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and such a sequence was constructed. In [29, 30], a singular infinite horizon differ-
ential game was considered. The existence of an almost equilibria in this game was
established by using the Riccati matrix inequality.

In the present paper, an infinite horizon zero-sum linear-quadratic differential
game is considered. The feature of this game is that a weight matrix of the min-
imizer’s control cost in the cost functional is non-invertible (singular). Due to
this feature, the game can be solved neither by application of the Isaacs MinMax
principle, nor using the Bellman-Isaacs equation approach, i.e. this game is singu-
lar. Moreover, the minimizer’s optimal control does not belong, in general, to the
class of regular functions. We analyze this game from the minimizer’s viewpoint.
Namely, we look for the minimum guaranteed game outcome (the upper value of the
game). To realize this aim, a regularization method is applied, yielding a new game
(partial cheap control game). This partial cheap control game is associated with
a Riccati matrix algebraic equation, which coefficients depend on a small positive
parameter. Using perturbation techniques, an asymptotic solution to this equation
is constructed and justified. Based on this solution, the finiteness of the upper
value in the original (singular) game is established, and upper and lower estimates
of this value are obtained. In a reduced set of admissible minimizer’s state-feedback
controls, an expression for the upper value is derived.

The paper is organized as follows. In Section 2, we formulate rigorously the
problem, to be solved, and the objectives of the paper. General conditions for
the finiteness of the game’s upper value are derived in Section 3. In Section 4, a
regularization of the original singular game is carried out, yielding a partial cheap
control game. An asymptotic analysis of the Riccati matrix algebraic equation,
associated with the partial cheap control game, is done in Section 5. Upper and
lower estimates of the upper value of the original singular game are derived in Section
6. In Section 7, an expression of the upper value is obtained for the reduced set of
admissible minimizer’s state-feedback controls. Section 8 deals with an illustrative
example. Complex proof of one lemma is placed in Section 9. Conclusions are
presented in Section 10.

Completing the introduction, let us note that the notation On1×n2 is used in
the paper for the zero matrix of dimension n1 × n2, excepting the cases where the
dimension of zero matrix is obvious. In such cases, we use the notation 0 for the
zero matrix.

2. Problem statement

2.1. Game formulation and main assumptions . Consider the following dif-
ferential equation controlled by two decision makers (players):

(2.1)
dZ(t)

dt
= AZ(t) + BU(t) + Cv(t), Z(0) = Z0, t ≥ 0,

where Z(t) ∈ Rn is the state vector; U(t) ∈ Rr, (r ≤ n), v(t) ∈ Rs are the players’
controls; A, B and C are given constant matrices of corresponding dimensions;
Z0 ∈ Rn is a given vector.
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The cost functional, to be minimized by U (the minimizer) and maximized by v
(the maximizer), is

(2.2) J
(
U, v

)
,

+∞∫
0

[
ZT (t)DZ(t) + UT (t)GUU(t)− vT (t)Gvv(t)

]
dt,

where D and Gv are given constant symmetric matrices of corresponding dimensions;
the given constant r × r-matrix GU has the form

(2.3) GU = diag
(
gu1 , ..., guq , 0, ..., 0︸ ︷︷ ︸

r−q

)
, 0 ≤ q < r.

In what follows, we assume:
(A1) The matrix B has full column rank r;
(A2) D ≥ 0;
(A3) Gv > 0;
(A4) guk

> 0, k = 1, ..., q.

2.2. Upper value of the game (2.1)-(2.2). In what follows, we assume that the
minimizer knows perfectly the current state value of the game.

Consider the set F of all functions f(w, t) : Rn × [0,+∞) → Rr, which are
measurable w.r.t. t ≥ 0 for any fixed w ∈ Rn and satisfy the local Lipschitz
condition w.r.t. w ∈ Rn uniformly in t ≥ 0.

Definition 2.1. Let U(Z, t), (Z, t) ∈ Rn × [0,+∞), be a function, belonging to
F . The function U(Z, t) is called an admissible state-feedback control (strategy)
of the minimizer in the game (2.1)-(2.2) if the following conditions hold: (1) the
initial-value problem (2.1) for U(t) = U(Z, t) and any fixed v(t) ∈ L2 [0,+∞;Rs]
has the unique locally absolutely continuous solution Z(t) on the entire interval
[0,+∞); (2) Z(t) ∈ L2 [0,+∞;Rn]; (3) U

(
Z(t), t

)
∈ L2 [0,+∞;Rr]. The set of all

such U(Z, t) is denoted by NU .

Definition 2.2. For a given U(Z, t) ∈ NU , the value

(2.4) JU

(
U(Z, t);Z0

)
= sup

v(t)∈L2[0,+∞;Rs]

J
(
U(Z, t), v(t)

)
is called the guaranteed result of U(Z, t) in the game (2.1)-(2.2).

Definition 2.3. The value

(2.5) Jup

(
Z0

)
= inf

U(Z,t)∈NU

JU

(
U(Z, t);Z0

)
is called the upper value of the game (2.1)-(2.2).

2.3. Transformation of the game (2.1)-(2.2). Let us partition the matrix B
into blocks as follows:

(2.6) B =
(
B1,B2

)
,

where the blocks B1 and B2 are of dimensions n× q and n× (r − q), respectively.
We assumed that:
(A5) det

(
BT
2 DB2

)
̸= 0;
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Let Bc be a complement matrix to the matrix B, i.e., the dimension of Bc is
n× (n− r), and the block matrix (Bc,B) is nonsingular. Hence, the block matrix

(2.7) B̃c = (Bc,B1)

is a complement matrix to B2.
Consider the following matrices:

(2.8) H = (BT
2 DB2)

−1BT
2 DB̃c,

(2.9) L = B̃c − B2H.

Now, we construct the block matrix (L,B2) and, using this matrix, we transform
the state in the differential game (2.1)-(2.2) as follows:

(2.10) Z(t) = (L,B2) z(t),

where z(t) ∈ Rn is a new state.
Using the work [13], one can conclude that the transformation (2.10) is nonsin-

gular.
Let us partition the matrix H into blocks as:

(2.11) H =
(
H1,H2

)
,

where the blocks H1 and H2 are of the dimensions (r− q)× (n− r) and (r− q)× q,
respectively.

Now, similarly to the results of [14] (Lemma 1), we have the following proposition.

Proposition 2.4. Let the assumptions (A1), (A2), (A5) be valid. Then, trans-
forming the state variable of the game (2.1)-(2.2) in accordance with (2.10), and
redenoting the minimizer’s control as u(t), we obtain the differential game with the
dynamics

(2.12)
dz(t)

dt
= Az(t) +Bu(t) + Cv(t), z(0) = z0, t ≥ 0,

and the cost functional

(2.13) J(u, v) =

+∞∫
0

[
zT (t)Dz(t) + uT (t)Guu(t)− vT (t)Gvv(t)

]
dt,

where

(2.14) A = (L,B2)
−1A (L,B2) ,

(2.15) B = (L,B2)
−1 B =

 O(n−r)×q O(n−r)×(r−q)

Iq Oq×(r−q)

H2 Ir−q

 ,

(2.16) C = (L,B2)
−1 C,

D = (L,B2)
T D (L,B2) =

(
D1 O(n−r+q)×(r−q)

O(r−q)×(n−r+q) D2

)
,

D1 = LTDL, D2 = BT
2 DB2,
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(2.17)

(2.18) Gu = GU , Gv = Gv,

(2.19) z0 = (L,B2)
−1 Z0,

the matrices D1 and D2 are symmetric, and D1 ≥ 0, D2 > 0.

