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where {αn} is a sequence in [0, 1]. There are many investigations of Halpern iterative
process for finding fixed points of nonexpansive mappings. Takahashi [29] proved a
strong convergence theorem of Halpern type iteration for demimetric mappings in
a Hilbert space.

In this paper, using Halpern type iteration, we prove a strong convergence the-
orem for finding a common element of the set of common fixed points for a finite
family of generalized demimetric mappings and the set of common solutions of
generalized variational inequality problems for a finite family of inverse strongly
monotone mappings in a Hilbert space. Using the result, we obtain well-known and
new strong convergence theorems in a Hilbert space. In particular, we extend the
result of Takahashi [29] to that of generalized demimetric mappings in a Hilbert
space.

2. Preliminaries

Throughout this paper, let N be the set of positive integers and let R be the set
of real numbers. Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the
dual space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. The duality
mapping J from E into 2E

∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In this case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a
single-valued bijection and in this case, the inverse mapping J−1 coincides with the
duality mapping J∗ on E∗. For more details, see [23] and [24].

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. When {xn}
is a sequence in H, we denote the strong convergence of {xn} to x ∈ H by xn → x
and the weak convergence by xn ⇀ x. We have from [25] that for any x, y ∈ H and
λ ∈ R,

(2.2) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩,

(2.3) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore, we have that for x, y, u, v ∈ H,

(2.4) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
Let C be a nonempty, closed and convex subset of a Hilbert space H. A mapping
T : C → H is called nonexpansive if ∥Tx−Ty∥ ≤ ∥x−y∥ for all x, y ∈ C. A mapping
T : C → H with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥Tx − y∥ ≤ ∥x − y∥ for
all x ∈ C and y ∈ F (T ). If T : C → H is quasi-nonexpansive, then F (T ) is closed
and convex; see [10]. For a nonempty, closed and convex subset D of H, the nearest
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point projection of H onto D is denoted by PD, that is, ∥x− PDx∥ ≤ ∥x− y∥ for
all x ∈ H and y ∈ D. Such a mapping PD is called the metric projection of H onto
D. We know that the metric projection PD is firmly nonexpansive, i.e.,

∥PDx− PDy∥2 ≤ ⟨PDx− PDy, x− y⟩

for all x, y ∈ H. Furthermore, ⟨x − PDx, y − PDx⟩ ≤ 0 holds for all x ∈ H and
y ∈ D; see [23, 25]. Using this inequality and (2.4), we have that

(2.5) ∥PDx− y∥2 + ∥PDx− x∥2 ≤ ∥x− y∥2, ∀x ∈ H, y ∈ D.

More information on the metric projection and on firmly nonexpansive mappings
can be found in the book by Goebel and Reich [7]. Let H be a Hilbert space and
let C be a nonempty, closed and convex subset of H. A mapping A : C → H is
called inverse strongly monotone if there exists α > 0 such that

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2, ∀x, y ∈ C.

Such a mapping A is called α-inverse strongly monotone. If A : C → H is α-inverse
strongly monotone and 0 < λ ≤ 2α, then I − λA : C → H is nonexpansive. In fact,
we have that for all x, y ∈ C,

∥(I − λA)x− (I − λA)y∥2 = ∥x− y − λ(Ax−Ay)∥2

= ∥x− y∥2 − 2λ⟨x− y,Ax−Ay⟩+ λ2∥Ax−Ay∥2

≤ ∥x− y∥2 − 2λα∥Ax−Ay∥2 + λ2∥Ax−Ay∥2(2.6)

= ∥x− y∥2 + λ(λ− 2α)∥Ax−Ay∥2

≤ ∥x− y∥2.

Thus, I − λA : C → H is nonexpansive; see [1, 19, 25] for more results of inverse
strongly monotone mappings. The variational inequalty problem for A : C → H is
to find a point u ∈ C such that

(2.7) ⟨Au, x− u⟩ ≥ 0, ∀x ∈ C.

The set of solutions of (2.7) is denoted by V I(C,A). We also have that, for λ > 0,
u = PC(I − λA)u if and only if u ∈ V I(C,A). In fact, let λ > 0. Then, for u ∈ C,

u = PC(I − λA)u ⇐⇒ ⟨(I − λA)u− u, u− y⟩ ≥ 0, ∀y ∈ C

⇐⇒ ⟨−λAu, u− y⟩ ≥ 0, ∀y ∈ C

⇐⇒ ⟨Au, u− y⟩ ≤ 0, ∀y ∈ C

⇐⇒ ⟨Au, y − u⟩ ≥ 0, ∀y ∈ C

⇐⇒ u ∈ V I(C,A).

Let G be a mapping of H into 2H . The effective domain of G is denoted by
D(G), that is, D(G) = {x ∈ H : Gx ̸= ∅}. A multi-valued mapping G is said to
be a monotone operator on H if ⟨x − y, u − v⟩ ≥ 0 for all x, y ∈ D(G), u ∈ Gx,
and v ∈ Gy. A monotone operator G on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator G on H and r > 0, we may define a single-valued
operator Jr = (I + rG)−1 : H → D(G), which is called the resolvent of G for r. We
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denote by Ar =
1
r (I − Jr) the Yosida approximation of G for r > 0. We know from

[24] that

(2.8) Arx ∈ GJrx, ∀x ∈ H, r > 0.

Let G be a maximal monotone operator on H and let

G−10 = {x ∈ H : 0 ∈ Gx}.
Then G−10 = F (Jr) for all r > 0 and the resolvent Jr is firmly nonexpansive, i.e.,

(2.9) ∥Jrx− Jry∥2 ≤ ⟨x− y, Jrx− Jry⟩, ∀x, y ∈ H.

