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integral is equal to or less than that of the upper limit of the integral of the se-
quence. In terms of a symbolic expression and the use of notation that is by now
conventional, we have:

Fatou’s lemma. Let (T,Σ, µ) be a measure space. If {fn}n∈N is a sequence of
non-negative integrable functions for which lim infn

∫
fndµ < ∞, then∫

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ.

To be sure, there are variations even in the standard textbooks: the sequence of
functions need not be defined everywhere but almost everywhere; it may not be
constituted by non-negative functions; and even if so constituted, the range of the
functions may be the extended real line.3 There are variations even in the proofs:
the lemma is deduced as a straightforward implication of Lebesgue’s monotone
convergence theorem, or derived ab initio and used as an instrument for the proof
of such a theorem.4 But the basic point is that there is little more to understand
regarding Fatou’s lemma as far as real-valued functions are concerned. As Royden
writes, “Fatou’s lemma and the Monotone Convergence Theorem are very close in
the sense that each can be derived from the other using only the fact that integration
is positive and linear.”

As was already understood in the nineteen-seventies, this is no longer true when
one moves from the real line to a finite-dimensional Euclidean space, or more gen-
erally, to a Riesz space. This is simply because the notion of order is weakened
and one has to reckon with the fact that the set of cluster points no longer has
a supremum, and the limit function of the sequence with the required properties
has to be found as a selection from a suitable set-theoretic generalization of the
notion of an upper limit; see Schmeidler [76] and his followers see [38, 39]. And
the situation becomes even more interesting from a technical point of view when
one moves from functions to multifunctions: once the integration of a multifunction
is settled upon, a veritable panoply of measure-theoretic tools is called forth. In
addition to results on measurable selectors, Lyapunov’s results on the range of an
atomless vector measure begins to attain dominance, as it must, and needs to be
invoked. After all, it is the atomless case that is of consequence; the purely atomic
case, even for σ-finite measure spaces reduces to the setting of infinite series. And
so what began as a simple cornerstone of the standard theory of integration has
by now attained an architectural multi-facetedness that even when limited to the
specific context delimited by the Lyapunov convexity theorem, leads to technical

3Among texts, Fremlin’s is the most insistent on the requirement that the sequence of functions
not be defined everywhere, and that doing so leads to pronounced ad-hockery in the more mature
parts of the subject. The statement of the lemma presented above can be seen to have been taken
from either the Fremlin or the Halmos texts, the difference lying in the meaning given to the terms
“integrable function.”

4Royden’s text on Real Analysis is perhaps the pre-eminent example of this proof-inversion,
relying as it does on Littlewood’s “three principles”. His limitation to finite measure spaces helps
in this regard; see Chapter 3 in Real Analysis (1988), third edition, Macmillan, London. Also, see
page 93 of the above text, and the comprehensive treatment of some of these variations, by no
means all, in [85]. We warn the reader that this sentence is dropped in the fourth edition joint
with Fitzpatrick, and a remark added on the assumption of almost everywhere convergence.
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advances that are beyond our scope. In particular, the recent development that we
exclude in this expository article is the consideration of a sequence of multifunctions
with unbounded values as in [11, 13, 22, 31].

One can ask what is in the first place that motivates the consideration of vector-
valued functions and multi-functions in the context of Fatou’s lemma? The answer
to this question leads into many areas of applied mathematics including, but not
limited to, optimal control theory, statistical decision theory, the theory of games,
and mathematical economics: each field has its own substantive needs and imper-
atives that lead it to the lemma. In short, the topic is tremendously vast, and an
answer not only well beyond the limits of a survey article, but also beyond the
competence of the authors writing it. In this exposition, we limit our focus and
attention to Walrasian general equilibrium theory. And here, a rather succinct and
sharp answer can be given, one that goes to the very heart of the distinction between
an economy and a game.

It has been understood since the 1954 paper of Arrow and Debreu that an econ-
omy can be represented as a game by the addition of a fictitious player, and that
existence of a Walrasian equilibrium of such an economy deduced as a straightfor-
ward consequence of the existence of a Nash equilibrium of the resulting game. But
this is less than a full understanding of the problem, and represents only the first
step of a two-step argument. A game formalizes interaction between players pur-
suing conflicting objectives, and a Nash equilibrium takes as given their objectives
and choice sets; a Walrasian equilibrium, on the other hand, formalizes, at least
in its classical conception that excludes so-called externalities, interaction only be-
tween an individual player and the price system. This is to say that by necessity
the dual space of prices is brought into the picture, and the action or budget sets in
which players choose their actions are themselves dependent consequences of their
actions. As such, the assumption of given compact action sets, so appropriate for
an analysis of a game, is just an intermediate auxiliary step for the analysis of an
exchange economy where the action set is itself determined in equilibrium, and given
the eminent possibility of some commodities having zero prices in equilibrium, is
certainly not compact. The coordination of actions has to be brought out by aggre-
gation of these actions, and then furthermore, on two additional considerations to
bound these actions: (i) on the reliance of the finiteness of aggregate resources of
the economy, and (ii) on the concurrent impossibility of their becoming infinite as
a consequence of the technological possibilities available to the economy, to bound
the actions. These considerations are missing in a game by definition. And it is
precisely these considerations that require a second step whereby the arbitrary com-
pactifications introduced in the first Arrow–Debreu step have to be supplemented
by an argument that emphasizes the careful choice of these compactifications and
establishes their consequent irrelevancy.

