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estimates the fast component given the slow state-control processes. An Appendix
sketches the derivation of the nonlinear filter in this context.

2. Background

We first summarize the results of [4] as they provide the background for the
present work. In [4], we consider a coupled pair of controlled diffusions (zϵ(·), xϵ(·))
in Rd ×Rs, given by

dzϵ(t) = h(zϵ(t), xϵ(t), u(t))dt+ γ(zϵ(t))dB(t),(2.1)

dxϵ(t) =
1

ϵ
m(zϵ(t), xϵ(t), u(t))dt+

1√
ϵ
σ(zϵ(t), xϵ(t))dW (t).(2.2)

Here,

• for a prescribed compact metric action space A, h : Rd ×Rs ×A 7→ Rd, γ :
Rd 7→ Rd×d, m : Rd ×Rs ×A 7→ Rs, σ : Rd ×Rs 7→ Rs×s are Lipschitz in
the first and second (if any) arguments uniformly w.r.t. the third (if any);

• the least eigenvalues of γ(z)γ(z)T , σ(z, x)σ(z, x)T are uniformly bounded
away from zero (the non-degeneracy assumption);

• the initial values are fixed: (zϵ(0), xϵ(0)) = (z0, x0);
• B(·),W (·) are resp. d- and s-dimensional independent standard Brownian
motions;

• u(·) is an A-valued control process with measurable paths satisfying the non-
anticipativity condition: for t ≥ s, (B(t)−B(s),W (t)−W (s)) is independent
of

F̂s := the completion of ∩a≥0 σ(z
ϵ(y), xϵ(y), u(y), y ≤ s+ a).

We call such u(·) an admissible control. An important subclass of admissible controls
is that of stationary Markov controls wherein u(t) is of the form ν(zϵ(t), xϵ(t)) for
a measurable ν(z, x) : (z, x) ∈ Rd ×Rs 7→ A. Under such controls, (zϵ(·), xϵ(·)) will
be a time-homogeneous Markov process. If it is stable, i.e., positive recurrent, it will
have a unique stationary distribution thanks to our assumption of non-degeneracy
(see, e.g., [1], Chapter 1).

The ergodic control problem is to minimize over all admissible u(·) the “ergodic
cost”

(2.3) lim sup
t↑∞

1

t

∫ t

0
E[k(zϵ(s), xϵ(s), u(s))]ds.

Here the ‘running cost’ function k : Rd × Rs × A 7→ R+ is continuous. We also
assume the following:

(†) There exists an ∞ > M > 0 such that for each ϵ ∈ (0, 1), the cost for at least
one admissible control u(·) is ≤M .
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As in [4], we shall work with the weak formulation of the above control problem1

and assume that u(·) is a relaxed control. That is, for some compact metric space
A′, A = P(A′) := the space of probability measures on A′ with the Prohorov
topology. Moreover, all functions above of the form f(· · · , u(t)) (specifically, k
and the components of h,m) are of the form

∫
f ′(· · · , y)u(t, dy) (where u(t) =

u(t, dy)) for an f ′ satisfying the same conditions as f except that the factor A of
its domain is replaced by A′. This relaxation, originally introduced by L. C. Young
in deterministic control, is a true relaxation in the sense that the attainable laws
in the original set-up are dense in the set of attainable laws over relaxed controls
(Corollary 2.3.6, pp. 53-54, [1]). As above, P(Z) for any Polish space Z will denote
the Polish space of probability measures on Z with the Prohorov topology.

In view of our discussion in the introduction, we also introduce the associated
system

(2.4) dx(t) = m(z, x(t), u(t))dt+ σ(z, x(t))dW (t), x(0) = x0,

and the averaged system

(2.5) dz(t) = h̃(z(t), µ(t))dt+ γ(z(t))dB(t), z(0) = z0,

where

h̃(z, µ) :=

∫
h′(z, x, u)µ(dx, du)

for µ ∈ P(Rs ×A′). Then (2.4) is simply the dynamics of the fast component (2.2)
with the slow component zϵ(t) frozen at a constant value z, followed by a time
scaling t

ϵ 7→ t, whereas (2.5) is the dynamics of the slow component (2.1) with the
dependence on control as well as the fast component averaged out with respect to a
P(Rs × A′)-valued process µ(·). Later on we shall see some natural candidates for
µ(·).

Define the ergodic occupation measures corresponding to the original, resp., as-
sociated and averaged systems, as follows.

(1) Define

Φϵ
ν(dz, dx, du) := ηϵν(dz, dx)ν(du|z, x) ∈ P(Rd ×Rs ×A′),

where ηϵν is the unique stationary distribution, if it exists, for (2.1)-(2.2)
under the A-valued stationary Markov control ν. Let Gϵ denote the set of
all such Φϵ

ν .
(2) Define

Φ̂z
ν′(dx, du) := ζzν′(dx)ν

′(du|x) ∈ P(Rs ×A′),

where ζzν′ is the unique stationary distribution, if it exists, for (2.4) under
the A-valued stationary Markov control ν ′. Let Gz denote the set of all such
Φ̂z
ν′ .

1This allows us to assume without loss of generality that γ, σ are square matrices, because if
they were not we could replace them by symmetric positive definite square-roots of γγT , σσT resp.
without any loss of generality (Section 5.3, [11]).
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(3) Define

Φ̃ν̃(dz, dx, du) := βν̃(dz)ν̃(dx, du|z) ∈ P(Rd ×Rs ×A′),

where βν̃ is the unique stationary distribution, if it exists, for (2.5) under

stationary Markov control ν̃ : z ∈ Rs 7→ Gz. Let G̃ denote the set of all such
Φ̃ν̃ .

For the averaged system, Gz will later serve as a state-dependent action space.
When this interpretation is operative, in order to conform with our notation for
action space, we shall use Az for Gz. The two will be thus used interchangeably
depending on the context.

Clearly, the respective stationary Markov controls ν, ν ′, ν̃ must be stable for the
stationary distributions to exist. Furthermore, the cost (2.3) under stable stationary
Markov control ν : Rd ×Rs 7→ A is given by the integral∫

k′dΦϵ
ν .

We now summarize the results of [4] (see also [1], section 4.3). We introduce the
following differential operators: Let

a(z, x) := σσT (z, x) = [[aij(z, x)]]1≤i,j≤s.