Remark 2.5. In the differential game (2.12)-(2.13), the cost functional J(u, v) is
minimized by the control u(t) and maximized by the control v(t). Since the weight
matrix of the minimizer’s control cost in the cost functional J(u, v) is singular,
the solution (if any) of this game can be obtained neither by the Isaacs’s Min-
Max principle nor by the Bellman–Isaacs equation method, meaning that the game
(2.12)-(2.13) is singular. The set Nu of admissible state-feedback minimizer’s con-
trols (strategies) u(z, t) in the game (2.12)-(2.13) is defined similarly to the set NU

in the game (2.1)-(2.2). For any u(z, t) ∈ Nu, its guaranteed result Ju
(
u(z, t); z0

)
in

the game (2.12)-(2.13) and the upper value Jup(z0) of this game are defined similarly
to those in the game (2.1)-(2.2), (see (2.4) and (2.5), respectively).

2.4. Equivalence of the games (2.1)-(2.2) and (2.12)-(2.13) .

Lemma 2.6. Let the assumptions (A1), (A2), (A5) be valid. Then, the existence
of a strategy U(Z, t) ∈ NU , having the finite guaranteed result JU

(
U(Z, t);Z0

)
in

the game (2.1)-(2.2), yields the existence of a strategy u(z, t) ∈ Nu, having the finite
guaranteed result Ju

(
u(z, t); z0

)
in the game (2.12)-(2.13), and vice versa.

Proof. Let U(Z, t) ∈ NU be a strategy such that its guaranteed result JU

(
U(Z, t);Z0

)
in the game (2.1)-(2.2) is finite. Let us define

(2.20) u(z, t)
△
= U

(
(L,B2)z, t

)
, (z, t) ∈ Rn × [0,+∞) .

Let us show that u(z, t) ∈ Nu. Indeed, since U(Z, t) ∈ NU , then for any v(t) ∈
L2[0,+∞;Rs] the initial-value problem

(2.21)
dZ(t)

dt
= AZ(t) + BU

(
Z(t), t

)
+ Cv(t), Z(0) = Z0, t ≥ 0

has the unique locally absolutely continuous solution Z(t) on the entire interval
[0,+∞). This solution belongs to L2 [0,+∞;Rn], and U

(
Z(t), t

)
∈ L2 [0,+∞;Rr].

Due to Proposition 2.4 and the equation (2.20), the invertible transformation
(2.10) converts the initial-value problem (2.21) to the initial-value problem

(2.22)
dz(t)

dt
= Az(t) +Bu

(
z(t), t

)
+ Cv(t), z(0) = z0, t ≥ 0.

For any v(t) ∈ L2[0,+∞;Rs], this initial-value problem has the unique locally ab-
solutely continuous solution z(t) = (L,B2)

−1Z(t) on the entire interval [0,+∞).
Moreover, since Z(t) ∈ L2 [0,+∞;Rn] and U

(
Z(t), t

)
∈ L2 [0,+∞;Rr], then z(t) ∈

L2 [0,+∞;Rn] and, due to (2.20), u
(
z(t), t

)
∈ L2 [0,+∞;Rr]. Thus, u(z, t) ∈ Nu.

Now, using Proposition 2.4 and the equation (2.20), we obtain the following
equality for any v(t) ∈ L2[0,+∞;Rs]:

(2.23) J
(
u(z, t), v(t)

)
= J

(
U(Z, t), v(t)

)
.
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The latter, along with Definition 2.2 for JU

(
U(Z, t);Z0

)
, the definition for

Ju
(
u(z, t); z0

)
(see Remark 2.5), and the finiteness of JU

(
U(Z, t);Z0

)
, directly yields

the finiteness of Ju
(
u(z, t); z0

)
and the equality Ju

(
u(z, t); z0

)
= JU

(
U(Z, t);Z0

)
.

The vice versa statement of the lemma is proven similarly. Moreover, for a given
strategy u(z, t) ∈ Nu with the finite guaranteed result Ju

(
u(z, t); z0

)
in the game

(2.12)-(2.13), the strategy U(Z, t)
△
= u

(
(L,B2)

−1Z, t
)
∈ NU is such that its guaran-

teed result JU

(
U(Z, t);Z0

)
in the game (2.1)-(2.2) is finite and satisfies the equality

JU

(
U(Z, t);Z0

)
= Ju

(
u(z, t); z0

)
. This completes the proof of the lemma. �

Lemma 2.7. Let the assumptions (A1), (A2), (A5) be valid. Let there exists a
strategy ũ(z, t) ∈ Nu, having the finite guaranteed result Ju

(
ũ(z, t); z0

)
in the game

(2.12)-(2.13). Then, the upper values Jup(z0) and Jup(Z0) of the games (2.12)-
(2.13) and (2.1)-(2.2), respectively, are finite, nonnegative and equal to each other.

Proof. First of all, let us note that for v(t) ≡ 0, and any U(Z, t) ∈ NU and u(z, t) ∈
Nu, the corresponding values of the cost functionals in the games (2.1)-(2.2) and
(2.12)-(2.13) are nonnegative.

Due to the conditions of the lemma, and by virtue of Lemma 2.6, there exists

a strategy Ũ(Z, t)
△
= ũ

(
(L,B2)

−1Z, t
)
∈ NU , having the finite guaranteed result

JU

(
Ũ(Z, t);Z0

)
in the game (2.1)-(2.2). All the above mentioned, along with the

definition for Jup(z0) (see Remark 2.5), Definition 2.3 for Jup(Z0) and the proof of
Lemma 2.6, means that these upper values are finite and satisfy the inequalities

(2.24) 0 ≤ Jup(z0) ≤ Ju
(
ũ(z, t); z0

)
,

(2.25) 0 ≤ Jup(Z0) ≤ Ju
(
ũ(z, t); z0

)
.

Due to the definition for Jup(z0), there exists a control sequence {uk(z, t)},
uk(z, t) ∈ Nu, (k = 1, 2, ...), such that

lim
k→+∞

Ju
(
uk(z, t); z0

)
= Jup(z0),

Ju
(
uk(z, t); z0

)
≥ Jup(z0), k = 1, 2, ... .

(2.26)

Similarly, due to the definition for Jup(Z0), there exists a control sequence {Ûk(Z, t)},
Ûk(Z, t) ∈ NU , (k = 1, 2, ...), such that

lim
k→+∞

JU

(
Ûk(Z, t);Z0

)
= Jup(Z0),

JU

(
Ûk(Z, t);Z0

)
≥ Jup(Z0), k = 1, 2, .. .

