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In 1968 Nadler [13] showed that the assumption ‘supn∈N L(Fn) < 1’ in Theo-
rem 1.1 could be omitted in some cases:

Theorem 1.3 (Nadler). Let (X, d) be locally compact (not necessarily complete)
and for n ∈ N, Fn be contractive with fixed point xn. If (Fn) converges pointwise to
F with fixed point x0 and F is contractive, then xn → x0.

On the other hand, a partial generalization of Theorem 1.2 was given in 1978 by
Dugundji and Granas [6], who considered families of weakly contractive mappings.
Recall that F is weakly contractive if

d(Fx, Fy) ≤ d(x, y) − Θ(x, y) for any x, y ∈ X,

where Θ: X ×X → [0,∞) is compactly positive, i.e., for any a, b > 0 with a < b,

inf{Θ(x, y) : a ≤ d(x, y) ≤ b} > 0.

It was proved in [6] that every weakly contractive selfmap of a complete metric space
has a unique fixed point. For families of such mappings, we have the following

Theorem 1.4 (Dugundji–Granas). Let (X, d) be complete, (Λ, ρ) be a metric space
and {Fλ : λ ∈ Λ} be a family of selfmaps of X. Under the notations of Theorem 1.2
concerning mappings F and f , assume that F is continuous in the first variable and
weakly contractive in the second one with function Θ independent of λ, i.e.,

(1.1) d(Fλx, Fλy) ≤ d(x, y) − Θ(x, y) for x, y ∈ X and λ ∈ Λ.

Then f is continuous at each point λ ∈ Λ, where it is locally bounded.

The last property means that the restriction of f to some neighbourhood of λ is
bounded. This condition seems to be rather hardly verifiable in practice and it was
not known whether it is essential in Theorem 1.4.

Applying [11, Lemma 3] to the set

D := {(d(x, y), d(Fλx, Fλy)) : x, y ∈ X, λ ∈ Λ}
we may infer that condition (1.1) is equivalent to the following: there exists a
continuous nondecreasing function φ : [0,∞) → [0,∞) such that φ(t) < t for t > 0,
and

(1.2) d(Fλx, Fλy) ≤ φ(d(x, y)) for x, y ∈ X and λ ∈ Λ,

i.e., all Fλ are φ-contractive in Browder’s sense [3] with φ independent of λ. Hence
a sequential version of Theorem 1.4 may be formulated as follows.

Theorem 1.5. Let (X, d) be complete and for n ∈ N, Fn : X → X be φ-contractive
in Browder’s sense with φ independent of n. Let xn = Fnxn for n ∈ N. If (Fn)
converges pointwise to F , then F has a unique fixed point x0, and if (xn) is bounded,
then xn → x0.

It is easily seen that Theorems 1.4 and 1.5 are equivalent in the sense that The-
orem 1.5 is an immediate consequence of Theorem 1.4 and vice versa.

In [11] it is shown that the local boundedness of f in Theorem 1.4 can be omitted
if we assume that all Fλ are φ-contractive in Browder’s sense with φ satisfying an
extra condition that

(1.3) lim inf
t→∞

(t− φ(t)) > 0.
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(See [11, Theorem 11 and Remark 11]. Of course, the last condition is satisfied if
φ(t) = αt with α ∈ [0, 1), so [11, Theorem 11] generalizes Theorem 1.2.) Such φ-
contractions in Dugundji’s sense were studied in [5] (under different but equivalent
definition) and a comprehensive characterization of them was given in [11, Theo-
rem 8]. In Section 2 we extend [11, Theorem 11] by considering families of nonself
mappings. We give a sufficient condition for f to have a closed graph and we also
discuss, when f is continuous. Moreover, we provide an example illustrating the
role of the continuity assumption in the first part of our Theorem 2.1.