Let∇y,∇2
y denote resp. the gradient and the Hessian w.r.t. the variable y. For n ≥ 1,

denote by C(Rn), Cb(Rn), C0(Rn) resp. the space of continuous maps Rn 7→ R,
bounded continuous maps Rn 7→ R, and continuous maps Rn 7→ R vanishing at
infinity. Denote by C2(Rn) the space of twice continuously differentiable maps
Rn 7→ R and by C2

0 (Rn) the subset of C2(Rn) of functions vanishing at ∞ along
with its first and second order partial derivatives.

(1) Define Lu
z : C2(Rs) 7→ C(Rs ×A′) by

Lu
z (f)(x) :=

1

2
tr
(
a(z, x)∇2

xf(x)
)
+ ⟨∇xf(z, x),m

′(z, x, u)⟩, f ∈ C2(Rs).

(2) Define L̂u
ϵ : C2(Rd×Rs) 7→ C(Rd×Rs×A′) by: for f ∈ C2(Rd×Rs) with

fz(·) := f(z, ·) ∈ C2(Rs) ∀z,

L̂u
ϵ (f)(z, x) :=

1

2
tr
(
γ(z)γT (z)∇2

zf(z, x)
)
+

⟨∇zf(z, x), h
′(z, x, u)⟩+ 1

ϵ
Lu
zfz(x).

(3) Define L̃µ : C2(Rd) 7→ C(Rd), µ ∈ Az by

L̃µf(z) :=
1

2
tr
(
γ(z)γT (z)∇2

zf(z)
)
+ ⟨∇zf(z), h̃(z, µ)⟩.

Observe that the three operators defined above, viz., L̂u
ϵ ,Lu

z , L̃µ are resp. the con-
trolled extended generators for (2.1)-(2.2), (2.4) and (2.5). We shall define (relaxed)
stationary Markov controls correspondingly, as measurable maps x ∈ Rs 7→ A for
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the associated system and measurable maps z ∈ Rd 7→ Az for the averaged sys-
tem. They are stable if the corresponding controlled diffusion, perforce a time-
homogeneous Markov process, is positive recurrent.

The following is immediate from Theorem 2.1 of [3].

Lemma 2.1. (i) The set Gϵ is characterized by

Gϵ = {Φ ∈ P(Rd ×Rs ×A′) :∫
L̂u
ϵ f(z, x)dΦ(dz, dx, du) = 0 ∀ f ∈ C2

0 (Rd ×Rs)},(2.6)

(ii) The set Gz is characterized by

(2.7) Gz = {Φ ∈ P(Rs ×A′) :

∫
Lu
zf(x)dΦ(dx, du) = 0 ∀ f ∈ C2

0 (Rs)},

(iii) The set G̃ is characterized by

G̃ = {Φ(dz, dx, du) := βµ(dz)µ(dx, du|z) ∈ P(Rd ×Rs ×A′) :

µ ∈ Gz,

∫
L̃µ(·|z)f(x)dβµ(x) = 0 ∀ f ∈ C2

0 (Rd)}.(2.8)

Define

k̃(z, µ) :=

∫
k′(z, x, u)µ(dx, du).

Here µ is as above, but is required to take values in the set Az, now viewed as a
state-dependent action space for the controlled diffusion (2.5). The ergodic control
problem for the averaged system, i.e., our candidate limiting problem, is then to
minimize

(2.9) lim sup
t↑∞

1

t

∫ t

0
E
[
k̃(z(s), µ(s))

]
ds

for z(t) ∈ Rd, µ(t) ∈ Az(t), t ≥ 0, as in (2.5). Under a stable stationary Markov

control ν̃ : z ∈ Rd 7→ ν̃(z) ∈ Az, (2.9) will equal
∫
k′dΦ̃ν̃ .

Our objective is to show that the averaged problem described by the controlled
dynamics (2.5) with state-dependent action spaces Az, z ∈ Rd, and cost (2.9) is a
valid approximation to our original two time-scale ergodic control problem in the
ϵ ↓ 0 limit.

Next we summarize the results of [4]. We assume the following throughout:

(††) There exist V ∈ C2(Rs), g ∈ C(Rd ×Rs) such that

• lim∥x∥↑∞ V (x) = ∞,
• lim∥x∥↑∞ g(z, x) = ∞ uniformly in z in any compact set, and,
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• for

Lf(z, x, u) :=
1

2
tr
(
a(z, x)∇2

xf(x)
)
+ ⟨∇xf(x),m

′(z, x, u)⟩,

f ∈ C2
0 (Rs),

V satisfies

LV (z, x, u) < −g(z, x).

Say that k is near-monotone if

(2.10) lim inf
∥(z,x)∥↑∞

inf
u
k(z, x, u) = ∞.

In [4], three distinct cases are considered as described below. Here v∗ is as in
Theorem 2.2(ii) that follows.

(1) The affine case with near-monotonicity: Assume k to be near-monotone. In
addition, assume:
(a) A′ ⊂ Rm for some m ≥ 1 and is compact, with h′(z, x, ·),m′(z, x, ·)

affine and k′(z, x, ·) strictly convex,
(b) ∥h′(z, x, u)∥ = o(k′(z, x, u)) as ∥(z, x)∥ ↑ ∞ and

sup
u

∥k′(z, x, u)∥1+a ≤ K(1 + |g(z, x)|) ∀z, x

for some K, a > 0 and g as in (††).
(c) There exists an ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0), if µ

∗ is as in Theorem
2.2(ii) with

µ∗(dx, du|z) = ζ(dx|z)v∗(du|z, x),

then as ϵ varies over (0, ϵ0), v
∗ is a stable stationary Markov control for

(2.1)-(2.2) and the corresponding stationary distributions are tight.
(Note that v∗ is already stable for the averaged system. Here we require the
stability to continue to hold for small ϵ > 0.)

(2) The general near-monotone case: Assume k to be near-monotone. Define
smooth approximations v∗δ , δ ∈ (0, 1), to the v∗ above by

(2.11)

∫
fv∗δ (du|z, x) :=

∫ ∫
fv∗(du|z − z′, x− x′)ψδ(z

′, x′)dz′dx′

for f in a countable convergence determining class in C(A) and ψδ := com-
pactly supported smooth approximations of the Dirac measure, i.e.,

ψδ(z
′ − z, x′ − x)dx′

δ↓0→ δ(z,x)(dz
′, dx′) in P(Rd ×Rs).