(2.27)

Let us define the strategies

(2.28) Uk(Z, t)
△
= uk

(
(L,B2)

−1Z, t
)
, ûk(z, t)

△
= Ûk

(
(L,B2)z, t

)
, k = 1, 2, ... .

Similarly to the proof of Lemma 2.6, one can show that

(2.29) Uk(Z, t) ∈ NU , ûk(z, t) ∈ Nu, k = 1, 2, ... ,



UPPER VALUE OF A SINGULAR INFINITE HORIZON DIFFERENTIAL GAME 517

and, for any (k = 1, 2, ...),

(2.30) JU

(
Uk(Z, t);Z0

)
= Ju

(
uk(z, t); z0

)
, Ju

(
ûk(z, t); z0

)
= JU

(
Ûk(Z, t);Z0

)
.

The equations (2.26)-(2.27) and (2.30) imply the inequalities

(2.31) Jup(Z0) ≤ Jup(z0), Jup(z0) ≤ Jup(Z0),

which yield the equality

(2.32) Jup(z0) = Jup(Z0).

Thus, the lemma is proven. �

In the sequel of this paper, we deal with the differential game (2.12)-(2.13). We
call this game the Original Differential Game (ODG). As it was mentioned above,
the ODG is singular. Moreover, this game does not have, in general, an optimal
control of the minimizer among regular functions.

2.5. Objectives of the paper . The objectives of this paper are:
(I) to establish general sufficient conditions for the finiteness of the ODG

upper value;
(II) to derive upper and lower estimates of this value;
(III) for a reduced set of admissible minimizer’s strategies, to derive

an expression of the ODG upper value.

3. General conditions for the finiteness of the upper value in the
ODG

Let the pair
{
A,B

}
be stabilizable, i.e., there exists a r× n-matrix M such that

the trivial solution of the system

(3.1)
dz(t)

dt
=
(
A+BM

)
z(t), t ≥ 0

is asymptotically stable.
Consider the following strategy of the minimizer:

(3.2) u = uM (z) = Mz.

Along with this strategy, let us consider the Riccati matrix algebraic equation

(3.3) K (A+BM) + (A+BM)T K +KCG−1
v CTK +MTGuM +D = 0.

Lemma 3.1. Let the assumptions (A1)-(A5) be satisfied. Let the equation (3.3)
have a solution K = KM , (KT

M = KM ), such that the trivial solution of the system

(3.4)
dz(t)

dt
=
(
A+BM + CG−1

v CTKM

)
z(t), t ≥ 0

is asymptotically stable. Then:
(i) KM ≥ 0;
(ii) the following equality holds

(3.5) Ju
(
uM (z); z0

)
= sup

v(t)∈L2[0,+∞;Rs]

J
(
uM (z), v(t)

)
= zT0 KMz0;
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(iii) the supremum value in (3.5) is attained for

(3.6) v(t) = vM
(
zM (t; z0)

) △
= G−1

v CTKMzM (t; z0), t ≥ 0,

where zM (t; z0) is the solution of (3.4) subject to the initial condition z(0) = z0;
(iv) the minimizer’s strategy uM (z) is admissible in the ODG.

The proof of the lemma is presented in Section 9.

Corollary 3.2. Let the conditions of Lemma 3.1 hold. Then, the upper value of
the ODG is finite and satisfies the inequality

(3.7) 0 ≤ Jup(z0) ≤ zT0 KMz0.

Proof. The left-hand side inequality in (3.7) follows from (2.24). Proceed to the
proof of the right-hand side inequality in (3.7). Using the definition of the ODG
upper value (see Remark 2.5) and the equation (3.5), we obtain the following chain
of equalities and inequality

Jup(z0) = inf
u(z,t)∈Nu

Ju
(
u(z, t); z0

)
= inf

u(z,t)∈Nu

(
sup

v(t)∈L2[0,+∞;Rs]

J
(
u(z, t), v(t)

))
≤ sup

v(t)∈L2[0,+∞;Rs]

J
(
uM (z), v(t)

)
= zT0 KMz0.

This completes the proof of the corollary. �

4. Regularization of the ODG

4.1. Partial cheap control game. We start to analyze the ODG with a regular-
ization of this game. Namely, we replace the original game with a regular differential
game, which is close in some sense to the ODG. This new game has the same dy-
namics (2.12) as the ODG. However, the cost functional in the new game differs
from the original one. This new cost functional has the ”regular” form, i.e., it con-
tains the quadratic control cost of the minimizer with a ”regular” (positive definite)
weight matrix:

(4.1) Jε(u, v) =

+∞∫
0

(
zT (t)Dz(t) + uT (t) (Gu + E)u(t)− vT (t)Gvv(t)

)
dt,

where

(4.2) E = diag
(
0, ..., 0︸ ︷︷ ︸

q

, ε2, ..., ε2︸ ︷︷ ︸
r−q

)
,

and ε > 0 is a small parameter.
Then

(4.3) Gu + E = diag
(
gu1 , ..., guq , ε

2, ..., ε2︸ ︷︷ ︸
r−q

)
is a positive definite matrix.
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Remark 4.1. The regularization approach was applied widely enough in the liter-
ature to analysis of singular optimal control problems (see e.g. [4, 10, 11, 12, 15, 18]
and references therein). However, to the best of our knowledge, such an approach
to the analysis and solution of singular zero-sum linear-quadratic differential games
was applied only in the papers [14] and [25].

Remark 4.2. Since the parameter ε > 0 is small, the problem (2.12), (4.1) is a
partial cheap control differential game, i.e., a differential game with a cost of some
control coordinates of at least one of the players much smaller than costs of the
other control coordinates and a state cost in the cost functional. In what follows,
we call this game the Partial Cheap Control Game (PCCG). Differential games with
a total cheap control of at least one of the players were studied in the literature (see
[9, 21, 28, 31, 32, 33]). However, to the best of our knowledge, a differential game
with a partial cheap control of one of the players has been studied only in the work
[14].

4.2. Minimizer’s control optimality conditions in the PCCG. First of all, it
should be noted that the set of admissible state-feedback minimizer’s controls in the
PCCG coincides with such a set in the ODG, i.e., it is Nu. Moreover, the guaranteed
result Jε,u

(
u(z, t); z0

)
of an admissible minimizer’s state-feedback control u(z, t) of

the PCCG and the upper value Jε,up(z0) of the PCCG are defined similarly to those
of ODG.

Let us consider the following Riccati matrix algebraic equation:

(4.4) PA+ATP − P
(
Su(ε)− Sv

)
P +D = 0,

where

(4.5) Su(ε) = B(Gu + E)−1BT , Sv = CG−1
v CT .

Let F be a matrix such that

(4.6) D = F TF.

In what follows, we assume that the pair
{
A,F

}
is observable. Based on this

assumption and using the results of [3, 19, 20], one obtains the following proposition.

Proposition 4.3. Let, for a given ε > 0, the equation (4.4) have a symmetric
minimal positive definite solution P = P ∗(ε). Then, the upper value of the PCCG
is finite and has the form

(4.7) Jε,up(z0) = zT0 P
∗(ε)z0.

