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values. Here M : C ([T0, T ];H) → H is an operator (possibly nonlinear) satisfying

(1.2) ∥Mx−My∥ ≤ m∥x− y∥∞ for all x, y ∈ C ([T0, T ];H) ,

withm ∈ [0, 1]. The class of operatorsM satisfying the condition (1.2) is sufficiently
large and includes the following well-known nonlocal initial conditions:

(i) Mx = x0 (general Cauchy initial condition x(T0) = x0);
(ii) Mx = ±x(T ) (periodic and anti-periodic initial conditions);

(iii) Mx = 1
T−T0

∫ T
T0
x(s)ds (mean value initial condition);

(iv) Mx =
∑k0

i=1 αix(ti) with αi ∈ R and
∑k0

i=1 |αi| ≤ 1, where T0 < t1 < · · · <
tk0 ≤ T (multi-point initial condition).

Our study is achieved through the Galerkin-Like method, introduced by Jourani
and Vilches in [23]. This method to solve differential inclusions, consists in ap-
proaching the original problem by projecting the state into a n-dimensional Hilbert
space but not the velocity. The approached problems always have a solution and,
under some compactness conditions, they converge strongly pointwisely (up to a
subsequence) to a solution of the original differential inclusion. We combine the
Galerkin-Like method with the reduction technique for the sweeping process (see,
e.g., [18,38]). The reduction technique associates to every sweeping process an un-
constrained differential inclusion, whose solutions are also solutions of the sweeping
process. In order to apply this method, the moving sets must to be positively α-far
(see definition below). The class of positively α-far sets is very general and includes
convex sets, uniformly prox-regular sets, subsmooth sets, compact wedged sets, etc.

In Sections 4 and 5, we present the main results of the first part of the paper,
namely, the existence for perturbed sweeping process with nonlocal initial con-
ditions. As a consequence, we obtain the existence of periodic solutions for the
perturbed sweeping process, which extends the results from [11,12,17]. We believe
that these results can be used for further developments in the theory of periodic
perturbations and stability for the sweeping process (see [25]).

The second part of the paper is concerned with existence of abstract differen-
tial inclusions with nonlocal initial conditions. To deal with it, we use the con-
cept of bounding functions and some tangential conditions. We say that V is a
(weak/strong) bounding function for a differential inclusion (see Definition 6.1),
when the existence of this function implies the existence of an a priori bound for
the solutions of the differential inclusion. Typically, the bounding function has
to satisfy some conditions involving the derivatives of V (in some sense) and the
right-hand side of the differential inclusion. The idea of bounding functions was
introduced by Mawhin [30] to deal with second order boundary value problems.
Since then, it was systematically used for the study of various boundary problems
(see [7,36] and the references therein). In [30], Mawhin imposes a specific condition
relative to the second order derivatives of V , which implies the boundedness of the
solution for the second order boundary value problem. For the case of first order
differential inclusions, the concept of bounding function involves conditions on the
first order derivatives of V and the right-hand side of the differential inclusion, in
some ring or localized in the boundary of some bounded set. Thus, the concept
of bounding function is vague and highly depending on the method to deal with
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the differential inclusion. Our definition of weak bounding function (see Definition
6.1) is taken from [7]. The use of bounding functions, generally, is related to the
Leray-Schauder continuation principle and the topological degree theory (see [7] for
more details). We emphasize that our approach make no appeal to these tools from
nonlinear analysis but merely basic elements of set-valued and variational analysis.

In Section 6 we use bounding functions to study a first order differential inclusion
with nonlocal initial conditions when H is compactly embedded in a separable
Banach space E.

In Section 7, we use some tangential conditions to get the existence of abstract
nonlocal differential inclusion in finite dimensions. These tangential conditions,
related with the weak invariance of differential inclusions, typically, involves the
intersection between the Bouligand tangent cone and the right-hand side of the
differential inclusion. Since we apply a fixed point theorem to the solution map
of the differential inclusion, a strong property is needed, namely, the intersection
between the Clarke tangent cone and the right-hand side of the differential inclusion
is nonempty (see Remark 7.2).

Finally, in Sections 8 and 9, we give, respectively, some applications to nonlocal
differential complementarity systems and to vector hysteresis.

2. Preliminaries

From now on H stands for a separable Hilbert space whose norm is denoted by
∥ · ∥. The closed unit ball is denoted by B. The notation Hw stands for H equipped
with the weak topology and xn ⇀ x denotes the weak convergence of a sequence
(xn)n to x. The support function of a set S ⊆ H is defined, for any v ∈ H, by
σ(v, S) := sups∈S ⟨v, s⟩.

Recall that a vector h ∈ H belongs to the Clarke tangent cone TC(S;x) (see [13]);
when for every sequence (xn)n in S converging to x and every sequence of positive
numbers (tn)n converging to 0, there exists some sequence (hn)n in H converging
to h such that xn + tnhn ∈ S for all n ∈ N. This cone is closed and convex, and its
negative polar N(S;x) is the Clarke normal cone to S at x ∈ S, that is,

N (S;x) :=
{
v ∈ H : ⟨v, h⟩ ≤ 0 ∀h ∈ TC(S;x)

}
.

As usual, N(S;x) := ∅ if x /∈ S. Through that normal cone, the Clarke subdifferen-
tial of a function f : H → R ∪ {+∞} is defined by

∂f(x) := {v ∈ H : (v,−1) ∈ N (epi f, (x, f(x)))} ,
where epi f := {(y, r) ∈ H × R : f(y) ≤ r} is the epigraph of f . When the function f
is finite and locally Lipschitzian around x, the Clarke subdifferential is characterized
(see [14]) in the following simple and amenable way

∂f(x) = {v ∈ H : ⟨v, h⟩ ≤ f◦(x;h) for all h ∈ H} ,
where

f◦(x;h) := lim sup
(t,y)→(0+,x)

t−1 [f(y + th)− f(y)] ,

is the generalized directional derivative of the locally Lipschitzian function f at x
in the direction h ∈ H. The function f◦(x; ·) is in fact the support function of
∂f(x). That characterization easily yields that the Clarke subdifferential of any
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locally Lipschitzian function has the important property of upper semicontinuity
from H into Hw (see definition below).

Given a lower semicontinuous function f : H → R, we define the Dini directional
derivative of f at x in the direction v, denoted Df(x; v), as

Df(x; v) := lim inf
w→v,t↓0

f(x+ tw)− f(x)

t
.

Moreover, if f is locally Lipschitz, then

Df(x; v) = lim inf
t↓0

t−1 [f(x+ tv)− f(x)] .

Given x ∈ S, we say that v ∈ H belong to the Bouligand tangent cone TB (S;x)
(see [13]), when there exist vn → v and tn → 0+ such that x + tnvn ∈ S for all
n ∈ N. By the very definition of TB (S;x), it is clear that

TC (S;x) ⊆ TB (S;x) for all x ∈ S.

Moreover, equality holds when S is convex.
Let ([T0, T ],L, λ) be the Lebesgue measure space over the interval [T0, T ] and

Φ: [T0, T ] ⇒ H be a set-valued map. We say that Φ is measurable if its support
function t 7→ σ(v,Φ(t)) is L-measurable for all v ∈ H. Furthermore, let Ψ: H ⇒ H
be a set-valued map with nonempty, closed, convex and bounded values. We say that
Ψ is upper semicontinuous from H into Hw if its support function x 7→ σ (v,Ψ(x))
is upper semicontinuous for all v ∈ H.

The distance function to a set S ⊆ H at the point x ∈ H is defined by dS(x) :=
infy∈S ∥x− y∥. We denote ProjS(x) the set (possibly empty)

ProjS(x) := {y ∈ S : dS(x) = ∥x− y∥} .

The equality (see [14])

(2.1) N (S;x) = cl∗ (R+∂dS(x)) for x ∈ S,

gives an expression of the Clarke normal cone in terms of the distance function. As
usual, it will be convenient to write ∂d(x, S) in place of ∂d (·, S) (x).

Given α ∈ (0, 1], we say that S ⊆ H is positively α-far if there exists ρ ∈ (0,+∞)
such that

α ≤ inf
x∈Uρ(S)

d (0, ∂dS(x)) ,

where Uρ(S) := {x ∈ H : 0 < dS(x) < ρ} is the open ρ-tube around S. This class,
introduced in [18], is broad enough to include convex sets, uniformly prox-regular
sets and uniformly subsmooth sets, among others. See [22] for more details.

We recall the Kakutani-Fan-Glicksberg fixed point (see [4]), which will be used
in the sequel.

Theorem 2.1 (Kakutani-Fan-Glicksberg). Let X be a nonempty compact convex
subset of a locally convex Hausdorff space, and let F : K ⇒ K be a set-valued map
with closed graph and nonempty convex values. Then the set of fixed point of F is
compact and nonempty.
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A metric space X is called contractible if there exist a point x0 ∈ X and a
continuous map (homotopy) h : X × [0, 1] → X such that h(x, 0) = x and h(x, 1) =
x0 for all x ∈ X. It is clear that convex sets are contractible. Moreover, a compact
metric space A is called an Rδ-set if there exists a decreasing sequence {An}n of
compact contractible sets whose intersection is exactly A. Furthermore, we say that
Φ: X ⇒ Y is an Rδ-map if it is upper semicontinuous and takes Rδ-values. The
following result is a generalization of the Bohnenblust-Karlin fixed point theorem
(see [36, Proposition 1.23]).

Proposition 2.2. Let X be a nonempty, compact and contractible topological space,
Φ: X ⇒ Y an Rδ-map and f : Y → X a continuous function. If P : X ⇒ X is the
composition map x⇒ f(Φ(x)), then P admits a fixed point.

