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AN IMPROVED NONLINEAR MODEL FOR IMAGE
RESTORATION
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ABSTRACT. The image denoising is a key step in image processing. This step
can be treated by non-linear diffusive filters requiring solving evolving partial dif-
ferential equations. In this work, a nonlinear diffusive filter for image denoising
and edge detection based on a nonlinear partial differential equation is studied
analytically and tested numerically. Existence, uniqueness and regularity of the
solution for the proposed mathematical model are established in an Hilbert space.
The discretization of the partial differential equation of the proposed model is
performed using finite element method. A result of convergence of this approxi-
mation is established under suitable hypotheses.

The efficiency of this model has been tested numerically. Signal noise ratio (SNR)
is used to estimate the quality of the restored images.

1. INTRODUCTION

In recent decades, several models for image restoration in image processing have
been proposed in the literature, see [1, 2, 9, 10, 14, 17, 19, 20, 21]. Those models are
based on nonlinear diffusive filters requiring solving nonlinear evolutionary partial
differential equations.

Nonlinear diffusion filters are used in image processing to simultaneously smoothen
noisy images and enhance sharp contrasts in brightness. This approach was initiated
by P. Perona and J. Malik [19] by means of the following nonlinear PDE problem

8¢ — div(p (Vo) Vo) =0, in Q,
(11) ’U(.’L‘,O) = /UO($),VCE c Q’
v =0,V € 09,V € 0,7,

n
where vy is the grey level distribution of a given (distorted) image occupying a
bounded domain © in R? (with d < 3 in most applications) for which boundary is
0f). @ is defined by
Q = Q x[0,T], for some given T' > 0, and n is the unit normal vector to the domain
boundary.
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Starting from the initial image vg(z) and by running (1.1) we construct a family
of functions (i.e images) {v(t,z)},., representing restored versions of vo(x). The
diffusion coefficient p;(|Vo|) is designed with this choice:

e Inside the regions where the magnitude of the gradient of v is weak, equation
(1.1) acts like the heat equation, resulting in isotropic smoothing.

e Near the boundaries where the magnitude of the gradient is large, the reg-
ularization is stopped and the edges are preserved.

The assumptions imposed on w1 are usually

w1 2 [0, +00) = [0, +00) decreasing,
(1.2) p1(0) =1, 1/irnSHJroo ui(s) =0,
pi(s) + 2suq(s) > 0.

Typical example for an edge stopping function @1 which, in fact, have been used by
Perona and Malik, is

1

(1.3) pi(s) = m (

k> 0).

The Parameter k is a mesure for the steepness of an edge to be preserved. Un-
fortunately, with such a choice of the edge stopping function, it is not possible to
prove that the operator A; defined by A;(u) = —div(p1(|Vu|)Vu) in Perona-Malik
problem (1.1) is monotone. And then the Faedo-Galerkin method cannot be used
to prove that this problem is well posed. Apart of this inconvenient, numerical
approximations of (1.1) do not exhibit significant instabilities. This numerical per-
formance triggered many attempts to replace the Perona-Malik model by nearby
versions which, on one hand side, admit solid analysis in terms of existence and
uniqueness theorems, and, on the other hand side, possess essentially the same nu-
merical properties as (1.1). The first, and widely used approach is due to Catt
and al. [9] who employ a space regularization. In this model Vv is replaced by
Vv, where v, = G, * v and % is denoting convolution with respect to the space
variable and G, is the Gaussian with variance o > 0. In [9] existence, uniqueness
and regularity of a solution has been established. At the same time Alvarez, Lions,
and Morel [4] investigated the diffusion equation

ov . Vo
(1.4) 0 () Fuldiv (m> —0

It is shown in [4] that (1.4) possesses a unique global viscosity solution. Other spatial
regularizations of Perona Malik equations type have been proposed by Weickert in
[20]. Kichenssamy [16] has demonstrated in one dimension that any weak solution
of (1.1) must possess an infinitely differentiable initial condition for |Vv| > k. He
noticed that, even if vg is smooth, there are minor perturbations of the initial value
problem for which weak solutions do not exist, thus the Perona-Malik model is
ill-posed in the sense of Hadamard. Zhang and al. [22] established that the Perona-
Malik equation in one dimension admits infinitely many weak solutions. Always
in the one dimensional case of (1.1) Gobbino and al. [13] exhibited that every
C* solution on R is a function of the form v(z,t) = ax + b. Taheri and al. [15]
and Chen and al. [11] established that there exist infinitely many Young measure
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solutions [8] of (1.1) in one and two dimension. Recently Calder et al. [7] examined
a perturbed Perona-Malik equation, their perturbation technique is to consider the
diffusion equation as L? gradient flows on integral functionals and then modify the
inner product from L? to a Sobolev inner product. He establish a very general
existence and uniqueness result which applies to a family of high order diffusion
equations which are generalizations of the Perona-Malik equation.

Our approach consists to replace the Perona-Malik (1.1) model by the following
problem

% — div(p2(|Vv|)Vu) =0, in Q,
(1.5) v(x,0) = vo(x),Vr € Q,
9v = 0,Vz € 9Q,Vt € [0, 7).