This value is achieved for the minimizer’s strategy (optimal one)

(4.8) u∗ε (z) = −(Gu + E)−1BTP ∗(ε)z.

The supremum

(4.9) sup
v(t)∈L2[0,+∞;Rs]

Jε
(
u∗ε (z) , v(t)

)
= Jε,up(z0)

is achieved for the maximizer’s control

(4.10) v(t) = v∗ε(t)
△
= G−1

v CTP ∗(ε)z∗(t, ε),
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where z∗(t, ε) is the solution of the system

(4.11)
dz(t)

dt
=
(
A− Su(ε)P

∗(ε) + SvP
∗(ε)

)
z(t), t ≥ 0

subject to the initial condition z(0) = z0.
Moreover, the trivial solution of (4.11) and of the system

(4.12)
dz(t)

dt
=
(
A− Su(ε)P

∗(ε)
)
z(t), t ≥ 0

is asymptotically stable.

5. Asymptotic analysis of the Riccati equation (4.4)

5.1. Transformation of the equation (4.4). First of all, let as note that by
substitution of the block representations of the matrices B and Gu + E (see the
equations (2.15) and (4.3)) into the expression for Su(ε) (see (4.5)), we obtain after
a routine algebra the following block representation of this matrix:

(5.1) Su(ε) =

 Su1 Su2

ST
u2

(1/ε2)Su3(ε)

 ,

where

(5.2) Su1 =

(
O(n−r)×(n−r) O(n−r)×q

Oq×(n−r) G̃−1
u

)
, Su2 =

(
O(n−r)×(r−q)

G̃−1
u HT

2

)
,

(5.3) Su3(ε) = ε2H2G̃
−1
u HT

2 + Ir−q, G̃u = diag
(
gu1 , ..., guq

)
.

Due to (5.1) and (5.3), the left-hand side of the equation (4.4) has a singularity
at ε = 0. To remove this singularity, we seek the symmetric solution P (ε) of the
equation (4.4) in the block form

(5.4) P (ε) =

 P1(ε) εP2(ε)

εP T
2 (ε) εP3(ε)

 ,

where the blocks P1(ε), P2(ε) and P3(ε) have the dimensions (n−r+q)×(n−r+q),
(n− r + q)× (r − q) and (r − q)× (r − q), respectively, and

(5.5) P T
1 (ε) = P1(ε), P T

3 (ε) = P3(ε).

We also partition the matrices A and Sv into blocks as follows:

(5.6) A =

 A1 A2

A3 A4

 , Sv =

 Sv1 Sv2

ST
v2 Sv3

 ,

where the blocks A1, A2, A3 and A4 have the dimensions (n− r+ q)× (n− r+ q),
(n − r + q) × (r − q), (r − q) × (n − r + q) and (r − q) × (r − q), respectively; the
blocks Sv1 , Sv2 and Sv3 have the form

(5.7) Sv1 = C1G
−1
v CT

1 , Sv2 = C1G
−1
v CT

2 , Sv3 = C2G
−1
v CT

2 ,
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C1 and C2 are the upper and lower blocks of the matrix C of the dimensions (n−
r + q)× s and (r − q)× s, respectively, i.e.,

(5.8) C =

(
C1

C2

)
.

Substitution of (2.17), (5.1), (5.4) and (5.6) into the equation (4.4) yields after a
routine rearrangement the following equivalent set of Riccati-type matrix algebraic
equations with respect to P1(ε), P2(ε) and P3(ε):

(5.9)

P1(ε)A1 + εP2(ε)A3 +AT
1 P1(ε) + εAT

3 P
T
2 (ε)

− P1(ε) (Su1 − Sv1)P1(ε)− εP2(ε)
(
ST
u2

− ST
v2

)
P1(ε)

− εP1(ε) (Su2 − Sv2)P
T
2 (ε)− P2(ε)

(
Su3(ε)− ε2Sv3

)
P T
2 (ε) +D1 = 0,

(5.10)

P1(ε)A2 + εP2(ε)A4 + εAT
1 P2(ε) + εAT

3 P3(ε)

− εP1(ε) (Su1 − Sv1)P2(ε)− ε2P2(ε)
(
ST
u2

− ST
v2

)
P2(ε)

− εP1(ε) (Su2 − Sv2)P3(ε)− P2(ε)
(
Su3(ε)− ε2Sv3

)
P3(ε) = 0,

(5.11)

εP T
2 (ε)A2 + εP3(ε)A4 + εAT

2 P2(ε) + εAT
4 P3(ε)

− ε2P T
2 (ε) (Su1 − Sv1)P2(ε)− ε2P3(ε)

(
ST
u2

− ST
v2

)
P2(ε)

− ε2P T
2 (ε) (Su2 − Sv2)P3(ε)− P3(ε)

(
Su3(ε)− ε2Sv3

)
P3(ε) +D2 = 0.

5.2. Zero-order asymptotic solution of (5.9)-(5.11). We seek the zero-order
asymptotic solution

{
P10, P20, P30

}
of the system (5.9)-(5.11). Equations for this

asymptotic solution terms are obtained by setting formally ε = 0 in (5.9)-(5.11).
Thus, we have the system

(5.12) P10A1 +AT
1 P10 − P10 (Su1 − Sv1)P10 − P20P

T
20 +D1 = 0,

(5.13) P10A2 − P20P30 = 0,

(5.14) (P30)
2 −D2 = 0.

The equation (5.14) has the solution

(5.15) P30 = P ∗
30

△
=
(
D2

)1/2
,

where the superscript ”1/2” denotes the unique symmetric positive definite square
root of the corresponding symmetric positive definite matrix.

Due to (5.15), the equation (5.13) yields the unique expression for P20

(5.16) P20 = P10A2

(
D2

)−1/2
,

where the superscript ”−1/2” denotes the inverse matrix for the unique symmetric
positive definite square root of the corresponding symmetric positive definite matrix.

Substituting (5.16) into (5.12), one obtains after some rearrangement the equation
with respect to P10

(5.17) P10A1 +AT
1 P10 − P10S1P10 +D1 = 0,
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where

(5.18) S1 = A2D
−1
2 AT

2 + Su1 − Sv1 .

Due to the results of [14] (Lemma 5), the matrix S1 can be represented in the
form

(5.19) S1 = B̄Θ−1B̄T − Sv1 ,

where

(5.20) B̄ =
(
B̃ , A2

)
, B̃ =

(
O(n−r)×q

Iq

)
,

(5.21) Θ =

(
G̃u Oq×(r−q)

O(r−q)×q D2

)
,

G̃u is defined in (5.3).
Let F1 be a matrix such that

(5.22) D1 = F T
1 F1.

In what follows, we assume:
(A6) The pair (A1, F1) is observable;
(A7) The Riccati matrix algebraic equation (5.17) has a symmetric minimal positive
definite solution P10 = P ∗

10.
Using the above mentioned solution of (5.17) and the equation (5.16), we obtain

the second component of the solution to the system (5.12)-(5.14) as

(5.23) P20 = P ∗
20

△
= P ∗

10A2

(
D2

)−1/2
.