We assume that for some δ0, ϵ0, a > 0, and for all δ ∈ (0, δ0] and ϵ ∈ (0, ϵ0],
v∗δ are stable stationary Markov controls for (2.1)-(2.2) and

sup
u

|k′(zϵ(t), xϵ(t), u)|1+a
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has a uniformly bounded stationary expectation under v∗δ .

(3) The stable case: Assume that for some bounded open B ⊂ Rd × Rs and
ϵ0 > 0 the following holds: for each ϵ ∈ (0, ϵ0), there exist ∆ϵ, aϵ > 0 and
V1, V2 ∈ C2(Rd ×Rs) such that

L̂u
ϵ V

ϵ
1 ≤ −∆ϵ, L̂u

ϵ V
ϵ
2 ≤ −aϵV ϵ

1

for (z, x) /∈ B.

A possible relaxation of (2.10) is pointed out in [4], equation (28).

Remark: While the use of v∗, whose existence is a part of the conclusions of Theo-
rem 2.3, in the assumptions for the same theorem may appear self-referential, a look
at [4] shows that the said existence follows purely from the preceding components
of the above hypotheses, viz., near-monotonicity or the coupled Liapunov condition
in the stable case.

Under any of the above sets of hypotheses, the following is established in [4] (see
also [1], section 4.3):

Theorem 2.2. (i) The ergodic control problem defined by (2.1), (2.2), (2.3) has
an optimal stable A-valued stationary Markov control v∗ϵ (du|z, x) with optimal cost∫
k′dΦ∗

ϵ , where Φ∗
ϵ ∈ Gϵ is the corresponding optimal ergodic occupation measure.

(ii) The ergodic control problem defined by (2.5), (2.9) has an optimal stable sta-
tionary Markov control µ∗(dx, du|z) = ζ∗(dx)v∗(du|x) with optimal cost

∫
k′dΦ∗

0,

where Φ∗
0 ∈ G̃ is the corresponding optimal ergodic occupation measure.

(iii)

(2.12) lim inf
ϵ↓0

∫
k′dΦ∗

ϵ ≥
∫
k′dΦ∗

0.

Theorem 2.2 in turn can be strengthened to the following:

Theorem 2.3. Under any of the conditions above,

(2.13) lim
ϵ↓0

∫
k′dΦ∗

ϵ =

∫
k′dΦ∗

0.

We refer the reader to [4] or Section 4.3 of [1] for the (lengthy) details of Theorems
2.2 and 2.3. Suffices to say that the former is a straightforward consequence of the
upper semi-continuity of the set valued map

(2.14) ϵ ∈ [0, ϵ0] 7→ ArgminΦ∈Gϵ

(∫
k′dΦ

)
,
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where we set Gϵ = G̃ for ϵ = 0. For Theorem 2.3, however, one needs in addition
to exhibit an optimal element of G0 as a limit point of a sequence µn ∈ Gϵ(n) for
0 < ϵ(n) ↓ 0. This program is carried out in ibid. under the three alternative sets
of hypotheses mentioned above.

3. Main results

We now describe the Stackelberg control problem. We shall assume that A′ is of
the form A′ = A′

1 × A′
2 where A′

1, A
′
2 are compact metric spaces, denoting action

spaces for resp. player 1 or the ‘leader’ operating on a slow time scale, and player
2 or the ‘follower’ operating on the fast time scale. Spaces Ai := P(A′

i), i = 1, 2,
are defined correspondingly. The A-valued control process u(·) = uϵ(·) can then be
written as uϵ(·) = [uϵ1(·), uϵ2(·)] where uϵi(·) is Ai-valued for i = 1, 2. We shall also
assume that k is near-monotone. For f = m,h or k, we shall assume that f is of
the form

(3.1) f(z, x, [u1, u2]) = f1(z, x, u1) + f2(z, x, u2)

for f1, f2 satisfying the same assumptions as the ones stipulated for f .

The main distinction from the preceding case is in the information structure we
impose. We suppose that player 1 observes only zϵ(·), uϵ1(·), whereas player 2 can
observe everything, i.e., zϵ(·), uϵ1(·), xϵ(·), uϵ2(·). We view uϵ(·) as a random variable
taking values in the space U of measurable functions µ : [0,∞) 7→ A with the

coarsest topology that renders continuous the maps µ 7→
∫ t
s g(y)

∫
fdµ(y)dy for all

t > s ≥ 0, g ∈ L2[s, t], f ∈ Cb(A
′). This space is compact metrizable ([1], pp.

50-51.) We may write U = U1×U2 where Ui, i = 1, 2, are path spaces for uϵ1(·), uϵ2(·)
resp., topologized analogously. Both are compact metrizable.

We further restrict uϵ1(·) as follows. Let the processes (zϵ(·), xϵ(·), uϵ(·)) in (2.1)-
(2.2) be defined canonically on the probability space := the path space

Ω := C([0,∞);Rd)× C([0,∞);Rs)× U ,
equipped with the product Borel σ-field Ψ and probability measure P := the law of
(zϵ(·), xϵ(·), uϵ(·)). Let Ψt, t ≥ 0, denote the natural filtration of these processes, i.e.,
Ψt := the P -completion of ∩s>tσ(z

ϵ(y), xϵ(y), uϵ(y), y ≤ s) for each t ≥ 0. Define a
new probability measure Q on (Ω,Ψ) as follows: Qt := Q|Ψt is mutually absolutely
continuous w.r.t. Pt := P |Ψt for all t ≥ 0 with

Λt :=
dPt

dQt

= exp
(∫ t

0
⟨γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))), dB̄(s)⟩

− 1

2

∫ t

0
∥γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))∥2ds

)
,(3.2)

where

B̄(t) := B(t) +

∫ t

0
γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))ds
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is a d-dimensional standard Brownian motion independent of W (·) under Q by the
Girsanov theorem ([11], section 6.4). Then under Q, zϵ(·) satisfies

dzϵ(t) = γ(zϵ(t))dB̄(t).