In Section 3, with the help of a completely different method than that used in
Section 2, we show that the assumption on local boundedness of f in the Dugundji–
Granas Theorem 1.4 is redundant. As a consequence, we get that also the as-
sumption of Theorem 1.5 that (xn) be bounded is superflous. Moreover, it follows
from our proof of Theorem 3.2 that Theorem 1.2 can be obtained directly from the
Banach contraction principle applied to a Nemyckĭı operator defined on a certain
space of continuous functions equipped with the supremum metric. We also give a
generalization of Nadler’s Theorem 1.3 by relaxing the assumption that mappings
be contractive: instead, we consider a family of Edelstein [7] contractions (cf. The-
orem 3.5). At last, we establish a theorem characterizing finite dimensional normed
linear spaces by the property of continuity of fixed points of contractive mappings
(cf. Theorem 3.8).

Finally, in Section 4 we give two partial extensions of Nadler’s Theorem 1.3 by
considering a sequence (Fn) of continuous (possibly noncontractive) selfmaps of a
nonempty closed convex (not necessarily bounded) subset of a finite dimensional
normed linear space. In particular, our Theorem 4.2 implies that if each Fn is
nonexpansive and (Fn) is pointwise convergent to a contraction with a fixed point
x0, then almost all Fn have fixed points and d(x0,FixFn) → 0.

2. Continuity of fixed points of nonself mappings

We may extend the definition of a Dugundji contraction to nonself mappings in
the following natural way. Let (X, d) be a metric space and A be a nonempty subset
of X. Let φ : [0,∞) → [0,∞) be a continuous and nondecreasing function such that
φ(t) < t for t > 0 and (1.3) holds. Then we say that a mapping T : A → X is a
Dugundji φ-contraction if d(Tx, Ty) ≤ φ(d(x, y)) for any x, y ∈ A. The main result
of this section is the following

Theorem 2.1. Let (X, d) and (Λ, ρ) be metric spaces, ∅ ̸= A ⊆ X, and F : Λ×A →
X be continuous. Set Fλ := F (λ, ·) for λ ∈ Λ and

Λ0 := {λ ∈ Λ : FixFλ ̸= ∅}.

For λ ∈ Λ0, let FixFλ = {xλ} and define f(λ) := xλ. Then the following statements
hold.

1. f has a closed graph in Λ ×A.
2. If A is compact and Λ0 ̸= ∅, then f is continuous.
3. If each Fλ is a Dugundji φ-contraction (with φ independent of λ) and Λ0 ̸=

∅, then f is continuous.
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Proof. We show that f has a closed graph in Λ × A. So assume that λn ∈ Λ0 for
n ∈ N, λn → λ0 and f(λn) → x0 for some λ0 ∈ Λ and x0 ∈ A. We are to show
that λ0 ∈ Λ0 and x0 = f(λ0). For any n ∈ N, we have that f(λn) = Fλnf(λn) =
F (λn, f(λn)), so

(2.1) d(x0, Fλ0x0) ≤ d(x0, f(λn)) + d(F (λn, f(λn)), F (λ0, x0)).

By continuity of F , we get that d(F (λn, f(λn)), F (λ0, x0)) → 0. Thus letting n
tend to ∞ in (2.1), we obtain that x0 = Fλ0x0, so λ0 ∈ Λ0 and x0 = f(λ0), which
completes the proof of point 1.

Statement 2 follows immediately from point 1 and [8, Exercise 3.1.D, p. 179].
Now assume that each Fλ is a Dugundji φ-contraction. Let λn ∈ Λ0 for n ∈ N∪{0}

and λn → λ0. Then we have that for any n ∈ N,

d(f(λn), f(λ0)) = d(Fλnf(λn), Fλ0f(λ0)) ≤ d(Fλnf(λn), Fλnf(λ0))
+d(Fλnf(λ0), Fλ0f(λ0)) ≤ φ(d(f(λn), f(λ0)))
+d(F (λn, f(λ0)), F (λ0, f(λ0))).