5.2.1. Game-theoretic interpretation of the equation (5.17). Consider the zero-sum
linear-quadratic differential game with the dynamics

(5.24)
dx̄(t)

dt
= A1x̄(t) + B̄ū(t) + C1v̄(t), t ≥ 0, x̄(0) = x0,

where x̄(t) ∈ Rn−r+q is the state vector; ū(t) ∈ Rr, v̄(t) ∈ Rs are the players’
controls; x0 ∈ Rn−r+q is the upper block of the vector z0 given by (2.19).

The cost functional, to be minimized by ū(t) and maximized by v̄(t), has the
form

(5.25) J̄(ū, v̄) =

+∞∫
0

[(
x̄(t)

)T
D1x̄(t) +

(
ū(t)

)T
Θū(t)−

(
v̄(t)

)T
Gvv̄(t)

]
dt.

We call the game (5.24)-(5.25) the Reduced Differential Game (RDG).

Lemma 5.1. Let the assumptions (A1)-(A7) be satisfied. Then, the upper value of
the RDG is finite and has the form

(5.26) J̄up(x0) = xT0 P
∗
10x0.

This value is achieved for the minimizer’s strategy (optimal one)

(5.27) ū∗ (x̄) = −Θ−1B̄TP ∗
10x̄, x̄ ∈ Rn−r+q.
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The supremum

(5.28) sup
v̄(t)∈L2[0,+∞;Rs]

J̄
(
ū∗(x̄), v̄(t)

)
= J̄up(x0)

is achieved for the maximizer’s control

(5.29) v̄∗ (t) = G−1
v CT

1 P
∗
10x̄

∗(t),

where x̄∗(t) is the solution of the system

(5.30)
dx̄(t)

dt
=
(
A1 − S1P

∗
10

)
x̄(t), t ≥ 0

subject to the initial condition x̄(0) = x0. Moreover, the trivial solution of (5.30)
and of the system

(5.31)
dx̄(t)

dt
=
(
A1 − B̄Θ−1B̄TP ∗

10

)
x̄(t), t ≥ 0

is asymptotically stable.

Proof. The statements of the lemma directly follow from Proposition 2.4, the first
equation in (5.7), the equation (5.19), and the results of [3, 19, 20]. �
Remark 5.2. Using (5.20) and (5.21), the minimizer’s optimal strategy (5.27) in
the RDG can be represented in the block form as:

(5.32) ū∗ (x̄) =

(
ū∗1
(
x̄
)

ū∗2
(
x̄
) ) ,

where

(5.33) ū∗1
(
x̄
)
= −G̃−1

u B̃TP ∗
10x̄, ū∗2

(
x̄
)
= −

(
D2

)−1
AT

2 P
∗
10x̄.

5.2.2. Justification of the asymptotic solution to the set (5.9)-(5.11) and the equa-
tion (4.4).

Lemma 5.3. Let the assumptions (A1)-(A7) be satisfied. Then, there exists a
positive number ε0, such that for all ε ∈ (0, ε0] the equation (4.4) has the symmetric
minimal positive definite solution P ∗(ε). This solution has the block form

(5.34) P ∗(ε) =

(
P ∗
1 (ε) εP ∗

2 (ε)

ε
(
P ∗
2 (ε)

)T
εP ∗

3 (ε)

)
,

where the blocks P ∗
1 (ε), P

∗
2 (ε), P

∗
3 (ε) are of dimensions (n − r + q) × (n − r + q),

(n−r+q)×(r−q), (r−q)×(r−q), respectively. These blocks satisfy the inequalities

(5.35) ∥P ∗
i (ε)− P ∗

i0∥ ≤ aε, i = 1, 2, 3, ε ∈ (0, ε0],

where a > 0 is some constant independent of ε.

Proof. The lemma is proven similarly to item (2) of Theorem 1 in [20]. �

6. Estimates of the upper value of the ODG

In this section, we obtain more accurate estimates of the ODG upper value and
subject to simpler assumptions than the estimates and the assumptions of Corollary
3.2.
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6.1. Upper estimate.

Theorem 6.1. Let the assumptions (A1)-(A7) be valid. Then, the upper value of
the ODG Jup(z0) satisfies the inequality

(6.1) Jup(z0) ≤ J̄up(x0),

where J̄up(x0) is the upper value of the RDG given by (5.26).

Proof. First of all let us note that, from Proposition 4.3 (see (4.7)) and Lemma 5.3,
we directly obtain the following inequality for all sufficiently small ε > 0:

(6.2) J̄up(x0)− aε ≤ Jε,up(z0) ≤ J̄up(x0) + aε,

where a > 0 is some constant independent of ε.
From the expressions for the cost functionals of the ODG and PCCG (see (2.13)

and (4.1)), as well as from the definition of the guaranteed result of an admissi-
ble strategy and the definition of the upper value in these games, we have for all
sufficiently small ε > 0

(6.3) Jup(z0) ≤ Jε,up(z0).

The inequalities (6.2) and (6.3) imply the inequality

(6.4) Jup(z0) ≤ J̄up(x0) + aε,

valid for all sufficiently small ε > 0. The latter inequality directly yields the state-
ment of the theorem. �

6.2. Lower estimate. Consider the optimal control problem, consisting of the
equation of dynamics

(6.5)
dz(t)

dt
= Az(t) +Bu(t), z(0) = z0, t ≥ 0,

and the performance index

(6.6) J̃(u)
△
=

∫ +∞

0

(
zT (t)Dz(t) + uT (t)Guu(t)

)
dt → inf

u
.

Since the matrix Gu is singular, the problem (6.5)-(6.6) is singular, i.e., the Pon-
tryagin’s Maximum Principle [22] and the Hamilton-Jacobi-Bellman equation [5]
are not applicable to solution of this problem.

Definition 6.2. Let u(z, t), (z, t) ∈ Rn × [0,+∞), be a function, belonging to F .
The function u(z, t) is called an admissible state-feedback control in the problem
(6.5)-(6.6) if the following conditions hold: (1) the initial-value problem (6.5) for
u(t) = u(z, t) has the unique locally absolutely continuous solution z(t) on the entire
interval [0,+∞); (2) z(t) ∈ L2 [0,+∞;Rn]; (3) u (z(t), t) ∈ L2 [0,+∞;Rr]. The set

of all such u(z, t) is denoted by Ñu.

Comparison of the Definitions 2.1 and 6.2 directly yields the inclusion

(6.7) Nu ⊆ Ñu.

Consider the Riccati matrix algebraic equation with respect to P̃

(6.8) P̃A1 +AT
1 P̃ − P̃ B̄Θ−1B̄T P̃ +D1 = 0,
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where the (n− r+ q)× r-matrix B̄ and the r× r-matrix Θ are given by (5.20) and
(5.21), respectively.

We assume
(A8) The pair

(
A1, B̄

)
is stabilizable.