We shall say that uϵ1(·) is wide sense admissible [6] if under Q, zϵ(t) − zϵ(s) is
independent of {uϵ1(y), zϵ(y), B̄(y), y ≤ s;W (·), xϵ(0)} for all t > s ≥ 0. This
includes in particular the controls adapted to the natural filtration of zϵ(·), i.e., the
Q-completion of ∩s>tσ(z

ϵ(y), y ≤ s), t ≥ 0. These are the so called strict sense
admissible controls. Wide sense admissible controls is a relaxation of this notion
and has the advantage that the laws of such (B̄(·), uϵ1(·)) under Q form a convex
compact set in (P(C([0,∞);Rd) × U) (ibid.). Furthermore, the property of wide
sense admissibility is preserved under convergence in law (ibid.), defined as it is
in terms of independence rather than conditional independence. Finally, the laws
under strict sense admissible controls are dense in the set of laws under wide sense
admissible controls, making it a legitimate relaxation. See [6] for details.

We assume throughout what follows that (†), (††) continue to hold. Let F ϵ
t := the

completion of ∩t′>tσ(z
ϵ(s), uϵ1(s), s ≤ t′) for t ≥ 0. Define the P(Rs × A′

2)-valued
process λϵt for t ≥ 0 by:∫

f(x, y)λϵt(dx, dy) := E

[∫
f(xϵ(t), y)uϵ2(t)(dy)

∣∣∣F ϵ
t

]
,

for f ∈ a suitable countable convergence determining class in Cb(Rs × A′
2). Let

πϵt(dx) := λϵt(dx,A
′
2), which then is the regular conditional law of xϵ(t) given F ϵ

t .
Our approach is based on the following lemmas. In what follows, we introduce the
notation

h̆(z, x, µ, w) :=

∫
h′(z, x, [w′, w])µ(dw′), (z, x, µ, w) ∈ Rd ×Rs ×A1 ×A′

2.

Correspondingly, we also define

L[u,w]
z :=

1

2
tr
(
a(z, x)∇2

xf(x)
)
+ ⟨∇xf(z, x),

∫
m′(z, x, [w′, w])u(dw′)⟩.

Lemma 3.1. Equation (2.1) can be rewritten as

(3.3) dzϵ(t) =

∫
h̆(zϵ(t), x, uϵ1(t), y)λ

ϵ
t(dx, dy)dt+ γ(zϵ(t))dB̃(t),

where for t ≥ 0,

B̃(t) = B(t) +

∫ t

0

(
γ(zϵ(s))−1

(
h(zϵ(s), xϵ(s), uϵ(s))−∫

h̆(zϵ(s), x, uϵ1(s), y)λ
ϵ
s(dx, dy)

))
ds

is a d-dimensional standard Brownian motion independent of W (·).
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The proof is immediate from Levy’s martingale characterization of Brownian
motion (see, e.g., [14], Theorem 4.2). Write πϵt(f) :=

∫
fdπϵt for any bounded

measurable f : Rs 7→ R. Similarly, λϵt(g) :=
∫
gdλϵt for bounded measurable g :

Rs ×A′
2 7→ R.

Lemma 3.2. The evolution of {πϵt} as a probability measure-valued process is given
by the equations of nonlinear filtering:

dπϵt(f) =
1

ϵ
λϵt(L

[uϵ
1(t),·]

zϵ(t) f)dt+⟨
λϵt(f(·)γ−1(zϵ(t))h̆(zϵ(t), ·, uϵ1(t), ·))−

πϵt(f)λ
ϵ
t

(
γ−1(zϵ(t))h̆(zϵ(t), ·, uϵ1(t), ·)

)
, dB̃(t)

⟩
,(3.4)

for t ≥ 0.

This follows along standard lines, see, e.g., [1], section 8.1. We sketch the details
in the Appendix. The one difference with the usual set up is the appearance of the
process λϵ· on the right because of an unobserved (by the leader) control process.
This causes only a minor change in the derivation. Note that we are not interested
in the uniqueness of the solution to (3.4) as it will not be required for our purposes.

For ϵ ∈ (0, 1), let (z̆ϵ(·), x̆ϵ(·), ŭϵ(·)) be a jointly stationary solution to (2.1)-(2.2)
that is optimal. From now on we view these processes as being defined over the entire
time axis R. Let π̆ϵt , λ̆

ϵ
t denote the corresponding conditional laws given F ϵ

t , t ≥ 0,
featuring in the nonlinear filter. These will also be stationary. We view z̆ϵ(·), x̆ϵ(·) as
resp. C(R;Rd), C(R;Rs) valued random variables, where these spaces are endowed
with the topology of uniform convergence on compact intervals. We view ŭϵ1(·) as a
random element of Ũ1 := the space of measurable paths R 7→ A1 with the coarsest

topology that renders continuous the maps κ(·) ∈ U 7→
∫ t
s g(y)

∫
fdκ(y)dy for all

t > s in R, all g ∈ L2[s, t], and all f ∈ C(A′
1). Likewise, let R̃s = Rs ∪ {∞}

denote the one point compactification of Rs and view λ̆ϵ· as a random element of

V := the space of measurable paths R 7→ P(R̃s × A′
2) with the coarsest topology

that renders continuous the maps ζ(·) ∈ V 7→
∫ t
s g(y)

∫
fdζ(y)dy for all t > s in R,

all g ∈ L2[s, t], and all f ∈ C(R̃s × A′
2). Define V0 likewise with Rs replacing R̃s.

Both Ũ1 and V are compact metrizable and hence Polish (see, e.g., Theorem 2.3.1,
pp. 50-51 of [1]).

Remark: In the above definition of V, it suffices to consider f ∈ C(R̃s ×A′
2) such

that f |Rs×A′
2
∈ a countable convergence determining class in

C0(Rs ×A′
2) := {f ′ ∈ C(Rs ×A′

2) : lim
∥x∥↑∞

max
u∈A′

2

|f(x, u)| = 0}

(e.g., a countable dense set in the unit ball of C0(Rs ×A′
2) around the origin), and

f(∞, ·) ≡ 0.
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Lemma 3.3. The laws of (z̆ϵ(·), λ̆ϵ· , ŭϵ(·)) are tight in P(C(R;Rd)× V × U).