We denote by L1 ([T0, T ];H) the space of H-valued Lebesgue integrable functions
defined over [T0, T ]. We write L1

w ([T0, T ];H) to mean the space L1 ([T0, T ];H)
endowed with the weak topology. A set K ⊆ L1 ([T0, T ];H) is uniformly integrable
if

lim
λ→+∞

[
sup
f∈K

∫
{∥f∥≥λ}

∥f(s)∥ds

]
= 0.

Moreover, if there exists ψ ∈ L1(T0, T ) such that for all f ∈ K

∥f(t)∥ ≤ ψ(t) a.e. t ∈ [T0, T ],

then K is uniformly integrable. The following result is a well-known characteri-
zation of bounded relatively weakly compact sets in L1 ([T0, T ];H) (see [16, Theo-
rem 2.3.24]).

Theorem 2.3 (Dunford-Pettis). Let K ⊆ L1 ([T0, T ];H) be a bounded set. Then, K
is relatively weakly compact in L1 ([T0, T ];H) if and only if K is uniformly integrable.

We recall the following characterization of weak convergence in the space C ([T0, T ];H)
(see [8, Theorem 4.2]).

Lemma 2.4. (xn)n ⊆ C ([T0, T ];H) weakly converges in C ([T0, T ];H) to x if and
only if (xn)n is uniformly bounded in C ([T0, T ];H) and xn(t) ⇀ x(t) for all t ∈
[T0, T ].

A function u belong to W 1,1 ([T0, T ];H) if there exists f ∈ L1 ([T0, T ];H) and a

fixed element u0 ∈ H such that u(t) = u0 +
∫ t
T0
f(s)ds for all t ∈ [T0, T ].

A separable Hilbert space (H, ∥·∥)H is compactly embedded in a separable Banach
space (E, ∥ · ∥E), we write H ↪→ E, if there exists C > 0 such that ∥x∥E ≤ C∥x∥H
for all x ∈ H and every bounded set in H is relatively compact in E.

Let (en)n∈N be an orthonormal basis of H. For every n ∈ N we consider the
linear operator Pn from H into span {e1, . . . , en} defined by

Pn

( ∞∑
k=1

⟨x, ek⟩ ek

)
=

n∑
k=1

⟨x, ek⟩ ek.

These operators are the key elements of the Galerkin-like method, introduced in [23].
The following result summarize the main properties of the linear operator Pn .
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Lemma 2.5.

(i) ∥Pn(x)∥ ≤ ∥x∥ for all x ∈ H;
(ii) ⟨Pn(x), x− Pn(x)⟩ = 0 for all x ∈ H;
(iii) Pn(x) → x as n→ +∞ for all x ∈ H;
(iv) if (xn)n is a bounded sequence with xn ⇀ x as n → +∞ then Pn(xn) ⇀ x

as n→ +∞;
(v if B ⊆ H is relatively compact then sup

x∈B
∥x− Pn(x)∥ → 0 as n→ +∞.

Lemma 2.6 ([24]). If S ⊆ H is a ball compact set, then

∂dS(x) =
x− coProjS(x)

dS(x)
x /∈ S.

The following result may be proved in the same way as [24, Lemma 4.4] (see
also [22, Lemma 5.7]).

Lemma 2.7. Let x : [T0, T ] → H be an absolutely continuous function, P : H → H
be a linear operator and C : [T0, T ] ⇒ H be a set-valued map with nonempty and
closed values satisfying

|dC(t)(x)− dC(s)(x)| ≤ |ζ(t)− ζ(s)| for all x ∈ H and s, t ∈ [T0, T ],

for some ζ ∈W 1,1 (T0, T ). Then, the following assertions hold true:

(i) The function t→ d(P (x(t));C(t)) is absolutely continuous over [T0, T ].

(ii) For all t ∈]T0, T [, where ζ̇(t) and ẋ(t) exist,

lim sup
s↓0

1

s

[
dC(t+s)(P (x(t+ s)))− dC(t)(P (x(t)))

]
≤ |ζ̇(t)|+ lim sup

s↓0

1

s

[
dC(t)(P (x(t+ s)))− dC(t)(P (x(t)))

]
.

(iii) For all t ∈]T0, T [, where ẋ(t) exists,

lim sup
s↓0

1

s

[
dC(t)(P (x(t+ s)))− dC(t)(P (x(t)))

]
≤ max

y∗∈∂dC(t)(P (x(t)))
⟨y∗, ẋ(t)⟩ .

(iv) For all t ∈ {s ∈ [T0, T ] : P (x(s)) /∈ C(s)}, where ẋ(t) exists,

lim
s↓0

1

s

[
dC(t)(P (x(t+ s)))− dC(t)(P (x(t)))

]
= min

y∗∈∂d(P (x(t)),C(t))
⟨y∗, P (ẋ(t))⟩ .

(v) For every x ∈ H, the set-valued map t⇒ ∂d(P (x), C(t)) is measurable.

3. Technical assumptions

For the sake of readability, in this section we collect the hypotheses used along
the paper.

Hypotheses on the set-valued map C : [T0, T ] ⇒ H: C is a set-valued map with
nonempty and closed values. Moreover, we will consider the following conditions:

(H1) There exists ζ ∈W 1,1 (T0, T ) such that for s, t ∈ [T0, T ] and all x ∈ H

|d(x,C(t))− d(x,C(s))| ≤ |ζ(t)− ζ(s)|.
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(H2) There exist two constants α0 ∈ (0, 1] and ρ ∈ (0,+∞) such that

0 < α0 ≤ inf
x∈Uρ(C(t))

d (0, ∂d(x,C(t))) a.e. t ∈ [T0, T ],

where Uρ(C(t)) := {y ∈ H : 0 < d(y, C(t)) < ρ} for all t ∈ [T0, T ].
(H3) For all t ∈ [T0, T ], the set C(t) is ball compact, that is, for every r > 0 the

set C(t) ∩ rB is compact in H.

Remark 3.1. The condition (H2) holds true for a big family of sets, e.g., convex
sets, r-uniformly prox-regular sets, equi-uniformly subsmooth sets, etc (see [22]).

Hypotheses on the set-valued map F : [T0, T ] ×H ⇒ H: F is a set-valued map
with nonempty, closed and convex values. Moreover, we will consider the following
conditions:

(HF
1 ) For all x ∈ H, F (·, x) is measurable.

(HF
2 ) For a.e. t ∈ [T0, T ], F (t, ·) is upper semicontinuous from H into Hw.

(HF
3 ) There exists β ∈ L1(T0, T ) such that

d (0, F (t, x)) := inf{∥w∥ : w ∈ F (t, x)} ≤ β(t),

for all x ∈ H and a.e. t ∈ [T0, T ].
(HF

4 ) For all r > 0 there exists vr ∈ L1(T0, T ) such that for a.e. t ∈ [T0, T ] and
all x ∈ H with ∥x∥ ≤ r

d (0, F (t, x)) := inf{∥w∥ : w ∈ F (t, x)} ≤ vr(t).

Moreover, in the case where (H, ∥ · ∥H) is compactly embedded in a separable Ba-
nach space (E, ∥ · ∥E), we will consider the following hypothesis on F :

(HF
5 ) For a.e. t ∈ [T0, T ], F (t, ·) is closed from E into Ew, that is, graphF (t, ·) is

closed in E × Ew.

Hypotheses on the map M : C ([T0, T ];H) → H:

(HM
1 ) There exists m ∈ [0, 1) such that

∥Mx−My∥ ≤ m∥x− y∥∞ for all x, y ∈ C ([T0, T ];H) .

(HM
2 ) For all x, y ∈ C ([T0, T ];H)

∥Mx−My∥ ≤ ∥x− y∥∞.

(HM
3 ) M is sequentially weakly upper semicontinuous, that is, if xn ⇀ x in

C ([T0, T ];H) (see Lemma 2.4), then Mxk ⇀ Mx in H, for some subse-
quence (xk)k of (xn)n.

Remark 3.2. a) If M : C ([T0, T ];H) → H is linear and continuous, then
(HM

3 ) holds.
b) The conditions (HM

2 ) and (HM
3 ) hold for the following operators:

i) Mx = x0;
ii) Mx = ±x(T );
iii) Mx = 1

T−T0

∫ T
T0
x(s)ds;

iv) Mx =
∑k0

i=1 αix(ti) with αi ∈ R and
∑k0

i=1 |αi| ≤ 1, where T0 < t1 <
· · · < tk0 ≤ T .
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4. Perturbed sweeping process with nonlocal initial conditions

In this section, we prove existence results for (1.1) in infinite dimensional Hilbert
spaces. We distinguish between the contractive case (HM

1 ) (see Theorem 4.2) and
the nonexpansive case (HM

2 ) (see Theorem 4.4). Our results are associated with the
existence of a closed convex set D so that MC ⊆ D ⊆ C(T0), where

(4.1) C := {x ∈W 1,1 ([T0, T ]) : x(t) ∈ C(t) for all t ∈ [T0, T ]}.

This condition seems very natural because the constrained nature of the sweeping
process. Moreover, unlike the contractive case, we have to impose a boundedness
condition on the set D to assure the existence of solutions of (1.1).

Before presenting the main results of this section, we want to emphasize the role
of condition (H3). Indeed, the compactness hypothesis (H3) seems to be a strong
assumption, but it is not. We refer to [23] for an example of a perturbed sweeping
process with Cauchy initial condition, governed by a ball, without solutions.

The following lemma will be used in the construction of the fixed point operator
used in the proof of Theorem 4.2.

Lemma 4.1. Assume that (HM
1 ) holds. If f ∈ L1 ([T0, T ];H), then there exists a

unique solution of the following differential equation:{
ẋ(t) = f(t) a.e. t ∈ [T0, T ],

x(T0) =Mx.

