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668 A. G. RAMM AND C. VAN

where xm ∈ R3 is an arbitrary point in Dm, has a limit, u(x, t) = lima→0 u(x, t, a)
which solves problem (1.1) with

(1.5) q(x) = cSN(x)h(x), cS :=
|Sm|
a2

= const,

so cS does not depend on m, but the shape of Sm may depend on m. Therefore,
given a potential q(x) (which makes heat propagate along a line), one can choose
an arbitrary continuous function N(x) > 0, can construct a continuous function

h(x) = q(x)
cSN(x) , and can distribute the small bodies according to the rule (1.2) to

obtain the medium in which heat propagates along a line.

Suppose that

(1.6) (−∆+ q(x))ϕn(x) = λnϕn, ϕn|S = 0, ||ϕn||L2(D) = ||ϕn|| = 1,

where {ϕn} is an orthonormal basis of L2(D) := H, and (f, ϕn) :=
∫
D f(x)ϕn(x)dx.

Then the unique solution to (1.1) is

(1.7) u(x, t) =

∞∑
n=1

e−λnt(f, ϕn)ϕn(x).

If q(x) is such that λ1 = 0, λ2 ≫ 1, and λ2 ≤ λ3 ≤ . . . , then, as t → ∞, the series
(1.7) is well approximated by its first term (see [6] ):

(1.8) u(x, t) = (f, ϕ1)ϕ1 +O(e−10t), t→ ∞.

Thus, our problem is solved if q(x) has the following property:

(1.9) |ϕ1(x)| decays as ρ grows, ρ = (x22 + x23)
1/2.

Since the eigenfunction is normalized, ||ϕ1|| = 1, this function will not tend to zero
in a neighborhood of the line ρ = 0, so information can be transformed by the heat
signals along the line ρ = 0, that is, along s−axis. Here we use the cylindrical
coordinates: x = (x1, x2, x3) = (s, ρ, θ), s = x1, ρ = (x22 + x23)

1/2. In Section 2 the
potential q(x) will not depend on θ.

The technical part of the solution is the construction of q(x) = cSN(x)h(x) such
that

(1.10) λ1 = 0, λ2 ≫ 1; |ϕ1(x)| decays as ρ grows.

Since the function N(x) > 0 and h(x),Reh ≥ 0 are at our disposal, any desirable
q,Re q ≥ 0, can be obtained by embedding many small impedance particles in a
given domain D.
In section 2, the method for finding such a potential q(x) is presented. In section 3,
the numerical method is presented for finding this q, and in section 4, the numerical
results are presented. In section 5, another numerical method is presented based on
the method described in section 4.
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2. Construction of q(x)

Let q(x) = p(ρ)+Q(s), where s := x1, ρ := (x22+x
2
3)

1/2. Then the solution to (1.1)
is u = v(ρ)w(s), where

(2.1) − v′′m − ρ−1v′m + p(ρ)vm = µmvm, 0 ≤ ρ ≤ R, |vm(0)| < ∞, vm(R) = 0;

(2.2) − w′′
j + Q(s)wj = νjwj , 0 ≤ s ≤ L, wj(0) = wj(L) = 0.

Our task is to find Q(s) such that ν1 = 0, ν2 ≫ 1 and p(ρ) such that µ1 = 0, µ2 ≫ 1,
and |vm(ρ)| decays as ρ grows.

We use the solution to inverse spectral problem for finding a potential which have the
desired properties. The spectral function ϱ(λ) of the Dirichlet differential operator
ℓw = −w′′ +Q(s)w (see formula (2.2)) is defined by the formula

ϱ(λ) =
∑
νj<λ

1

αj
,

where αj are normalizing constants. If Q = 0, then the eigenvalues of the corre-

sponding operator ℓ are νj0 =
(
πj
L

)2
, j = 1, 2, . . . , the corresponding normalized

eigenfunctions are
√

2
L sin jπx

L , and the normalizing constants αj0=
√∫ L

0 sin2 jπxL dx=√
L
2 . If Q is unknown, then the corresponding eigenfunctions are unknown and the

role of the normalizing constants can play arbitrary positive numbers which have
the right asymptotic. If L = π then αj =

√
π
2 j
(
1 +O(1j )

)
,
√
νj = j + c1

j +O(j−2),

and wj =
sin(jx)
j +O(j−2) as j → ∞.

