonself mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal. 19 (2018), 543-560.
[12] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for genelalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497-2511.
[13] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), 824-835.
[14] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces., Arch. Math. (Basel) 91 (2008), 166-177.
[15] C.-N. Lin and W. Takahashi, Weak convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, J. Nonlinear Convex Anal. 18 (2017), 553-564.
[16] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
[17] G. Marino and H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
[18] T. Maruyama, W. Takahashi and M. Yao, Fixed point and mean ergodic theorems for new nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011), 185-179.
[19] N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230-1241.
[20] S. Plubtieng and W. Takahashi, Generalized split feasibility problems and weak convergence theorems in Hilbert spaces, Linear Nonlinear Anal. 1 (2015), 139-158.
[21] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
[22] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.
[23] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[24] W. Takahashi, Convex Analysis and Approximation of Fixed Points (Japanese), Yokohama Publishers, Yokohama, 2000.
[25] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
[26] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79-88.
[27] W. Takahashi, The split common fixed point problem and strong convergence theorems by hybrid methods in two Banach spaces, J. Nonlinear Convex Anal. 17 (2016), 1051-1067.
[28] W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal. 24 (2017), 1015-1028.
[29] W. Takahashi, Strong convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Jpn. J. Ind. Appl. Math. 34 (2017), 41-57.
[30] W. Takahashi, Strong convergence theorems by hybrid methods for new demimetric mappings in Banach spaces, J. Convex Anal., to appear.
[31] W. Takahashi, C.-F. Wen and J.-C. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequalty problems in a Hilbert space, Fixed Point Theory, to appear.
[32] W. Takahashi, N.-C. Wong and J.-C. Yao, Weak and strong mean convergence theorems for extended hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011), 553-575.
[33] W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal. 23 (2015), 205-221.
[34] W. Takahashi, J.-C. Yao and K. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567-586.
[35] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113.

Wataru Takahashi

Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Keio Research and Education Center for Natural Sciences, Keio University, Kouhoku-ku, Yokohama 223-8521, Japan; and Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp
Ching-Feng Wen
Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

E-mail address: cfwen@kmu.edu.tw
Jen-Chin Yao
Center for General Education, China Medical University, Taichung 40402, Taiwan
E-mail address: yaojc@mail.cmu.edu.tw

[^0]: 2010 Mathematics Subject Classification. 47H05, 47H09.
 Key words and phrases. Common fixed point, demimetric mapping, variational inequality problem, metric projection, Halpern iteration.