Moreover, ∥x(t)∥ ≤ 1

1−m

(
∥M0∥+

∫ T
T0

∥f(s)∥ds
)
for all t ∈ [T0, T ].

Proof. Fix x0 ∈ H. For each n ∈ N we define

(4.2) xn+1(t) =Mxn +

∫ t

T0

f(s)ds for all t ∈ [T0, T ].

Then, for all n ≥ 1

∥xn+1(t)− xn(t)∥ = ∥Mxn −Mxn−1∥ ≤ m∥xn − xn−1∥∞.

Therefore, ∥xn+1 − xn∥∞ ≤ m∥xn − xn−1∥∞ for all n ≥ 1, which proves, since
m ∈ [0, 1), that (xn)n is a Cauchy sequence in C ([T0, T ];H). Therefore, by passing
to the limit in (4.2), we obtain the result. �

The following result asserts the existence of solutions for (1.1), when the operator
M is a contraction.

Theorem 4.2. Let F : [T0, T ]×H ⇒ H be a set-valued map satisfying (HF
1 ), (HF

2 )
and (HF

3 ) and C : [T0, T ] ⇒ H be a set-valued map satisfying (H1), (H2) and (H3).
Assume, in addition to (HM

1 ), (HM
3 ), that there exists a convex set D such that

MC ⊆ D ⊆ C(T0), where C is given by (4.1) and

(4.3)

(
1 +

1

α2
0

)∫ T

T0

(
|ζ̇(s)|+ β(s)

)
ds < ρ.
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Then, there exists at least one solution of (1.1). Moreover,

∥ẋ(t)∥ ≤ 1

α2
0

|ζ̇(t)|+
(
1 +

1

α2
0

)
β(t) a.e. t ∈ [T0, T ].

Proof. Let us define the set-valued map G : [T0, T ]×H ⇒ H by:

G(t, x) := − 1

α2
0

(
|ζ̇(t)|+ β(t)

)
∂dC(t) (x) + F (t, x) ∩ β(t)B.

It is clear that G satisfy (HF
1 ) and (HF

2 ).
The idea of the proof is to use the reduction technique for the sweeping process to-

gether with the Galerkin-like method. The reduction technique consists in showing
the existence of solutions of the following unconstrained differential inclusion:

(4.4)

{
ẋ(t) ∈ G(t, x(t)) a.e. t ∈ [T0, T ],

x(T0) =Mx,

Thus, by formula (2.1), every solution of (4.4) together with the condition x(t) ∈
C(t) for all t ∈ [T0, T ], is a solution of (1.1). Since it is not possible to prove directly
the existence of (4.4), we use the Galerkin like-method, that is, we approach (4.4)
by projecting the state into a n-dimensional Hilbert space.

The proof will be divided into several steps.
Step 1: For each n ∈ N there exists at least one solution xn of

(4.5)

{
ẋ(t) ∈ G(t, Pn(x(t))) a.e. t ∈ [T0, T ],

x(T0) = projD (Pn (Mx)) ,

where Pn : H → span{e1, . . . , en} is the linear operator defined in Lemma 2.5.
Proof of Step 1 : Let K ⊆ L1 ([T0, T ];H) be the set defined by

K :=
{
f ∈ L1 ([T0, T ];H) : ∥f(t)∥ ≤ ψ(t) a.e. t ∈ [T0, T ]

}
,

where

(4.6) ψ(t) :=
1

α2
0

|ζ̇(t)|+
(
1 +

1

α2
0

)
β(t) for all t ∈ [T0, T ].

It is clear that K is nonempty, closed and convex. In addition, since ψ ∈ L1(T0, T ),
K is bounded and uniformly integrable, hence, it is compact in L1

w ([T0, T ];H)
(see Theorem 2.3). We observe that K, endowed with the relative L1

w ([T0, T ];H)
topology is a metric space (see [15, Theorem V.6.3]). Define the map Fn : K ⇒
L1 ([T0, T ];H) as

Fn(f) := {v ∈ L1 ([T0, T ];H) : v(t) ∈ G(t, Pn(xf (t))) a.e. t ∈ [T0, T ]},
where for each f ∈ K, xf is the unique solution (see Lemma 4.1) of{

ẋ(t) = f(t) a.e. t ∈ [T0, T ],

x(T0) = projD (Pn(Mx)) .

By (HF
1 ), (HF

2 ) and [3, Lemma 6], we conclude that Fn(f) has nonempty, closed
and convex values. Moreover, Fn(K) ⊆ K. Indeed, if f ∈ K and v ∈ Fn(f) then,

∥v(t)∥ ≤ sup{∥w∥ : w ∈ G(t, Pn(xf (t)))} ≤ ψ(t) for a.e. t ∈ [T0, T ].
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We denote by Kw the set K seen as a compact and convex subset of L1
w ([T0, T ];H).

Claim 1.: Fn is upper semicontinuous from Kw into Kw.
Proof of Claim 1.: By virtue of [21, Proposition 1.2.23], it is sufficient to prove that
the graph graph(Fn) of Fn is sequentially closed in Kw ×Kw.

Let ((fj , vj))j ⊆ graph(Fn) with fj → f and vj → v in L1
w ([T0, T ];H) as j →

+∞. We have to show that (f, v) ∈ graph(Fn). We first note that,

(4.7) vj(t) ∈ G(t, Pn

(
xfj (t)

)
) for a.e. t ∈ [T0, T ].

Moreover, since fj ∈ K and Lemma 4.1, we have that

(4.8) ∥ẋfj (t)∥ = ∥fj(t)∥ ≤ ψ(t) a.e. t ∈ [T0, T ],

and

(4.9) ∥xfj (t)∥ ≤ 1

1−m

(
∥projD(Pn(M0))∥+

∫ T

T0

ψ(s)ds

)
∀t ∈ [T0, T ].

On the one hand, let us consider P := {ẋfj : j ∈ N} ⊆ L1 ([T0, T ];H). Ac-
cording to (4.8), the set P is bounded and uniformly integrable. Thus, as a re-
sult of the Dunford-Pettis theorem (see Theorem 2.3), P is relatively compact
in L1

w ([T0, T ];H). Therefore, there exists a subsequence of (ẋfj ) (without rela-

beling) converging to some v ∈ L1
w ([T0, T ];H). Now, let S := {xfj : j ∈ N} ⊆

L1 ([T0, T ];H). Then, due to (4.9) and the Dunford-Pettis theorem (see Theorem
2.3), S is relatively compact in L1

w ([T0, T ];H). Consequently, there exists a subse-
quence of (xfj )j (without relabeling) converging to some x ∈ L1

w ([T0, T ];H).
On the other hand, due to (4.8) and (4.9), the sequence (xfj )j is uniformly

bounded in W 1,1 ([T0, T ];H) and in L∞ ([T0, T ];H). Therefore, by result of [31,
Theorem 0.2.2.1], there exists a subsequence of (xfj )j (without relabeling) and a
function x̃ such that

(4.10) xfj (t) → x̃(t) weakly as j → +∞ for all t ∈ [T0, T ].

Moreover, by virtue of [16, Proposition 2.3.31], x ≡ x̃. Now, we prove that v = ẋ.
Indeed, let w ∈ H and t ∈ [T0, T ] be fixed. Then,

(4.11)
⟨
xfj (t)− xfj (T0), w

⟩
=

∫ t

T0

⟨
ẋfj (s), w

⟩
=

∫ T

T0

⟨
ẋfj (s), w · 1[T0,t](s)

⟩
ds,

where

1[T0,t](s) :=

{
1, if s ∈ [T0, t],

0, if s ∈]t, T ],

belongs to L∞ ([T0, T ];H). Moreover, due to (HM
3 ) and Lemma 2.4,Mxfj ⇀Mx in

H (without relabeling), which implies, by the definition of Pn, that Pn

(
Mxfj

)
→

Pn(Mx). Thus, xfj (T0) → projD (Pn(Mx)). Therefore, using (4.10), the weak

convergence of ẋfj to v in L1 ([T0, T ];H) and passing to the limit in (4.11), we
obtain

⟨x(t)− projD (Pn(Mx)) , w⟩ =
∫ t

T0

⟨v(s), w⟩ ds for all w ∈ H.
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Thus

x(t) = projD (Pn(Mx)) +

∫ t

T0

v(s)ds for all t ∈ [T0, T ].

Therefore, we have proved the existence of a subsequence of (xfj )j (without rela-
beling) and an absolutely continuous function x : [T0, T ] → H such that

xfj (t) → x(t) weakly for all t ∈ [T0, T ],

xfj → x in L1
w ([T0, T ];H) ,

ẋfj → ẋ in L1
w ([T0, T ];H) ,

x(t) = projD (Pn(Mx)) +

∫ t

T0

f(s)ds for all t ∈ [T0, T ].

Moreover, by the definition of Pn, Pn(xfj (t)) → Pn(x(t)) for every t ∈ [T0, T ].
Consequently, by virtue of (4.7), the upper semicontinuity of G(t, ·) from H into
Hw and [16, Proposition 2.3.1], we obtain, for a.e. t ∈ [T0, T ]

v(t) ∈ convw- lim sup
m→+∞

{vm(t)} ⊆ convG(t, Pn(x(t))) = G(t, Pn(x(t))),

which shows that (f, v) ∈ graph (Fn), as claimed. �
Now, we apply the Kakutani-Fan-Glicksberg fixed point theorem (see Theorem

2.1) to the set-valued map Fn : Kw ⇒ Kw, to deduce the existence of f̂n ∈ K such

that f̂n ∈ Fn

(
f̂n

)
. Thus, the function xn := xf̂n ∈ W 1,1 ([T0, T ];H) is a solution

of (4.5), which proves Step 1. �
Step 2.: There exists x ∈W 1,1 ([T0, T ];H) solution of

(4.12)


ẋ(t) ∈ G(t, x(t)) a.e. t ∈ [T0, T ],

x(t) ∈ C(t) for all t ∈ [T0, T ],

x(T0) = projD (Mx) .