We also know the following lemma from [22].

Lemma 2.1 ([22]). Let H be a Hilbert space and let G be a maximal monotone
operator on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then the following
holds:

s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2

for all s, t > 0 and x ∈ H.

From Lemma 2.1, we have that

(2.10) ∥Jλx− Jµx∥ ≤ (|λ− µ| /λ) ∥x− Jλx∥
for all λ, µ > 0 and x ∈ H; see also [6, 23].

Using the ideas of [20, 33], Alsulami and Takahashi [2] proved the following
lemma.

Lemma 2.2 ([2]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let G : H → 2H be a maximal monotone mapping and let
Jλ = (I +λG)−1 be the resolvent of G for λ > 0. Let κ > 0 and let U : C → H be a
κ-inverse strongly monotone mapping. Suppose that G−10∩U−10 ̸= ∅. Let λ, r > 0
and z ∈ C. Then the following are equivalent:

(i) z = Jλ(I − rU)z;
(ii) 0 ∈ Uz +Gz;
(iii) z ∈ G−10 ∩ U−10.

Let E be a smooth Banach space, let C be a nonempty, closed and convex subset
of E and let θ be a real number with θ ̸= 0. Then a mapping U : C → E with
F (U) ̸= ∅ is called generalized demimetric [11] if it satisfies (1.1), i.e.,

θ⟨x− q, J(x− Ux)⟩ ≥ ∥x− Ux∥2

for all x ∈ C and q ∈ F (U), where J is the duality mapping on E.

Examples We know examples of generalized demimetric mappings.

(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let k be a real number with 0 ≤ k < 1. A mapping U : C → H is called a
k-strict pseudo-contraction [5] if

∥Ux− Uy∥2 ≤ ∥x− y∥2 + k∥x− Ux− (y − Uy)∥2
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for all x, y ∈ C. If U is a k-strict pseudo-contraction and F (U) ̸= ∅, then U is
2

1−k -generalized demimetric; see [11].

(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. A mapping U : C → H is called generalized hybrid [12] if there exist α, β ∈ R
such that

(2.11) α∥Ux− Uy∥2 + (1− α)∥x− Uy∥2 ≤ β∥Ux− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Such a mapping U is called (α, β)-generalized hybrid. If U is
generalized hybrid and F (U) ̸= ∅, then U is 2-generalized demimetric; see [11]. In
fact, setting x = u ∈ F (U) and y = x ∈ C in (2.11), we have that

α∥u− Ux∥2 + (1− α)∥u− Ux∥2 ≤ β∥u− x∥2 + (1− β)∥u− x∥2

and hence

∥Ux− u∥2 ≤ ∥x− u∥2.
From ∥Ux− u∥2 = ∥Ux− x∥2 + ∥x− u∥2 + 2⟨Ux− x, x− u⟩, we have that

2⟨x− u, x− Ux⟩ ≥ ∥x− Ux∥2

for all x ∈ C and u ∈ F (U). This means that U is 2-generalized demimetric.
Notice that the class of generalized hybrid mappings covers several well-known

mappings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is
nonspreading [13, 14] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [26] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [9].
(3) Let E be a mooth, strictly convex and reflexive Banach space and let C be

a nonempty, closed and convex subset of E. Let PC be the metric projection of E
onto C. Then PC is 1-generalized demimetric; see [11].

(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B−10 ̸= ∅. Then the metric resolvent Jλ for
λ > 0 is 1-generalized demimetric; see [11].

(5) Let H be a Hilbert space, let C be a nonempty subset of H and let T be a
mapping from C into H. Suppose that T is Lipschitzian, that is, there exists L > 0
such that

∥Tx− Ty∥ ≤ L∥x− y∥

for all x, y ∈ C. Let S = (L + 1)I − T . Then S is (−2L)-generalized demimetric;
see [11, 30].

(6) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let α > 0. If B be an α-inverse strongly monotone mapping from C into H
with B−10 ̸= ∅, then T = I +B is

(
− 1

α

)
-generalized demimetric; see [11, 30].

The following lemmas are important and crucial in the proof of our main result.
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Lemma 2.3 ([11]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. If a mapping U : C → E
is θ-generalized demimetric and θ > 0, then U is

(
1− 2

θ

)
-demimetric.

Lemma 2.4 ([11]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. Let θ be a real number
with θ ̸= 0. Let T be a θ-generalized demimetric mapping of C into E. Then F (T )
is closed and convex.

Lemma 2.5 ([11]). Let E be a smooth Banach space, let C be a nonempty subset
of E and let θ be a real number with θ ̸= 0. Let T be a θ-generalized demimetric
mapping from C into E and let k ∈ R with k ̸= 0. Then (1 − k)I + kT is θk-
generalized demimetric from C into E.

We also know the following lemma from [31]:

Lemma 2.6 ([31]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k ∈ (−∞, 1) and let T be a k-demimetric mapping of C
into H such that F (T ) is nonempty. Let λ be a real number with 0 < λ ≤ 1−k and
define S = (1− λ)I + λT . Then S is a quasi-nonexpansive mapping of C into H.

We also know the following lemmas from Aoyama, Kimura, Takahashi and Toyoda
[3], Xu [35] and Maingé [16].

Lemma 2.7 ([3], [35]). Let {sn} be a sequence of nonnegative real numbers, let {αn}
be a sequence in [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with
lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, . . . . Then limn→∞ sn = 0.