Where p2 = p11 + a and a € RY..
In this case if p; verifies the assumptions (1.2) then ug verifies:

a2 2 [0,400) = [0,400) decreasing,
(1.6) u2(0) =1 +a, limg_s 100 2(s) = a,
pa(s) + 2spiy(5) > 0.

With such a choice of ps and by imposing additional conditions on pe the problem
of the monotony of the operator is surmounted. In this work we establish that
the problem (1.5) is well posed in the Hadamard sense and admits an unique weak
solution in L?(0,T, H'(£2)) under suitable hypotheses on us. The proof is based
on Faedo-Galerkin method and the monotony of non linear differential operator. A
result of the convergence for finite element methods (FEM) that is very few inves-
tigated compared to the extensively discussed finite difference schemes is demon-
strated. Finally the non linear filter (1.5) is tested numerically and the obtained
results are sensibly the same to those obtained by the Perona-Malik model.

2. EXISTENCE AND UNIQUENESS

We put H = H'(Q) and V = L%(Q). H is equipped with the scalar product
((u,v)) = Jquvdz+ [, VuVuda and its associated norm is ||.|. On the other hand,
the space V' is provided with the scalar product (u,v) = fQ uvdx and its associated
norm |.|.

We first begin by giving some results that will be useful in the existence and unique-
ness proof of weak solution of the problem (1.5).

2.1. Preliminary results.

Lemma 2.1. Let § be a function which verifies the following assumptions
i) 6 : Rt — R
i1) 0 is continuous function
i11) limg—y o0 [0(8)] = 0o, with dp > 0
iv) 0 is differential continuous
v) s ‘5/(8)‘ < 4(s) Vs € RT
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Then the operateur A defined by:

(2.1) (A(v),w) = / d(|Vv|) Vo.Vwdz  for v,w e H,
Q
is an operator monotone hemicontinuous, satisfying for all u,v € H:
(2.2) (A(u) — A(v),u —v) > i]%{ﬂ 5(s)|Vu — Vol
sE
Proof. see [1]. O
Remark 2.2. (1) The conditions (iii) and (iv) of Lemma 2.1 are not imposed

on p in the Perona Malik problem, the choice of p2 = p1 4+« allows to check
the condition (ii7) to pg, imposing more the condition (iv) to the fucntion
2, the monotony of the operator A defined in (2.1) for § = ug is ensured
by Lemma 2.1.

(2) If a function ¢ verifying hypotheses of lemma 2.1 is decreasing then the
condition (v) can be written §(s) + 2sd’(s) > 0. Furthermore, due to (i),

infcx+ (3(s)) = do.

Definition 2.3. A weak solution of (1.5) is a function v € L%(0,T, H'(Q2)), % €
L%(0,T, H~') that verifies

(2.3) o aggt)wd:v + Jo p2 (|Vv]) Vo.Vwdz =0 Yw € HY(Q)

Before proving existence and uniqueness of weak solution of the problem (1.5),
we first study the existence and uniqueness of weak solution of the general following
problem

% —div(p(|Vu|)Vu) + au =0, in Q,
(2.4) u(z,0) = up(z),Vr € Q,
gu = 0,Vz € 9Q,Vt € [0, T,

where the real « > 0 and the function p are given.

Definition 2.4. A weak solution of (2.4) is a function v € L?(0,T, H' (1)), % €
L?(0,T, H™') that verifies

25) , ag(tt) wdzx + [o 1 (|Vul) Vu.Vwdz + a [ uwdz =0
Vw € HY(Q).

Theorem 2.5. Let ug € V and pu a decreasing function satisfying the hypotheses
of lemma 2.1 then, for all given real o > 0, there exists an unique global weak
solution u for problem (2.4) such that v € L*(0,T,H) N L1®(0,T,V) and u' =
du e 12(0,7,H). With H = H™L.

Proof. 1.Existence

The hypothesis (i — #i7) involve that p is bounded.

Notice that a = supgcp+ p(s) and b = inf cp+ p(s) exist and b = .
By using lemma 2.1 we have for all u,w € H:

(2.6) (A(u) — A(w),u — w) > b|Vu — Vwl|?,
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where the operateur A is defined by:
(2.7) (A(u),w) = / p(|Vu|) Vu.Vwdz  for wu,w € H.
Q

The existence demonstration is based on Faedo-Galerkin method. We consider the
spectral problem

(2.8) ((w,v)) = AMw,v) Vv e H.

Since the injection of H in V is compact, the problem (2.8) admits a sequence of
eigenvalues \; associated of eigenvectors w; such that

(2.9) ((wj,v)) = Aj(wj,v) Vv e H,

and (w;)jen is orthonormal in V and orthogonal in H. We denote uy (t) an approx-
imate solution of (2.5) defined by

un(x,t) = un(t)(z) € [wi,...,wn],
N
(2.10) un(z,t) = Y CN(tw;().
j=1

We have then

(uy (), wy) + (u(IVun (@)]) Vun (t), V)
(2.11) +a(un(t),w;) =0, 1<j<N, tel0,1],
' with uN( 0) = uon(.) € [wi, ..., wN]
and ugny — ug € H.