Due to the results of [2], subject to the assumptions (A6) and (A8), the equation

(6.8) has the unique symmetric solution P̃ = P̃ ∗ ≥ 0. Moreover, the matrix
(
A1 −

B̄Θ−1B̄T P̃ ∗) is a Hurwitz one.
The following lemma is a particular case of the results of [15] (Theorem 20) where

a singular infinite horizon linear-quadratic control problem for systems with known
disturbances is analyzed. In the problem (6.5)-(6.6), such a disturbance equals zero.

Lemma 6.3. Let the assumptions (A1), (A2), (A4)-(A6), (A8) be valid. Then,

the infimum J̃∗ △
= inf

u(z,t)∈Ñu
J̃
(
u(z, t)

)
of the cost functional in the optimal control

problem (6.5)-(6.6) is finite and has the form

(6.9) J̃∗ = J̃∗(x0)
△
= xT0 P̃

∗x0,

where x0 ∈ Rn−r+q is (like in (5.24)) the upper block of the vector z0 given by (2.19)
and used in (6.5).

Based on this lemma, the lower estimate for the ODG upper value Jup(z0) is
obtained in the following theorem.

Theorem 6.4. Let the assumptions (A1)-(A8) be valid. Then, the upper value
Jup(z0) of the ODG satisfies the inequality

(6.10) Jup(z0) ≥ J̃∗(x0).

Proof. The statement of the theorem directly follows from the definition of the ODG
upper value (see Remark 2.5) and the inclusion (6.7). �

Remark 6.5. If the upper block C1 of the dimension (n−r+q)×s of the matrix C
in the equation (2.12) is zero matrix, then the inequalities (6.1) and (6.10) become

the equalities Jup(z0) = J̄up(x0) = J̃∗(x0). Also, for any block C1 and x0 = 0,

Jup(z0) = J̄up(x0) = J̃∗(x0) = 0.

7. Upper value of the ODG in a reduced set
of minimizer’s admissible strategies

In this section, we consider the ODG for the set of all minimizer’s strategies
uM (z) of the form (3.2), satisfying the conditions of Lemma 3.1, i.e., such that:
(1) the matrix

(
A + BM

)
is a Hurwitz one; (2) there exists a symmetric solution

K = KM of the Riccati matrix algebraic equation (3.3), for which the matrix(
A+BM+CG−1

v CTKM

)
is a Hurwitz one. The set of all such minimizer’s strategies

is called the reduced set of the admissible strategies for the ODG, and it is denoted
as Nu,r. Due to Lemma 3.1, Nu,r ⊂ Nu. The guaranteed result of any strategy
uM (z) ∈ Nu,r in the ODG and the upper value Jup,r(z0) of the ODG in Nu,r are
defined similarly to Definitions 2.2 and 2.3.



526 V. Y. GLIZER AND O. KELIS

Remark 7.1. It is important to note that for any ε ∈ (0, ε0] (ε0 is defined in
Lemma 5.3), the minimizer’s optimal strategy in PCCG u∗ε(z) belongs to the set
Nu,r. Therefore, the upper value Jε,up,r(z0) of the PCCG in Nu,r coincides with the
upper value of this game in the set Nu, i.e., Jε,up,r(z0) = Jε,up(z0).

Theorem 7.2. Let the assumptions (A1)-(A7) be valid. Then,

(7.1) Jup,r(z0) = J̄up(x0),

where J̄up(x0) is the upper value of the RDG given by (5.26).

Proof. Using Remark 7.1, we obtain similarly to Theorem 6.1 the following inequal-
ity:

(7.2) Jup,r(z0) ≤ J̄up(x0),

Now, let us assume that the statement of the theorem is wrong, i.e., Jup,r(z0) ̸=
J̄up(x0). This inequality, along with (7.2), yields

(7.3) Jup,r(z0) < J̄up(x0).

Due to (7.3), there exists an admissible strategy of the ODG ũ(z) = M̃z ∈ Nu,r

such that

(7.4) Jup,r(z0) < Ju
(
ũ(z); z0

)
< J̄up(x0).

Using Proposition 4.3, the definition of the upper value in the PCCG and Remark
7.1, we obtain for all sufficiently small ε > 0

Jε,up,r(z0) = sup
v(t)∈L2[0,+∞;Rs]

Jε
(
u∗ε(z), v(t)

)
≤ sup

v(t)∈L2[0,+∞;Es]

Jε
(
ũ(z), v(t)

)
= Jε,u

(
ũ(z); z0

)
.(7.5)

Consider the differential system

(7.6)
dz(t)

dt
=
(
A+BM̃

)
z(t), t ≥ 0,

and the Riccati matrix algebraic equation with respect to K̃

(7.7) K̃
(
A+BM̃

)
+
(
A+BM̃

)T
K̃ + K̃CG−1

v CT K̃ + M̃TGuM̃ +D = 0.

Since ũ(z) ∈ Nu,r, the trivial solution of (7.6) is asymptotically stable. Moreover,

the equation (7.7) has a symmetric solution K̃ = K̃
M̃

such that the trivial solution
of the system

(7.8)
dz(t)

dt
=
(
A+BM̃ + CG−1

v CT K̃
M̃

)
z(t), t ≥ 0

is asymptotically stable.

By virtue of Lemma 3.1, K̃
M̃

≥ 0, and

(7.9) Ju
(
ũ(z); z0

)
= zT0 K̃M̃

z0.

Now, consider the following Riccati matrix algebraic equation with respect to K̂:

K̂
(
A+BM̃

)
+
(
A+BM̃

)T
K̂ + K̂CG−1

v CT K̂
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+M̃T
(
Gu + E

)
M̃ +D = 0.(7.10)

Due to (4.2), the equation (7.10) is perturbed by the small parameter ε, and this
equation becomes (7.7) for ε = 0.

Similarly to Lemma 3.1, one can prove the following assertion. If for a given

ε > 0 the equation (7.10) has a symmetric solution K̂ = K̂(ε) such that the trivial
solution of the system

(7.11)
dz(t)

dt
=
(
A+BM̃ + CG−1

v CT K̂(ε)
)
z(t), t ≥ 0

is asymptotically stable, then

(7.12) Jε,u
(
ũ(z); z0

)
= zT0 K̂(ε)z0.