Proof of Step 2.: For each n ∈ N, let xn be a solution of (4.5) and for all t ∈ [T0, T ]
define

φn(t) := dC(t)(Pn(xn(t))) and Γn(t) := ∂dC(t)(Pn(xn(t))).

Then, according to Step 1, there exist fn(t) ∈ F (t, Pn(xn(t))) ∩ β(t)B and dn(t) ∈
Γn(t) such that

(4.13)

 ẋn(t) = − 1

α2
0

(
|ζ̇(t)|+ β(t)

)
dn(t) + fn(t) a.e. t ∈ [T0, T ],

xn(T0) = projD(Pn(Mxn)).

Moreover, according to (4.9), for all t ∈ [T0, T ]

(4.14) ∥xn(t)∥ ≤ 1

1−m

(
∥projD (Pn(M0)) ∥+

∫ T

T0

φ(s)ds

)
,

where ψ is defined by (4.6). Therefore, (xn)n and (Pn(xn))n are uniformly bounded
in C ([T0, T ];H).



474 A. JOURANI AND E. VILCHES

Claim 2. lim
n→+∞

φn(T0) = 0.

Proof of Claim 2.: Indeed, since (xn(T0))n is bounded (see (4.14)), there exists a

positive number R̃ such that (xn(T0))n ⊆ D∩ R̃B ⊆ C(T0)∩ R̃B. Hence, due to the
ball compactness of C(T0) and Lemma 2.5,

lim sup
n→+∞

φn(T0) = lim sup
n→+∞

[
dC(T0)(Pnxn(T0))− dC(T0)(xn(T0))

]
≤ lim sup

n→+∞
∥xn(T0)− Pn(xn(T0))∥

≤ lim sup
n→+∞

sup
x∈D∩R̃B

∥x− Pn(x)∥

= 0,

which proves the claim.

From now on, without loss of generality, due to Claim 2 and condition (4.3), we
may assume that for all n ∈ N

(4.15) φn(T0) +

(
1 +

1

α2
0

)∫ T

T0

(
|ζ̇(s)|+ β(s)

)
ds < ρ.

Claim 3.: For all t ∈ [T0, T ]

(4.16) φ3
n(t) ≤ φn(T0)

3 +
3

α2
0

∫ t

T0

(
|ζ̇(s)|+ β(s)

)
sup

x∈A(s)
∥x− Pn(x)∥2ds,

where

R := ρ+
1

1−m

(
sup
n∈N

∥projD(Pn(M0))∥+
∫ T

T0

ψ(s)ds

)
and, due to (H3), A(t) := co (C(t) ∩RB) is relatively compact for every t ∈ [T0, T ].
Proof of Claim 3.: The idea of the proof is to use (H2). To do that, we proceed
to show first that φn(t) < ρ for all t ∈ [T0, T ]. Indeed, let t ∈ [T0, T ] where ẋn(t)
exists. Then, due to (ii) and (iii) of Lemma 2.7 and (4.13),

φ̇n(t) ≤ |ζ̇(t)|+ max
y∗∈Γn(t)

⟨y∗, Pn (ẋn(t))⟩

≤ |ζ̇(t)|+ ∥ẋn(t)∥

≤
(
1 +

1

α2
0

)(
|ζ̇(t)|+ β(t)

)
.

Therefore, according to (4.15), for all t ∈ [T0, T ]

φn(t) ≤ φn(T0) +

(
1 +

1

α2
0

)∫ t

T0

(
|ζ̇(s)|+ β(s)

)
ds < ρ,

as claimed. �
Now, let t ∈ Ωn := {t ∈ [T0, T ] : Pn(xn(t)) /∈ C(t)} where ẋn(t) exists. Then, due
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to Lemma 2.7,

φ̇n(t) ≤ |ζ̇(t)|+ min
y∗∈Γn(t)

⟨y∗, Pn (ẋn(t))⟩

≤ |ζ̇(t)| − 1

α2
0

(
|ζ̇(t)|+ β(t)

)
⟨dn(t), Pn(dn(t))⟩

+ ⟨dn(t), Pn(fn(t))⟩

≤
(
|ζ̇(t)|+ β(t)

)(
1− 1

α2
0

⟨dn(t), Pn(dn(t))⟩
)
.

Moreover, due to (H2),

−⟨dn(t), Pn(dn(t))⟩ = ⟨dn(t), dn(t)− Pn(dn(t))⟩+ ⟨dn(t),−dn(t)⟩
≤ ⟨dn(t), dn(t)− Pn(dn(t))⟩ − α2

0

= ∥dn(t)− Pn(dn(t))∥2 − α2
0.

Hence, for a.e. t ∈ Ωn,

φ̇n(t) ≤
1

α2
0

(
|ζ̇(t)|+ β(t)

)
∥dn(t)− Pn(dn(t))∥2.

Furthermore, for t ∈ Ωn, since dn(t) ∈ Γn(t), Lemma 2.6 ensures the existence of

gn(t) ∈ co ProjC(t)(Pn(xn(t)))

such that

dn(t) =
1

φn(t)
(Pn(xn(t))− gn(t)) .

Thus, by virtue of (4.14) and the inequality φn(t) < ρ for all t ∈ [T0, T ],

∥gn(t)∥ ≤ φn(t) + ∥Pn(xn(t))∥

≤ ρ+
1

1−m

(
∥projD(Pn(M0))∥+

∫ t

T0

ψ(s)ds

)
≤ R,

which entails that gn(t) ∈ A(t) for all t ∈ Ωn. Thus, for every t ∈ Ωn

φn(t)
2∥dn(t)− Pn(dn(t))∥2 = ∥gn(t)− Pn(gn(t))∥2 ≤ sup

x∈A(t)
∥x− Pn(x)∥2.

Therefore, for t /∈ Ωn, we obtain that for t ∈ [T0, T ]

φ3
n(t) = φ3

n(T0) + 3

∫ t

T0

φ2
n(s)φ̇n(s)ds

≤ φ3
n(T0) +

3

α2
0

∫ t

T0

(
|ζ̇(s)|+ β(s)

)
sup

x∈A(s)
∥x− Pn(x)∥2ds,

as claimed. �
Claim 4.: lim

n→+∞
φn(t) = 0 for all t ∈ [T0, T ].

Proof of Claim 4.: Fix t ∈ [T0, T ]. Since A(t) is relatively compact, Lemma 2.5 2.5
asserts that

lim
n→+∞

sup
x∈A(t)

∥x− Pn(x)∥ = 0.
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Hence, by Fatou’s lemma and (4.16),

lim sup
n→+∞

φ3
n(t) ≤

3

α2
0

lim sup
n→+∞

∫ t

T0

(
|ζ̇(s)|+ β(s)

)
sup

x∈A(s)
∥x− Pn(x)∥2ds

≤ 3

α2
0

∫ t

T0

(
|ζ̇(s)|+ β(s)

)
lim sup
n→+∞

sup
x∈A(s)

∥x− Pn(x)∥2ds

= 0,

as required. �
Claim 5.: (Pn(xn(t)))n is relatively compact for all t ∈ [T0, T ].

Proof of Claim 5.: Fix t ∈ [T0, T ] and let sn(t) ∈ ProjC(t) (Pn(xn(t))) (this pro-

jection is well defined because (Pn(xn))n is uniformly bounded in C([T0, T ];H)).
Then, as a result of (4.14),

∥sn(t)∥ ≤ φ(t) + ∥Pn(xn(t))∥

≤ ρ+
1

1−m

(
∥ projD (Pn(M0)) ∥+

∫ T

T0

ψ(s)ds

)
≤ R,

where we have used (4.14) and the definition of R. Hence, sn(t) ∈ C(t)∩RB. Thus,
due to the ball compactness of C(t), there exists a subsequence of (sn(t))n (without
relabeling) such that sn(t) → s(t) as n→ +∞. Therefore, by virtue of Claim 4,

lim sup
n→+∞

∥Pn(xn(t))− s(t)∥ ≤ lim sup
n→+∞

[∥Pn(xn(t))− sn(t)∥+ ∥sn(t)− s(t)∥]

≤ lim sup
n→+∞

[φn(t) + ∥sn(t)− s(t)∥]

= 0,

which proves the claim. �
Claim 6.: There exists a subsequence (xk)k of (xn)n and an absolutely continuous

function x such that

(i) xk(t)⇀ x(t) in H as k → +∞ for all t ∈ [T0, T ],
(ii) xk ⇀ x in L1 ([T0, T ];H) as k → +∞,
(iii) ẋk ⇀ ẋ in L1 ([T0, T ];H) as k → +∞,
(iv) ∥ẋ(t)∥ ≤ ψ(t) a.e. t ∈ [T0, T ], where ψ is the function defined in (4.6).

Proof of Claim 6.: It follows from similar arguments given in Claim 1. �
Claim 7.: Pk(xk(t)) → x(t) as k → +∞ for all t ∈ [T0, T ].

Proof of Claim 7.: Fix t ∈ [T0, T ]. Since xk(t) ⇀ x(t) as k → +∞, from 2.5 of
Lemma 2.5, it follows that Pk(xk(t))⇀ x(t). Hence, due to the relative compactness
of (Pk(xk(t)))k (see Claim 5), the claim is proved. �
Claim 8.: For all t ∈ [T0, T ], x(t) ∈ C(t).
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Proof of Claim 8.: Fix t ∈ [T0, T ]. Then, due to Claim 4 and Claim 7,

dC(t)(x(t)) = lim sup
k→+∞

(
dC(t)(x(t))− dC(t)(Pk(xk(t))) + dC(t)(Pk(xk(t)))

)
≤ lim sup

k→+∞
(∥x(t)− Pk (xk(t)) ∥+ φk(t))

= 0,

which proves the claim. �
Summarizing, we have

(i) For each x ∈ H, G(·, x) is measurable,
(ii) for a.e. t ∈ [T0, T ], G(t, ·) is upper semicontinuous from H into Hw,
(iii) ẋk ⇀ ẋ in L1 ([T0, T ];H),
(iv) Pk(xk(t)) → x(t) as k → +∞ for a.e. t ∈ [T0, T ],
(v) for all k ∈ N, ẋk(t) ∈ G(t, Pk(xk(t))) for a.e. t ∈ [T0, T ].