Set an := d(f(λn), f(λ0)) for n ∈ N. By the above inequality,

an − φ(an) ≤ d(F (λn, f(λ0)), F (λ0, f(λ0))) → 0

as n → ∞ because of continuity of F (·, f(λ0)). Hence an − φ(an) → 0 since
an−φ(an) ≥ 0. Suppose that (an) is unbounded. Then there is a subsequence (akn)
such that akn → ∞ and akn−φ(akn) → 0, which gives that lim inft→∞(t−φ(t)) = 0,
a contradiction. Thus (an) is bounded. We show that an → 0. Consider any
subsequence (akn) of (an). Then (akn) contains a subsequence (akmn

) convergent to
some a, a ≥ 0. By continuity of φ,

akmn
− φ(akmn

) → a− φ(a) as n → ∞,

so a − φ(a) = 0 and hence a = 0 since φ(t) < t for t > 0. Thus an → 0, i.e.,
f(λn) → f(λ0), which completes the proof. �

The following example shows that the assumption of Theorem 2.1 that F be
continuous cannot be weakened by assuming only that F is continuous in each
variable separately: the latter condition does not guarantee that f has a closed
graph even if both Λ and A are compact.

Example 2.2. Set X := R, Λ := {1/n : n ∈ N} ∪ {0}, A := [0, 1], and endow
X and Λ with the Euclidean metric. Set F (0, x) := 0 for x ∈ A. Consider any
two sequences (an) and (bn) of reals such that an → 0, bn → 1, (an) is strictly
decreasing, (bn) is strictly increasing and a1 < b1. For n ∈ N, define F (1/n, ·) as
the polygonal line with nodes (0,−an), (an, 0), (bn, 0), (bn+1, bn+1) and (1, 0), i.e.,

F (1/n, x) := x− an for x ∈ [0, an];
F (1/n, x) := 0 for x ∈ (an, bn);

F (1/n, x) := bn+1
x− bn

bn+1 − bn
for x ∈ [bn, bn+1];

F (1/n, x) := bn+1
1 − x

1 − bn+1
for x ∈ (bn+1, 1].
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It is easily seen that F is continuous in each variable separately. Moreover, Λ0 = Λ,
f(0) = 0 and f(1/n) = bn+1 → 1 for n ∈ N, so the graph of f is not closed. Observe
that F is not continuous at (0, 1) since (1/n, bn+1) → (0, 1), but

F (1/n, bn+1) = bn+1 → 1 ̸= 0 = F (0, 1).

Let us note that Theorem 2.1 focuses only on the problem of continuity of fixed
points and does not give any sufficient conditions for the existence of fixed points
of mappings Fλ. However, such conditions for nonself φ-contractions are known in
the literature and were given, e.g., by Reich and Zaslavski [14, 15].

3. Continuity of fixed points of self mappings

In this section first we generalize the Dugundji–Granas Theorem 1.4 by removing
an inconvenient assumption that a mapping f is locally bounded. Here we replace
condition (1.1) by its equivalent form (1.2). In the proof we will use the following
obvious lemma.

Lemma 3.1. Let (X, d) and (Y, ρ) be metric spaces, and f : X → Y . Then f is
continuous if and only if for any nonempty compact subset A of X, the restriction
f |A is continuous.

Theorem 3.2. Let (X, d) be complete, (Λ, ρ) be a metric space and {Fλ : λ ∈ Λ}
be a family of selfmaps of X such that

d(Fλx, Fλy) ≤ φ(d(x, y)) for x, y ∈ X and λ ∈ Λ,

where φ : [0,∞) → [0,∞) is continuous nondecreasing and such that φ(t) < t for
t > 0. Assume that for any x ∈ X, the mapping Λ ∋ λ 7→ Fλx is continuous. Then
each Fλ has a unique fixed point xλ and the mapping Λ ∋ λ 7→ xλ is continuous.

Proof. By Browder’s (see [3] or [9, p. 19]) theorem, each Fλ has a unique fixed point
xλ. For λ ∈ Λ, set f(λ) := xλ. Let Ω be a nonempty compact subset of Λ and
C(Ω, X) denote the family of all continuous functions from Ω to X, endowed with
the supremum metric σ. Since (X, d) is complete, so is (C(Ω, X), σ) (see, e.g., [12,
Theorem 3, p. 90]). Consider the following Nemyckĭı operator:

(Tg)(λ) := F (λ, g(λ)) for g ∈ C(Ω, X) and λ ∈ Ω,

where F (λ, x) := Fλx for λ ∈ Λ and x ∈ X. By hypothesis, F is continuous
in the first variable and nonexpansive in the second one, which easily yields the
continuity of F . Hence we may infer that T maps C(Ω, X) into itself. We show
that T is a φ-contraction with respect to σ. Let g, h ∈ C(Ω, X) and λ ∈ Ω. Then,
by monotonicity of φ, we have

d((Tg)(λ), (Th)(λ)) = d(Fλg(λ), Fλh(λ)) ≤ φ(d(g(λ), h(λ))) ≤ φ(σ(g, h)).