With uoy = Y3 o (uo, w;)w;.

N
Each CJN( ) verifies dC ( e i(t,ON(t), ..., CN () where G is a continuous func-
tion, then by using the Cauchy theorem we deduce that there exist a local solution
un (t) of (2.11) on [0, Ty]. By multiplying (2.11) by CJN(t) and by adding, we deduct
that:

/Q 8ugt(t) un (t)dz + /Q/‘ (IVun (t)]) (Vun (1)) *dz + Oé/Q (un(t))* dz = 0.

Then

1d

3 v OF + [ w(Vux () (Vun(0)?ds
+Oé/Q(uN(t))2dx:()_

Due to the remark 1, b > 0 then

/M(WUN(t)])(VuN(t))de > b/ (Vun(8)? da.
Q

Q

(2.12)

From (2.12) we have

1d

(2.13) 57 v (t )\2—i—b/ﬂ(VuN(t))Qda:—i—a/Q(uN(t))de§0.
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Then
1d 2 . 2
(2.14) 5z v ()" + min(a, b) lun (6] < 0.
There exists thus a constant C7 = |up| > 0 and a constant Cy = znlﬁf(li 5y > 0

depending only on b, o and wug such that

(219 {lx@I< and [l ir <,

vt € [0, Tn],¥N € N,

We deduce that Ty = T and that for all N € N, uy € LT>°(0,T,V) N L*(0,T, H).
Furthermore the sequence uy is bounded.

We will prove now that ulN e LY0,T, H/) for all N € N and that the sequence ulN
is bounded in L'(0,T, H') where H = H~'.

Let Py be the projector of V on [wy, ..., wy] thus Pyh = Zi]\il(h, w;)w;. Therefore
(2.11) is written:

(2.16) uIN = —PyAuny — aPyup.
We deduce through to the choice of w; that:
1PN 2 r,my < 1

hence by transposition (and since Py, = Py)

(2.17) 1PNl zemr gy < 1
Otherwise, let v € H, thus
(A(un(®)),v) < allun@) ]l
then using (2.15), and by duality, we deduce that for all N € N and for all ¢ € [0, T,
(2.18) [A(un ()] < allun (B)]]

accordingly A(uy(t)) € L*(0,T,H') and A(uy(t)) is bounded. Finally, we deduce
from (2.16), (2.17), (2.18) and assumptions of the existence theorem that

(2.19) uy € L*(0,T, H') and uy is bounded in H’
due to (2.15),(2.19) and by using compactness theorem (see [18]) we deduce that

we can extract a subsequence (t,)men such that

a) um — win L2(0,T, H).
b) Uy, — u weakly-* in LT°°(0,T,V).
¢) Uy — win L2(0,T,V) and a.e in  x [0, 7]

Furthermore for all m € N, u,, satisfies (2.11) and A(u,,) — x in L*(0,T, H').
Let 1 be a continuously differentiable function on [0, 7] such that ¢(7T") = 0.
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By multiplying (2.11) by v and integrating by parts it follows
T

T /
—/(wﬁMﬂW@ﬁ+/(MwﬁMwwmﬁ
0 0

T
(2.20) +a/0 (tms wh (1)) dt

= (um(0)7 wj)l/)(o) = (UOmij)T/}(O)v
passing to the limit, we obtain
T , T
- [ v @ [ octe)wpuienas
0 0

(2.21) u

S—
35

(u, wiep(t))dt

= (uo, w;)¥(0),  Vuw,

and then, by density, (2.21) holds for all v € H. So (2.21) is especially true for all
v e H and ¢ € D(0,T). And we deduce that

(2.22) (W' (t),v) + (x(t),v) + a(u(t),v) =0, YveH,

within the meaning of distributions.
Otherwise, by multiplying (2.22) by v continuously differentiable (¢(7") = 0) and
integrating by parts, we obtain

T , T
—/(MW¢@W&+/<M&¢@W&
(2.23) 0 0

n a/OT(u,w(t)u)dt = (u(0), )b(0).
Comparing (2.23) and (2.21) was written for v was:
(u(0) = uo, v)1h(0) = 0,
¥ can be chosen such that ¢(0) = 1, thus
(u(0) — ug,v)v =0, Yve H
We will prove, in what follows, that
(x(t),v) = (A(u(t)),v) Vv e H vt € [0,T].
For m € N and s € [0,T], we put

Xm = /S(A(um(t)) — A),um(t) — v)dt Vv € H.
0

Since A is monotone, we deduce that
X, >0, Ym € R, Vs € [0, T].

