CREATING MATERIALS IN WHICH HEAT PROPAGATES ALONG A LINE: THEORY AND NUMERICAL RESULTS

ALEXANDER G. RAMM AND CONG VAN

Abstract

In this paper the theory is developed for creating a material in which the heat is transmitted along a given line. This gives a possibility to transfer information using heat signals. This seems to be a novel idea. The technical part of the theory is the construction of the potential $q(x)$. This potential describes the heat equation $u_{t}=\Delta u-q(x) u$ in the limiting medium which is obtained after the small impedance particles are distributed in a given domain. A numerical method is also established to construct numerically such a potential.

1. Introduction

To create materials in which heat propagates along a line, one needs to create a medium in which the heat transfer is governed by the equation

$$
\begin{equation*}
u_{t}=\Delta u-q(x) u \quad \text { in } D,\left.\quad u\right|_{S}=0,\left.\quad u\right|_{t=0}=f(x), \tag{1.1}
\end{equation*}
$$

where D is a bounded domain with a piecewise-smooth boundary $S, D=D_{0} \times[0, L]$, $D_{0} \subset \mathbb{R}^{2}$ is a disc of radius R orthogonal to the axis $x_{1}, x=\left(x_{1}, x_{2}, x_{3}\right), x_{2}, x_{3} \in D_{0}$, $0 \leq x_{1} \leq L$.
Such a medium is created by embedding many small impedance particles $D_{m}, 1 \leq$ $m \leq M$, into a given domain D filled with a homogeneous material. Let us assume that the distribution of small particles is:

$$
\begin{equation*}
\mathcal{N}(\Delta)=\frac{1}{a^{2-\kappa}} \int_{\Delta} N(x) d x(1+o(1)), \quad a \rightarrow 0, \tag{1.2}
\end{equation*}
$$

where $\mathcal{N}(\Delta)$ is the number of small particles in an arbitrary open subset $\Delta \in D$, $\kappa \in[0,1)$ is a number that can be chosen by an experimenter as desired, $a=$ $\frac{1}{2} \max _{1 \leq m \leq M} \max _{x, y \in D_{m}}|x-y|$ and $N(x) \geq 0$ is a continuous in D function that can be chosen by an experimenter as desired. As $a \rightarrow 0$, it is proved (see [?], [?]) that the solution $u(x, t, a)$ to the problem

$$
\begin{gather*}
u_{t}=\Delta u \text { in } D \backslash \bigcup_{m=1}^{M} D_{m}, u_{N}=\zeta_{m} u \text { on } S_{m}, 1 \leq m \leq M, \tag{1.3}\\
\left.u\right|_{t=0}=f(x), \zeta_{m}:=\frac{h\left(x_{m}\right)}{a^{\kappa}}, \operatorname{Re} \zeta_{m} \geq 0, \tag{1.4}
\end{gather*}
$$

Key words and phrases. Materials, heat transfer, inverse problems, numerical mathematics.
where $x_{m} \in \mathbb{R}^{3}$ is an arbitrary point in D_{m}, has a limit, $u(x, t)=\lim _{a \rightarrow 0} u(x, t, a)$ which solves problem (1.1) with

$$
\begin{equation*}
q(x)=c_{S} N(x) h(x), \quad c_{S}:=\frac{\left|S_{m}\right|}{a^{2}}=\text { const }, \tag{1.5}
\end{equation*}
$$

so c_{S} does not depend on m, but the shape of S_{m} may depend on m. Therefore, given a potential $q(x)$ (which makes heat propagate along a line), one can choose an arbitrary continuous function $N(x)>0$, can construct a continuous function $h(x)=\frac{q(x)}{c_{S} N(x)}$, and can distribute the small bodies according to the rule (1.2) to obtain the medium in which heat propagates along a line.