Proof. Since U ,V are compact, we need only verify that the laws of z̆ϵ(·) are tight.
By (†),

E[k(z̆ϵ(t), x̆ϵ(t), ŭϵ(t))] ≤M <∞.

In view of our near-monotonicity assumption regarding k, the marginal laws of z̆ϵ(t),
which do not depend on t, remain tight over ϵ ∈ (0, 1).) For f ∈ C2

0 (Rd),

(3.5) f(z̆ϵ(t))−
∫ t

0
L̂ŭϵ(s)
ϵ f(z̆ϵ(s), x̆ϵ(s))ds, t ≥ 0,

is a martingale w.r.t. {F ϵ
t }. Applying Theorem 9.4, p. 145, [5], we get tightness of

the laws of z̆ϵ(·). �

Let (z̆∗(·), λ̆∗· , ŭ∗(·)) denote a subsequential limit in law of (z̆ϵ(·), λ̆ϵ· , ŭϵ(·)) along
some ϵ = ϵ(n) ↓ 0. Let π̆∗t denote the marginal of λ̆∗t on Rs for t ∈ R. These
limit processes will be jointly stationary, being limits in law of jointly stationary
processes.

Lemma 3.4. π̆∗t (Rs) = 1 ∀t a.s.

Proof. Note that for ϵ > 0,
π̆ϵt(Rs) = 1 a.s. ∀ t.

On the other hand,

E

[∫
fdπ̆ϵt

]
= E [f(xϵ(t))] ∀t.

We claim that the laws µϵt of xϵ(t), 0 < ϵ < ϵ0, t ≥ 0, are tight. To see this, first
note that the marginals do not change with time scaling, so we need only prove
tightness of the marginals of the time-scaled equation

dx̃ϵ(t) = m(z̃ϵ(t), x̃ϵ(t), ũ(t))dt+ σ(z̃ϵ(t), x̃ϵ(t))dW̃ (t),

where tilde denotes the time-scaled version after the time scaling t
ϵ 7→ t. Treating

z̃ϵ(·) as a ‘control process’ taking values in Rd and using (††) in conjunction with
the implication (iv) =⇒ (i) =⇒ (iii) =⇒ (vi)2 of Lemma 3.3.4, pp. 97-98, [1],
the tightness claim follows. But

∫
fdµϵt = E

[∫
fdπϵ(t)

]
∀ f : Rs 7→ R bounded

measurable. Hence by Lemma 8.3.1, pp. 286-287, [1], π̆ϵt , 0 < ϵ < ϵ0, t ≥ 0, are tight
as P(Rs)-valued random variables, leading to π̆∗t (Rs) = 1. By stationarity, this
claim extends to all t ∈ R. �

Corollary 3.5. The laws of (z̆ϵ(·), λ̆ϵ· , ŭϵ(·)) are tight in P(C(R;Rd)× V0 × U).

Proof. This is immediate from the above lemma and the remark preceding Lemma
3.3. �

2This chain of implications can be worked out without the compactness of control space.
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We shall need the following notation. For a random process q(·), let q([s, s′]) for
s < s′ in R denote the trajectory of the process q(·) restricted to [s, s′], viewed as
a random element of the corresponding path space (e.g., C(R,Rd) or U) restricted
to [s, s′] with the corresponding topology.

Lemma 3.6. The processes (z̆∗(·), λ̆∗· , ŭ∗(·)) satisfy

(3.6) dz̆∗(t) = λ̆∗t (h̆(z̆
∗(t), ·, [ŭ∗1(t), ·]))dt+ γ(z̆∗(t))dB̆(t),

for a d-dimensional standard Brownian motion B̆.

Proof. For any f ∈ C2
0 (Rd), (3.5) implies that

f(z̆ϵ(t))−
∫ t

0
λ̆ϵs

(
L̃[ŭϵ

1(s),·]
z̆ϵ(s) f(·)

)
ds, t ≥ 0,

is a martingale w.r.t. {F ϵ
t }. Equivalently, fot t > t0,

E

[(
f(z̆ϵ(t))− f(z̆ϵ(t0))−

∫ t

t0

λ̆ϵs

(
L̃[ŭϵ

1(s),·]
z̆ϵ(s) f(·)

)
ds

)
g(zϵ([0, t0]), ŭ

ϵ
1([0, t0]))

]
= 0,(3.7)

for any bounded continous g on C([0, t0];Rd) × U1t0 , where U1t0 is defined and
topologized exactly the same way as U1 except that the underlying time interval is
restricted to [0, t0]. The relation (3.7) is preserved under convergence in law. Hence
by passing to an appropriate subsequential limit as ϵ ↓ 0, we have that

f(z̆∗(t))−
∫ t

0
λ̆∗s

(
L̃[ŭ∗

1(s),·]
z̆∗(s) f

)
ds, t ≥ 0,

is a martingale w.r.t. {F0
t }, where

F0
t := the completion of ∩t′>t σ(z̆

∗(s), ŭ∗1(s), s ≤ t′).

The claim now follows by standard martingale representation theorems, see, e.g.,
[14]. �

Lemma 3.7. The control process u∗1(·) is wide sense admissible.

Proof. (Sketch) This is proved by a standard argument, essentially adapted from [6].
Wide sense admissibility of ŭϵ1(·) is equivalent to the statement that, for t2 > t1 > t0
in R and f ∈ Cb(Rd),

E0

[
f(z̆ϵ(t2)− z̆ϵ(t1))g(ŭ

ϵ([t0, t1]), z̆
ϵ([t0, t1]), B̄([t0, t1]),W (·))

]
= E0 [f(z̆

ϵ(t2)− z̆ϵ(t1))]E
[
g(ŭϵ([t0, t1]), z̆

ϵ([t0, t1]), B̄([t0, t1]),W (·))
]
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for any bounded continuous g on the relevant product space. We need to prove that
this continues to hold in the ϵ ↓ 0 limit. This can be done as follows. First rewrite
the equation as