In the other hand, we have

Xm=iA(A0wAﬂ%um@»ﬁ—:A(A@m@»ﬂdﬁ‘:A(A@%“m@)_yma
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then

1 1 s
X = 5 [uom[® = Slum(s)? —a [ (um(t), un(t))dt
(2.24) 27 /0

- /S(A(um(t)),y)dt - /S(A(V),um(t) —v)dt.
0 0

Since u,(t) — u(t) in L2(Q) for all t € [0,T] then limsup |um,(t)| > |u(t)]. It
follows that

X < hmsupX < Sluol? — lu(s))? — o [y u(t)|?dt

(2.25) RO, vyt — [ (Aw), ult) — .

Furthermore

[u(s)” — ’“ +a/ e |dt+/(() u(t))dt = 0,

(obtained by taking v = u(t) in (2.22) and by integrating on [0, s]) thus

/S(X(t)—A(I/),u(t)—y)dtZO, Vv e H, Vsel0,t].
0

On the other hand, let A > 0 and w € H, we put v = u(t) — Aw for ¢ € [0, s] then
v € H and we have

/\/ (x() — A((u(t) — Aw)), w) dt > 0, Yw € H, ¥s € [0,T],
0
and
/ (x(t) — A((u(t) — Mw)),w)dt >0, Yw € H, Vs € [0,T].
0
Using hemicontinuity of A, we deduce, for A — 0, that
/ (x(t) — A(u(t)),w)dt > 0, Yw € H, Vs € [0,T]
0
whence
/ () — A(®),w)dt =0 YweH Vsel0,T]
0

and
(x(t) — A(u(t)),w)dt=0 YweH  Vsel0,T].

In conclusion u(t) is a solution of the equation

(2.26) (?;:( )s w> + (A(u(t)),w) + a(u(t),w) =0 weH,
such that

u(-,0) = uo(.),
and

we LT°(0,T,V)NL*0,T, H).
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2. Uniqueness
Let u; and wuz two solutions of the problem (2.4), we have then for all w € H and
all t € [0,T]

8UQ

(‘9(;?(15) - 8t(t)’w> + (A(ua (1)) — Aua (1), w)
+ a (ug(t) — ua(t),w) =0,

taking u; — ug = w and v = w(t), we can write:

(0 0:300) + (A0 ~ Aa(0), () + 0 (010, w0) =0

(2.27)

then

knowing, from (2.6) that
(A(ur(1)) = A(uz(1), w(t)) = blw|?,
we deduce that
S (0 = —(A((1) ~ Alus(t) w(t)) ~ a2 <0,

and
w(®)? < lw(0)* = 0.

Thus w(t) = ui(t) — ua(t) = 0 and the uniqueness is established.
Besides, taking into account (2.4) and (2.7), and knowing that v (t) = —A(u(t)) —
ou(t) in H', we have

(A(u(®)), w) < alu@]l |w]]-
Then [|A(u(t))|; < allu(t)| for all t € [0,T]. Moreover A(u(t)) € L*(0,T, H') and
u e L*(0,T,H). O

We state, in the following, our main theorem.

Theorem 2.6. Let vg € V and po a decreasing function which satisfies the assump-
tions of lemma 2.1 then there exists an unique global weak solution v for problem
(1.5) such that v € L*(0,T, H)N LT>(0,T,V) andv' = % € L*(0,T,H"). Further-
more

[w(t)] < Jool, ¥t € [0,T).

Proof. Let u(s) = pa(e™s) and u the weak solution of problem (2.4) corresponding
to this choise of p. Then
v(z,t) = e™u(x, t)
is a weak solution of (1.5). In fact, since u is a weak solution of problem (2.4) then
0
(a;‘,w> + (A(u), w) + a(u, w) = 0.
Multiplying by e®* and making the sum of the first and third term we have

(eat?;: + aeu, w> + (e A(u),w) = 0.
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Whence 5
(eo‘ta:; + aw, w) + (e A(u),w) = 0,
and 5
(v’ w) + / 1 (le=*'Vo]) eV (e=*v) Vwdz = 0.
ot o
Thus
av —at
—w |+ [ p(e*Vv|) VoVwdz =0,
o1 o
or also

0
<U,w> +/M2(|VUDV’UVZUCZ$:O.
ot o

We deduce then that v is a weak solution of problem (1.5).

The uniqueness of the weak solution of the problem (2.4) implies the uniqueness of
the weak solution of the problem (1.5).

By theorem 1 we have v € L?(0,7,H) N L*>°(0,7,V) then v € L?(0,T,H) N
L*°(0,T,V). On the other side we have % = ae®u + % and u' € L2(0,T, H')
then v' € L*(0,T, H').

Otherwise taking w = v in

(av,w> +/,u2(]Vv])Vvada::0
ot Q

we obtain L4
—— o) + / pe (|Vo|) VoVodz = 0.
2dt Q
Then
335 100 == [ (V0D [Vol*a
577 Y = Q,ug v v|” dz.
Now using the non negativity of us, we deduce
1d 9
Sd ()] <0

and
lv(t)| < |vol, Vte[0,T].
O

Theorem 2.7. Let ps a decreasing function which satisfies the assumptions of
lemma 2.1 and v (respectively w) the weak solution of (1.5) corresponding to the
initial condition vy (respectively the weak solution of (1.5) corresponding to the
initial condition wq) then,

lo(t) —w(t)| < |vog —wol, Vte[0,T).

