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My approach heavily depends upon the theory of Young measures.

2. Young measures and disintegrations

In this section, the basic concepts and properties of Young measures are briefly
summarized in a simple framework without detailed proofs.1

Let (Ω, E , µ) be a finite complete measure space and X the convex hull of
{x1, x2, . . . , xp} in Rl; i.e. X = co{x1, x2, . . . , xp}. B(X) denotes the Borel σ-
field on X. The projection of the product space Ω ×X into Ω(resp.X) is denoted
by πΩ(resp. πX).

Definition 2.1. A (positive) measure γ on (Ω ×X, E ⊗ B(X)) is called a Young
measure if it satisfies.

γ ◦ π−1
Ω = µ.(2.1)

The set of all the Young measures is denoted by Y(Ω,µ;X).

Definition 2.2. A family {νω | ω ∈ Ω} of measures on (X,B(X)) is called a
measurable family if the mapping

ω 7→ νω(B)

is measurable for any B ∈ B(X).2

Given a measurable family {νω | ω ∈ Ω} of finite measures on (X,B(X)), the
function

ω 7→
∫
X
χA(ω, x)dνω

is measurable for any A ∈ E ⊗ B(X). χA is the characteristic function of A. A set
function γ defined by

γ(A) =

∫
Ω

{∫
X
χA(ω, x)dνω

}
dµ, A ∈ E ⊗ B(X)(2.2)

is a measure on (Ω ×X, E ⊗ B(X)). In case an additional condition

sup
ω∈Ω

νω(X) <∞

is satisfied, γ defined by (2.2) is a finite measure. In particular, if every νω(ω ∈ Ω)
is a probablity measure, then γ is a Young measure since

(γ ◦ π−1
Ω )(E) = µ(E), E ∈ E .

The set of all the measurable families consisting of probability measures is denoted
by P(Ω,µ;X).

1See Bourbaki [6] and Valadier [14], [15] for details.
2Ameasurable family can be characterized in several ways. For instance the following statements

are equivalent to each other. Proof is not so hard.
(a) {νω} is a measurable family.
(b) The mapping A : ω 7→ νω(Ω → M(X)) is E ⊗ B(M(X)∗)-measurable, where B(M(X)∗) is

the Borel σ-field generated by the w∗-topology on M(X).
(c) The mapping B : ω 7→

∫
X
f(ω, x)dνω is measurable for any f ∈ Gc(Ω,µ;X). (Gc(Ω,µ;X)

is defined in section 3.)
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Conversely, is it possible to represent any Young measure on Ω ×X in the form
(2.2) for some measurable family {νω | ω ∈ Ω}? The next proposition gives a
positive answer to this question.

Proposition 2.3 (Valadier). For any Young measure γ on (Ω×X, E⊗B(X)), there
exists a measurable familly {νω | ω ∈ Ω} of probability measures such that (2.2) is
satisfied.3

If a Young measure γ is representable in the form(2.2), its right-hand side is
called the disintegration of γ. In this case, we symbolically express γ as

γ =

∫
Ω
δω ⊗ νωdµ.(2.3)

3. Topology on Y(Ω,µ;X)

We now turn to defining some topology on the space Y(Ω,µ;X) of Young mea-
sures.

A function f : Ω×X → R is called a Carathéodory function if (i) ω 7→ f(ω, x)
is measurable for each x ∈ X and (ii) x 7→ f(ω, x) is continuous for each ω ∈ Ω. It
can be proved that f is E ⊗ B(X)- measurable. We denote by Gc(Ω,µ;X) the set
of all the Carathéodory functions which satisfy∫

Ω
∥ f(ω, ·) ∥∞ dµ <∞,

where ∥ f(ω, ·) ∥∞= sup
x∈X

| f(ω, x) | .