Let us recall the procedure, due to Gel’fand and Levitan (see [1], [2]) for finding
Q from the known spectral function. One defines the kernel

L(x, y) =

∫ ∞

−∞

sin(
√
λx)√
λ

sin(
√
λy)√
λ

d(ϱ(λ)− ϱ0(λ)),

where ϱ(λ) is the spectral function of the operator ℓ with the potential Q = Q(s),
and ϱ0(λ) is the spectral function of the operator ℓ with the potential Q = 0 and
the same boundary conditions.
Consider the Gel’fand-Levitan (GL) integral equation for the kernel K(x, y):

K(x, y) +

∫ x

0
K(x, s)L(s, y)ds = −L(x, y), 0 ≤ y ≤ x.

The solution to this equation allows one to calculate the potential:

Q(x) = 2
dK(x, x)

dx
.
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From now on we set L = π. Then νl0 = j2. Let ν1 = 0, ν2 = 11, ν3 = 14, νj = νj0
for j > 3. Then the kernel L(x, y) in the GL equation is defined as follows

(2.3) L(x, y) =
3xy

π3
+

2

π

(sin(√ν2x)√
ν2

sin(
√
ν2y)√
ν2

+
sin(

√
ν3x)√
ν3

sin(
√
ν3y)√
ν3

)
−

− 2

π

(
sinx sin y + sin(2x) sin(2y) + sin(3x) sin(3y)

)
,

where we set the normalizing constants αj =
π
2 , j > 3, α1 =

π3

3 . The term xy is the

value of the function sin νx
ν

sin νy
ν at ν = 0, and π3

3 = ||x||2 =
∫ π
0 x

2dx.

Solve the GL equation:

(2.4) K(s, τ) +

∫ s

0
K(s, s′)L(s′, τ)ds′ = −L(s, τ), 0 ≤ τ ≤ s,

which is uniquely solvable (see [1], [2]). Equation (2.4) has finite-rank kernel and
therefore can be solved analytically, being equivalent to a linear algebraic system.
If K(s, τ) is found, then

(2.5) Q(s) = 2
dK(s, s)

ds
,

and this Q(s) has the required properties: ν1 = 0, ν2 ≫ 1, νj ≤ νj+1.

Consider now the operator (2.1) for v(ρ). We want to calculate p(ρ) such that
µ1 = 0, µ2 ≫ 1, µm ≤ µm+1, |vm(ρ)| decays as ρ grows.

We reduce this problem to the previous one that was solved. To do this, set v = ψ√
ρ .

Then equation −v′′ − 1
ρv

′ + p(ρ)v = µv, is transformed to the equation

(2.6) −ψ′′ − 1

4ρ2
ψ + p(ρ)ψ = µψ.

Let p(ρ) = 1
4ρ2

+ Q(ρ), where Q(ρ) is constructed above. Then equation (2.6)

becomes

(2.7) −ψ′′ +Q(ρ)ψ = µψ, ψ(R) = 0, ψ(0) = 0.

It has the desired eigenvalues µ1 = 0, µ2 ≫ 1, µm ≤ µm+1.

The eigenfunction ϕ1(x) = v1(ρ)w1(s), where v1(ρ) = ψ1(ρ)√
ρ , decays as ρ grows,

and the eigenvalues λn = µm + νl. Since µ1 = ν1 = 0 one has λ1 = 0. Since
ν2 = 11, µ2 = 11, λ2 = 11 ≫ 1. Thus, the desired potential is constructed: q(x) =
Q(s) + ( 1

4ρ2
+Q(ρ)), where Q(s) is given by formula (2.5).

This concludes the description of our procedure for the construction of q.
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3. Numerical procedure

In section 3.1, a numerical method to construct q(x) is presented. In section 3.2,
a procedure is presented to check whether the constructed potential q(x) is valid,
by finding the eigenvalues of q(x).

3.1. Numerical construction of q(x). From the construction of q(x) in Section

2, if one can construct Q(s) then one gets q(x) = Q(s) +
(

1
4ρ2

+Q(ρ)
)
.

To construct Q(s), one can use equation (2.5) and rewrite it as

(3.1) Q(s) = 2
dK(s, s)

ds
= 2

(
∂K(s, τ)

∂s

∣∣∣∣
τ=s

+
∂K(s, τ)

∂τ

∣∣∣∣
τ=s

)
,

One can get Ks := ∂K(s,τ)
∂s and Kτ := ∂K(s,τ)

∂τ numerically by the following proce-
dure.

The function L(x, y) in (2.3) can be written as

(3.2) L(x, y) =

6∑
j=1

aj(x)bj(y),

where a1(x) = 3x
π3 , a2(x) = 2

π
sin(

√
ν2x)

ν2
, a3(x) = 2

π
sin(

√
ν3x)

ν3
, a4(x) = − 2

π sin(x),

a5(x) = − 2
π sin(2x), a6(x) = − 2

π sin(3x) and b1(x) = x, b2(x) = sin(
√
ν2x), b3(x) =

sin(
√
ν3x), b4(x) = sin(x), b5(x) = sin(2x), b6(x) = sin(3x).