Proof. Since v is the weak solution of (1.5) corresponding to the initial condition vy
and w is the weak solution of (1.5) corresponding to the initial condition wq then,
for all p € H and all t € [0,T], we have

< Ov ow

(2.28) AR OF @) + (A(v(t)) = A(w(?)), ¢) = 0,
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where A is the operator defined in the lemma 2.1 corresponding to § = uo. Taking
v—w =1 and ¢ = Y(t), we can write:

(aazf(t)v w(ﬂ) + (A(U(t)) — A(w(t)%w(t)) = O’

then
1d
ialtb(t)IQ + (A(v(t)) — A(w(t)),¥(t)) = 0,

knowing, from (2.2) that
(A(v(t)) = A(w(t)), ¥(t)) = Inf ua(s) ol

we deduce that

and
[w(t)* < [(0).
Thus
lo(t) —w(t)] < |vo —wo|, ¥Vte][0,T].

3. ERROR ESTIMATION

Let T~ be a shape-regular uniform triangulation of €2. For all h > 0, we denote
by V;, the finite dimensional approached sub-space of V' by a Lagrange first order
finite element method. @ designates the L? interpolation operator from H into
Vi, C V then, thanks to the stability of the L%(Q) projection on H(Q) ([6], [5]),
there exists a constant ¢ independant of h such that

(3.1) Quol < o, Yoe V.

For s > 1, we introduce the semi norm defined in H® by

1/2
50 = Z |8£U|2
|€|=s

lv

Theorem 3.1 (global interpolation error). Let s > 1, for all h > 0 and for any
function v in H®

1/2

2
o= Quol+ D K| D v - Quoln k < Ch*vlaq.
m=1 KeTy,

If h is sufficiently small and Vj, is H'-conforme, we have
Vh, Yv € H*(Q), |v—Qnv|| < Chlv|aq.

Proof. see ([12]). O



610 S. BOUJENA, E. EL GUARMAH, O. GOUASNOUANE, AND J. POUSIN

Theorem 3.2. Let h > 0 and ps a decreasing function verifying hypotheses of
lemma 2.1. Let v be the weak solution of (1.5) and vy, be the solution of the ap-
prozimated weak formulation of (1.5) defined on Vj,. If v € CY(0,T, H*(Q)), then
we have the following error estimation

0(0) = (0] < kCh (Bl Srlaa) + e len(O)

where C' is the interpolation constant, ay = supycp p2(s), £ = maz( e as(1 +
maz(1,c)), Vel —1,1) and 0 €]0,1]
Proof. We have

Ov

(3.2) <8t wh> + (p2(|Vo|) Vo, Vwy,) = 0,
and

(9’1)h
(3.3) S wn )+ (p2(|Vop|) Vo, Vwy,) = 0,
then 5 5

v Vh B

(at — at,wh> + (A(v) — A(vp),wp) = 0.

Adding and subtracting thU to the first term and A(Qpv) to the second term we
obtain

@ _ th’U + 8Qh1) 8’Uh
ot ot ot ot

but we have

(5= ) e
= —(% - %’wh) — (A(v) — A(Qnv), wn)-

Then by setting n = v — Qpv, e, = Qpv — vy, and taking wy, = ep, the previous
equality becomes:

(3.4) 2dt|6h| + bo| Vep|* < |*77||€h|+( (v) = A(Qnv), en),

where by = infser pa(s). On the other hand
(A(v) — A(Qnv), en) = (A(v), en) — (A(Qnv), en)
= [ 9D Vo = [V Quol) VQuo] Verda

- /Q (VL)) Vo — p( Vo))V Quo + u(IVo]) YQuo — (Y Quo) V Qo] Verda

- / (I Vu)[Vo — VQuolVenda + / (Vo)) — 1(IVQuo) )V QuoVenda
Q Q

Applying the mean value theorem, there exists 6 €]0, 1[ such that
(A(v) — A(Qpv), epn) < az|Vv — VQpv||Vep|
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—|—/Q |1 (0|Vv| + (1= 0)|[VQuv|) | [VQrvVer] [|[Vo| — [VQpo|] da

where ag = sup,cp p12(s) and |.| denotes the absolute value.
Let 8 = 0]Vol + (1 - 0)[VQuel and ¥ = f,, Li(8)] [VQuoVen] [IVe] — [VQuol | de.
We have

B , |IVQrvVen] Vv — VQpv [ Vo — VQpv
Y = /QB L' (B)] 5 dx < ag /Qﬂ |[VQrvVey | dx