We denote by M(Ω,µ;X) the of all measurable families consisting of signed
measures with sup

ω
∥ νω ∥< ∞ (∥ νω ∥ is the total variation of νω). Then

M(Ω,µ;X) can be regarded as a subspace of L∞(Ω,M(X)) which is the dual space
of Gc(Ω,µ;X) ∼= L1(Ω,C(X,R)).4

3Valadier [13] proved a much more general result.

Let (Ω, E , µ) be a finite complete measure space and X a Hausdorff topological
space. If γ is a Young measure (similarly defined as in the text) on (Ω ×X, E ⊗
B(X)) and γ◦π−1

Ω is a Radon measure on X, then there exits a measurable family
{νω | ω ∈ Ω} of Radon probability measures such that (2.2) is satisfied.

In our text, X is assumed to be a compact set in Rl. So γ ◦π−1
X is automatically a Radon measure.

Proposition 2.3 follows immediately from Valadier’s theorem as a simple corollary.
4M(X) is the set of all the Radon measures on R. M1

+(X) is the set of all Radon probability
measures on X. See Billingsley [5] and Maruyama [11] Chap.8 for the topological properties of
M1

+(X).
The following general theorem is well-known.

Let (Ω, E , µ) be a finite measure space, and X a Banach space. Then the duality
relation Lp(Ω,X)′ ∼= Lq(Ω,X′)(1 ≦ p < ∞, 1/p+ 1/q = 1) holds true if and only
if X′ has the Radon-Nikodým property with respect to µ.

The duality pair of f ∈ Lp and g ∈ Lq is given by∫
Ω

⟨g(ω), f(ω)⟩dµ.

cf. Diestel and Uhl [9] pp.98-100.
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Keeping the inclusions P(Ω,µ;X) ⊂ M(Ω,µ;X) ⊂ L∞(Ω,M(X)) in mind, we
giveP(Ω,µ;X) the relative topology induced from the w∗-topology on L∞(Ω,M(X))
; i.e. σ(L∞(Ω,M(X)), L1(Ω,C(X,R)). If we express L∞(Ω,M(X)) endowed with
the w∗-topology by L∞

∗ (Ω,M(X)), it is a locally convex Hausdorff topological linear
space.

Definition 3.1. The topology on Y(Ω,µ;X) which is generated by the family of
functions

γ 7→
∫
Ω×X

f(ω, x)dγ, f ∈ Gc(Ω,µ;X)(3.1)

is called the narrow topology.

A measurable family {νω | Ω ∈ Ω} ∈ P(Ω,µ;X) of probability measures defines
a Young measure by (2.2), and vice versa (Proposition 2.3). The next Proposition
assures that P(Ω,µ;X) and Y(Ω,µ;X) are identified topologically.

Proposition 3.2. Define a mapping Φ : P(Ω,µ;X) → Y(Ω,µ;X) by

Φ : {νω | ω ∈ Ω} 7→
∫
Ω

{∫
X
χA(ω, x)dνω

}
dµ, A ∈ E ⊗ B(X).

Then Φ is a homeomorphism between P(Ω,µ;X) with w∗-topology and Y(Ω,µ;
X) with the narrow topology.

It can be proved that P(Ω,µ;X) is a w∗-closed set contained in the unit ball
of L∞

∗ (Ω,M(X)), and so w∗-compact. Therefore, according to Proposition 3.2,
Y(Ω,µ;X) is also compact in the narrow topology.

Proposition 3.3. P(Ω,µ;X) is w∗-compact in L∞
∗ (Ω,M(X)). Y(Ω,µ;X) is com-

pact in the narrow topology.

We sometimes use expressions like “narrowly compact”, “narrowly converge”
and so on instead of “compact in the narrow topology”, “converge in the narrow
topology” . . . for the sake of brevity.

The mapping Φ in Proposition 3.2 admits an extention to L∞(Ω,M(X)) by the
same formula. However each value of Φ is not necessarily a Young measure in this
case.