Suppose that

$$
\begin{equation*}
(-\Delta+q(x)) \phi_{n}(x)=\lambda_{n} \phi_{n},\left.\quad \phi_{n}\right|_{S}=0, \quad\left\|\phi_{n}\right\|_{L^{2}(D)}=\left\|\phi_{n}\right\|=1 \tag{1.6}
\end{equation*}
$$

where $\left\{\phi_{n}\right\}$ is an orthonormal basis of $L^{2}(D):=H$, and $\left(f, \phi_{n}\right):=\int_{D} f(x) \overline{\phi_{n}(x)} d x$. Then the unique solution to (1.1) is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} e^{-\lambda_{n} t}\left(f, \phi_{n}\right) \phi_{n}(x) . \tag{1.7}
\end{equation*}
$$

If $q(x)$ is such that $\lambda_{1}=0, \lambda_{2} \gg 1$, and $\lambda_{2} \leq \lambda_{3} \leq \ldots$, then, as $t \rightarrow \infty$, the series (1.7) is well approximated by its first term (see [6]):

$$
\begin{equation*}
u(x, t)=\left(f, \phi_{1}\right) \phi_{1}+O\left(e^{-10 t}\right), \quad t \rightarrow \infty \tag{1.8}
\end{equation*}
$$

Thus, our problem is solved if $q(x)$ has the following property:

$$
\begin{equation*}
\left|\phi_{1}(x)\right| \text { decays as } \rho \text { grows, } \quad \rho=\left(x_{2}^{2}+x_{3}^{2}\right)^{1 / 2} \tag{1.9}
\end{equation*}
$$

Since the eigenfunction is normalized, $\left\|\phi_{1}\right\|=1$, this function will not tend to zero in a neighborhood of the line $\rho=0$, so information can be transformed by the heat signals along the line $\rho=0$, that is, along s-axis. Here we use the cylindrical coordinates: $x=\left(x_{1}, x_{2}, x_{3}\right)=(s, \rho, \theta), s=x_{1}, \rho=\left(x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$. In Section 2 the potential $q(x)$ will not depend on θ.

The technical part of the solution is the construction of $q(x)=c_{S} N(x) h(x)$ such that

$$
\begin{equation*}
\lambda_{1}=0, \quad \lambda_{2} \gg 1 ; \quad\left|\phi_{1}(x)\right| \text { decays as } \rho \text { grows. } \tag{1.10}
\end{equation*}
$$

Since the function $N(x)>0$ and $h(x)$, Reh ≥ 0 are at our disposal, any desirable $q, \operatorname{Re} q \geq 0$, can be obtained by embedding many small impedance particles in a given domain D.
In section 2, the method for finding such a potential $q(x)$ is presented. In section 3, the numerical method is presented for finding this q, and in section 4 , the numerical results are presented. In section 5, another numerical method is presented based on the method described in section 4.

2. Construction of $q(x)$

Let $q(x)=p(\rho)+Q(s)$, where $s:=x_{1}, \rho:=\left(x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$. Then the solution to (1.1) is $u=v(\rho) w(s)$, where

$$
\begin{align*}
& -v_{m}^{\prime \prime}-\rho^{-1} v_{m}^{\prime}+p(\rho) v_{m}=\mu_{m} v_{m}, 0 \leq \rho \leq R,\left|v_{m}(0)\right|<\infty, v_{m}(R)=0 \tag{2.1}\\
& -w_{j}^{\prime \prime}+Q(s) w_{j}=\nu_{j} w_{j}, \quad 0 \leq s \leq L, w_{j}(0)=w_{j}(L)=0 \tag{2.2}
\end{align*}
$$

Our task is to find $Q(s)$ such that $\nu_{1}=0, \nu_{2} \gg 1$ and $p(\rho)$ such that $\mu_{1}=0, \mu_{2} \gg 1$, and $\left|v_{m}(\rho)\right|$ decays as ρ grows.