We know that

IVQrv| < [Vl
Case 1: if ¢ < 1 then |VQpv| < |Vu| so

0|Vl + (1 = 0)[VQrv| =2 0]VQpv| + (1 — 0)[VQpv| = [VQpv|

Thus
|VQrvVey, |
Y < a /dx

2o IVQul
as

< VQuvVey | dx

= |vczhv|/gL Qnvven]
as

< \Y \Y%

< WQhU\| Qnv||Ven|

< az|Vey|

Case 2: if ¢ > 1 then we distinguish two cases
o if [Vu| < |[VQpv| < ¢|Vv|

we have
010l + (1 - )]V Qo] = [Vl
then
Q [Vl
as

< =

< WU‘WQWHVEM

< agc|Vep]

o if [VQpv| < |Vv| < ¢|Vv| we have
0|Vu|+ (1 = 0)|VQpv| =2 0|VQy| + (1 = 0)[VQpv| = [VQpo|
then

[VQrvVey ] as
Y < e .
B aQ/Q IVQpv| T ’thUH Qnv||Ven| < as|Vey|

Thus

(A(v) — A(Qnv), en) az| Vv — VQuv||Vey| + sup(l, c)az|Vv — VQuv||Vey|
az(1 +sup(L, ¢))[Vo — VQuo|[Ve|

az [[n]| (1 + sup(1,c))[Ven|

IAIA A
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and the inequality (3.4) becomes

\eh!2+b2!V6h!2 77\2 *!6h|2+ az(1 + sup(1,¢)))* [|n][?

L
2dt =20 4bs

+ by ’V€h|2
Then
(az(1 +sup(L, ) [Inl]* + |en|*.

d 2 2
Slenl < ol + 5

By applying Gronwall’s lemma we obtain
t
len|? < elen(0))? —i—/ =9 f(s)ds, Vt € [0,T]
0

with f(s) = | 51(s)|* + g (a2(1 + sup(L, ¢)))* [[n(s)]|*.

Then
enl? < sup (20D 2T 1) 4 et (0)2
o<r<t Ot
+ = (az(1 +sup(1,¢)))* sup [[n(7)|*(e” — 1)
2b9 0<7<t
Hence

enl < sup (17571) VeT =1+ 2fen(0
0<r<t

1
az(1 4+ sup(l,c su

a5 (21 sup(1,)) sup [V

We put €(t) = v(t) — vp(t) then, from the triangle inequality, we have |[v — vp| <
len| + 1] and we deduce

0
()] < sup <| n(r) )¢ T+ e2/en(0)] + sup n(r)]

ot

_l’_

0<r<t 0<r<t
vel —1
+ —==(a2(1 +sup(l,¢))) sup [[n(7)l],
2by 0<r<t

Therefore

e < | s (Inr)1+ 12524 Il )|+ o)

0<7<t

With k = maz( V\/ﬁ Lag(1 + maxz(1,¢)), Vel —1,1).

Using interpolation theorem (see [12]) we deduce

()] < KCh (hlv]2,0 + [vl2.0 + hlGFl20) + €/?|en(0)].
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4. NUMERICAL APPROXIMATION AND SIMULATIONS

4.1. Discretization. We consider the Galerkin finite element method for the dis-
cretization of (1.5).
Let V}, = {w c CY(N),w|x € Pl} denotes the approximation space where ¥ is a
partition of 2. The Galerkin finite element formulation consists in finding a func-
tion vy, € V}, such that:
Oup(t)
Q Ot
for all w € V}, and t € [0, 7.
Let 0 =ty < t; <ty < .. <tyy1 =T be a subdivision of [0,7] with uniform time
step At = t,, — t,—1 for some n > 0.
The backward Euler scheme is considered for (4.1) in the time discritization and we

formulate the nonlinear cofficient u (|Vvy|) by using the previous scale step value
vy. Thus the discrete equation is

(4.1) wdaz+/ w(|Vop|) Vop,.Vwdz = 0,
Q

At
for all w € V}, and n > 0. The stepsize At should be chosen less then 0.25 in orther
to result in a stable solution scheme [3].
Assume a basis of the finite-dimensional space V}, is (¢1,...,¢p), p > 0. Taking
w = pj(x) for j =1,2,..,p and using the representation UZ—H(ZL') =3P, v?“g@i(x)
where v?“ are unknown, the system (4.2) can be trasformed into the discrete linear

equation expressed as

1
(4.2) /(UZ+1 — v )wdz + / 1 (|Vop]) Vot Vwde = 0,
Q Q

(A+ AtB)U™ T = AU
Where

ur=1|: , Aij:/goigojda:, and Bij:/u(]Vv”\)Vgoi.chjd:c.
Q Q

n
Up

A is so called mass matrix and B is the stifness matrix. Thus the discrete solution
can be found efficiently by preconditioned conjugate gradient methods.

4.2. Numerical simulations and interpretation. In this section we present the
results of numerical experiments to show the perfermance of our model and compare
it with a nonlinear Perona-Malik diffusion filter with Galerkin discretization. All
testing problems were performed on a PC with Intel(R) Core(TM) 2 Duo Proces-
sor=2.00GHz.

The discret scaling step is selected to be At = 1073 for boths models. We set the
constant o = 107% and the nonlinear diffusion coefficient u(s) = 1/v1+ 52 + «.
Table 1 shows the sensitivity analysis with respect to the values of the parameter
« on an image of size 70 x 70 affected by different type of noise.