4. Continuity of integral functionals

We are going to keep our notations used in the preceding sections : X is the convex
hull of {x1, x2, . . . , xp} in Rl, and (Ω, E , µ) is a finite complete measure space. In this
section, we investigate the continuity of the integral functional J : Y(Ω,µ;X) → R
defined by

J : γ 7→
∫
Ω×X

u(ω, x)dγ,(4.1)

where u(ω, x) is a given integrand.
A function f : Ω ×X → R is called a normal integrand if (i) f is (E ⊗ B(X))-

measurable, and (ii) x 7→ f(ω, x) is lower semi-continuous (l.s.c.) for all ω ∈ Ω. We
denote by G(Ω,µ;X) the set of all the normal integrands. If, in addition to (i) and
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(ii), f satisfies the condition (iii) x 7→ f(ω, x) is convex for all ω ∈ Ω, f is called a
convex normal integrand.

It is well-known 5 that for any positive normal integrand f : Ω ×X → R, there
exists an increasing sequence ψn : Ω ×X → R of positive Carathéodory functions
such that ∫

Ω
∥ ψn(ω, ·) ∥∞ dµ <∞(4.2)

and

f(ω, x) = lim
n→∞

ψn(ω, x) for all ω.(4.3)

Hence ∫
Ω×X

f(ω, x)dγ = sup
n

∫
Ω×X

ψn(ω, x)dγ(4.4)

for any γ ∈ Y(Ω,µ;X).
By definition of the narrow topology, the functional

γ 7→
∫
Ω×X

ψn(ω, x)dγ ; n = 1, 2, . . .

is narrowly continuous. Combining these observations with (4.4), we obtain the
following result.

Proposition 4.1. For any positive normal integrand f : Ω×X → R, the functional

J : γ 7→
∫
Ω×X

f(ω, x)dγ

is narrowly l.s.c. on Y(Ω,µ;X).

5. Existence of solutions (1)

We start with examining Problems(II) and (III).
(Ω, E , µ) is a finite complete measure space and X = co{x1, x2, . . . , xp} as in the

preceding sections. However it is required to impose some additional assumpitons
concerning (Ω, E , µ) and u(ω, x).

Assumption 1 (Ω, E , µ) is non-atomic.
Assumption 2 A function u : Ω ×X → R is a positive convex normal inte-

grand.

It is obvious that Problem(III) has a solution

γ∗ =

∫
Ω
δω ⊗ ν∗ωdµ

in Y(Ω,µ;X) in view of Proposition 3.3 and Proposition 4.1.

Theorem 5.1. Under Assumptions 2, there exists a solution for Problem(III).

5See Berliocchi-Lasry [4] and Valadier [14], [15] for a characterization of positive normal in-
tegrands by using Carathéodory functions. It is not so easy because we need the “projection
theorem”. cf. Maruyama [11](pp.411-426).
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How about the existence of a solution for Problem(II)? The answer is positive
again. However we need a little bit sophisticated reasonings for its proof.

Definition 5.2. Let X be a real linear space and C a nonempty convex set of X.
Suppose that x is any point of C. Then v ∈ X is called a facial direction of C at
x if x± tv ∈ C for sufficiently small t > 0. The set of all the facial directions of C
at x is called the facial space of C at x, and is denoted by L(x |C).6

L(x |C) is a linear subspace of X. It is easy to see that x ∈ C is an extreme point
of C if and only if dimL(x |L) = 0.

Theorem 5.3. Under Assumptions 1 and 2, there exists a solution for Problem
(II).