Similarly to the proof of Lemma 3.1 (see (9.11)-(9.15)), we obtain the existence
of the following solution to (7.10) for all sufficiently small ε > 0:

(7.13) K̂(ε) = K̃
M̃

+ R̂(ε),

where R̂(ε) is some symmetric matrix, satisfying the inequality

(7.14)
∥∥R̂(ε)

∥∥ ≤ aε2,

a > 0 is some constant independent of ε.
Now, using the equation (7.13), the inequality (7.14), the asymptotic stability

of the trivial solution to the system (7.8) and the results of [26] on the continuity
of eigenvalues of quadratic matrices with respect to an independent variable, we
immediately obtain the asymptotic stability of the trivial solution to the system
(7.11) for all sufficiently small ε > 0. Hence, using the equations (7.9), (7.12),
(7.13) and the inequality (7.14), we have for these ε,

(7.15)
∣∣Jε,u(ũ(z); z0)− Ju

(
ũ(z); z0

)∣∣ ≤ aε2,

where a > 0 is some constant independent of ε.
Due to Remark 7.1, we obtain similarly to (6.2) the inequality

(7.16)
∣∣Jε,up,r(z0)− J̄up(x0)

∣∣ ≤ aε,

where a > 0 is some constant independent of ε.
The inequalities (7.5), (7.15) and (7.16) directly yield the inequality

(7.17) J̄up(x0) ≤ Ju
(
ũ(z); z0

)
,

which contradicts the right-hand inequality in (7.4). This contradiction means
that the assumption Jup,r(z0) ̸= J̄up(x0) is wrong. Therefore, the equality (7.1)
is correct. �
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8. Example

Consider a particular case of the initially formulated differential game (2.1)-(2.2).
Namely, n = r = s = 2, q = 1, and

(8.1)

A =

(
−3 2
2 4

)
, B =

(
2 − 3
4 2

)
, C =

(
4 7

−8 6

)
,

D =

(
2 3
3 5

)
, GU =

(
1 0
0 0

)
, Gv =

(
5 0
0 5

)
, Z0 =

(
1
2

)
.

For these data, B2 =

(
−3
2

)
and B̃c = B1 =

(
2
4

)
. Therefore, due to (2.8)-

(2.9), H = 2 and L =

(
8
0

)
. Hence, the state transformation (2.10) in the game

(2.1)-(2.2),(8.1) becomes as Z(t) =

(
8 − 3
0 2

)
z(t). This transformation converts

the game (2.1)-(2.2),(8.1) to the equivalent game (2.12)-(2.13) (the ODG), where,
due to (2.14)-(2.19),

(8.2)

A =

(
0 2
8 1

)
, B =

(
1 0
2 1

)
, C =

(
−1 2
−4 3

)
,

D =

(
128 0
0 2

)
, Gu =

(
1 0
0 0

)
, Gv =

(
5 0
0 5

)
, z0 =

(
0.5
1

)
.

Due to the data (8.2), the matrix equation (5.17) becomes the scalar one

(8.3) −2P 2
10 + 128 = 0,

yielding the unique positive solution P ∗
10 = 8. Thus, by Lemma 5.1, the upper value

of the RDG in this example is

(8.4) J̄(x0) = 2.

Similarly, the equation (6.8) becomes

(8.5) −3P̃ 2 + 128 = 0,

yielding the unique positive solution P̃ ∗ = 8
√
6

3 . For this solution, the scalar
(
A1 −

B̄Θ−1B̄T P̃ ∗) = −8
√
6 < 0. Hence, due to Lemma 6.3, the infimum of the cost

functional of the optimal control problem (6.5)-(6.6) in this example is

(8.6) J̃∗(x0) =
2
√
6

3
≈ 1.633.

Thus, by virtue of Theorems 6.1 and 6.4, the upper value of the ODG in the set Nu

of the admissible minimizer’s state-feedback controls satisfies the inequality

(8.7)
2
√
6

3
≤ Jup(z0) ≤ 2.

Furthermore, by virtue of Theorem 7.2, the upper value of the ODG in the set Nu,r

of the admissible minimizer’s state-feedback controls is

(8.8) Jup,r(z0) = 2.
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9. Proof of Lemma 3.1

We start with the item (i). Consider the Lyapunov-like function

(9.1) V (z) = zTKMz.

Let, for any given v(t) ∈ L2[0,+∞;Rs] and any given z0 ∈ Rn, zMv(t; z0) be the so-
lution of the problem (2.12) with u(t) = uM (z). Then, differentiating V

(
zMv(t; z0)

)
with respect to t, we obtain after a simple algebra:

(9.2)

dV
(
zMv(t; z0)

)
dt

= 2
dzTMv(t; z0)

dt
KMzMv(t; z0)

= 2
[
(A+BM)zMv(t; z0) + Cv(t)

]T
KMzMv(t; z0)

= zTMv(t; z0)
[
KM (A+BM) + (A+BM)TKM

]
zMv(t; z0)

+ 2vT (t)CTKMzMv(t; z0), t ≥ 0.

Due to (3.3), we can rewrite the equation (9.2) as

(9.3)

dV
(
zMv(t; z0)

)
dt

= −zTMv(t; z0)KMCG−1
v CTKMzMv(t; z0)

− zTMv(t; z0)DzMv(t; z0)− zTMv(t; z0)M
TGuMzMv(t; z0)

+ 2vT (t)CTKMzMv(t; z0), t ≥ 0.

Using (3.2) and (3.6), the equation (9.3) can be represented in the form

(9.4)

dV
(
zMv(t; z0)

)
dt

= −zTMv(t; z0)DzMv(t; z0)

− uTM
(
zMv(t; z0)

)
GuuM

(
zMv(t; z0)

)
−
[
v(t)− vM

(
zMv(t; z0)

)]T
Gv

[
v(t)− vM

(
zMv(t; z0)

)]
+ vT (t)Gvv(t), t ≥ 0.

Let zM0(t; z0)
△
= zMv(t; z0)|v(t)≡0. Since the trivial solution of the equation (3.1)

is asymptotically stable, limt→+∞ zM0(t; z0) = 0.
Since D ≥ 0, Gu ≥ 0 and Gv > 0, the equation (9.4) yields the inequality

(9.5)
dV
(
zM0(t; z0)

)
dt

≤ 0, t ≥ 0.

Integrating this inequality with respect to t from 0 to +∞, we obtain that V (z0) ≥ 0,
i.e., zT0 KMz0 ≥ 0 for all z0 ∈ Rn. Hence, KM ≥ 0 which completes the proof of the
item (i).

Now, let us proceed to the proof of the items (ii) and (iii). Equation (9.4) directly
yields the inequality

zTMv(t; z0)DzMv(t; z0) + uTM
(
zMv(t; z0)

)
GuuM

(
zMv(t; z0)

)
−vT (t)Gvv(t) ≤ −

dV
(
zMv(t; z0)

)
dt

, t ≥ 0.(9.6)
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Integrating this inequality with respect to the time from 0 to any fixed t ≥ 0 and
taking into account that KM ≥ 0, we obtain

(9.7)

∫ t

0

[
zTMv(ξ; z0)DzMv(ξ; z0) + uTM

(
zMv(ξ; z0)

)
GuuM

(
zMv(ξ; z0)

)
− vT (ξ)Gvv(ξ)

]
dξ ≤ zT0 KMz0 − zTMv(t; z0)KMzMv(t; z0) ≤ zT0 KMz0.

Since v(t) ∈ L2[0,+∞;Rs], the integral
∫ +∞
0 vT (ξ)Gvv(ξ)dξ converges. Moreover,

since Gv > 0, then
∫ +∞
0 vT (ξ)Gvv(ξ)dξ ≥ 0. Therefore, due to the inequal-

ity (9.7) and the positive semi-definiteness of the matrices D, Gu, the integral∫ +∞
0

[
zTMv(ξ; z0)DzMv(ξ; z0)+ uTM

(
zMv(ξ; z0)

)
GuuM

(
zMv(ξ; z0)

)]
dξ also converges.