Lemma 2.8 ([16]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where n0 ∈ N satisfies {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem of Halpern type iteration
for finding a common element of the set of common fixed points for a finite family
of generalized demimetric mappings and the set of common solutions of general-
ized variational inequality problems for a finite family of inverse strongly monotone
mappings in a Hilbert space. Let H be a Hilbert space and let C be a nonempty,
closed and convex subset of H. A mapping U : C → H is called demiclosed if, for
a sequence {xn} in C such that xn ⇀ w and xn − Uxn → 0, w = Uw holds. For
example, if C is a nonempty, closed and convex subset of H and T is a nonexpansive
mapping of C of H, then T is demiclosed; see [4] and [25, p. 114].
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Theorem 3.1. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {θ1, . . . , θM} ⊂ R and {µ1, . . . , µN} ⊂ (0,∞). Let {Tj}Mj=1 be a
finite family of θj-generalized demimetric and demiclosed mappings of C into H and
let {kj}Mj=1 be a finite family of real numbers with θjkj > 0. Let {Bi}Ni=1 be a finite
family of µi-inverse strongly monotone mappings of C into H. Let G be a maximal
monotone operator on H and let Jλ = (I + λG)−1 be the resolvent of G for λ > 0.
Assume that

∩M
j=1F (Tj) ∩ (∩N

i=1(Bi +G)−10) ̸= ∅.
Let {un} be a sequence in C such that un → u. For x1 = x ∈ C, let {xn} ⊂ C be a
sequence generated by

zn =
∑M

j=1 ξj((1− λn)I + λnTj)xn,

wn =
∑N

i=1 σiJηn(I − ηnBi)xn,

xn+1 = δnun + (1− δn)
(
PC(αnxn + βnzn + γnwn)

)
, ∀n ∈ N,

where a, b, c ∈ R, {λn} ⊂ R, {ηn} ⊂ (0,∞), {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1) and
{αn}, {βn}, {γn}, {δn} ⊂ (0, 1) satisfy the following conditions:

(1) for any n ∈ N and j ∈ {1, . . . ,M},

0 < a ≤ λn

kj
≤ 2min

{ 1

θ1k1
, . . . ,

1

θMkM

}
, 0 < b ≤ ηn ≤ 2min{µ1, . . . , µN};

(2)
∑M

j=1 ξj = 1 and
∑N

i=1 σi = 1;

(3) 0 < c ≤ αn, βn, γn < 1 and αn + βn + γn = 1;
(4) limn→∞ δn = 0 and

∑∞
i=1 δn = ∞.

Then {xn} converges strongly to a point z0 ∈ ∩M
j=1F (Tj)∩ (∩N

i=1(Bi+G)−10), where
z0 = P∩M

j=1F (Tj)∩(∩N
i=1(Bi+G)−10)u.

Proof. Since Bi is µi-inverse strongly monotone and 0 < b ≤ ηn ≤ 2µi for all
i ∈ {1, . . . , N}, we have that Jηn(I − ηnBi) is nonexpansive from (2.6) and (2.9)
and hence F (Jηn(I − ηnBi)) is closed and convex. Since

F (Jηn(I − ηnBi)) = (Bi +G)−10

from Lemma 2.2, we have that (Bi +G)−10 is closed and convex. Furthermore, we
know from Lemma 2.4 that F (Tj) is closed and convex. Therefore, we have that
∩M
j=1F (Tj) ∩ (∩N

i=1(Bi + G)−10) is nonempty, closed and convex. Thus, we obtain
that P∩M

j=1F (Tj)∩(∩N
i=1(Bi+G)−10) is well defined.

We know from Lemma 2.5 that (1 − kj)I + kjTj is θjkj-generalized demimet-

ric. From Lemma 2.3 and θjkj > 0, we have that (1 − kj)I + kjTj is
(
1− 2

θjkj

)
-

demimetric in the sense of Takahashi [28]. Since

0 <
λn

kj
≤ 2

θjkj
= 1−

(
1− 2

θjkj

)
and

(1− λn)I + λnTj =

(
1− λn

kj

)
I +

λn

kj
((1− kj)I + kjTj),
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we have from Lemma 2.6 that (1 − λn)I + λnTj is quasi-nonexpansive. Thus, we
have that for z ∈ ∩M

j=1F (Tj) ∩ (∩N
i=1(Bi +G)−10),

∥zn − z∥ = ∥
M∑
j=1

ξj((1− λn)I + λnTj)xn − z∥

≤
M∑
j=1

ξj∥((1− λn)I + λnTj)xn − z∥(3.1)

≤
M∑
j=1

ξj∥xn − z∥ = ∥xn − z∥.

Furthermore, since Jηn(I − ηnBi) is nonexpansive, we have that

∥wn − z∥ = ∥
N∑
i=1

σiJηn(I − ηnBi)xn − z∥

≤
N∑
i=1

σi∥Jηn(I − ηnBi)xn − z∥(3.2)

≤
N∑
i=1

σi∥xn − z∥ = ∥xn − z∥.

Put yn = PC(αnxn + βnzn + γnwn). Then we have that

∥yn − z∥ ≤ ∥αnxn + βnzn + γnwn − z∥
≤ αn∥xn − z∥+ βn∥zn − z∥+ γn∥wn − z∥(3.3)

≤ αn∥xn − z∥+ βn∥xn − z∥+ γn∥xn − z∥
= ∥xn − z∥.

Using this, we get that

∥xn+1 − z∥ = ∥δn(un − z) + (1− δn)(yn − z)∥
≤ δn ∥un − z∥+ (1− δn) ∥yn − z∥
≤ δn ∥un − z∥+ (1− δn) ∥xn − z∥ .