These conditions and the convergence theorem (see [3, Proposition 5] for more
details) imply that x is a solution of (4.12), which finishes the proof of Step 2. �
Step 3: The theorem holds.
Proof of Step 3 : Since x(t) ∈ C(t) for all t ∈ [T0, T ], x ∈ C (see (4.1)). Thus,
Mx ∈ D and, hence, x(T0) = projD(Mx) =Mx, which proves the theorem. �

Remark 4.3.

(1) The hypothesis (HF
3 ) in Theorem 4.2 can be replaced by the following more

general condition: There exist α, β ∈ L1 (T0, T ) with
∫ T
T0
α(s)ds < 1 − m

such that

d(0, F (t, x(t))) := inf{∥w∥ : w ∈ F (t, x)} ≤ α(t)∥x∥+ β(t),

for all x ∈ H and a.e. t ∈ [T0, T ]. Indeed, by virtue of Gronwall’s inequality,
it is possible to prove that every solution of (4.4) satisfies

∥x∥∞ ≤ R :=
1

1−m−
∫ T
T0
α(s)ds

(
∥M0∥+

∫ T

T0

ψ(s)ds

)
,

where ψ is given by (4.6). Define

pR(x) =

{
x if ∥x∥ ≤ R,

R x
∥x∥ if ∥x∥ > R.

Then, by using the set-valued map G̃(t, x) := G(t, pR(x)) instead of G in

(4.4), we have that G̃ satisfies (HF
3 ) and the same proof applies.

(2) When H is a finite dimensional Hilbert space, the condition (HF
3 ) in Theo-

rem 4.2 can be removed. Indeed, it suffices to use Arzela-Ascoli’s theorem
in Step 1 and Step 6 instead of [31, Theorem 0.2.2.1].

The following result deals with the nonexpansive case. We emphasize that con-
trary to the contractive case (Theorem 4.2), it is not posible to assure the bounded-
ness of solutions of (1.1) without any additional condition. Therefore, to overcome
this difficulty, we assume the boundedness of the convex set D.
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Theorem 4.4. F : [T0, T ]×H ⇒ H satisfying (HF
1 ), (HF

2 ) and (HF
3 ) and C : [T0, T ] ⇒

H be a set-valued map satisfying (H1), (H2) and (H3). Assume, in addition to
(HM

2 ), (HM
3 ), that there exists a convex and bounded set D such that MC ⊆ D ⊆

C(T0), where C is given by (4.1) and

(4.17)

(
1 +

1

α2
0

)∫ T

T0

(
|ζ̇(s)|+ β(s)

)
ds < ρ.

Then, there exists at least one solution of (1.1). Moreover,

∥ẋ(t)∥ ≤ 1

α2
0

|ζ̇(t)|+
(
1 +

1

α2
0

)
β(t) a.e. t ∈ [T0, T ].

Proof. For each k ∈ N, let xk be a solution (whose existence is guaranteed by Step
2. of the proof of Theorem 4.2) of the following differential inclusion:

ẋ(t) ∈ − 1

α2
0

(
|ζ̇(t)|+ β(t)

)
∂dC(t)(x(t))

+ F (t, x(t)) ∩ β(t)B a.e. t ∈ [T0, T ],

x(t) ∈ C(t) for all t ∈ [T0, T ],

x(T0) = projD

(
k

k + 1
Mx

)
.

Then, (xk(T0))k ⊆ D ⊆ C(T0). Thus, since D is bounded, there exists R > 0 such
that (xk(T0))k ⊆ D ⊆ RB. Hence, for all k ∈ N and all t ∈ [T0, T ]

∥xk(t)∥ ≤ ∥xk(T0)∥+
∫ t

T0

∥ẋk(s)∥ds ≤ R+

∫ t

T0

(
|ζ̇(s)|
α2
0

+

(
1 +

1

α2
0

)
β(s)

)
ds.

This inequality shows that (xk)k is bounded in C ([T0, T ];H) and, due to (H3), this
gives that the sequence (xk(t))k is relatively compact for all t ∈ [T0, T ]. Therefore,
by using Arzela-Ascoli and Dunford-Pettis theorems, we obtain the existence of a
subsequence of (xk)k (without relabeling) and an absolutely continuous function
x : [T0, T ] → H such that

(i) (xk)k converges uniformly to x on [T0, T ],
(ii) ẋk ⇀ ẋ in L1 ([T0, T ];H).

These conditions and the convergence theorem (see [3, Proposition 5] for more
details) imply that x satisfies

ẋ(t) ∈ − 1

α2
0

(
|ζ̇(t)|+ β(t)

)
∂dC(t)(x(t))

+ F (t, x(t)) ∩ β(t)B a.e. t ∈ [T0, T ],

x(t) ∈ C(t) for all t ∈ [T0, T ],

x(T0) = projD(Mx).

Moreover, since x(t) ∈ C(t) for all t ∈ [T0, T ], x ∈ C (see (4.1)). Thus, Mx ∈ D.
Therefore, x(T0) = projD(Mx) =Mx, which proves the theorem. �
Remark 4.5. When H is a finite dimensional Hilbert space, the condition (HM

3 )
in Theorem 4.4 can be removed (see Remark 4.3).
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When M is a positively homogeneous, conditions (4.3) and (4.17) in Theorems
4.2 and 4.4, respectively, can be removed.

Theorem 4.6. Let F : [T0, T ]×H ⇒ H be a set-valued map satisfying (HF
1 ), (HF

2 )
and (HF

3 ) and C : [T0, T ] ⇒ H be a set-valued map satisfying (H1), (H2) and (H3).
Assume that M is positively homogeneous, satisfies (HM

3 ) and there exists a convex
set D such that MC ⊆ D ⊆ C(T0), where C is given by (4.1). Assume that one of
the following two conditions is satisfied:

i) (HM
1 ) holds.

ii) D is bounded and (HM
2 ) holds.

Then, there exists at least one solution of (1.1).

Proof. Let us consider the set-valued map Cλ(t) :=
1
λC(t) and F̃ (t, x) :=

1
λF (t, λx),

where λ > 0 is such that(
1 +

1

α2
0

)∫ T

T0

(
|ζ̇(s)|+ β(s)

)
ds < λρ.

Then, for all s, t ∈ [T0, T ] and x ∈ H∣∣dCλ(t)(x)− dCλ(s)(x)
∣∣ = 1

λ

∣∣dC(t)(λx)− dC(s)(λx)
∣∣ ≤ 1

λ
|ζ(t)− ζ(s)|.

Therefore, according to Theorem 4.2, in the first case, and Theorem 4.4, in the
second case, there exists a solution xλ of ẋλ(t) ∈ −N (Cλ(t);xλ(t)) + F̃λ(t, x(t)) ∩

β(t)

λ
B a.e. t ∈ [T0, T ],

xλ(T0) =Mxλ.

Define x(t) := λxλ(t). Then, since M is positively homogeneous, it is not difficult
to verify that x is a solution of (1.1). �

Remark 4.7. The argument given in the proof of Theorem 4.6 shows that there
are infinitely many solutions of the nonlocal problem (1.1).

As a consequence of Theorem 4.6, we obtain the existence of periodic solutions of
the perturbed sweeping process. The following corollary extends the results given
in [17] and [11,12], where the authors showed the existence, respectively, for wedged
and convex sets compact sets.

Corollary 4.8. Let F : [T0, T ]×H ⇒ H be a set-valued map satisfying (HF
1 ) , (HF

2 )
and (HF

3 ) and C : [T0, T ] ⇒ H be a set-valued map satisfying (H1), (H2) and (H3).
Assume that there exists a convex and bounded set D such that C(T ) ⊆ D ⊆ C(T0).
Then, there exists at least one solution of{

ẋ(t) ∈ −N (C(t);x(t)) + F (t, x(t)) a.e. t ∈ [T0, T ],

x(T0) = x(T ).

Proof. Let Mx = x(T ). Then, M satisfies (HM
2 ), (HM

3 ) and MC ⊆ C(T ) ⊆ D.
Therefore, the result follows from Theorem 4.6. �
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The following result, which is a direct consequence of Theorem 4.6, deals with
several common nonlocal initial conditions for the sweeping process governed by a
fixed set C.

Corollary 4.9. Let F : [T0, T ]×H ⇒ H satisfying (HF
1 ), (HF

2 ) and (HF
3 ) and C ⊆

H be a fixed compact and convex set. Assume that the operator M : C ([T0, T ];H) →
H is one of the following operators:

(i) Mx = x(T ) (periodic initial condition);

(ii) Mx = 1
T−T0

∫ T
T0
x(s)ds (mean value initial condition);

(iii) Mx =
∑k0

i=1 αix(ti) with αi ∈ R+ and
∑k0

i=1 αi = 1, where T0 < t1 < · · · <
tk0 ≤ T (multi-point initial condition).

Then, there exists at least one solution of{
ẋ(t) ∈ −N (C;x(t)) + F (t, x(t)) a.e. t ∈ [T0, T ],

x(T0) =Mx.

Moreover, ∥ẋ(t)∥ ≤ 2β(t) for a.e. t ∈ [T0, T ].