Since λ is arbitrary, we may infer that σ(Tg, Th) ≤ φ(σ(g, h)), i.e., T is Browder’s
φ-contraction on C(Ω, X). Hence T has a fixed point g∗ ∈ C(Ω, X), so for any
λ ∈ Λ,

g∗(λ) = F (λ, g∗(λ)) = Fλg∗(λ),

i.e., g∗(λ) ∈ FixFλ = {f(λ)}. Thus g∗ = f |Ω, so the restriction of f to Ω is
continuous. By Lemma 3.1, we get that f is continuous on Λ. �
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As an immediate consequence, we get the following extension of Theorem 1.5.

Corollary 3.3. Let (X, d) be complete and for n ∈ N, Fn : X → X be φ-contractions
in Browder’s sense with φ independent of n. Let xn = Fnxn for n ∈ N. If (Fn)
converges pointwise to F , then F has a unique fixed point x0 and xn → x0.

Remark 3.4. The proof of Theorem 3.2 shows that the result on continuity of
fixed points for a family of Browder’s contractions can be deduced directly from
Browder’s fixed point theorem. Consequently, the latter theorem is in some sense
equivalent to Theorem 3.2. The same remark concerns — as already mentioned in
Section 1 — relations between Theorem 1.2 and the Banach contraction principle.

Now we present a generalization of Nadler’s Theorem 1.3.

Theorem 3.5. Let (X, d) be locally compact (not necessarily complete), (Λ, ρ) be a
metric space and {Fλ : λ ∈ Λ} be a family of selfmaps of X such that

(3.1) d(Fλx, Fλy) < d(x, y) for x, y ∈ X with x ̸= y, and λ ∈ Λ.

Assume that for any x ∈ X, the mapping Λ ∋ λ 7→ Fλx is continuous. Set

Λ0 := {λ ∈ Λ : FixFλ ̸= ∅}.
Then Λ0 is open. Moreover, if Λ0 ̸= ∅, then FixFλ = {xλ} for λ ∈ Λ0, and the
mapping Λ0 ∋ λ 7→ xλ is continuous.

Proof. Clearly, (3.1) implies the uniqueness of fixed points of mappings Fλ. Assume
that Λ0 ̸= ∅. Then we may define f(λ) := xλ for λ ∈ Λ0, where xλ is the unique fixed
point of Fλ. Let λ0 ∈ Λ0 and set x0 := f(λ0) so that x0 = Fλ0x0. By hypothesis,
there is r > 0 such that the closed ball B(x0, r) is compact. Fix ε ∈ (0, r] and set
B := B(x0, ε). Clearly, B is compact and for x ∈ B,

d(Fλ0x, x0) = d(Fλ0x, Fλ0x0) ≤ d(x, x0) ≤ ε,

so Fλ0(B) ⊆ B. By (3.1) and [10, Proposition 1], there exists a nondecreasing
function φ : [0,∞) → [0,∞) such that φ(t) < t for t > 0 and

d(Fλ0x, Fλ0y) ≤ φ(d(x, y)) for x, y ∈ B.

Now assume that λn ∈ Λ for n ∈ N and λn → λ0. Since {Fλn : n ∈ N} is
equicontinuous and Fλnx → Fλ0x for x ∈ B, we may infer by compactness of B
that (Fλn |B) converges uniformly to Fλ0 |B. Hence, since ε− φ(ε) > 0, there exists
k ∈ N such that for n ≥ k and x ∈ B,

d(Fλnx, Fλ0x) ≤ ε− φ(ε).