Proof. By Theorem 5.1, we know that Problem(III) has a solution γ∗ of the form

γ∗ =

∫
Ω
δω ⊗ ν∗ωdµ.(5.1)

By Proposition 3.3, Y(Ω,µ;X) can be regarded as a convex and narrowly compact
set in Φ(L∞(Ω,M(X)). If we denote by K the set of Young measures which are
equivalent to γ∗ in the following sense:∫

Ω×X
u(ω, x)dγ −

∫
Ω×X

u(ω, x)dγ∗ = 0.(5.2)

Since K is nonempty, convex and narrowly compact, K has an extreme point, say
γ(i.e. γ ∈ K̈: the set of extreme points of K). By the Karlin-Castaing Theorem,7γ
can be expressed in the form

γ =

∫
Ω
δω ⊗ δy(ω)dµ

for some measurable mapping y : Ω → X.
If we define a linear operator T : Φ(L∞(Ω,M(X)) → R by

Tγ =

∫
Ω×X

u(ω, x)dγ

and denote by U∗ the optimized value of Problem(III); i.e.

U∗ =

∫
Ω×X

u(ω, x)dγ∗,

then the left-hand side of (5.2) can be written as

A(γ) ≡ Tγ − U∗, γ ∈ Y(Ω,µ;X).

It is clear that K = T−1(U∗) ∩Y(Ω,µ;X). Since γ ∈ K̈, it is obvious that γ is
an extreme point of Y(Ω,µ;X).

6For the concept of facial spaces, consult Arrow and Hahn [1] pp.389-390. See also Artstein [2].
7Let X be a locally convex topological linear space. Assume that a set-valued mapping Γ : Ω ↠

X is compact, convex-valued, measurable and L1-integrably bounded. Γ̈ : ω ↠ Γ̈ (ω) (the set of

extreme points of Γ (ω)). FΓ (resp. FΓ̈ ) denotes the set of all measurable selections of Γ (resp. Γ̈ ).
Then

(i)F̈Γ ̸= ∅, (ii)FΓ̈ ̸= ∅, (iii)F̈Γ = FΓ̈ .

See Castaing-Valadier [7] Theorem IV. 15(p.109), Maruyama [11] Chap.12, §2.
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We observe that the restriction of T to L(γ |Y(Ω,µ;X)) is an injection.8 Conse-
quently,

dimL(γ | Y(Ω,µ;X)) ≦ 1.(5.3)

γ is an element of the compact convex set

H = [γ + L(γ | Y(Ω,µ;X))] ∩Y(Ω,µ;X).

By Carathéodory’s theorem, γ can be expressed as a convex combination of at most
two extreme points ofH. Any extreme point ofH is an extreme point ofY(Ω,µ;X).
So γ can be expressed as a convex combination of at most (or exactly) two extreme
points of Y(Ω,µ;X).

Consequently γ can be expressed as

γ = (1− t)

∫
Ω
δω ⊗ δy(ω)dµ+ t

∫
Ω
δω ⊗ δz(ω)dµ,(5.4)

for some measurable mappings y(·), z(·) : Ω → X and t ∈ [0, 1].9 Hence∫
Ω×X

u(ω, x)dγ = (1− t)

∫
Ω
u(ω, y(ω))dµ+ t

∫
Ω
u(ω, z(ω))dµ.

By Ljapunov’s convexity theorem, there exists a decomposition E1, E2 ∈ E of Ω
such that ∫

Ω×X
u(ω, x)dγ =

∫
E1

u(ω, y(ω))dµ+

∫
E2

u(ω, z(ω))dµ.10

Defining

x∗(ω) = χE1(ω)y(ω) + χE2(ω)z(ω)

8Suppose that it is not. Then there must exist nonzero θ ∈ L(γ | K) such that Tθ = 0. By
definition of facial space,

w = γ + tθ ∈ K and w′ = γ − tθ ∈ K

for sufficiently small t > 0. So Tw = Tw′ = Tγ, which implies Aw = Aw′ = Aγ = U∗. Thus w
and w′ are distinct elements of T−1(U∗) ∩K and satisfy γ = (w + w)/2. This contradicts to the
fact that γ is an extreme point of T−1(U∗) ∩K.

9We had recourse to a geometric theory of the facial space due to Arrow-Hahn [1]. Berliocchi-
Lasry [4](pp.145-146) established the following result in order to get (5.4), sharing a common idea.