Then equation (2.4) becomes

(3.3) K(s, τ) +
6∑
j=1

bj(τ)

∫ s

0
K(s, s′)aj(s

′)ds′ = −
6∑
j=1

aj(s)bj(τ), 0 ≤ τ ≤ s.

Let ψj(s) :=
∫ s
0 K(s, s′)aj(s

′)ds′, then equation (3.3) becomes

(3.4) K(s, τ) +

6∑
j=1

bj(τ)ψj(s) = −
6∑
j=1

aj(s)bj(τ), 0 ≤ τ ≤ s.

Multiply (3.4) with am(τ), 1 ≤ m ≤ 6 and integrate it with respect to τ to get

(3.5) ψm(s) +
6∑
j=1

(∫ s

0
bj(τ)am(τ)dτ

)
ψj(s) = −

6∑
j=1

aj(s)

(∫ s

0
bj(τ)am(τ)dτ

)
.

For a fix s = s0, equation (3.5) is a 6 × 6 linear system which can be solved for
ψj(s0), 1 ≤ j ≤ 6. So, we can solve equation (3.5) to get ψj(s) analytically and
numerically. Differentiating equation (3.5), one can get a similar linear system to
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(3.5) and can get ψ′
j(s) analytically and numerically from the linear system:

(3.6) ψ′
m(s) +

6∑
j=1

(∫ s

0
bj(τ)am(τ)dτ

)
ψ′
j(s) =

= −
6∑
j=1

(
aj(s)

(∫ s

0
bj(τ)am(τ)dτ

)
+ (aj(s) + ψj(s))bj(s)am(s)

)
.

After finding ψj(s) and ψ
′
j(s), one can find Ks and Kτ by differentiating equation

(3.3) with respect to s and τ

(3.7) Ks(s, τ) = −
6∑
j=1

(
a′j(s)bj(τ) + bj(τ)ψ

′
j(s)

)
,

(3.8) Kτ (s, τ) = −
6∑
j=1

(
aj(s)b

′
j(τ) + b′j(τ)ψj(s)

)
.

From equation (3.7) - (3.8), one finds Ks(s, τ)|τ=s and Kτ (s, τ)|τ=s, and then finds
Q(s) numerically using equation (3.1).

3.2. Checking the eigenvalues of q(x). To check whether the constructed poten-
tial q(x) is the correct potential, one has to check whether the eigenvalues generated
by the constructed potential q(x) satisfy the conditions formulated in Section 2. It is
sufficient to check the eigenvalues ofQ(s) are ν1 = 0, ν2 = 11, ν3 = 14, νj = j2, j ≥ 4.

One can find numerically the eigenvalues of the Dirichlet operator − d2

dx2
+ Q(s)

on the interval [0, π] by minimizing the following functional where u is taken from
an N -dimensional subspace of functions uN , N is a large integer:

(3.9)

∫ π
0 (|u

′|2 +Q|u|2)dx∫ π
0 |u|2dx

.

We take

uN =
N∑
n=1

cnφn(x),

and φn(x) :=
√

2
π sin(nx), 1 ≤ n ≤ N . The minimization is taken over param-

eters cn. The eigenvalues of the resulting matrix approximate the eigenvalues of

the Dirichlet operator − d2

dx2
+ Q(s) on the interval [0, π]. Finding minima of the

functional (3.9) is equivalent to finding the minima of the quadratic form

(3.10)

N∑
n=1

n2|cn|2 +
N∑

n,m=1

cncmqnm, under the restriction

N∑
n=1

|cn|2 = 1,
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where qnm := 2
π

∫ π
0 Q(x) sin(nx) sin(mx)dx, qnm = qmn. Minimizing (3.10) is equiv-

alent to minimizing

(3.11) f(c1, . . . , cN ) =
N∑
n=1

n2|cn|2 +
N∑

n,m=1

cncmqnm − ν

(
N∑
n=1

c2n − 1

)
.

A necessary condition for a smooth function f(c1, . . . , cN ) to have minima is ∂f
∂cn

= 0.
This leads to a linear system with respect to c1, . . . , cN :

(3.12) n2cn +
N∑
m=1

qnmcm − νcn = 0.