5. Sweeping process governed by convex sets without compactness

In Theorems 4.2 and 4.4, we gave existence results for the sweeping process with
nonlocal initial conditions. In these two theorems, due to the presence of the strong-
weak upper semicontinuity and set-valuedness of the perturbation, it is assumed that
the moving sets are ball compact (see (H3). In fact, the ball compactness hypothesis
(H3) seems to be a strong assumption, but it is not. We refer to [23] for an example
of perturbed sweeping processes with Cauchy initial condition, governed by a ball,
without existence of solutions. Nevertheless, in the case where the moving sets C(t)
are convex for all t ∈ [T0, T ] and the perturbation is single-valued and one-sided
Lipschitz (see Assumption 3. in Theorem 5.1), it is possible to obtain similar results
to Theorems 4.2 and 4.4, without the ball compactness of the moving sets.

The following result improves [11, Theorem 4.7], where the existence of periodic
solutions of the sweeping processes is addressed for compact convex moving sets in
finite dimensions.

Theorem 5.1. Let F : [T0, T ]×H → H be a function satisfying

(1) For every x ∈ H, F (·, x) is measurable.
(2) For every t ∈ [T0, T ], F (t, ·) is strongly-weakly continuous.
(3) For a.e. t ∈ [T0, T ] and all x, y ∈ H

⟨F (t, x)− F (t, y), x− y⟩ ≤ ω(t)∥x− y∥2,

where ω ∈ L2(T0, T ).
(4) There exists d ≥ 0 such that, for all t ∈ [T0, T ] and all x, y ∈ H

∥F (t, x)∥ ≤ d (1 + ∥x∥) .

Assume, in addition to (H1), that the sets C(t) are convex for all t ∈ [T0, T ] and
there exists a convex a bounded set D such that MC ⊆ D ⊆ C(T0), where C is given
by (4.1). Assume that one of the following conditions is satisfied:
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(i) (HM
1 ) holds and α := m× max

t∈[T0,T ]
exp

(∫ t
T0
ω(s)ds

)
< 1.

(ii) D is bounded, (HM
2 ) holds and ω is nonpositive.

Then, there exists at least one solution of (1.1).

Proof. Let us consider the perturbed sweeping process with Cauchy initial condition:{
ẋ(t) ∈ −N (C(t);x(t)) + F (t, x(t)) a.e. t ∈ [T0, T ],

x(T0) = a ∈ C(T0).

Due to [40, Theorem 3.1] (see also [41, Theorem 5.7]), this differential inclusion has
a unique solution, denoted by xa. Moreover, if a1, a2 ∈ C(T0), then for i = 1, 2

(5.1) ∥xa1(t)− xa2(t)∥ ≤ exp

(∫ t

T0

ω(s)ds

)
∥a1 − a2∥ a.e. t ∈ [T0, T ].

Indeed, if a1, a2 ∈ C(T0), then for i = 1, 2

ẋai ∈ −N (C(t);xai(t)) + F (t, xai(t)) a.e. t ∈ [T0, T ],

that is, for i = 1, 2 and for a.e. t ∈ [T0, T ]

⟨−ẋai(t) + F (t, xai(t)), y − xai(t)⟩ ≤ 0 for all y ∈ C(t).

Since for i = 1, 2, xai ∈ C(t) for all t ∈ [T0, T ], for a.e. t ∈ [T0, T ]

⟨−ẋa1(t) + F (t, xa1(t)), xa2(t)− xa1(t)⟩ ≤ 0,

⟨−ẋa2(t) + F (t, xa2(t)), xa1(t)− xa2(t)⟩ ≤ 0.

By adding these two inequalities, we obtain for a.e. t ∈ [T0, T ]

1

2

d

dt
∥xa1(t)− xa2(t)∥2 ≤ ⟨F (t, xa1(t))− F (t, xa2(t)), xa1(t)− xa2(t)⟩ .

Hence, due to Assumption 3., for a.e. t ∈ [T0, T ]

1

2

d

dt
∥xa1(t)− xa2(t)∥2 ≤ ω(t)∥xa1(t)− xa2(t)∥2,

which, by elementary calculations, proves (5.1).
Let F : D → H de the operator defined by F(a) = Mxa. Then, since MC ⊆ D ⊆
C(T0), F(D) ⊆ D. We now distinguish two cases:

(a) Assume that (i) holds: The hypothesis (HM
1 ) and (5.1) implies that for any

a, b ∈ C(T0)

∥F(a)−F(b)∥ = ∥Mxa −Mxb∥

≤ m× sup
t∈[T0,T ]

exp

(∫ t

T0

ω(s)ds

)
∥a− b∥

≤ α∥a− b∥,

where, by assumption, α < 1. Therefore, F is a contraction, thus, it admits
a fixed point.
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(b) Assume that (ii) holds: The hypothesis (HM
2 ) and (5.1) implies that for any

a, b ∈ C(T0)

∥F(a)−F(b)∥ = ∥Mxa −Mxb∥

≤ sup
t∈[T0,T ]

exp

(∫ t

T0

ω(s)ds

)
∥a− b∥

≤ ∥a− b∥,
where we have used that ω is nonpositive. Therefore, F : D → D is a
nonexpansive operator between bounded sets in Hilbert spaces, thus, due
to [10, Theorem 1], it admits a fixed point.

Therefore, in any case, the operator F admits a fixed point. Finally, it is clear that
any fixed point of F is a solution of (1.1). �

6. The case of H is compactly embedded in a Banach space E

In this section we assume that (H, ∥ · ∥H) is compactly embedded in a separable
Banach space (E, ∥ · ∥E) (for example, H = H1(Ω) and E = L2(Ω), where Ω ⊆ Rn

is an open domain with Lipschitz boundary).
Let F : [T0, T ] × H ⇒ H be a set-valued map satisfying hypotheses (HF

1 ) and
(HF

2 ). In this section we study existence of solutions for the following differential
inclusion:

(6.1)

{
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [T0, T ],

x(T0) =Mx,

where M : C ([T0, T ];H) → H is a (possibly nonlinear) operator and F satisfies
the additional hypothesis (HF

5 ) (see Section 3). We emphasize that several control
problem for first-order partial integro-differential equations (e.g., with H = H1(Ω)
and E = L2(Ω)) can be formulated as (6.1) (see, e.g., [6, 7]).

Now we introduce the concept of bounding function. We distinguish between
weak and strong bounding function according to whether the infimum or the supre-
mum over F is considered. We point out that our definition of weak bounding
function coincides with the given in [7] under the name of merely “bounding func-
tion”.

Definition 6.1. Let V : H → R be a locally Lipschitz function such that V (x) = 0
for ∥x∥H = R0 and V (x) < 0 for r0 < ∥x∥H < R0.

(a) We say that V is a weak bounding function if V is C1 in the ring {x ∈
H : r0 < ∥x∥H < R0} and there exists a sequence (nm)m ⊆ N converging to
+∞ such that for a.e. t ∈ [T0, T ]

(6.2) inf
d∈F (t,Pnm (x))

⟨∇V (Pnm(x)), Pnm(d)⟩ ≤ 0 for all r0 < ∥Pnm(x)∥H < R0.

(b) We say that V is a strong bounding function if there exists a sequence
(nm)m ⊆ N converging to +∞ such that for a.e. t ∈ [T0, T ] and all
r0 < ∥Pnm(x)∥H < R0

(6.3) sup
d∈F (t,Pnm (x))

min{DV (Pnm(x);Pnm(d)), D(−V )(Pnm(x);−Pnm(d))} ≤ 0.
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Remark 6.2. (i) If V is differentiable at x, then

min{DV (x; d), D(−V )(x;−d)} = ⟨∇V (x), d⟩ .

Thus, if V is differentiable in the ring {x ∈ H : r0 < ∥x∥H < R0}, then
every strong bounding function is indeed a weak bounding function.

(ii) The bounding function is unaffected by changing F outside the ball R0B.
(iii) When V (x) := 1

2

(
∥x∥2H −R2

0

)
, the notion of weak bounding function is

equivalent to the well known “Hartman’s type condition” (see Example 7.5):
For a.e. t ∈ [T0, T ]

inf
d∈F (t,x)

⟨∇V (x), d⟩ ≤ 0 for all r0 < ∥x∥H < R0.

By using the notion of bounding function, we can prove an existence result for
(6.1). The statement (ii) of the following theorem extends the results of [6] by al-
lowing toM be a nonlinear map. Moreover, statement (iii) of the following theorem
extends [28, Theorem 7] to infinite dimensions and extends the main result of [7],
by allowing to M to be a nonlinear map and F to be multivalued and merely upper
semicontinuous from E into Ew.

Theorem 6.3. Assume that H is compactly embedded in E. Let F : [T0, T ]×H ⇒ H
be a set-valued map satisfying (HF

1 ), (HF
2 ) and (HF

5 ). Assume that one of the
following conditions is verified:

(i) (HF
3 ), (HM

1 ) and (HM
3 ) hold.

(ii) (HF
4 ), (HM

2 ) and (HM
3 ) hold, M (C ([T0, T ];R0BH)) ⊆ R0BH and there ex-

ists a weak bounding function V for F .
(iii) (HF

4 ), (HM
2 ) and (HM

3 ) hold, M (C ([T0, T ];R0BH)) ⊆ R0BH and there ex-
ists a strong bounding function V for F .

Then, there exists at least one solution of (6.1).

Proof. (i) According to Step 1 from the proof of Theorem 4.2, for each n ∈ N, there
exists xn solution of{

ẋn(t) ∈ F (t, Pn(xn(t))) ∩ β(t)BH a.e. t ∈ [T0, T ],

xn(T0) = Pn(Mxn).

Define

L :=
1

1−m

(
∥M0∥H +

∫ T

T0

β(s)ds

)
.