In all these calculations a continuous piecewise affine finite element method has
been applied for space discretization. For this each side of the picture has been sub-
divided into equal intervals and the resulting rectangular net has been triangulated
by the first diagonal. We use the popular measurement Signal-to-noise ratio (SNR)
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for the gray scale image and the peak Signal-to-noise ratio (PSNR) for color image.
In figure 1, top left image shows a noisy image affected by gaussian noise (15 %).
Middle top image presents the restored image obtained by the proposed non linear
diffusion model. It well preserves the details and edges while effectively removing
noise. The restoration result indicates that the proposed model can improve the
visual of images. Top right image shows the result obtained by using the Perona
Malik diffusion model. We note that we obtaine almost the same SNR but with less
computation time than Perona-Malik model.

In figure 2, left image depicts a noisy image affected by gaussian noise (30 %). Mid-
dle image presents the restored image obtained from the proposed diffusion model.
The diffusion result improves the mottled background, but also retains the edges.
Right image shows the result obtained from the Perona Malik diffusion model.

In figure 3, top left image is a noisy image affected by salt-pepper noise. middle top
image presents the result obtained by the proposed non linear diffusion model, The
proposed method can eliminate the speckled background and preserve the edges.
top right image shows the result from the Perona Malik diffusion model.

In figure 4, we smooth an initial 128 x128 pixel image affected by speckle noise. (a)
noisy image, (b) restored image obtained by using the proposed non linear model,
(c) restored image obtained by Perona Malik

Figure 5 presents the results obtained on image (220x220) affected by poisson noise
from the proposed diffusion and from the Perona Malik diffusion. We can notice an
increase in SNR (0.06dB).

Figure 6 shows the results on a color image (171x171) affected by Gaussian noise.
Again, we note the reduction of noise effects.

In figure 7, right image is a noisy color image (Lena image) affected by poisson
noise. Middle image presents the result from the proposed diffusion model. Right
image shows the result from the Perona Malik diffusion model. We can notice an
increase in PSNR (0.02 dB).

In figure 8, (a) initial signal. (b) noisy signal affected by gaussian noise. (c) presents
the restored signal obtained by the proposed non linear diffusion model. (d) shows
the result obtained by using the Perona Malik diffusion model. (e) presents both
(c) and (d) figures.

In figures 9 and 10, (a) initial image (degraded). (b) presents the result from the
proposed diffusion model, we can observe that it well preserves the details and edges
while effectively removing noise and improves the quality of the degraded image.
(c) shows the magnitude (|Vv|) of the initial image. Note that the resulting image
is blurred and the edges is not clear. (d) magnitude (|Vv|) of the resored image (b),
contours are now more clearer.
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example 1: Gaussian noise 15%

Eil [ [E] o 260

noisy image (258x258 restored image by own restored image by P-
pixels): Gaussian addi- model, SNR=26,03 M model, SNR=26,04
tive noise 15%. CPU=2621 s. CPU=2702 s.

(a) SNR (own model) (b) SNR (Perona-Malik)

FIGURE 1. Restoration results after 27 scales. (a) behavior of SNR
with our model; (b) behavior of SNR with Perona-Malik model.

example 2: Gaussian noise 30%

noisy image (128x128 restored image by own restored image by P-
pixels): Gaussian noise model, SNR=18,30 M model, SNR=18,31
30%. CPU=557 s. CPU=514 s.

FIGURE 2. Restoration results after 52 scales.
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example 3: Salt and Pepper noise

m @ o® @ om D W B

noisy image (160x160
Salt-Pepper

pixels):
noise.

Corresponding
to the noisy image

surface Corresponding
to the restored image
obtained by using own

e '
140 B '
160

2 4 B @ 0 1D o 13

restored image using
own model, SNR=18,07
CPU=1084 s.

T

P8

T

=

= =

He =

model

restored
Perona_Malik
SNR=18,11 CPU=1078

Corresponding
to the
age obtained by using
Perona-Malik model

surface

1

12

)

18
24 B M 0 X o 1@

image using

model,

surface
restored 1m-

FIGURE 3. In this experiment Salt and Pepper noise is added to
image. In the middle we show the smoothed image obtained after 49
scales with model (2.4). Right image is the smoothed image obtained
with Perona-malik equation after 49 scales.
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example 4: Speckle noise

(a) noisy image (b) restored image using (c) restored image using

(128x128 pixels): own model, SNR=16,27 Perona_malik  model,

Speckle noise. CPU=599 s. SNR=16,41 CPU=637
s.

FIGURE 4. results of the noisy image (128 x128 pixels) affected by
Speckle noise using model (2.4) and Perona-Malik equation after 47
scales.

example 5: Poisson noise

T L @ @ 0 W U B 3 T @

D £ @ @ ™ U B I8 2D @ D o4 0@ @ o oW e I 20 @

noisy image (220x220 restored image using restored image  us-

pixels): Poisson noise.  own model, SNR=20,66 ing Perona_Malik
and CPU=1427 s. model, SNR=20,63 and
CPU=1557 s.