Linear system (3.12) can be written as

(3.13) PC = νC,

where P is a symmetric matrix with entries Pnm := n2δnm + qnm, and C is a
column vector C = (c1, . . . , cN ). Then the eigenvalues of the Dirichlet operator

− d2

dx2
+Q(s) on the interval [0, π] are approximated by the eigenvalues of the matrix

P . The approximation is the better the larger is N .

3.3. Calculating qnm. In section 3.2, one needs to calculate

qnm =
2

π

∫ π

0
Q(x) sin(nx) sin(mx)dx

to construct the matrix P . One can calculate the matrix P by using the formula
2 sinA sinB = cos(A−B)− cos(A+B). So, one first calculates

q̃(k) :=
1

π

∫ π

0
Q(x) cos(kx)dx, 0 ≤ k ≤ 2N,

and then calculates qnm by the formula

qnm = q̃(|n−m|)− q̃(n+m).

4. Numerical results

Based on the numerical procedure in section 3, a computer algorithm/program is
developed with the following main steps:

1. Partition the interval [0, π] into M equal-distanced intervals with the end-
points xi, 1 ≤ i ≤ M+ 1.

2. For each xi, 1 ≤ i ≤ M+1, one solves the linear systems (3.5) and (3.6) for
ψj(xi) and ψ

′
j(xi), 1 ≤ j ≤ 6.

3. Find Ks(xi, xi) and Kτ (xi, xi) by using equations (3.7) and (3.8).
4. Find Q(xi), 1 ≤ i ≤ M+ 1.
5. Construct the matrix P in equation (3.13) by calculating qnm using the

procedure in section 3.3, where q̃(k) is calculated using the Riemann sum

q̃(k) =
1

π

M∑
i=1

Q(xi) cos(kxi) +Q(xi+1) cos(kxi+1)

2
(xi+1 − xi).
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6. Find the eigenvalues of P using the Jacobi eigenvalue algorithm see, for
example [7].

The above algorithm is run five times with M = 100, 150, 200, 250, and 300. The
constructed potentials Q(s) are as in the following graph.

Figure 1. Numerically constructed potentials Q(s).

The relative error of the eigenvalues is calculated by the following formula:

δM = max
1≤j≤M

|ν(M)
j − νj |
νj

.

The following table gives the relative errors of the eigenvalues of the constructed
potentials Q(s) for M = 100, 150, 200, 250, and 300.

M Relative errors δM
100 57.12%
150 5.01%
200 1.65%
250 0.67%
300 0.32%

From the above table, one can construct the potential Q(s) with M = 250 equal-
distance small intervals and gets the relative error of the eigenvalues less than 1%.
The above result also shows that the constructed Q(s) is valid.

5. Another method to calculate eigenvalues

In the numerical results in section 4, one needs M = 250 equal-distance small
intervals to get the relative error less than 1%. From the graph of the constructed
Q(s), since Q(s) is pretty steep close to π, one can improve the method in section
4 by distributing more equal-distanced intervals M2 in the interval [9π10 , π] and less
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equal-distanced intervals M1 in the interval [0, 9π10 ].

The following result is obtained

Figure 2. Numerically constructed potential Q(s) for non-uniform
small intervals.

M1 M2 Relative errors
50 50 4.68%
50 75 0.94%
50 100 0.23%

Remark 5.1. About calculating q̃(k)

In the constructed potential Q(s) in Figure 2, let Qmax := max1≤i≤M+1Q(xi),
xmax := {xi : Q(xi) = Qmax}, Qmin := min1≤i≤M+1Q(xi), and xmin := {xi :
Q(xi) = Qmin}. The parts of the potential from xmax to xmin and from xmin to π
look like straight lines and one may try to calculate q̃(k) by

(5.1) q̃(k) =
1

π

(∫ xmax

0
Q(x) cos(kx)dx+

+

∫ xmin

xmax

Q(x) cos(kx)dx+

∫ π

xmin

Q(x) cos(kx)dx

)
:= I1 + I2 + I3.

If Q(x) is a straight line from xmax to xmin and from xmin to π, one can calculate I2
and I3 analytically. However, this does not provide the desired numerical accuracy
as the following numerical experiment shows.

In this experiment, P1 is the numerical matrix in equation (3.13) obtained in the
experiment described in Section 5 for M1 = 50 and M2 = 75, and P2 is the
numerical matrix obtained by considering Q(x) as a straight line from xmax to
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xmin and from xmin to π. The relative error matrix E is calculated by Enm =
|P1,nm−P2,nm|

|P1,nm| . Then min(E) = 0.37 but max(E) = 510.17. So, although the parts

of the potential look like straight lines from xmax to xmin and from xmin to π, one
cannot consider them as straight lines in numerical calculations.
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