Thus, the equation (2.13) and the inequality (9.7) yield

(9.8) J
(
uM (z), v(t)

)
≤ zT0 KMz0.

Now, setting v(t) = vM
(
zM (t; z0)

)
and, therefore, zMv(t; z0) = zM (t; z0) in the

equation (9.4), we have

dV
(
zM (t; z0)

)
dt

+ zTM (t; z0)DzM (t; z0) + uTM
(
zM (t; z0)

)
GuuM

(
zM (t; z0)

)
−vTM

(
zM (t; z0)

)
GvvM

(
zM (t; z0)

)
= 0, t ≥ 0.(9.9)

Integration of this equality with respect to t from 0 to +∞, and use of the equa-
tions (2.13), (9.1) and the limit equality limt→+∞ zM (t; z0) = 0 yield after a simple
rearrangement

(9.10) J
(
uM (z), vM

(
zM (t; z0)

))
= zT0 KMz0.

The comparison of the inequality (9.8) and the equality (9.10) immediately implies
the validity of the items (ii) and (iii).

Finally, let us prove the item (iv). The existence of the unique locally absolutely
continuous solution z(t) of the problem (2.12) for u(t) = uM (z) and any v(t) ∈
L2[0,+∞;Rs] on the entire interval [0,+∞) is clear.

We are going to show that z(t) ∈ L2 [0,+∞;Rn]. This inclusion is proven by
combining Lyapunov-like function and small perturbation approaches. Consider
the Riccati matrix algebraic equation

K(A+BM) + (A+BM)TK +KCG−1
v CTK

+
(
MTGuM +D + νIn

)
= 0,(9.11)

where ν > 0 is a small parameter.
Since Gu ≥ 0 and D ≥ 0, then MTGuM +D + νIn > 0 for all ν > 0.
Consider the matrix

(9.12) AMK
△
= A+BM + CG−1

v CTKM .

Using the asymptotic expansion (with respect to ν) of solution to (9.11) and the
Implicit Function Theorem [23] (Chapter III, paragraph 8), one can show that this
equation has the solution

(9.13) K = Kν
△
= KM + νKM1 +Rν ,
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where

(9.14) KM1 =

∫ +∞

0
exp

(
AT

MKξ
)
exp

(
AMKξ

)
dξ,

Rν is some symmetric matrix, satisfying the following inequality for all sufficiently
small ν > 0:

(9.15) ∥Rν∥ ≤ cν2,

c > 0 is some constant independent of ν.
Since the matrix AMK is a Hurwitz one, the integral in (9.14) converges and

KM1 > 0. Hence, due to the positive semi-definiteness of the matrix KM , the
equation (9.13) and the inequality (9.15) imply Kν > 0 for all sufficiently small
ν > 0.

Now, consider the Lyapunov-like function

(9.16) Vν(z)
△
= zTKνz, z ∈ Rn.

Using the Riccati equation (9.11), we obtain

dVν

(
z(t)

)
dt

= −zT (t)
(
MTGuM +D + νIn

)
z(t)

−
(
v(t)− vν(t)

)T
Gv

(
v(t)− vν(t)

)
+ vT (t)Gvv(t), t ≥ 0,

(9.17)

where z(t) is the solution of the initial-value problem (2.12) for u(t) = uM (z) and
any v(t) ∈ L2[0,+∞;Rs];

(9.18) vν(t) = G−1CTKνz (t) .

Since Gv > 0, the equation (9.17) leads to the following inequality for all t ≥ 0:

(9.19) 0 ≤ zT (t)
(
MTGuM +D + νIn

)
z (t) ≤ −

dVν

(
z(t)

)
dt

+ vT (t)Gvv(t),

which yields by the integration

0 ≤
∫ t

0
zT (ξ)

(
MTGuM +D + νIn

)
z (ξ) dξ

≤ Vν(z0)− Vν

(
z(t)

)
+

∫ t

0
vT (ξ)Gvv(ξ)dξ, t ≥ 0,(9.20)

or, due to Kν > 0,

0 ≤
∫ t

0
zT (ξ)

(
MTGuM +D + νIn

)
z (ξ) dρ

≤ Vν(z0) +

∫ t

0
vT (ξ)Gvv(ξ)dξ, t ≥ 0.(9.21)

Since v(t) ∈ L2[0,+∞;Rs], then the integral in the right-hand side of (9.21)
converges for t → +∞. Therefore, due to the inequality (9.21), the integral∫ +∞
0 zT (ξ)

(
MTGuM +D + νIn

)
z (ξ) dξ exists and is finite. The latter, along with

the positive definiteness of the matrix
(
MTGuM +D+ νIn

)
, implies the inclusions

z(t) ∈ L2[0,+∞;Rn]. Moreover, due to (3.2), uM
(
z(t)

)
∈ L2[0,+∞;Rr] meaning
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that the strategy uM (z) is admissible in the ODG, which completes the proof of the
item (iv). Thus, the lemma is proven.

10. Conclusions

In this paper, an infinite horizon zero-sum differential game with linear dynamics
and quadratic cost functional was considered. A weight matrix of the control cost
of a minimizing player (the minimizer) in the cost functional is singular but, in
general, non-zero. This means that the game is singular. However, if the weight
matrix is non-zero, only a part of the coordinates of the minimizer’s control is
singular, while the others are regular. Using proper assumptions, the linear system
of the game dynamics was equivalently converted to a new system consisting of
three modes. The first mode is controlled directly only by a maximizing player (the
maximizer), the second mode is controlled directly by the maximizer and the regular
coordinates of the minimizer’s control, while the third mode is controlled directly by
the maximizer and the entire control of the minimizer. Due to this transformation,
a new singular game was obtained. Its equivalence to the initially formulated game
was shown. In the sequel of the paper, this new singular game was considered as
an original one. The original game was analyzed using a regularization approach,
i.e., it was approximately replaced with an auxiliary regular game. This regular
game has the same equation of dynamics and a similar cost functional augmented
by an infinite horizon integral of the squares of the minimizer’s singular control
coordinates with a small positive weight. Hence, the auxiliary game is an infinite
horizon zero-sum linear-quadratic differential game with partial cheap control of
the minimizer. For this game, the minimizer’s optimal state-feedback control was
written down. This control depends on the minimal positive definite solution of a
Riccati matrix algebraic equation perturbed by the small parameter. An asymptotic
expansion of this solution was constructed and justified. Using this asymptotic
expansion, upper and lower estimates of the upper value of the original (singular)
game were established in a wide set of the minimizer’s admissible state-feedback
controls. In a reduced set of the minimizer’s admissible state-feedback controls
(linear stabilizing controls), the upper value of the original (singular) game was
explicitly derived. It was shown that this upper value coincides with the upper
value of a reduced dimension regular differential game (reduced game). The reduced
game was obtained from the asymptotic expansion of the minimal positive definite
solution to the Riccati matrix algebraic equation, associated with the auxiliary
partial cheap control game.
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