E
[
f(z̆ϵ(t2)− z̆ϵ(t1))g(u

ϵ([t0, t1]), z̆
ϵ([t0, t1]), B̄([t0, t1]),W (·))Λ̃ϵ

]
= E

[
f(z̆ϵ(t2)− z̆ϵ(t1))Λ̃

ϵ
]
E
[
g(uϵ([t0, t1]), z̆

ϵ([t0, t1]), B̄([t0, t1]),W (·))Λ̃ϵ
]
,

where

Λ̃ϵ := exp
(
−
∫ t2

t0

⟨γ(z̆ϵ(s))−1

∫
h̆(z̆ϵ(s), x, ŭϵ1(s), y)λ

ϵ
s(dx, dy), dB(s)⟩

− 1

2

∫ t

0
∥γ(z̆ϵ(s))−1

∫
h̆(z̆ϵ(s), x, ŭϵ1(s), y)λ

ϵ
s(dx, dy)∥2ds

)
.(3.8)

Then to pass to the limit in law in order to claim the same for ϵ = 0, we need to

verify uniform integrability of Λ̃ϵ, ϵ > 0. This follows by a standard criterion of
Portenko ([10], Chapter I). �

Next we characterize the process λ̆∗· . Let Ḡz,w denote the set of ergodic occupation
measures for the associated system redefined as

(3.9) dx(t) = m(z, x(t), [w, u2(t)])dt+ σ(z, x(t))dW (t), x(0) = x0.

That is, Ḡz,w is the set of probability measures

ηz,w(dx, du) = η1z,w(dx)η
2
z,w(du|x)

such that under u2(·) ≡ η2z,w(du|·), (3.9) is positive recurrent with unique stationary

distribution η1z,w.

Lemma 3.8. The set valued map (z, w) 7→ Ḡz,w is a nonempty compact convex

valued upper semicontinuous map and λ̆∗t ∈ Ḡz̆∗(t),ŭ∗
1(t)

a.e.

Proof. By Theorem 2.1 of [3], ηz,w is uniquely characterized by:

(3.10) η ∈ Ḡz,w ⇐⇒
∫

L[w,w′]
z fηz,w(dx, dw

′) = 0 ∀ f ∈ C2
0 (Rs).

By (††), the ηz,w remain tight as (z, w) vary over a compact subset. The first claim
now follows from the fact that (3.10) is preserved under convex combinations and
convergence in P(C([0, t0];Rs)×U2t0), where U2t0 is defined in a manner analogous
to U1t0 . From (3.4), we have for s ∈ R, δ > 0,

ϵ(π̆ϵs+δ(f)− π̆ϵs(f))(3.11) ∫ s+δ

s
λ̆ϵt(L

[ŭϵ
1(t),·]

z̆ϵ(t) f(·))dt+

√
ϵ

∫ s+δ

s
⟨λ̆ϵt(f(·)γ−1(z̆ϵ(t))h̆(z̆ϵ(t), ·, ŭϵ(t), ·))−
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π̆ϵt(f)λ̆
ϵ
t(γ

−1(z̆ϵ(t))h̆(z̆ϵ(t), ·, ŭϵ(t), ·)), dB̃(t)⟩.(3.12)

Passing to the limit along ϵ = ϵ(n) ↓ 0, we get∫ s+δ

s
λϵt

(
L[ŭ∗

1(t),·]
z̆∗(t) f

)
dt = 0, a.s.

Dividing by δ and letting δ ↓ 0, we get

λ∗t

(
L[ŭ∗

1(t),·]
z̆∗(t) f

)
= 0 a.s.

at all Lebesgue points, hence a.e. Considering f in a countable dense subset of
C2
0 (Rs), this holds for all such f outside a common Lebesgue-null set, hence by a

density argument, for all f ∈ C2
0 (Rs) as well. The claim now follows by (3.10). �

In summary, (3.6) can be replaced by

(3.13) dz̆∗(t) =

∫
h̆(z̆∗(t), x, ŭ∗1(t), y)ηz̆∗(t),ŭ∗

1(t)
(dx, dy)dt+ γ(z̆∗(t))dB̆(t).

We now redefine the averaged dynamics as

(3.14) dz(t) = ȟ(z(t), [u(t), ũ(t)])dt+ γ(z(t))dB(t)

with ũ(t) ∈ Ḡz(t),u(t). The notation here is as follows. We treat [u(·), ũ(·)] as a
measurable non-anticipative control process taking values in the state-dependent
action space A∗

z := ∪w∈A′
1
({w} × Ḡz,w) with relative topology inherited from A′

1 ×
P(Rd×A′

2). By Lemma 3.7, this is a compact space for each z and the map z 7→ A∗
z

is upper semicontinuous. In turn, the map ȟ : ∪z∈Rd({z}×A∗
z) 7→ Rd is defined by

ȟ(z, [u, ũ]) =

∫
h′(z, x, [y1, y2])ũ(dx, dy2)u(dy1),

for z ∈ Rd, [u, ũ] ∈ A∗
z.

We consider this averaged system with the objective of minimizing

(3.15) lim sup
t↑∞

1

t

∫ t

0
E [č(z(s), [u(s), ũ(s)])] ds

where

č(z, [u, ũ]) =

∫
c′(z, x, [y1, y2])ũ(dx, dy2)u(dy1).

Let v∗ = [v̂∗, ṽ∗] denote an optimal stable relaxed Markov control for this problem.
The existence of v∗ follows as in [1], section 3.4, with minor modifications to account
for the state dependence of the action space A∗

· .

We now state the counterpart of the ‘general near-monotone case’ described in
the preceding section for the single agent control problem. Define v∗δ = [v̂∗δ , ṽ

∗
δ ]

for δ > 0 as before, identifying v∗ = [v̂∗, ṽ∗] with δ = 0. Write ṽ∗δ (dx, dy) as

ṽ∗δ (dx, dy|z, w) for z ∈ Rd, w ∈ A′
1 so as to render explicit its dependence on (z, w),
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given that it was chosen from the (z, w)-dependent set Ḡz,w. We take this depen-
dence to be measurable using a standard measurable selection theorem, see, e.g.,
[13]. Disintegrate it further as

ṽ∗δ (dx, dy|z, w) = v̆δ(dy|z, x, w)ϕδ(dx|z, w)

for v̆δ : Rd × Rs × A′
1 7→ A2 and ϕδ : Rd × A′

1 7→ P(Rs). Consider v̄∗δ = [v̂∗, v̆δ].
Our assumption is as follows.