We use the solution to inverse spectral problem for finding a potential which have the desired properties. The spectral function $\varrho(\lambda)$ of the Dirichlet differential operator $\ell w=-w^{\prime \prime}+Q(s) w$ (see formula (2.2)) is defined by the formula

$$
\varrho(\lambda)=\sum_{\nu_{j}<\lambda} \frac{1}{\alpha_{j}}
$$

where α_{j} are normalizing constants. If $Q=0$, then the eigenvalues of the corresponding operator ℓ are $\nu_{j 0}=\left(\frac{\pi j}{L}\right)^{2}, j=1,2, \ldots$, the corresponding normalized eigenfunctions are $\sqrt{\frac{2}{L}} \sin \frac{j \pi x}{L}$, and the normalizing constants $\alpha_{j 0}=\sqrt{\int_{0}^{L} \sin ^{2} \frac{j \pi x}{L} d x}=$ $\sqrt{\frac{L}{2}}$. If Q is unknown, then the corresponding eigenfunctions are unknown and the role of the normalizing constants can play arbitrary positive numbers which have the right asymptotic. If $L=\pi$ then $\alpha_{j}=\sqrt{\frac{\pi}{2}} j\left(1+O\left(\frac{1}{j}\right)\right), \sqrt{\nu_{j}}=j+\frac{c_{1}}{j}+O\left(j^{-2}\right)$, and $w_{j}=\frac{\sin (j x)}{j}+O\left(j^{-2}\right)$ as $j \rightarrow \infty$.

Let us recall the procedure, due to Gel'fand and Levitan (see [1], [2]) for finding Q from the known spectral function. One defines the kernel

$$
L(x, y)=\int_{-\infty}^{\infty} \frac{\sin (\sqrt{\lambda} x)}{\sqrt{\lambda}} \frac{\sin (\sqrt{\lambda} y)}{\sqrt{\lambda}} d\left(\varrho(\lambda)-\varrho_{0}(\lambda)\right)
$$

where $\varrho(\lambda)$ is the spectral function of the operator ℓ with the potential $Q=Q(s)$, and $\varrho_{0}(\lambda)$ is the spectral function of the operator ℓ with the potential $Q=0$ and the same boundary conditions.
Consider the Gel'fand-Levitan (GL) integral equation for the kernel $K(x, y)$:

$$
K(x, y)+\int_{0}^{x} K(x, s) L(s, y) d s=-L(x, y), \quad 0 \leq y \leq x
$$

The solution to this equation allows one to calculate the potential:

$$
Q(x)=2 \frac{d K(x, x)}{d x}
$$

From now on we set $L=\pi$. Then $\nu_{l 0}=j^{2}$. Let $\nu_{1}=0, \nu_{2}=11, \nu_{3}=14, \nu_{j}=\nu_{j 0}$ for $j>3$. Then the kernel $L(x, y)$ in the GL equation is defined as follows

$$
\begin{align*}
& L(x, y)=\frac{3 x y}{\pi^{3}}+\frac{2}{\pi}\left(\frac{\sin \left(\sqrt{\nu_{2}} x\right)}{\sqrt{\nu_{2}}} \frac{\sin \left(\sqrt{\nu_{2}} y\right)}{\sqrt{\nu_{2}}}+\frac{\sin \left(\sqrt{\nu_{3}} x\right)}{\sqrt{\nu_{3}}} \frac{\sin \left(\sqrt{\nu_{3}} y\right)}{\sqrt{\nu_{3}}}\right)- \tag{2.3}\\
&-\frac{2}{\pi}(\sin x \sin y+\sin (2 x) \sin (2 y)+\sin (3 x) \sin (3 y))
\end{align*}
$$

where we set the normalizing constants $\alpha_{j}=\frac{\pi}{2}, j>3, \alpha_{1}=\frac{\pi^{3}}{3}$. The term $x y$ is the value of the function $\frac{\sin \nu x}{\nu} \frac{\sin \nu y}{\nu}$ at $\nu=0$, and $\frac{\pi^{3}}{3}=\|x\|^{2}=\int_{0}^{\pi} x^{2} d x$.