Since {un} is bounded, there exists M > 0 such that supn∈N ∥un−z∥ ≤ M . Putting
K = max{∥x1 − z∥,M}, we have that ∥xn − z∥ ≤ K for all n ∈ N. In fact, it is
obvious that ∥x1 − z∥ ≤ K. Suppose that ∥xk − z∥ ≤ K for some k ∈ N. Then we
have that

∥xk+1 − z∥ ≤ δk ∥uk − z∥+ (1− δk) ∥xk − z∥
≤ δkK + (1− δk)K = K.
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By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded.
Take z0 = P∩M

j=1F (Tj)∩(∩N
i=1(Bi+G)−10)u. Using [18], we have that

∥yn−z0∥2 ≤ ∥αnxn + βnzn + γnwn − z0∥2

= αn∥xn − z0∥2 + βn∥zn − z0∥2 + γn∥wn − z0∥2

− αnβn∥zn − xn∥2 − αnγn∥wn − xn∥2 − γnβn∥zn − wn∥2

≤ αn∥xn − z0∥2 + βn∥xn − z0∥2 + γn∥xn − z0∥2

− αnβn∥zn − xn∥2 − αnγn∥wn − xn∥2 − γnβn∥zn − wn∥2

= ∥xn − z0∥ − αnβn∥zn − xn∥2 − αnγn∥wn − xn∥2 − γnβn∥zn − wn∥2

and hence

∥xn+1 − z0∥2 = ∥δn(un − z0) + (1− δn)(yn − z0)∥2

≤ δn∥un − z0∥2 + (1− δn)∥yn − z0∥2

≤ δn∥un − z0∥2 + ∥yn − z0∥2

≤ δn∥un − z0∥2 + ∥xn − z0∥2

− αnβn∥zn − xn∥2 − αnγn∥wn − xn∥2 − γnβn∥zn − wn∥2.

Using 0 < c ≤ αn, βn, γn < 1, we have that

c2∥xn−zn∥2 + c2∥wn − xn∥2 + c2∥zn − wn∥2

≤ αnβn∥zn − xn∥2 + αnγn∥wn − xn∥2 + γnβn∥zn − wn∥2(3.4)

≤ δn∥un − z0∥2 + ∥xn − z0∥2 − ∥xn+1 − z0∥2.

We also have that

∥xn+1 − xn∥ = ∥δnun + (1− δn)yn − xn∥
≤ δn∥un − xn∥+ (1− δn)∥yn − xn∥
≤ δn∥un − xn∥+ ∥yn − xn∥
≤ δn∥un − xn∥+ ∥αnxn + βnzn + γnwn − xn∥(3.5)

≤ δn∥un − xn∥+ ∥βn(zn − xn)∥+ ∥γn(wn − xn)∥
≤ δn∥un − xn∥+ ∥zn − xn∥+ ∥wn − xn∥.

We will divide the proof into two cases.

Case 1: Put Γn = ∥xn − z0∥2 for all n ∈ N. Suppose that there exists a natural
number N such that Γn+1 ≤ Γn for all n ≥ N . In this case, limn→∞ Γn exists and
then limn→∞(Γn+1 − Γn) = 0. Using δn → 0, we have from (3.4) that

(3.6) lim
n→∞

∥zn − xn∥ = 0, lim
n→∞

∥wn − xn∥ = 0, lim
n→∞

∥zn − wn∥ = 0.

From (3.5), we also have that

(3.7) lim
n→∞

∥xn+1 − xn∥ = 0.
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For z0 = P∩M
j=1F (Tj)∩(∩N

i=1(Bi+G)−10)u, we show that

lim sup
n→∞

⟨u− z0, xn − z0⟩ ≤ 0.

Put s = lim supn→∞⟨u − z0, xn − z0⟩. Without loss of generality, there exists a
subsequence {xl} of {xn} such that

s = lim
l→∞

⟨u− z0, xl − z0⟩

and {xl} converges weakly to some point w. On the other hand, since Tj is θj-
generalized demimetric and hence (1 − kj)I + kjTj is θjkj-generalized demimetric
for all j ∈ {1, . . . ,M}, we have from θjkj > 0 that, for z ∈ ∩M

j=1F (Tj),

⟨xn − z,xn − zn⟩ =
⟨
xn − z, xn −

M∑
j=1

ξj((1− λn)I + λnTj)xn

⟩

=
M∑
j=1

ξj⟨xn − z, xn − ((1− λn)I + λnTj)xn⟩

=

M∑
j=1

ξj

⟨
xn − z, xn −

((
1− λn

kj

)
I +

λn

kj

(
(1− kj)I + kjTj

))
xn

⟩

=
M∑
j=1

ξj

⟨
xn − z,

λn

kj
xn − λn

kj

(
(1− kj)I + kjTj

)
xn

⟩

=
M∑
j=1

ξj
λn

kj
⟨xn − z, xn − ((1− kj)I + kjTj)xn⟩

≥
M∑
j=1

ξj
λn

kj

1

θjkj
∥xn − ((1− kj)I + kjTj))xn∥2

=
M∑
j=1

ξj
λn

kj

1

θjkj
k2j ∥xn − Tjxn∥2

=

M∑
j=1

ξj
λn

θj
∥xn − Tjxn∥2.

We have from limn→∞ ∥zn − xn∥ = 0 and
ξjλn

θj
> 0 that

lim
n→∞

∥xn − Tjxn∥ = 0, ∀j ∈ {1, . . . ,M}.

Since Tj is demiclosed for all j ∈ {1, . . . ,M}, we have w ∈ ∩M
j=1F (Tj).
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Let us show that w ∈ ∩N
i=1(Bi +G)−10. Since Jηn(I − ηnBi) is nonexpansive for

all i ∈ {1, . . . , N}, we have from (2.4) that, for z ∈ ∩N
1=1(Bi +G)−10,

2⟨xn − z,xn − wn⟩ = 2
⟨
xn − z, xn −

N∑
i=1

σiJηn(I − ηnBi)xn

⟩
=

N∑
i=1

2σi⟨xn − z, xn − Jηn(I − ηnBi)xn⟩

=
N∑
i=1

σi(∥xn − Jηn(I − ηnBi)xn∥2

+ ∥xn − z∥2 − ∥Jηn(I − ηnBi)xn − z∥2)

≥
N∑
i=1

σi∥xn − Jηn(I − ηnBi)xn∥2.