Let X be a locally convex Hausdorff real topological linear space. Assume that
K ⊂ X is a nonempty compact convex set and φi : X → (−∞,∞](i = 1, 2, . . . , n)
are affine mappings Then any extreme point of the set G = {x ∈ K | φi(x) ≦
0; i = 1, 2, . . . , n} can be expressed as a convex combination of (n + 1) extreme
points of K.

10Let (Ω, E , µ) be a finite complete non-atomic measure space. Assume that f1, f2, . . . ,
fm are any elements of L1(Ω,Rl) and a mapping λ : Ω → Λm is measurable, where Λm is the

fundamental simplex in Rm; i.e. Λm = {λ ∈ Rm | λi ≧ 0(i = 1, 2, . . . ,m),
m∑
i=1

λi = 1}. Then there

exists a decomposition E1, E2, . . . , Em of Ω(Ei ∈ E for all i) such that∫
Ω

m∑
i=1

λi(ω)fi(ω)dµ =

m∑
i=1

∫
Ei

fi(ω)dµ.

cf. Castaing-Valadier [7] Theorem IV. 17(pp.112-117), Maruyama [11] Chap.12, §2.
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(χEi is the characteristic function of Ei), we obtain∫
Ω
u(ω, x∗(ω))dµ = U∗.

Thus x∗(·) is clearly a solution for Problem(II). □

Remark 5.4. It is Berliocchi-Lasry [4] which first reformulated so called Aumann-
Perles’ variational problem in terms of Young measures. Their basic ideas success-
fully transformed a nonlinear problem to a linear one. I am much indebted to their
ideas here as well as in my previous works.

Remark 5.5. Theorem 5.3 can be proved without the theory of Young measures.
First of all, the setM of all the measurable mappings of Ω intoX is weakly compact
in L1(Ω,Rl) by the Dunford-Pettis-Nagumo theorem. Furthermore we know that
the integral functional J ′ : L1(Ω,Rl) → R defined by

J ′ : f 7→
∫
Ω
u(ω, f(ω))dµ

is sequentially l.s.c. with respect to the weak topology of L1(Ω,Rl). This comes
from Ioffe’s [9] fundamental theorem. Combining these observations, we can assure
the existence of a solution for Problem(II).(cf. Maruyama [11] pp.286-295.)

Theorem 5.3 guaranttees the equivalence of Problems(II) and (III) in the sense
that the optimized values of the two problems are equal.

6. Existence of a solution(2)

We turn next to Problem(I).

Theorem 6.1. Under Assumption 1 and Assumption 2, Problem(I) has a solution.

Proof. The finite set K = {x1, x2, . . . , xp} is compact. It is easy to check that the
set of all the measurable families P(Ω,µ;K) consisting of probability measures on
K is compact in L∞

∗ (Ω,M(X)). Hence, by Proposition 3.2, the set Y(Ω,µ;K) of
Young measures on (Ω × K, E ⊗ B(K)) is narrowly compact. Since the integral
functional J defined by (4.1) is narrowly l.s.c. on Y(Ω,µ;X), so is on Y(Ω,µ;K).
Thus there exists a solution γ∗ ∈ Y(Ω,µ;K) of the problem:

Minimize
γ∈Y(Ω,µ;K)

∫
Ω×K

u(ω, x)dγ.(6.1)

The measurable family ν∗ω which determines γ∗ is of the form:

ν∗ω =

p∑
i=1

λi(ω)δxi

where λ(ω) = (λ1(ω), λ2(ω), . . . , λp(ω)) : Ω → Λp (the fundamental simplex in Rp)
is measurable. Hence the optimized value W ∗ of Problem(I) can be calculated as

W ∗ =

∫
Ω×K

u(ω, x)dγ∗ =

∫
Ω

p∑
i=1

λi(ω)u(ω, xi)dµ.
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Again by Ljapunov’s convexity theorem, there exists a decomposition E1, E2,
. . . , Ep of Ω(Ei ∈ E for all i) such that

W ∗ =

p∑
i=1

∫
Ei

u(ω, xi)dµ.