Solve the GL equation:

$$
\begin{equation*}
K(s, \tau)+\int_{0}^{s} K\left(s, s^{\prime}\right) L\left(s^{\prime}, \tau\right) d s^{\prime}=-L(s, \tau), \quad 0 \leq \tau \leq s \tag{2.4}
\end{equation*}
$$

which is uniquely solvable (see [1], [2]). Equation (2.4) has finite-rank kernel and therefore can be solved analytically, being equivalent to a linear algebraic system. If $K(s, \tau)$ is found, then

$$
\begin{equation*}
Q(s)=2 \frac{d K(s, s)}{d s} \tag{2.5}
\end{equation*}
$$

and this $Q(s)$ has the required properties: $\nu_{1}=0, \nu_{2} \gg 1, \nu_{j} \leq \nu_{j+1}$.
Consider now the operator (2.1) for $v(\rho)$. We want to calculate $p(\rho)$ such that $\mu_{1}=0, \mu_{2} \gg 1, \mu_{m} \leq \mu_{m+1},\left|v_{m}(\rho)\right|$ decays as ρ grows.

We reduce this problem to the previous one that was solved. To do this, set $v=\frac{\psi}{\sqrt{\rho}}$. Then equation $-v^{\prime \prime}-\frac{1}{\rho} v^{\prime}+p(\rho) v=\mu v$, is transformed to the equation

$$
\begin{equation*}
-\psi^{\prime \prime}-\frac{1}{4 \rho^{2}} \psi+p(\rho) \psi=\mu \psi \tag{2.6}
\end{equation*}
$$

Let $p(\rho)=\frac{1}{4 \rho^{2}}+Q(\rho)$, where $Q(\rho)$ is constructed above. Then equation (2.6) becomes

$$
\begin{equation*}
-\psi^{\prime \prime}+Q(\rho) \psi=\mu \psi, \quad \psi(R)=0, \quad \psi(0)=0 . \tag{2.7}
\end{equation*}
$$

It has the desired eigenvalues $\mu_{1}=0, \mu_{2} \gg 1, \mu_{m} \leq \mu_{m+1}$.
The eigenfunction $\phi_{1}(x)=v_{1}(\rho) w_{1}(s)$, where $v_{1}(\rho)=\frac{\psi_{1}(\rho)}{\sqrt{\rho}}$, decays as ρ grows, and the eigenvalues $\lambda_{n}=\mu_{m}+\nu_{l}$. Since $\mu_{1}=\nu_{1}=0$ one has $\lambda_{1}=0$. Since $\nu_{2}=11, \mu_{2}=11, \lambda_{2}=11 \gg 1$. Thus, the desired potential is constructed: $q(x)=$ $Q(s)+\left(\frac{1}{4 \rho^{2}}+Q(\rho)\right)$, where $Q(s)$ is given by formula (2.5).

This concludes the description of our procedure for the construction of q.

3. Numerical procedure

In section 3.1, a numerical method to construct $q(x)$ is presented. In section 3.2, a procedure is presented to check whether the constructed potential $q(x)$ is valid, by finding the eigenvalues of $q(x)$.
3.1. Numerical construction of $\mathbf{q}(\mathbf{x})$. From the construction of $q(x)$ in Section 2 , if one can construct $Q(s)$ then one gets $q(x)=Q(s)+\left(\frac{1}{4 \rho^{2}}+Q(\rho)\right)$.

To construct $Q(s)$, one can use equation (2.5) and rewrite it as

$$
\begin{equation*}
Q(s)=2 \frac{d K(s, s)}{d s}=2\left(\left.\frac{\partial K(s, \tau)}{\partial s}\right|_{\tau=s}+\left.\frac{\partial K(s, \tau)}{\partial \tau}\right|_{\tau=s}\right) \tag{3.1}
\end{equation*}
$$

One can get $K_{s}:=\frac{\partial K(s, \tau)}{\partial s}$ and $K_{\tau}:=\frac{\partial K(s, \tau)}{\partial \tau}$ numerically by the following procedure.