We have from limn→∞ ∥wn − xn∥ = 0 that

lim
n→∞

∥xn − Jηn(I − ηnBi)xn∥ = 0, ∀i ∈ {1, . . . , N}.

Consider a subsequence {ηl} of {ηn} corresponding to the sequence {xl}. Since the
subsequence {ηl} of {ηn} is bounded, there exists a subsequence {ηh} of {ηl} such
that limh→∞ ηh = η and 0 < b ≤ η ≤ 2min{µ1, . . . , µN}. For such η, we have from
(2.10) that for any i ∈ {1, . . . , N},

∥xh − Jη(I − ηBi)xh∥ ≤ ∥xh − Jηh(I − ηhBi)xh∥
+ ∥Jηh(I − ηhBi)xh − Jηh(I − ηBi)xh∥
+ ∥Jηh(I − ηBi)xh − Jη(I − ηBi)xh∥

≤ ∥xh − Jηh(I − ηhBi)xh∥
+ ∥(I − ηhBi)xh − (I − ηBi)xh∥
+ ∥Jηh(I − ηBi)xh − Jη(I − ηBi)xh∥

≤ ∥xh − Jηh(I − ηhBi)xh∥+ |ηh − η|∥Bixh∥

+
|ηh − η|

η
∥Jη(I − ηBi)xh − (I − ηBi)xh∥.

On the other hand, we have that for y ∈ C and i ∈ {1, . . . , N},

b∥Bixn∥ ≤ ηn∥Bixn∥ = ∥ηnBixn∥
= ∥xn − (y − ηnBiy) + y − ηnBiy − (xn − ηnBixn)∥
≤ ∥xn − y∥+ ηn∥Biy∥+ ∥(I − ηnBi)y − (I − ηnBi)xn∥
≤ ∥xn − y∥+max{µ1, . . . , µN}∥Biy∥+ ∥y − xn∥.

Since {xn} is bounded, we have that {Bixn} is bounded for all i ∈ {1, . . . , N}. Thus
we have that

lim
h→∞

∥xh − Jη(I − ηBi)xh∥ = 0, ∀i ∈ {1, . . . , N}.
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Since {xh} converges weakly to w and Jη(I−ηBi) is demiclosed for all i ∈ {1, . . . , N},
we have w ∈ F (Jη(I − ηBi)). From Lemma 2.2, we have w ∈ ∩N

i=1(Bi + G)−10.
Therefore, we have

w ∈ ∩M
j=1F (Tj) ∩ (∩N

i=1(Bi +G)−10).

Since {xl} converges weakly to w ∈ ∩M
j=1F (Tj)∩ (∩N

i=1(Bi+G)−10), we have that

s = lim
l→∞

⟨u− z0, xl − z0⟩ = ⟨u− z0, w − z0⟩ ≤ 0.

Since xn+1 − z0 = δn(un − z0) + (1− δn)(yn − z0), we have from (2.2) that

∥xn+1−z0∥2 ≤ (1− δn)
2∥yn − z0∥2 + 2δn⟨un − z0, xn+1 − z0⟩

≤ (1− δn)∥xn − z0∥2 + 2δn⟨un − u, xn+1 − z0⟩
+ 2δn⟨u− z0, xn+1 − z0⟩

= (1− δn)∥xn − z0∥2 + 2δn⟨un − u, xn+1 − z0⟩
+ 2δn⟨u− z0, xn+1 − xn⟩+ 2δn⟨u− z0, xn − z0⟩.

Since
∑∞

n=1 δn = ∞, we obtain from Lemma 2.7 that xn → z0.

Case 2: Suppose that there exists a subsequence {Γni} of the sequence {Γn} such
that Γni < Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then we have from Lemma 2.8 that Γτ(n) ≤ Γτ(n)+1. Thus we have from (3.4) that
for all n ∈ N,

c2∥xτ(n)−zτ(n)∥2 + c2∥wτ(n) − xτ(n)∥2 + c2∥zτ(n) − wτ(n)∥2

≤ δτ(n)∥uτ(n) − z0∥2 +
∥∥xτ(n) − z0

∥∥2 − ∥xτ(n)+1 − z0∥2(3.8)

≤ δτ(n)∥uτ(n) − z0∥2.

Using ατ(n) → 0, we have from (3.8) that

lim
n→∞

∥zτ(n) − xτ(n)∥ = 0, lim
n→∞

∥wτ(n) − xτ(n)∥ = 0, lim
n→∞

∥zτ(n) − wτ(n)∥ = 0.

As in the proof of Case 1, we have from limn→∞ ∥zτ(n) − xτ(n)∥ = 0 that

(3.9) lim
n→∞

∥xτ(n) − Tjxτ(n)∥ = 0, ∀j ∈ {1, . . . ,M}.

As in the proof of Case 1, we also have that

(3.10) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0.

For z0 = P∩M
j=1F (Tj)∩(∩N

i=1(Bi+G)−10)u, let us show that

lim sup
n→∞

⟨z0 − u, xτ(n) − z0⟩ ≥ 0.