Defining

x∗(ω) =

p∑
i=1

χEi(ω)xi,

we obtain

W ∗ =

∫
Ω
u(ω, x∗(w))dµ.

x∗(·) is clearly a solution for Problem(I). □

As we already saw in the previous section, Problems(II) and (III) are equivalent.
Then it is natural to ask if Problems(I) and (II) are equivalent. Is there any solution
for Problem(I) which attains the optimized value V ∗ of Problem(II)?

Game theorists interprete each element of the set P(resp. M) as a pure strategy
(resp. mixed strategy). If the optimized value V ∗ of Problem(II) is attained by
some pure strategy, game theorists say that Problem(II) can be purified. So the
problem stated above is expressed as “Can Problem(II) be purified?”

The answer is negative as the following counter-example illuminates.

Counter-example Let Ω be the unit interval [0,1] with Lebesgue measurem. X
is also specified asX = [0, 1] = co{0, 1}. We define an integrand u : [0, 1]×[0, 1] → R
by

u(ω, x) =

{
−2x+ 1 on [0, 1/2],

2x− 1 on [1/2, 1]

for any ω ∈ [0, 1]. Then the only solution x∗(ω) for Problem(II)

Minimize
x(·):[0,1]→[0,1]

∫ 1

0
u(ω, x(ω))dm(ω)

is given by x∗(ω) = 1/2 a.e. The optimized value V ∗ = 0. However it is impossible
to find a measurable function y∗(ω) of [0, 1] into {0, 1} which is equivalent to x∗(ω);
i.e. ∫ 1

0
u(ω, y∗(ω))dm =

∫ 1

0
u(ω, x∗(ω))dm = 0.

Thus x∗(ω) can not be purified.

However the purification is proved to be possible if we impose an additional
condition on u(ω, x).

Assumption 3 u(ω, (1 − λ)x1 + λx2) = (1 − λ)u(ω, x1) + λu(ω, x2) for any
ω ∈ Ω, x1, x2 ∈ X and λ ∈ [0, 1].



366 TORU MARUYAMA

Assumption 3 requires the graph of the function x 7→ u(ω, x) to be flat for each
fixed ω ∈ Ω.

Let x∗(·) be a solution for Problem(II). The measurable implicit function theorem
assures the existence of measurable functionλ∗ : Ω → Λp such that

x∗(ω) =

p∑
i=1

λ∗i (ω)xi.

Since the optimized value of Problem(II) is attained by x∗(·), it follows that

V ∗ =

∫
Ω
u(ω, x∗(ω))dµ =

∫
Ω
u
(
ω,

p∑
i=1

λ∗i (ω)xi
)
dµ =

∫
Ω

p∑
i=1

λ∗i (ω)u(ω, xi)dµ

by Assumption 3. we now apply Ljapunov’s convexity theorem again to get a
function y∗ : Ω → K which satisfies

V ∗ =

∫
Ω
u(ω, y∗(ω))dµ.

We conclude the possibility of the purification of Problem(II).

Theorem 6.2. Under Assumptions 1-3, Problem(II) can be purified.

Since Problem(II) and Problem(III) are equivalent, Problem(III) can also be
purified, that is, there exists a solution z∗(·) for Problem(I) which realizes the
optimized value U∗ of Problem(III).

Although the full purification is difficult without very strict conditions, what can
we say about an approximate purification? Let x∗(·) be a solution for Problem(II).
If there exists a solution y∗(·) for Problem(I) such that∣∣∫

Ω
u(ω, x∗(ω))dµ−

∫
Ω
u(ω, y∗(ω))dµ

∣∣ < ε

for some ε > 0, we say that Problem(II) can be ε-purified. Aumann et al. [3]
examined a similar problem in the context of game theory. However we leave it to
another occasion.
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