The function $L(x, y)$ in (2.3) can be written as

$$
\begin{equation*}
L(x, y)=\sum_{j=1}^{6} a_{j}(x) b_{j}(y) \tag{3.2}
\end{equation*}
$$

where $a_{1}(x)=\frac{3 x}{\pi^{3}}, a_{2}(x)=\frac{2}{\pi} \frac{\sin \left(\sqrt{\nu_{2}} x\right)}{\nu_{2}}, a_{3}(x)=\frac{2}{\pi} \frac{\sin \left(\sqrt{\nu_{3}} x\right)}{\nu_{3}}, a_{4}(x)=-\frac{2}{\pi} \sin (x)$, $a_{5}(x)=-\frac{2}{\pi} \sin (2 x), a_{6}(x)=-\frac{2}{\pi} \sin (3 x)$ and $b_{1}(x)=x, b_{2}(x)=\sin \left(\sqrt{\nu_{2}} x\right), b_{3}(x)=$ $\sin \left(\sqrt{\nu_{3}} x\right), b_{4}(x)=\sin (x), b_{5}(x)=\sin (2 x), b_{6}(x)=\sin (3 x)$.

Then equation (2.4) becomes

$$
\begin{equation*}
K(s, \tau)+\sum_{j=1}^{6} b_{j}(\tau) \int_{0}^{s} K\left(s, s^{\prime}\right) a_{j}\left(s^{\prime}\right) d s^{\prime}=-\sum_{j=1}^{6} a_{j}(s) b_{j}(\tau), \quad 0 \leq \tau \leq s \tag{3.3}
\end{equation*}
$$

Let $\psi_{j}(s):=\int_{0}^{s} K\left(s, s^{\prime}\right) a_{j}\left(s^{\prime}\right) d s^{\prime}$, then equation (3.3) becomes

$$
\begin{equation*}
K(s, \tau)+\sum_{j=1}^{6} b_{j}(\tau) \psi_{j}(s)=-\sum_{j=1}^{6} a_{j}(s) b_{j}(\tau), \quad 0 \leq \tau \leq s \tag{3.4}
\end{equation*}
$$

Multiply (3.4) with $a_{m}(\tau), 1 \leq m \leq 6$ and integrate it with respect to τ to get

$$
\begin{equation*}
\psi_{m}(s)+\sum_{j=1}^{6}\left(\int_{0}^{s} b_{j}(\tau) a_{m}(\tau) d \tau\right) \psi_{j}(s)=-\sum_{j=1}^{6} a_{j}(s)\left(\int_{0}^{s} b_{j}(\tau) a_{m}(\tau) d \tau\right) \tag{3.5}
\end{equation*}
$$

For a fix $s=s_{0}$, equation (3.5) is a 6×6 linear system which can be solved for $\psi_{j}\left(s_{0}\right), 1 \leq j \leq 6$. So, we can solve equation (3.5) to get $\psi_{j}(s)$ analytically and numerically. Differentiating equation (3.5), one can get a similar linear system to
(3.5) and can get $\psi_{j}^{\prime}(s)$ analytically and numerically from the linear system:

$$
\begin{align*}
\psi_{m}^{\prime}(s) & +\sum_{j=1}^{6}\left(\int_{0}^{s} b_{j}(\tau) a_{m}(\tau) d \tau\right) \psi_{j}^{\prime}(s)= \tag{3.6}\\
& =-\sum_{j=1}^{6}\left(a_{j}(s)\left(\int_{0}^{s} b_{j}(\tau) a_{m}(\tau) d \tau\right)+\left(a_{j}(s)+\psi_{j}(s)\right) b_{j}(s) a_{m}(s)\right)
\end{align*}
$$