Put s = lim supn→∞⟨z0 − u, xτ(n) − z0⟩. Without loss of generality, there exists a
subsequence {xτ(l)} of {xτ(n)} such that s = liml→∞⟨z0 − u, xτ(l) − z0⟩ and {xτ(l)}
converges weakly to some point w ∈ C. Since Tj is demiclosed for all j ∈ {1, . . . ,M},
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we have from (3.9) that w ∈ ∩M
j=1F (Tj). Let us show that w ∈ ∩N

i=1(Bi + G)−10.

As in the proof of Case 1, we have from limn→∞ ∥wτ(n) − xτ(n)∥ = 0 that

lim
n→∞

∥xτ(n) − Jητ(n)
(I − ητ(n)Bi)xτ(n)∥ = 0, ∀i ∈ {1, . . . , N}.

Consider a subsequence {ητ(l)} of {ητ(n)} corresponding to the sequence {xτ(l)}.
Since the subsequence {ητ(l)} of {ητ(n)} is bounded, we have that there exists
a subsequence {ητ(h)} of {ητ(l)} such that limh→∞ ητ(h) = η and 0 < b ≤ η ≤
2min{µ1, . . . , µN}. As in the proof of Case 1, we have that for any i ∈ {1, . . . , N},
∥xτ(h) − Jη(I − ηBi)xτ(h)∥

≤ ∥xτ(h) − Jητ(h)(I − ητ(h)Bi)xτ(h)∥
+ ∥Jητ(h)(I − ητ(h)Bi)xτ(h) − Jητ(h)(I − ηBi)xτ(h)∥
+ ∥Jητ(h)(I − ηBi)xτ(h) − Jη(I − ηBi)xτ(h)∥

≤ ∥xτ(h) − Jητ(h)(I − ητ(h)Bi)xτ(h)∥
+ ∥(I − ητ(h)Bi)xτ(h) − (I − ηBi)xτ(h)∥
+ ∥Jητ(h)(I − ηBi)xτ(h) − Jη(I − ηBi)xτ(h)∥

≤ ∥xτ(h) − Jητ(h)(I − ητ(h)Bi)xτ(h)∥+ |ητ(h) − η|∥Bixτ(h)∥

+
|ητ(h) − η|

η
∥Jη(I − ηBi)xτ(h) − (I − ηBi)xτ(h)∥.

Thus we have that

lim
h→∞

∥xτ(h) − Jη(I − ηBi)xτ(h)∥ = 0, ∀i ∈ {1, . . . , N}.

Since {xτ(h)} converges weakly to w and Jη(I − ηBi) are demiclosed, we have w ∈
∩N
i=1(Bi +G)−10. Therefore, we have

w ∈ ∩M
j=1F (Tj) ∩ (∩N

i=1(Bi +G)−10).

Then we have

s = lim
l→∞

⟨z0 − u, xτ(l) − z0⟩ = ⟨z0 − u,w − z0⟩ ≥ 0.

As in the proof of Case 1, we also have that

∥xτ(n)+1 − z0∥2 ≤ (1− δτ(n))∥xτ(n) − z0∥2 + 2δτ(n)⟨uτ(n) − u, xτ(n)+1 − z0⟩
+ 2δτ(n)⟨u− z0, xτ(n)+1 − xτ(n)⟩+ 2δτ(n)⟨u− z0, xτ(n) − z0⟩.

From Γτ(n) ≤ Γτ(n)+1, we have that

δτ(n)∥xτ(n) − z0∥2 ≤ 2δτ(n)⟨uτ(n) − u, xτ(n)+1 − z0⟩
+ 2δτ(n)⟨u− z0, xτ(n)+1 − xτ(n)⟩+ 2δτ(n)⟨u− z0, xτ(n) − z0⟩.

Since δτ(n) > 0, we have that

∥xτ(n) − z0∥2 ≤ 2⟨uτ(n) − u, xτ(n)+1 − z0⟩
+ 2⟨u− z0, xτ(n)+1 − xτ(n)⟩+ 2⟨u− z0, xτ(n) − z0⟩.

Thus we have that
lim sup
n→∞

∥∥xτ(n) − z0
∥∥2 ≤ 0
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and hence ∥xτ(n) − z0∥ → 0. From (3.10), we have also that xτ(n) − xτ(n)+1 → 0.
Thus ∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 2.8 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof. □

4. Applications

In this section, we apply Theorem 3.1 to obtain well-known and new strong con-
vergence theorems in Hilbert spaces. Let H be a Hilbert space and let f be a proper,
lower semicontinuous and convex function of H into (−∞,∞]. The subdifferential
∂f of f is defined as follows:

∂f(x) = {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}

for all x ∈ H. From Rockafellar [21], we know that ∂f is a maximal monotone
operator. Let C be a nonempty, closed and convex subset of H and let iC be the
indicator function of C, i.e.,

iC(x) =

{
0, x ∈ C,

∞, x /∈ C.

Then iC : H → (−∞,∞] is a proper, lower semicontinuous and convex function on
H and then the subdifferential ∂iC of iC is a maximal monotone operator. Thus
we can define the resolvent Jλ of ∂iC for λ > 0, i.e.,

Jλx = (I + λ∂iC)
−1x

for all x ∈ H. We have that, for any x ∈ H and u ∈ C,

u =Jλx ⇐⇒ x ∈ u+ λ∂iCu ⇐⇒ x ∈ u+ λNCu

⇐⇒ x− u ∈ λNCu

⇐⇒ 1

λ
⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C(4.1)

⇐⇒ ⟨x− u, v − u⟩ ≤ 0, ∀v ∈ C

⇐⇒ u = PCx,

where NCu is the normal cone to C at u, i.e.,

NCu = {z ∈ H : ⟨z, v − u⟩ ≤ 0, ∀v ∈ C}.

We know the following lemmas obtained by Marino and Xu [17] and Kocourek,
Takahashi and Yao [12]; see also [32, 34].