Then, ∥ẋn(t)∥H ≤ β(t) for a.e. t ∈ [T0, T ] and ∥xn(t)∥H ≤ L for all t ∈ [T0, T ].
Indeed, for all t ∈ [T0, T ]

∥xn(t)∥H ≤ ∥xn(T0)∥H +

∫ t

T0

β(s)ds

≤ ∥Mxn∥H +

∫ t

T0

β(s)ds

≤ m sup
t∈[T0,T ]

∥xn(t)∥H + ∥M0∥H +

∫ t

T0

β(s)ds.
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Therefore, as in the proof of Claim 6 from Theorem 4.2, there exists a subsequence
of (xn)n (without relabeling) and a absolutely continuous function x : [T0, T ] → H
such that

xn(t) → x(t) weakly in H for all t ∈ [T0, T ],

xn → x in L1
w ([T0, T ];H) ,

ẋn → ẋ in L1
w ([T0, T ];H) .

Moreover, due to the compactness of the embedding H ↪→ E,

xn(t) → x(t) in E for every t ∈ [T0, T ].

These conditions, (HF
5 ) and the convergence theorem (see [3, Proposition 5] for

more details) imply that x satisfies ẋ(t) ∈ F (t, x(t)) for a.e. t ∈ [T0, T ]. Finally,
due to (HM

3 ), PnMxn → Mx weakly in H (up to a subsequence), which finishes
the proof.
Define

F̃ (t, x) := {d ∈ F (t, x) : α(x) ⟨∇V (x), d⟩H ≤ 0},

G(t, x) := F̃
(
t, projR0BH

(x)
)
∩ vR0(t)BH ,

where

α(x) =

{
1 if r0 < ∥x∥H < R0,

0 otherwise.

By similar arguments as in [6], the set-valued map G satisfies (HF
1 ),(HF

2 ) and (HF
3 ).

Fix r ∈ (r0, R0). For each n ∈ N let xn be a solution (whose existence is guaran-
teed by Step 1 from the proof of Theorem 4.2) of

ẋn(t) ∈ G(t, Pn(xn(t))) a.e. t ∈ [T0, T ],

xn(T0) = projrBH

(
r

R0
Pn(M(Pnxn))

)
.

Therefore, for all t ∈ [T0, T ],

∥xn(t)∥H ≤ r +

∫ t

T0

vR0(s)ds.

After taking a subsequence (without relabeling), we can assume that (6.2) holds.
Now we proceed to prove that Pn(xn(t)) ∈ R0BH . Indeed, otherwise, since

∥Pn(xn(T0))∥H ≤ r,

we can find t0 ∈ (T0, T ] and ε > 0 such that ∥Pn(xn(t0))∥H = R0 and r0 <
∥Pn(xn(t))∥H < R0 for t ∈ (t0 − ε, t0). We observe that for all t ∈ (t0 − ϵ, t0)

(6.4)

G(t, Pn(x(t))) = F̃ (t, projR0B(Pn(xn(t)))) ∩ vR0(t)BH

= F̃ (t, Pn(xn(t))) ∩ vR0(t)BH

⊆ F (t, Pn(xn(t))) ∩ vR0(t)BH .

Define gn(t) := V (Pn(xn(t))) in (t0 − δ, t0), where δ ∈ (0, ε) is such that gn is
absolutely continuous in (t0 − δ, t0). Then, ġn(t) exists for a.e. t ∈ (t0 − δ, t0). On
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the one hand,

(6.5)

∫ t0

t0−δ
ġn(s)ds = V (Pn(xn(t0)))− V (Pn(xn(t0 − δ)))

= −V (Pn(xn(t0 − δ))) > 0.

On the other hand, for a.e. t ∈ (t0 − δ, t0),

ġn(t) = ⟨∇V (Pn(xn(t))) , Pn(ẋn(t))⟩H ≤ 0,

where we have used the definition of G, (6.4) and the definition of weak bounding

function. Thus,
∫ t0
t0−δ ġn(s)ds ≤ 0, which gives a contradiction with (6.5). Hence,

Pn(xn(t)) ∈ R0BH for all t ∈ [T0, T ].
So, by the assumptions of (ii), M(Pnxn) ∈ R0BH , which implies that
r

R0
PnM(Pnxn) ∈ rBH . Thus,

xn(T0) =
r

R0
PnM(Pnxn).

Therefore, for each n ∈ N, there exists xn solution of
ẋn(t) ∈ F (t, Pn(xn(t))) ∩ vR0(t)BH a.e. t ∈ [T0, T ],

xn(T0) =
r

R0
Pn(M(Pnxn)).

Then, by passing to the limit (up to a subsequence), as in (i), we obtain the existence
of a solution x : [T0, T ] → R0BH of

ẋ(t) ∈ F (t, x(t)) ∩ vR0(t)BH a.e. t ∈ [T0, T ],

x(T0) =
r

R0
Mx.

Let (rk)k be a sequence converging to R0 with rk ∈ (r0, R0). Then, for each
k ∈ N, there exists xk solution of

ẋk(t) ∈ F (t, xk(t)) ∩ vR0(t)BH a.e. t ∈ [T0, T ],

xk(T0) =
rk
R0

Mxk,

with xk(t) ∈ R0BH for all t ∈ [T0, T ]. Therefore, by passing to the limit (up to a
subsequence), as in (i), we obtain the existence of a solution x of{

ẋ(t) ∈ F (t, x(t)) ∩ vR0(t)BH a.e. t ∈ [T0, T ],

x(T0) =Mx,

which finishes the proof.
(ii) Fix r ∈ (r0, R0). For each n ∈ N let xn be a solution (whose existence is

guaranteed by Step 1 from the proof of Theorem 4.2) of
ẋn(t) ∈ F (t, projR0BH

(Pn(xn(t))) ∩ vR0(t)BH a.e. t ∈ [T0, T ],

xn(T0) = projrBH

(
r

R0
Pn(M(Pnxn))

)
.
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Therefore, for all t ∈ [T0, T ],

∥xn(t)∥H ≤ r +

∫ t

T0

vR0(s)ds.

After taking a subsequence (without relabeling), we can assume that (6.3) holds.
We proceed to prove that Pn(xn(t)) ∈ R0BH . Indeed, otherwise, since

∥Pn(xn(T0))∥H ≤ r,

we can find t0 ∈ (T0, T ] and ε > 0 such that ∥Pn(x(t0))∥H = R0 and r0 <
∥Pn(xn(t))∥H < R0 for t ∈ (t0 − ε, t0). We observe that for all t ∈ (t0 − ε, t0)

(6.6)
F (t,projR0B(Pn(xn(t)))) ∩ vR0(t)BH = F (t, Pn(xn(t))) ∩ vR0(t)BH

⊆ F (t, Pn(xn(t))).

Define gn(t) := V (Pn(xn(t))) in (t0 − δ, t0), where δ ∈ (0, ε) is such that gn is
absolutely continuous in (t0 − δ, t0). Then, ġn(t) exists for a.e. t ∈ (t0 − δ, t0). On
the one hand,

(6.7)

∫ t0

t0−δ
ġn(s)ds = V (Pn(xn(t0)))− V (Pn(xn(t0 − δ)))

= −V (Pn(xn(t0 − δ))) > 0,

because ∥Pn(x(t0))∥H = R0. On the other hand, for a.e. t ∈ (t0 − δ, t0),

ġn(t) = lim
h→0

V (Pn(xn(t+ h)))− V (Pn(xn(t)))

h

= lim
h→0

V (Pn(xn(t)) + hPnẋn(t))− V (Pn(xn(t)))

h
= DV (Pn(xn(t));Pnẋn(t))

= D(−V ) (Pn(xn(t));−Pnẋn(t))

≤ 0,

where we have used (6.6) and the definition of the strong bounding function for F .

Thus,
∫ t0
t0−δ ġn(s)ds ≤ 0, which gives a contradiction with (6.7). The rest of the

proof, follows as in (ii). �

Remark 6.4. If M : C ([T0, T ];H) → H satisfies M(0) = 0, which is true if, e.g.,
M is linear, then with the notation of Theorem 6.3,

M (C ([T0, T ];R0B)) ⊆ R0B.

Indeed, if x ∈ C ([T0, T ];R0B), then ∥Mx∥ ≤ ∥x∥ ≤ R0.

7. Tangential conditions

In this section, we give an abstract result for the abstract problem (6.1) in finite
dimensions.
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Let us consider the following differential inclusion:

(7.1)


ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [T0, T ],

x(t) ∈ D for all t ∈ [T0, T ],

x(T0) = x0 ∈ D,

and the set-valued map S : D ⇒ D defined for each x0 ∈ D as, S(x0), the set of
solutions of (7.1). A classical approach to find solutions of (6.1) is to apply some
fixed point theorem to the set-valued map M ◦ S. Of course, some conditions are
needed to obtain the nonemptiness of the values of S. These conditions, generally,
are of tangential type for some appropriate tangent cone. In fact, it is well known
that existence solutions of (7.1) can be obtained when the set-valued map F has
a nonempty intersection with the Bouligand tangent cone (see [5, Theorem 2]).
However, in order to get some topological properties of the values of S, we will ask
for a strong property, namely, the intersection of the set-valued map F with the
Clarke tangent cone is nonempty, i.e.,

(7.2) F (t, x) ∩ TC(D;x) ̸= ∅ for all (t, x) ∈ [T0, T ]×D.

The following proposition is a direct consequence of [5, Theorem 16].

Proposition 7.1. Let H be a finite-dimensional Hilbert space. Let D ⊆ H be a
closed and bounded set. Assume that D is positively α-far and (7.2) holds. Then, for
any x0 ∈ D, the set S(x0) of solutions of (7.1) is nonempty, compact and an Rδ-set.
Moreover, the set-valued map S : D ⇒ C ([T0, T ];D) is upper semicontinuous.