Then for such n and x, we get that

d(Fλnx, x0) ≤ d(Fλnx, Fλ0x) + d(Fλ0x, Fλ0x0) ≤ ε− φ(ε) + φ(d(x, x0))
≤ ε− φ(ε) + φ(ε) = ε,

which means that Fλn(B) ⊆ B for n ≥ k. By (3.1) and Edelstein’s [7] fixed point
theorem, FixFλn ∩ B ̸= ∅, so λn ∈ Λ0 and f(λn) ∈ B, i.e., d(f(λn), f(λ0)) ≤ ε
for any n ≥ k. Thus we have shown that if λn ∈ Λ for n ∈ N and λn → λ0, then
λn ∈ Λ0 for sufficiently large n, which implies that λ0 ∈ int Λ0. Hence Λ0 is open.
Moreover, the above argument shows that the sequence (f(λn)) is well defined for
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n large enough and it converges to f(λ0). Hence, in particular, if λn ∈ Λ0 for n ∈ N
and λn → λ0, then f(λn) → f(λ0), which completes the proof. �

Now Theorem 3.5 and Browder’s [3] fixed point theorem imply the following

Corollary 3.6. Let (X, d) be locally compact and complete, (Λ, ρ) be a metric space
and for any λ ∈ Λ, Fλ : X → X be Browder’s φλ-contraction. Assume that for any
x ∈ X, the mapping Λ ∋ λ 7→ Fλx is continuous. Then each Fλ has a unique fixed
point xλ and the mapping Λ ∋ λ 7→ xλ is continuous.

The following example shows that under the assumptions of Theorem 3.5, a set
Λ0 need not be closed.

Example 3.7. Let X := R and Λ := [−1, 1] be endowed with the Euclidean metric.
For λ ∈ Λ and x ∈ R, set

Fλx := λ ln(1 + ex).

It can easily be verified that all the assumptions of Theorem 3.5 are satisfied. In
particular, by the Lagrange mean theorem, we get that L(Fλ) = |λ| for λ ∈ Λ, so
by the contraction principle, FixFλ ̸= ∅ for λ ∈ (−1, 1), whereas

FixF1 = ∅ and FixF−1 =
{

ln
(

(
√

5 − 1)/2
)}

.

Consequently, Λ0 = [−1, 1), so Λ0 is open in Λ, but is not closed.

It is also worth noticing that the assumption on the local compactness in Theo-
rem 3.5 cannot be omitted. Namely, as shown by Nadler [13, Theorem 3], for any
infinite dimensional separable or reflexive Banach space X, there exists a sequence
of contractive selfmaps of X pointwise convergent to the zero mapping, but such
that the sequence of fixed points of these mappings does not converge to 0. In fact,
Nadler’s construction can be done in any Banach space X with the property that
there exists a sequence (x∗n) of linear functionals on X of norm one such that (x∗n) is
weak∗ convergent to the zero functional. But now it is known that such a sequence
exists for any infinite dimensional Banach space. This deep result is known as the
Josefson–Nissenzweig theorem (see, e.g., [4, p. 219]). Consequently, the following
theorem holds in which, differently from [13], we assume at the beginning that X
is only a normed linear space (not necessarily complete).

Theorem 3.8. Let X be a normed linear space. The following statements are
equivalent:

(i) X is finite dimensional;
(ii) for any metric space (Λ, ρ) and any mapping F : Λ ×X → X which is con-

tinuous in the first variable and contractive in the second one, we have that
every Fλ has a fixed point xλ and the mapping Λ ∋ λ 7→ xλ is continuous.

Proof. (i)⇒(ii): Let (Λ, ρ) and F be as in (ii). By (i), X is a Banach space, so by
the contraction principle, every Fλ has a unique fixed point xλ. The continuity of
the mapping Λ ∋ λ 7→ xλ follows from Theorem 3.5 since X is locally compact as a
finite dimensional Banach space.

(ii)⇐(i): By (ii), we may infer that in particular, taking a singleton as Λ, ev-
ery contractive selfmap of X has a fixed point. Hence, by Borwein’s [2] theo-
rem, X is a Banach space. Suppose, on the contrary, that dimX = ∞. Then
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by Nadler’s construction supported by the Josefson–Nissenzweig theorem, there ex-
ists a sequence (Fn) of contractive selfmaps of X which converges pointwise to the
zero mapping, and such that ∥xn∥ = 1, where xn = Fnxn for n ∈ N. Define
Λ := {1/n : n ∈ N} ∪ {0} and set

F (0, x) := 0 and F (1/n, x) := Fnx for n ∈ N and x ∈ X.