Lemma 4.1 ([17, 32]). Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let k be a real number with 0 ≤ k < 1 and let U : C → H
be a k-strict pseudo-contraction. If xn ⇀ z and xn − Uxn → 0, then z ∈ F (U).

Lemma 4.2 ([12, 34]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let U : C → H be generalized hybrid. If xn ⇀ z and
xn − Uxn → 0, then z ∈ F (U).
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We first prove a strong convergence theorem for a finite family of strict pseudo-
contractions and a finite family of inverse strongly monotone mappings in a Hilbert
space.

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let {s1, . . . , sM} ⊂ [0, 1) and {µ1, . . . , µN} ⊂ (0,∞). Let
{Tj}Mj=1 be a finite family of sj-strict pseudo-contractions of C into H. Let {Bi}Ni=1

be a finite family of µi-inverse strongly monotone mappings of C into H. Let G
be a maximal monotone operator on H and let Jλ = (I + λG)−1 be the resolvent
of G for λ > 0. Let {un} be a sequence in C such that un → u. Assume that
∩M
j=1F (Tj) ∩ (∩N

i=1(Bi +G)−10) ̸= ∅. For any x1 = x ∈ C, define {xn} as follows:
zn =

∑M
j=1 ξj((1− λn)I + λnTj)xn,

wn =
∑N

i=1 σiJηn(I − ηnBi)xn,

xn+1 = δnun + (1− δn)
(
PC(αnxn + βnzn + γnwn)

)
,

where a, b, c ∈ R, {λn} ⊂ R, {ηn} ⊂ (0,∞), {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1) and
{αn}, {βn}, {γn}, {δn} ⊂ (0, 1) satisfy the following conditions:

(1) for any n ∈ N,

0 < a ≤ λn ≤ min{1− s1, . . . , 1− sM}, 0 < b ≤ ηn ≤ 2min{µ1, . . . , µN};

(2)
∑M

j=1 ξj = 1 and
∑N

i=1 σi = 1;

(3) 0 < c ≤ αn, βn, γn < 1 and αn + βn + γn = 1 for all n ∈ N;
(4) limn→∞ δn = 0 and

∑∞
i=1 δn = ∞.

Then {xn} converges strongly to z0 ∈ ∩M
j=1F (Tj) ∩ (∩N

i=1(Bi +G)−10), where z0 =
P∩M

j=1F (Tj)∩(∩N
i=1(Bi+G)−10)u.

Proof. Since Tj is a sj-strict pseudo-contraction of C into H such that F (Tj) ̸= ∅,
from (1) in Examples, Tj is 2

1−sj
-generalized demimetric. Take kj = 1 in Theorem

3.1. Then we get that 2
θjkj

= 1 − sj in Theorem 3.1. Furthermore, from Lemma

4.1, Tj is demiclosed. Thus, we have the desired result from Theorem 3.1. □

We prove a strong convergence theorem for a finite family of generalized hybrid
mappings and a finite family of inverse strongly monotone mappings in a Hilbert
space.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {µ1, . . . , µN} ⊂ (0,∞). Let {Tj}Mj=1 be a finite family of generalized

hybrid mappings of C into H and let {Bi}Ni=1 be a finite family of µi-inverse strongly
monotone mappings of C into H. Let G be a maximal monotone operator on H
and let Jλ = (I + λG)−1 be the resolvent of G for λ > 0. Let {un} be a sequence in
C such that un → u. Assume that

∩M
j=1F (Tj) ∩ (∩N

i=1(Bi +G)−10) ̸= ∅.
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For any x1 = x ∈ C, define {xn} as follows:
zn =

∑M
j=1 ξj((1− λn)I + λnTj)xn,

wn =
∑N

i=1 σiPC(I − ηnBi)xn,

xn+1 = δnun + (1− δn)
(
PC(αnxn + βnzn + γnwn)

)
,

where a, b, c ∈ R, {λn} ⊂ R, {ηn} ⊂ (0,∞), {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1) and
{αn}, {βn}, {γn}, {δn} ⊂ (0, 1) satisfy the following conditions:

(1) for any n ∈ N,

0 < a ≤ λn ≤ 1, 0 < b ≤ ηn ≤ 2min{µ1, . . . , µN};

(2)
∑M

j=1 ξj = 1 and
∑N

i=1 σi = 1;

(3) 0 < c ≤ αn, βn, γn < 1 and αn + βn + γn = 1 for all n ∈ N;
(4) limn→∞ δn = 0 and

∑∞
i=1 δn = ∞.

Then {xn} converges strongly to a point z0 ∈ ∩M
j=1F (Tj)∩ (∩N

i=1(Bi+G)−10), where
z0 = P∩M

j=1F (Tj)∩(∩N
i=1(Bi+G)−10)u.

Proof. Since Tj is a generalized hybrid mapping of C into H such that F (Tj) ̸= ∅,
from (2) in Examples, Tj is 2-generalized demimetric. Take kj = 1 in Theorem
3.1. Then we get that 2

2 = 1 in Theorem 3.1. Furthermore, from Lemma 4.2, Tj is
demiclosed. Therefore, we have the desired result from Theorem 3.1. □

We prove a strong convergence theorem for a finite family of Lipschitzian map-
pings and a finite family of nonexpansive mappings in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let {L1, . . . , LM} ⊂ (0,∞) and let {Sj}Mj=1 be a finite family of Lj-