FIGURE 5. numerical experiment for filtering the noisy image
(220% 220 pixels) corrupted by Poisson noise using model (2.4) and
Perona-malik equation after 11 scales.
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example 6: (color image) Gaussian noise

irrage rastaree

A R R ]

@ 4o @ & 10 10 140 6

2 4o @ & 10 10 140 68

noisy image (171x171 restored image wus- restored image  us-

pixels): Gaussian ing own model, ing Perona_Malik
noise(mean 0 and PSNR=21,04 model, PSNR=21,04
variance 0.03). CPU=1475 s. CPU=1491 s.

FIGURE 6. The denoising effect obtained by (2.4) and Perona-malik
equation after 23 scales. The initial condition is a image (171x171
pixels) affected by a Gaussian additive white noise.

example 7: (color image) Poisson noise

&

t

i :

i y
D B & 001X A W 20

1 00T
DN @ W I 1D 4 18 20 2 M0 B I 10 10 40 60 1320

noisy image (204x204 restored image us- restored image  us-

pixels): Poisson noise.  ing own model, ing Perona_Malik
PSNR=25,91 model, PSNR=25,89
CPU=5020 s. CPU=5123 s.

FIGURE 7. Left to right: initial image (171x171 pixels) affected by
a Gaussian additive white noise, image after 25 scales with (2.4),
result with Perona-malik equation.
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example 8: Signal 1D

=0 pap— = (/\A M‘\ ( WW M\p
m fv—‘\ " el ww W
/1 - \
2 \/ ¢ \/‘\/W VV ﬁf ™) W f L/ V‘

(a) original signal (b) noisy signal.
; x
= M - - A~ T
. . -
- "
w o w e

» :

ok~ \\,, e Sy

x

o El o Bl ERRE L ] £l 0 & CEEEE

(c) restored signal (our model) (d) restored signal (Perona).

—oxrmoce
—prona | R -

3

5]

(e) comparison

FIGURE 8. Restauration results of the noisy signal 1D. (a) initial
image; (b) noisy image affected by gaussian noise; (c) restored image
obtained by using model (1.5); (d) restored image obtained by using
model (1.1); (e) comparison of (¢) and (d).
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example 9: Restauration and edge detection

HES0RT 1
L BRENOUITE

RG]

(a) initial image

ERRCIEEL

D o 60 @ f0 10 40 e fa

(c) edge of initial image

[ e e G s w———

Lib

ASSORT |

BRENOUTE

D o e @ 1w 1m0l 1&

(b) restored image.

2 4 B 8 10 10 W 18 18

(d) edge of restored image.

FIGURE 9. Restauration and segmentation results of the noisy image

using model (2.4).

(a) initial image; (b) restored image obtained

by using model (1.5); (c) magnitude |Vu| of the initial image; (d)
magnitude |Vu| of the restored image

Gaussian noise 15% || Salt & Pepper noise || Speckle noise Poisson noise
o SNR a SNR « SNR «Q SNR
1076 20.4317 10~ 17.5082 107%119.5440 || 107° | 23.8519
10~° 20.8667 10~° 18.1482 107° [ 19.1032 [ 107> | 23.7871
1072 20.5691 1072 17.8226 1074 16.9765 | 10=* | 22.9705
1073 16.7612 1073 12.8298 1073 | 12.3240 [ 1073 | 17.3813
1072 12.0910 1072 09.7034 102 09.3051 || 1072 | 11.7947
10T 08.4894 10T 05.3651 10T | 05.2718 || 10~ T | 08.3184
1 04.1993 1 00.9195 1 00.1940 1 04.0967

TABLE 1. Influence of the parameter o on the SNR of the image
denoising result by the proposed model.
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example 10: Restauration and edge detection

D o e B0 100 120 140 180 180 bl AEI ED B0 100 120 ND 180 m

(a) initial image (b) restored image.

2 @ e 8 10 120 140 160 180 2D 40 6 B 0 120 140 180 1@

(c) edge of initial image (d) edge of restored image.

FIGURE 10. (a) initial image; (b) restored image obtained by using
model (1.5); (c) magnitude |Vu| of the initial image; (d) magnitude
|Vu| of the restored image

5. CONCLUSION

We propose, in this work, a modified version of the Perona-Malik model for edge

detection and image restoration. The particularity of this model lies in the fact
that we consider new diffusion functions other than those proposed by Perona-
Malik. With such choice, we overcome the inherent difficulty of the monotony of
the differential operator associated with the model. This new version keeps all the
advantages of the original model and avoids its drawbacks. Indeed the mathemat-
ical analysis of the PDE problem permits to establish an existence and uniqueness
of the solution in an Hilbert space. And this study is completed by a numerical
analysis for the finite element method conducted by means of an error estimation
under suitable hypotheses.
Furthermore, numerical simulations on various images are compared to those ob-
tained using Perona-Malik model. Their interpretation proves the effectiveness of
the proposed model. Our future work will be consecrated to the development of a
finite element method algorithm with less computation time. On the other hand we
want to apply this nonlinear mathematical model for image-based 3D reconstruc-
tion.
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