(† † †) For some δ0, ϵ0, a > 0, and for all δ ∈ (0, δ0], ϵ ∈ (0, ϵ0],

• v̄∗δ are stable stationary Markov controls for (2.1)-(2.2), and,
• supu |k(zϵ(t), xϵ(t), u)|1+a has a uniformly bounded stationary expectation
under v̄∗δ .

Observe that the stationary Markov controls v̄∗δ = [v̂∗, v̆δ] have a very specific
structure: v̂∗ is allowed to depend only on the slow component of the state whereas
v̆δ has no such restriction. This is in tune with the Stackelberg team problem we
have formulated. Also note that the uniform boundedness of stationary expectations
of supu |k(zϵ(t), xϵ(t), u)|1+a under v̄∗δ implies in particular that the corresponding
stationary distributions are tight.

Theorem 3.9. In the general near-monotone case for the Stackelberg team problem,
an optimal control for the averaged system exists and the corresponding optimal cost
is the limit as ϵ ↓ 0 of the optimal costs of the ϵ-perturbed problems.

Proof. Let z∗(·) denote the stationary optimal solution to (3.14) under v∗ as above.
Since v̄∗δ are stable for ϵ ∈ (0, ϵ0), δ ∈ (0, δ0), the corresponding stable stationary

solutions (zϵ,δ(·), xϵ,δ(·)) exist and their stationary marginals are tight as observed
above. An application of Theorem 9.4, p. 145, [5], as in the proof of Lemma 3.3
then gives us tightness of laws of zϵ,δ(·). Write the dynamics of zϵ,δ(·) as

dzϵ,δ(t) =

∫
h(zϵ,δ(t), x, [v̂∗δ (z

ϵ,δ(t)), v̆∗δ (x)])π
ϵ
t(dx)dt+ γ(zϵ,δ(t))dB̃(t),

where πϵ,δt is the regular conditional law of xϵ,δ(t) given zϵ,δ(s), s ≤ t. Letting ϵ ↓ 0,
argue as in the proof of Lemma 3.6 to conclude that any limit point in law must be
a stationary process satisfying

dz0,δ(t) =

∫
h(z0,δ(t), x, [v̂∗δ (z

0,δ(t)), v̆∗δ (x)])π
0,δ
t (dx)dt+ γ(z0,δ(t))dB̃(t),

where we use the continuity of v̆∗δ (·), with π
0,δ
· being an appropriate subsequential

limit in law of πϵ,δ· . Now argue as in Lemma 3.7, using continuity of v̄∗δ (·), to

conclude that π0,δt = η̃∗
z0,δ(t)

where η̃∗z(dx) is the unique stationary distribution of

the process x0,δ(·) given by

(3.16) dx0,δ(t) = m(x0,δ(t), z, [v̂∗δ (z), v̆
∗
δ (x

0,δ(t))])dt+ σ(z, x0,δ(t))dW (t).

In particular, z0,δ(·) is the stationary solution of the averaged system under v̄∗δ .

Since zϵ,δ(·), ϵ ∈ (0, ϵ0), δ ∈ (0, δ0) are tight, so are z0,δ(·), δ ∈ (0, δ0). Now note that
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v̄∗δ → v∗ in the ‘topology of Markov controls’ defined in [1], section 2.4. Thus we
can argue as in ibid. to conclude that

(zϵ,δ(·), v∗δ (zϵ(·))) → (z∗(·), v∗(z∗(·)))

in law, i.e., in P(C(R,Rd)× U).

Now let β(ϵ) denote the optimal cost for (2.1)-(2.2) in the Stackelberg case, with
ϵ = 0 being identified with the averaged system. Then Lemma 3.6 yields lower
semicontinuity of the map ϵ 7→ β(ϵ) at ϵ = 0 and the foregoing proves its upper
semicontinuity. The claim follows. �

The claims for the affine case and the stable case are proved analogously. For the
affine case, v∗ is unique and continuous, so the argument is much simpler as in [4] or
[1], section 4.3. In particular, the smoothing of v∗ by ψδ is not needed. The stable
case is also simpler because the issue of verifying tightness disappears altogether,
simplifying the argument.

Remarks: 1. The condition (3.1) is necessitated by the topology for U1 × U2 we

work with, which gives continuity of ui(·) ∈ Ui 7→
∫ t
0 g(y)

∫
fdui(y)dy ∈ R for

t > s, g ∈ L2[s, t], f ∈ C(A′
i) for i = 1, 2, separately, but not of (u1(·), u2(·)) ∈ U 7→∫ t

s g(y)
∫
fdu1(y)du2(y)dy for t, s, g as above and f ∈ C(A′).

2. We have considered a team problem with a common cost function k. A
genuine game formulation wherein the leader and the follower have differing cost
criteria remains to be analyzed.

APPENDIX

We derive here the nonlinear filtering equation (3.4). Consider the processes
(zϵ(·), xϵ(·), uϵ(·) = [uϵ1(·), uϵ2(·)]) in (2.1)-(2.2) to be defined canonically on the
probability space (Ω,Ψ, P ) with Ω := the path space

C([0,∞);Rd)× C([0,∞);Rs)× U ,

equipped with the product Borel σ-field Ψ and probability measure P := the law
of (zϵ(·), xϵ(·), uϵ(·)). Let Ψt, t ≥ 0, denote the natural filtration of these processes,
i.e.,

Ψt = the P -completion of ∩s>t σ(z
ϵ(y), xϵ(y), uϵ(y), y ≤ s)

for each t ≥ 0. Define a new probability measure Q on (Ω,Ψ) as before, i.e., by:
Qt := Q|Ψt is mutually absolutely continuous w.r.t. Pt := P |Ψt for all t ≥ 0 with

Λt :=
dPt

dQt
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= exp
(∫ t

0
⟨γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))), dB̄(s)⟩

− 1

2

∫ t

0
∥γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))∥2ds

)
,(3.17)

where

B̄(t) := B(t) +

∫ t

0
γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))ds

is a d-dimensional standard Brownian motion independent of W (·) under Q. Fur-
thermore,

B̃(t) :=

∫ t

0
γ(zϵ(s))−1(dzϵ(s)− λs(h̆(z

ϵ(s), ·, [uϵ1(s), ·]))ds, t ≥ 0,

is also a Brownian motion under Q adapted to {F ϵ
t }: this again follows by Levy’s

martingale characterization of Brownian motion as in [14]. Since

B̄(t) = B̃(t) +

∫ t

0
γ(zϵ(s))−1λϵs(h̆(z

ϵ(s), ·, [uϵ1(s), ·])ds, t ≥ 0,

B̄(·) is also adapted to {F ϵ
t }. Under Q, the dynamics (2.1)-(2.2) may be viewed in

the equivalent form

dzϵ(t) = γ(zϵ(zϵ(t))dB̄(t),

dxϵ(t) =
1

ϵ
m(zϵ(t), xϵ(t), [uϵ1(t), u

ϵ
2(t)])dt+

1√
ϵ
σ(zϵ(t), xϵ(t))dW (t),

where B̄(·),W (·) are independent d-, resp., s-dimensional Brownian motions.