Remark 7.2.

i) If F is single-valued with F (t, ·) continuous for all t ∈ [T0, T ], then (7.2) is
equivalent to

F (t, x) ∩ TB(D;x) ̸= ∅ for all (t, x) ∈ [T0, T ]×D.

Indeed, let (xn)n ⊆ D converging to x ∈ D. Then, for all t ∈ [T0, T ],
F (t, xn) ∈ TB(D;xn) and,

F (t, x) = lim
n→+∞

F (t, x) ∈ lim inf
y→x,y∈D

TB(D; y) = TC(D;x).

ii) See [5, Example 4] for an example of a positively α-far setD and a set-valued
map F whose intersection with the Bouligand tangent cone is nonempty but
the solution map S does not have Rδ-values.

Now we can state an existence result for (6.1).

Theorem 7.3. Let H be a finite-dimensional Hilbert space. Assume that (HF
1 ),

(HF
2 ) and (HF

4 ) hold. Let M be a Lipschitz map such that there exists a closed, con-
tractible, positively α-far and bounded set D, satisfying (7.2), such that
M (C ([T0, T ];D)) ⊆ D. Then, there exists at least one solution of (6.1). More-
over, x(t) ∈ D for all t ∈ [T0, T ].

Proof. It is enough to apply Proposition 2.2 with X := D, Φ := S and f :=M . �
The following result gives a characterization of the tangential condition (7.2) for

convex sets.
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Proposition 7.4 ( [20]). Let S ̸= H be a closed convex set and t ∈ [T0, T ]. Then,
the following conditions are equivalent:

i) F (t, x) ∩ TC(S;x) ̸= ∅ for all x ∈ S.
ii) inf

v∈F (t,x)
⟨v, ζ⟩ ≤ 0 for all ζ ∈ N (S;x) and x ∈ S

iii) inf
v∈F (t,x)

⟨v, ζ⟩ ≤ 0 for all ζ ∈ ∂dS(x) and x ∈ S.

iv) inf
v∈F (t,x)

⟨v, ζ⟩ ≤ 0 for all ζ ∈ ∂∆S(x) and x ∈ bdS, where ∆S(x) = dS(x)−

dSc(x).

Example 7.5. Let us consider S := R0B. Then, the condition F (t, x)∩TC (S;x) ̸=
∅ is equivalent to

(7.3) inf
v∈F (t,x)

⟨v, x⟩ ≤ 0 for all x with ∥x∥ = R0.

Inequality (7.3) is known in the literature as Hartman’s condition and was first used
by Hartman in the context of second order systems (see [19]). Since then, it has
been used to deal with periodic problems (see, e.g., [2, 6]).

Example 7.6. Let V : H → R be a convex function such that S := {x ∈ H : V (x) ≤
0} is bounded with nonempty interior. Then, the condition (7.2) is equivalent to

inf
v∈F (t,x)

⟨v, ζ⟩ ≤ 0 for all ζ ∈ ∂V (x) and x ∈ S with V (x) = 0.

Example 7.7. Let V : H → R be a C1 function. Define S := {x ∈ H : V (x) ≤ 0}
and assume that S is bounded, bdS = {x ∈ H : V (x) = 0} and that ∇V (x) ̸= 0 for
all x ∈ ∂S. Then, S is positively α-far and condition (7.2) is equivalent to

(7.4) inf
v∈F (t,x)

⟨v,∇V (x)⟩ ≤ 0 for all x ∈ bdS.

If (7.4) holds for all x ∈ H, it is said that V is a weak Lyapunov function for
F (see [14]). Therefore, the existence of a weak Lyapunov function for F , with
bounded level sets, implies the existence of solutions for (6.1).

8. An application to nonlocal differential complementarity systems

Let K be a closed convex cone in Rm and K∗ be its dual cone. In this section, we
consider differential complementarity systems (CDSs), which are differential equa-
tions coupled with complementarity conditions (see [37] for more details). More
specifically,

(8.1)


ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [T0, T ],

K ∋u(t) ⊥ (G(t, x(t)) + F (u(t))) ∈ K∗ a.e. t ∈ [T0, T ],

x(T0) =Mx,

where f : [T0, T ] × Rn × Rm → Rn, G : [T0, T ] × Rn → Rm and F : Rm → Rm are
continuous mappings; M : C ([T0, T ];Rn) → Rn is a (possible nonlinear) operator.

In order to give sufficient conditions for the existence of solutions of (8.1), we
consider the following hypotheses:
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(A1) for each (t, z) ∈ [T0, T ]× Rn the set

f(t, z,Ω) := {f(t, z, y) : y ∈ Ω}

is convex for every convex subset Ω ⊆ Rm.
(A2) for every bounded subset Z ⊆ Rn × Rm there exists αZ > 0 such that

∥f(t, z, w)∥ ≤ αZ for (t, z, w) ∈ [T0, T ]× Z.
(A3) for every bounded subset Ω ⊆ Rnthere exists γΩ > 0 such that

∥G(t, z)∥ ≤ γΩ for (t, z) ∈ [T0, T ]× Ω.

(A4) F is monotone and there exists a∗ > 0 such that

⟨x, F (x)⟩ ≥ a∗|x∥2 for all x ∈ K.

Remark 8.1. A common example is f(t, x, y) ≡ f̃(t, x)+B(t, x)y (see [37] for more
details).

Let U : [T0, T ]× Rn ⇒ K be the set-valued map defined as

U(t, z) := SOL (K,G(t, z) + F ) = {w ∈ K : ⟨w,G(t, z) + F (w)⟩ = 0}.

According to [28, Lemma 9], under (A4), for every z ∈ Rn, the set U(t, z) is
nonempty, convex and closed. Consider Φ: [T0, T ]× Rn ⇒ Rn the set-valued map

Φ(t, x) := {f(t, x, w) : w ∈ U(t, x)}.

Then, according to [28, Lemma 10], under (A1)-(A4), Φ satisfies (HF
1 ), (HF

2 ) and
(HF

4 ). Thus, the existence of solutions for (8.1) can be obtained from the following
differential inclusion: {

ẋ(t) ∈ Φ(t, x(t)) a.e. t ∈ [T0, T ],

x(T0) =Mx.

Therefore, by virtue of Theorems 4.4 and 6.3, we obtain the following result, which
improves [28, Theorem 12] by allowing to M be a nonlinear map. Moreover, the
statements (i) and (ii), in the following theorem, are new.

Theorem 8.2. Assume, in addition to (A1)-(A4), that one of the following condi-
tions is verified:

(i) (HM
1 ) and (HM

3 ) hold.
(ii) (HM

2 ) holds and there exists a weak bounding function V for Φ.
(iii) (HM

2 ) holds and there exists a strong bounding function V for Φ.

Then, there exists at least one solution of (8.1).

9. An application to hysteresis

In this section, we illustrate our results by giving an application to the exis-
tence of periodic solutions for the Play operator (see [26] for more details). We

denote by W 1,1
per ([T0, T ];H) the space of periodic absolutely continuous functions.

Let g : [T0, T ]×H ×H ×H → H be a continuous function such that

(9.1) ∥g(t, x, y, w)∥ ≤ β(t) a.e. (t, x, y, w) ∈ [T0, T ]×H ×H ×H,
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for some β ∈ L1(T0, T ). Given y ∈ W 1,1
per ([T0, T ];H) we consider the following

differential inclusion:

(9.2)

{
ẋ(t) ∈ −N (K(y(t));x(t)) + g(t, x(t), y(t), ẏ(t)) a.e. t ∈ [T0, T ],

x(T0) = x(T ),

where K : H ⇒ H is a κ-Lipschitz set-valued map with nonempty, compact and
convex values satisfying K(y) ⊆ RB for some R > 0.

Proposition 9.1. Under the above conditions, for all y ∈ W 1,1
per ([T0, T ];H) there

exists at least one solution x ∈W 1,1
per ([T0, T ];H) of (9.2). Moreover,

∥ẋ(t)∥ ≤ κ∥ẏ(t)∥+ 2β(t) a.e. t ∈ [T0, T ].

Proof. Define C(t) := K(y(t)) and F (t, x) = g(t, x, y(t), ẏ(t)). To show existence of
solutions, we verify the hypotheses of Corollary 4.8.

• (H1) holds: Let x ∈ H and t, s ∈ [T0, T ]. Then

|d(x,C(t))− d(x,C(s))| = |d(x,C(y(t)))− d(x,C(y(s)))|
≤ κ∥y(t)− y(s)∥

≤ κ

∣∣∣∣∫ t

T0

∥ẏ(τ)∥dτ −
∫ s

T0

∥ẏ(τ)∥dτ
∣∣∣∣ ,

which shows that (H1) holds with ζ(t) := κ
∫ t
T0

∥ẏ(τ)∥dτ .
• (HF

1 ), (HF
2 ) and (HF

3 ) hold: It follows from the continuity of g, the fact that

y ∈W 1,1
per ([T0, T ];H) and (9.1).

• C(T ) ⊆ D ⊆ C(T0) for some set D convex and bounded: Indeed, if D :=
C(T0) ∩RB then,

C(T ) = K(y(T )) = K(y(T0)) = C(T0) ∩RB,

where we have used that y ∈W 1,1
per ([T0, T ];H).

Thus, the existence for (9.2) follows from Corollary 4.8. �
Remark 9.2. Proposition 9.1 allows us to define the set-valued Play operator

P : W 1,1
per ([T0, T ];H) ⇒W 1,1

per ([T0, T ];H) ,

which to every function y associates the set of solutions of (9.2). Thus, the Play

operator is well defined for inputs in W 1,1
per ([T0, T ];H).
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