After finding $\psi_{j}(s)$ and $\psi_{j}^{\prime}(s)$, one can find K_{s} and K_{τ} by differentiating equation (3.3) with respect to s and τ

$$
\begin{align*}
& K_{s}(s, \tau)=-\sum_{j=1}^{6}\left(a_{j}^{\prime}(s) b_{j}(\tau)+b_{j}(\tau) \psi_{j}^{\prime}(s)\right), \tag{3.7}\\
& K_{\tau}(s, \tau)=-\sum_{j=1}^{6}\left(a_{j}(s) b_{j}^{\prime}(\tau)+b_{j}^{\prime}(\tau) \psi_{j}(s)\right) . \tag{3.8}
\end{align*}
$$

From equation (3.7) - (3.8), one finds $\left.K_{s}(s, \tau)\right|_{\tau=s}$ and $\left.K_{\tau}(s, \tau)\right|_{\tau=s}$, and then finds $Q(s)$ numerically using equation (3.1).
3.2. Checking the eigenvalues of $\mathbf{q}(\mathbf{x})$. To check whether the constructed potential $q(x)$ is the correct potential, one has to check whether the eigenvalues generated by the constructed potential $q(x)$ satisfy the conditions formulated in Section 2. It is sufficient to check the eigenvalues of $Q(s)$ are $\nu_{1}=0, \nu_{2}=11, \nu_{3}=14, \nu_{j}=j^{2}, j \geq 4$.

One can find numerically the eigenvalues of the Dirichlet operator $-\frac{d^{2}}{d x^{2}}+Q(s)$ on the interval $[0, \pi]$ by minimizing the following functional where u is taken from an N-dimensional subspace of functions u_{N}, N is a large integer:

$$
\begin{equation*}
\frac{\int_{0}^{\pi}\left(\left|u^{\prime}\right|^{2}+Q|u|^{2}\right) d x}{\int_{0}^{\pi}|u|^{2} d x} \tag{3.9}
\end{equation*}
$$

We take

$$
u_{N}=\sum_{n=1}^{N} c_{n} \varphi_{n}(x)
$$

and $\varphi_{n}(x):=\sqrt{\frac{2}{\pi}} \sin (n x), 1 \leq n \leq N$. The minimization is taken over parameters c_{n}. The eigenvalues of the resulting matrix approximate the eigenvalues of the Dirichlet operator $-\frac{d^{2}}{d x^{2}}+Q(s)$ on the interval $[0, \pi]$. Finding minima of the functional (3.9) is equivalent to finding the minima of the quadratic form

$$
\begin{equation*}
\sum_{n=1}^{N} n^{2}\left|c_{n}\right|^{2}+\sum_{n, m=1}^{N} c_{n} c_{m} q_{n m}, \text { under the restriction } \sum_{n=1}^{N}\left|c_{n}\right|^{2}=1 \tag{3.10}
\end{equation*}
$$

where $q_{n m}:=\frac{2}{\pi} \int_{0}^{\pi} Q(x) \sin (n x) \sin (m x) d x, q_{n m}=q_{m n}$. Minimizing (3.10) is equivalent to minimizing

$$
\begin{equation*}
f\left(c_{1}, \ldots, c_{N}\right)=\sum_{n=1}^{N} n^{2}\left|c_{n}\right|^{2}+\sum_{n, m=1}^{N} c_{n} c_{m} q_{n m}-\nu\left(\sum_{n=1}^{N} c_{n}^{2}-1\right) \tag{3.11}
\end{equation*}
$$

A necessary condition for a smooth function $f\left(c_{1}, \ldots, c_{N}\right)$ to have minima is $\frac{\partial f}{\partial c_{n}}=0$. This leads to a linear system with respect to c_{1}, \ldots, c_{N} :

$$
\begin{equation*}
n^{2} c_{n}+\sum_{m=1}^{N} q_{n m} c_{m}-\nu c_{n}=0 \tag{3.12}
\end{equation*}
$$