Lipschitzian mappings of C into H and let {Ui}Ni=1 be a finite family of nonexpansive
mappings of C into H. Let {un} be a sequence in C such that un → u. Assume

that ∩M
j=1F (

Sj

Lj
) ∩ (∩N

i=1F (Ui)) ̸= ∅. For any x1 = x ∈ C, define {xn} as follows:
zn =

∑M
j=1 ξj((1 + λnLj)I − λnSj)xn,

wn =
∑N

i=1 σi((1− ηn)I + ηnUi)xn,

xn+1 = δnun + (1− δn)
(
PC(αnxn + βnzn + γnwn)

)
,

where {λn}, {ηn} ⊂ R, {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1), {αn}, {βn}, {γn}, {δn} ⊂
(0, 1) and a, b, c ∈ R satisfy the following conditions:

(1) 0 < a ≤ λn
−1 ≤ min

{
1
L1

, . . . , 1
LM

}
, 0 < b ≤ ηn ≤ 1 for all n ∈ N;

(2)
∑M

j=1 ξj = 1 and
∑N

i=1 σi = 1;

(3) 0 < c ≤ αn, βn, γn < 1 and αn + βn + γn = 1 for all n ∈ N;
(4) limn→∞ δn = 0 and

∑∞
i=1 δn = ∞.

Then the sequence {xn} converges strongly to z0 ∈ ∩M
j=1F (

Sj

Lj
)∩ (∩N

i=1F (Ui)), where

z0 = P
∩M
j=1F (

Sj
Lj

)∩(∩N
i=1F (Ui))

u.
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Proof. Since Sj is Lj-Lipschitzian and F (
Sj

Lj
) ̸= ∅, Tj = (Lj + 1)I − Sj is −2Lj-

generalized demimetric. Take kj = −1 in Theorem 3.1. Then we have that θjkj =
2Lj and

(1− λn)I + λnTj = (1− λn + λnLj + λn)I − λnSj = (1 + λnLj)I − λnSj .

Furthermore, from Lemma 4.1, Tj is demiclosed. In fact, if xn ⇀ z and xn−Tjxn →
0, then

1

Lj
(xn − Tjxn) =

1

Lj
(Sjxn − Ljxn) =

Sj

Lj
xn − xn → 0.

Since
Sj

Lj
is nonexpansive and hence demiclosed, we have that z ∈ F (

Sj

Lj
) = F (Tj).

Since Ui is nonexpansive, Bi = I − Ui is a 1
2 -inverse strongly monotone mapping.

Putting G = 0 in Theorem 3.1, we have that Jηn = I and

∩N
i=1(Bi +G)−10 = ∩N

i=1(Bi)
−10 = ∩N

i=1F (Ui).

Furthermore, we have that

I − ηnBi = I − ηn(I − Ui) = (1− ηn)I + ηnUi.

Therefore, we have the desired result from Theorem 3.1. □

Finally, using Theorem 3.1, we obtain the following theorem by Takahashi [29].

Theorem 4.6 ([29]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let {t1, . . . , tM} ⊂ (−∞, 1) and {µ1, . . . , µN} ⊂ (0,∞). Let
{Tj}Mj=1 be a finite family of tj-demimetric and demiclosed mappings of C into H

and let {Bi}Ni=1 be a finite family of µi-inverse strongly monotone mappings of C
into H. Assume that ∩M

j=1F (Tj) ∩ (∩N
i=1V I(C,Bi)) ̸= ∅. Let {un} be a sequence in

C such that un → u. For x1 = x ∈ C, let {xn} ⊂ C be a sequence generated by
zn =

∑M
j=1 ξj((1− λn)I + λnTj)xn,

wn =
∑N

i=1 σiPC(I − ηnBi)xn,

xn+1 = δnun + (1− δn)
(
PC(αnxn + βnzn + γnwn)

)
, ∀n ∈ N,

where a, b, c ∈ R, {λn}, {ηn} ⊂ (0,∞), {ξ1, . . . , ξM}, {σ1, . . . , σN} ⊂ (0, 1) and
{αn}, {βn}, {γn}, {δn} ⊂ (0, 1) satisfy the following conditions:

(1) for any n ∈ N,

0 < a ≤ λn ≤ min{1− t1, . . . , 1− tM}, 0 < b ≤ ηn ≤ 2min{µ1, . . . , µN};

(2)
∑M

j=1 ξj = 1 and
∑N

i=1 σi = 1;

(3) 0 < c ≤ αn, βn, γn < 1 and αn + βn + γn = 1 for all n ∈ N;
(4) limn→∞ δn = 0 and

∑∞
i=1 δn = ∞.

Then {xn} converges strongly to a point z0 ∈ ∩M
j=1F (Tj) ∩ (∩N

i=1V I(C,Bi)), where
z0 = P∩M

j=1F (Tj)∩(∩N
i=1V I(C,Bi))

u.

Proof. Since Tj is a tj-demimetric mapping of C into H such that F (Tj) ̸= ∅,
Tj is 2

1−tj
-generalized demimetric. Take kj = 1 in Theorem 3.1. Then we get

that 2
θkj

= 1 − tj in Theorem 3.1. Put G = ∂iC in Theorem 3.1. Then we have
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from (4.1) that for ηn > 0, Jηn = PC . Furthermore, we have (∂iC)
−10 = C and

(Bi + ∂iC)
−10 = V I(C,Bi). In fact, we have that, for any z ∈ C,

z ∈ (Bi + ∂iC)
−10 ⇐⇒ 0 ∈ Biz + ∂iCz

⇐⇒ 0 ∈ Biz +NCz

⇐⇒ −Biz ∈ NCz

⇐⇒ ⟨−Biz, v − z⟩ ≤ 0, ∀v ∈ C

⇐⇒ ⟨Biz, v − z⟩ ≥ 0, ∀v ∈ C

⇐⇒ z ∈ V I(C,Bi).

Therefore, we have the desired result from Theorem 3.1. □
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