Let E0[ · ] denote the expectations / conditional expectations under Q. Let
M(Rs) denote the space of finite non-negative measures onRs with weak∗ topology.
Define the ‘unnormalized conditional law’ as the M(Rs)-valued process pϵt, t ≥ 0,
defined by

pϵt(f) :=

∫
fdpϵt = E0 [f(x

ϵ(t))Λt|F ϵ
t ]

∀ f in a countable convergence determining class in Cb(Rs). From the dynamics
above, it follows that for any t ≥ 0, (zϵ(t′), uϵ1(t

′)), t′ ≥ t, is conditionally indepen-
dent of (xϵ(s), uϵ2(s)), s ≤ t, given F ϵ

t . Hence for any f ∈ C2
0 (Rs),

(3.18) E0 [f(x
ϵ(t))Λt|F ϵ

t′ ] = E0 [f(x
ϵ(t)Λt|F ϵ

t ] = pϵt(f) ∀ t′ > t.

Then by Ito’s formula, for f ∈ C2
0 (Rs), δ > 0,

pϵt+δ(f)− pϵt(f)

=
1

ϵ
E0

[∫ t+δ

t
Luϵ(s)
zϵ(s)f(x

ϵ(s))Λsds|F ϵ
t+δ

]
+

1√
ϵ
E0

[∫ t+δ

t

⟨
f(xϵ(s))γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))Λs, dB̄(s)

⟩
|F ϵ

t+δ

]
.
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Let T > t and set δ = T−t
N for N >> 1. Then

pϵT (f)− pϵt(f)

=

N−1∑
m=0

(pt+(m+1)δ(f)− pt+mδ(f))

=
1

ϵ

N−1∑
m=0

[ ∫ t+(m+1)δ

t+mδ
E0

[
Luϵ(s)
zϵ(s)fΛs

∣∣∣F ϵ
t+(m+1)δ

]
ds+

1√
ϵ
E0

[ ∫ t+(m+1)δ

t+mδ

⟨
ξs, dB̄(s)

⟩∣∣∣F ϵ
t+(m+1)δ

]
,

where

ξs := f(xϵ(s))γ(zϵ(s))−1h(zϵ(s), xϵ(s), uϵ(s))Λs.

As δ ↓ 0, the first term on the right converges a.s. to

1

ϵ

∫ T

t
ps(Luϵ(s)

zϵ(s))ds

by Theorem 3.3.8, p. 56, [2] and the right continuity of σ-fields F ϵ
t . We can approx-

imate the stochastic integral ∫ t+(m+1)δ

t+mδ

⟨
ξs, dB̄(s)

⟩
on the right in mean square by replacing {ξt} by its approximation {ξ′t} with contin-

uous paths, defined as ξ′t =
1
κ

∫ t
t−κ ξsds for κ > 0 small, with suitable modification

near t = 0. In turn, we can approximate the latter in mean square by replac-
ing this {ξ′t} by a piecewise constant {ξ′′t } which takes value ξ′t(k) on interval (say)

[t(k), t(k+ 1)) where we take maxk |t(k+ 1)− t(k)| sufficiently small. But then the
stochastic integral has the form

k2∑
k=k1

ξ′′t(k)(B̄(t(k + 1))− B̄(t(k)))

where t(k1) = t+mδ and k2 = t+ (m+ 1)δ. But then by (3.18),

E0

[∫ t+(m+1)δ

t+mδ

⟨
ξ′′s , dB̄(s)

⟩
|F ϵ

t+(m+1)δ

]

=

∫ t+(m+1)δ

t+mδ

⟨
E0

[
ξ′′s |F ϵ

t+(m+1)δ

]
, dB̄(s)

⟩
=

∫ t+(m+1)δ

t+mδ

⟨
E0

[
ξ′′s |F ϵ

t+mδ

]
, dB̄(s)

⟩
.

By an appropriate limiting argument (in mean square) as δ ↓ 0, we get

pϵT (f)− pϵt(f) =
1

ϵ

∫ T

t
ps(Luϵ(s)

zϵ(s)f)ds +
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1√
ϵ

∫ T

t

⟨
λϵs

(
f(·)γ−1(zϵ(s))h̆(zϵ(s), ·, [uϵ1(s), ·])

)
, dB̄(s)

⟩
,

(3.19)

where we have used Theorem 3.3.8, [2] and the right continuity of sigma-fields {F ϵ
t }

once again. This yields the evolution equation for pϵt, t ≥ 0:

dpϵt(f) =
1

ϵ
pϵt(L

uϵ(t)
zϵ(t)f)dt +

1√
ϵ
⟨λϵt

(
f(·)γ−1(zϵ(t))h̆(zϵ(t), ·, [uϵ1(t), ·])

)
, dB̄(t)⟩,

(3.20)

for t ≥ 0. This is the celebrated Duncan-Mortensen-Zakai equation adapted to our
framework.

By the Kallianpur-Striebel abstract Bayes formula, for f ∈ Cb(Rs),

(3.21) πϵt(f) = E[f(xϵ(t))|F ϵ
t ] =

E0[f(x
ϵ(t))Λt|F ϵ

t ]

E0[Λt|F ϵ
t ]

=
pϵt(f)

pϵt(1)
,

where 1 := the constant function ≡ 1. Now apply Ito’s formula to (3.21) to obtain
(3.4). The details, though lengthy, are routine and we omit them.
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