Linear system (3.12) can be written as

$$
\begin{equation*}
P C=\nu C \tag{3.13}
\end{equation*}
$$

where P is a symmetric matrix with entries $P_{n m}:=n^{2} \delta_{n m}+q_{n m}$, and C is a column vector $C=\left(c_{1}, \ldots, c_{N}\right)$. Then the eigenvalues of the Dirichlet operator $-\frac{d^{2}}{d x^{2}}+Q(s)$ on the interval $[0, \pi]$ are approximated by the eigenvalues of the matrix P. The approximation is the better the larger is N.
3.3. Calculating $q_{n m}$. In section 3.2, one needs to calculate

$$
q_{n m}=\frac{2}{\pi} \int_{0}^{\pi} Q(x) \sin (n x) \sin (m x) d x
$$

to construct the matrix P. One can calculate the matrix P by using the formula $2 \sin A \sin B=\cos (A-B)-\cos (A+B)$. So, one first calculates

$$
\tilde{q}(k):=\frac{1}{\pi} \int_{0}^{\pi} Q(x) \cos (k x) d x, \quad 0 \leq k \leq 2 N
$$

and then calculates $q_{n m}$ by the formula

$$
q_{n m}=\tilde{q}(|n-m|)-\tilde{q}(n+m)
$$

4. Numerical Results

Based on the numerical procedure in section 3, a computer algorithm/program is developed with the following main steps:

1. Partition the interval $[0, \pi]$ into \mathcal{M} equal-distanced intervals with the endpoints $x_{i}, 1 \leq i \leq \mathcal{M}+1$.
2. For each $x_{i}, 1 \leq i \leq \mathcal{M}+1$, one solves the linear systems (3.5) and (3.6) for $\psi_{j}\left(x_{i}\right)$ and $\psi_{j}^{\prime}\left(x_{i}\right), 1 \leq j \leq 6$.
3. Find $K_{s}\left(x_{i}, x_{i}\right)$ and $K_{\tau}\left(x_{i}, x_{i}\right)$ by using equations (3.7) and (3.8).
4. Find $Q\left(x_{i}\right), 1 \leq i \leq \mathcal{M}+1$.
5. Construct the matrix P in equation (3.13) by calculating $q_{n m}$ using the procedure in section 3.3 , where $\tilde{q}(k)$ is calculated using the Riemann sum

$$
\tilde{q}(k)=\frac{1}{\pi} \sum_{i=1}^{\mathcal{M}} \frac{Q\left(x_{i}\right) \cos \left(k x_{i}\right)+Q\left(x_{i+1}\right) \cos \left(k x_{i+1}\right)}{2}\left(x_{i+1}-x_{i}\right)
$$

6. Find the eigenvalues of P using the Jacobi eigenvalue algorithm see, for example [7].
The above algorithm is run five times with $\mathcal{M}=100,150,200,250$, and 300 . The constructed potentials $Q(s)$ are as in the following graph.

Figure 1. Numerically constructed potentials $Q(s)$.

The relative error of the eigenvalues is calculated by the following formula:

$$
\delta_{\mathcal{M}}=\max _{1 \leq j \leq \mathcal{M}} \frac{\left|\nu_{j}^{(\mathcal{M})}-\nu_{j}\right|}{\nu_{j}}
$$

The following table gives the relative errors of the eigenvalues of the constructed potentials $Q(s)$ for $\mathcal{M}=100,150,200,250$, and 300 .

\mathcal{M}	Relative errors $\delta_{\mathcal{M}}$
100	57.12%
150	5.01%
200	1.65%
250	0.67%
300	0.32%

From the above table, one can construct the potential $Q(s)$ with $\mathcal{M}=250$ equaldistance small intervals and gets the relative error of the eigenvalues less than 1%. The above result also shows that the constructed $Q(s)$ is valid.

5. Another method to calculate eigenvalues

In the numerical results in section 4 , one needs $\mathcal{M}=250$ equal-distance small intervals to get the relative error less than 1%. From the graph of the constructed $Q(s)$, since $Q(s)$ is pretty steep close to π, one can improve the method in section 4 by distributing more equal-distanced intervals \mathcal{M}_{2} in the interval $\left[\frac{9 \pi}{10}, \pi\right]$ and less
equal-distanced intervals \mathcal{M}_{1} in the interval $\left[0, \frac{9 \pi}{10}\right]$.
The following result is obtained

Figure 2. Numerically constructed potential $Q(s)$ for non-uniform small intervals.