Then F is continuous in the first variable and contractive in the second one, but
Λ ∋ λ 7→ xλ is not continuous at 0, which yields a contradiction. �

4. Two partial extensions of Nadler’s theorem

Clearly, Nadler’s Theorem 1.3 implies the following

Corollary 4.1. Let X be a finite dimensional normed linear space and A be a
nonempty closed subset of X. If Fn : A → A are contractive for n ∈ N and (Fn)
converges pointwise to a contractive mapping F , then xn → x0, where x0 = Fx0
and xn = Fnxn for n ∈ N.

In this section we give two partial extensions of Corollary 4.1 by weakening the
assumption that Fn be contractive. However, we require A to be convex, which is
unnecessary in Corollary 4.1. For x ∈ X and B ⊆ X, we denote by d(x,B) the
distance between x and B, with the convention that d(x, ∅) = ∞.

Theorem 4.2. Let X be a finite dimensional normed linear space and A be a
nonempty closed convex (not necessarily bounded) subset of X. If Fn : A → A for
n ∈ N are such that the family {Fn : n ∈ N} is equicontinuous and (Fn) converges
pointwise to a contractive mapping F , then d(x0,FixFn) → 0, where x0 = Fx0. In
particular, FixFn ̸= ∅ for sufficiently large n.

Proof. Fix ε > 0 and consider the closed ball B(x0, ε). Set C := B(x0, ε)∩A. Since
dimX < ∞, C is compact. Hence and by hypothesis, (Fn|C) converges uniformly
to F |C , so there exists k ∈ N such that

∥Fnx− Fx∥ ≤ (1 − α)ε for n ≥ k and x ∈ C,

where α := L(F ). Then for such n and x, we get that

∥Fnx− x0∥ ≤ ∥Fnx− Fx∥ + ∥Fx− Fx0∥ ≤ (1 − α)ε + α∥x− x0∥ ≤ ε,

which implies that Fn(C) ⊆ C for n ≥ k. Since C is nonempty compact and convex,
Brouwer’s fixed point theorem yields the existence of a fixed point of Fn in C. In
particular, FixFn ∩B(x0, ε) ̸= ∅, so

d(x0,FixFn) ≤ ε for n ≥ k.

Thus we may infer that d(x0,FixFn) → 0. �

Clearly, if (Fn) is a sequence of nonexpansive mappings, then the family {Fnn ∈
N} is equicontinuous. However, for nonexpansive mappings Theorem 4.2 can further
be generalized. To do that, we need the following definition: a sequence (Fn) is said
to be locally uniformly convergent to a mapping F if for any x ∈ X, there exists
a neighbourhood U of x such that (Fn|U ) converges uniformly to F |U . Observe
that under the assumptions of Theorem 4.2, (Fn) converges locally uniformly to F
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because of local compactness of X. Therefore, the following result is a generalization
of Theorem 4.2 restricted to sequences of nonexpansive mappings.

Theorem 4.3. Let X be a uniformly convex Banach space and A be a nonempty
closed convex (not necessarily bounded) subset of X. If Fn : A → A are nonexpansive
for n ∈ N and (Fn) converges locally uniformly to a contractive mapping F with fixed
point x0, then almost all Fn have fixed points and d(x0,FixFn) → 0.

Proof. By hypothesis, there exists r > 0 such that (Fn|B(x0,r)∩A) is uniformly con-
vergent to F |B(x0,r)∩A. Fix ε ∈ (0, r] and set C := B(x0, ε) ∩ A. Then the same
argument as in the proof of Theorem 4.2 shows that there is k ∈ N such that
Fn(C) ⊆ C for n ≥ k. C is nonempty closed bounded and convex, so by the
Browder-Göhde-Kirk theorem (see, e.g., [9, p. 76]), FixFn ∩ C ̸= ∅, which yields
that d(x0,FixFn) ≤ ε for n ≥ k. Thus we get that d(x0,FixFn) → 0. �
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