\mathcal{M}_{1}	\mathcal{M}_{2}	Relative errors
50	50	4.68%
50	75	0.94%
50	100	0.23%

Remark 5.1. About calculating $\tilde{q}(k)$
In the constructed potential $Q(s)$ in Figure 2, let $Q_{\text {max }}:=\max _{1 \leq i \leq \mathcal{M}+1} Q\left(x_{i}\right)$, $x_{\max }:=\left\{x_{i}: Q\left(x_{i}\right)=Q_{\max }\right\}, Q_{\min }:=\min _{1 \leq i \leq \mathcal{M}+1} Q\left(x_{i}\right)$, and $x_{\min }:=\left\{x_{i}:\right.$ $\left.Q\left(x_{i}\right)=Q_{\min }\right\}$. The parts of the potential from $x_{\max }$ to $x_{\min }$ and from $x_{\min }$ to π look like straight lines and one may try to calculate $\tilde{q}(k)$ by

$$
\begin{align*}
\tilde{q}(k)=\frac{1}{\pi} & \left(\int_{0}^{x_{\max }} Q(x) \cos (k x) d x+\right. \tag{5.1}\\
& \left.+\int_{x_{\max }}^{x_{\min }} Q(x) \cos (k x) d x+\int_{x_{\min }}^{\pi} Q(x) \cos (k x) d x\right) \\
& :=I_{1}+I_{2}+I_{3}
\end{align*}
$$

If $Q(x)$ is a straight line from $x_{\max }$ to $x_{\min }$ and from $x_{\min }$ to π, one can calculate I_{2} and I_{3} analytically. However, this does not provide the desired numerical accuracy as the following numerical experiment shows.

In this experiment, P_{1} is the numerical matrix in equation (3.13) obtained in the experiment described in Section 5 for $\mathcal{M}_{1}=50$ and $\mathcal{M}_{2}=75$, and P_{2} is the numerical matrix obtained by considering $Q(x)$ as a straight line from $x_{\max }$ to
$x_{\min }$ and from $x_{\min }$ to π. The relative error matrix E is calculated by $E_{n m}=$ $\frac{\left|P_{1, n m}-P_{2, n m}\right|}{\left|P_{1, n m}\right|}$. Then $\min (E)=0.37$ but $\max (E)=510.17$. So, although the parts of the potential look like straight lines from $x_{\max }$ to $x_{\min }$ and from $x_{\min }$ to π, one cannot consider them as straight lines in numerical calculations.

References

[1] B. M. Levitan, Inverse Sturm-Liouville Problems, VNU Press, Utrecht, 1987.
[2] A. G. Ramm, Inverse Problems, Springer, New York, 2005.
[3] A. G. Ramm, Creating materials in which heat propagates a long a line, Boll Union. Math. Ital. (BUMI) 8 (2015), 165-168.
[4] A. G. Ramm, Heat transfer in a medium in which many small particles are embedded, Math. Model. Nat. Phenom. 8 (2013), 193-199.
[5] A. G. Ramm, Scattering of Acoustic and Electromagnetic Waves by Small Bodies of Arbitrary Shapes. Applications to Creating New Engineered Materials, Momentum Press, New York, 2013.
[6] A. G. Ramm, Heat transfer in a complex medium, Chaotic Modeling and Simulation (CMSIM) 1 (2016), 3-17.
[7] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980
A. G. Ramm

Mathematics Department, Kansas State University, Manhattan, KS 66506, USA
E-mail address: ramm@math.ksu.edu
C. Van

Mathematics Department, Kansas State University, Manhattan, KS 66506, USA
E-mail address: congvan@math.ksu.edu