For economies with a continuum of agents, it is this second step that necessitates
Fatou’s lemma; and when each agent in a continuum of agents is made to choose from
a budget set pertaining to a continuum of commodities, it necessitates a conception
of aggregation as integration, and thereby necessitates a generalization of the lemma
to integrable multifunctions taking values in infinite-dimensional commodity spaces.
The idealized equilibrium for the idealized economy is thus determined as the limit
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of the equilibria of a truncated or perturbed economy, to be sure also an idealization
in another register, but one that is manageable as a game. It is as if the idealized
shape of the object at hand is determined by studying the trembles of that shape,
which is to say, by focusing on a sequence of functions that have a well-behaved limit
for the idealization. If there is any originality in this expository survey of recent
developments of Fatou’s lemma as applied to Walrasian equilibrium theory, it lies
in our giving rather salient prominence to these truncations and perturbations —
trembles if one wishes — in their formalization as Galerkin approximations. Such
approximations have been implicitly used ever since the initiation of the subject in
the work of Bewley and his followers.

The structure of this survey is then rather straightforward. We begin with a
quick view of the technical development of Fatou’s lemma in a finite-dimensional
Euclidean space and its application to finite-dimensional Walrasian general equi-
librium theory in conjunction with the Lyapunov convexity theorem. In Section 3,
we turn to the Banach space setting, and provide for the convenience of the reader
a self-contained treatment of the relevant measure-theoretic notions: measurable
multifunctions and their measurable selectors, integration of multifunctions, and
most importantly in terms of the recent developments in the subject, the role of
the so-called saturation property in Lyapunov’s convexity theorem. It is the latter
that leads us to distinguish between the approximate and exact versions of Fatou’s
lemma in the context of the two prevailing notions of integration. This distinction
between the exact and the approximate is a different kind of tremble, one that per-
tains to the lemma itself rather than to its application. After a brisk treatment of
Galerkin approximation, we turn to the application in Section 7 and present our
main findings formalized as Theorems 7.2 and 7.4 pertaining to infinite-dimensional
Walrasian general equilibrium theory. We conclude the survey by picking up again
some of the issues with which we begin this introduction.

2. Background of the problem

This section introduces the reader to the initial motivation and pioneering efforts
that led to the development of the subject in the context of a finite-dimensional
Euclidean space.

2.1. Fatou’s Lemma in Finite Dimensions. For any vectors x and y in Rk,
where xi and yi are their ith components respectively, define the vector inequalities
by:

x ≥ y ⇐⇒ xi ≥ yi, i = 1, . . . , k;

x > y ⇐⇒ x ≥ y and x ̸= y;

x ≫ y ⇐⇒ xi > yi, i = 1, . . . , k.

The nonnegative orthant of Rk is denoted by Rk
+ = {x ∈ Rk | x ≥ 0} and the

positive orthant of Rk is denoted by Rk
++ = {x ∈ Rk | x ≫ 0}.

The upper limit of a sequence {Fn}n∈N of subsets in Rk is defined by

Ls {Fn} =

{
x ∈ E | ∃ {xni}i∈N : x = lim

i→∞
xni , xni ∈ Fni ∀i ∈ N

}
,
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where {xni}i∈N denotes a subsequence of {xn}n∈N ⊂ Rk.
Let (T,Σ, µ) be a measure space. In the rest of the essay (T,Σ, µ) is always

assumed to be complete without any explicit mention. Denote by L1(µ) the space
of (µ-equivalence classes) of integrable functions on T and by L∞(µ) the space of
(µ-equivalence classes) of essentially bounded measurable functions on T . The space
of (µ-equivalence classes) of integrable functions from T to Rk, the k-dimensional
Euclidean space, is denoted by L1(µ,Rk). A set A ∈ Σ with µ(A) > 0 is called an
atom of a measure µ if B ⊂ A with B ∈ Σ implies µ(A) = µ(B) or µ(B) = 0. A
measure is said to be a nonatomic if it possesses no atom. The classical Lyapunov
convexity theorem says that the range m(Σ) of a vector measure m : Σ → Rk

is compact and convex whenever its component measure mi : Σ → R with m =
(m1, . . . ,mk) is a nonatomic finite signed measure for each i = 1, . . . , k (see [26,
Corollary IX.1.5] or [72, Theorem 5.5]).

Curiously, the first Fatou’s lemma in finite dimensions appeared in the multi-
function case in the work of [6]. To state the result, denote by M1(µ,Rk) the set
of integrably bounded multifunctions from T to Rk.

Theorem 2.1 (Aumann [6]). Let (T,Σ, µ) be a nonatomic finite measure space. If
{Γn}n∈N is a well-dominated sequence5 of multifunctions in M1(µ,Rk), then:

Ls

{∫
Γndµ

}
⊂
∫

Ls {Γn} dµ.

The specialization to the (single-valued) function case first appeared in [76] in the
following form.

Theorem 2.2 (Schmeidler [76]). Let (T,Σ, µ) be a nonatomic finite measure space.
If {fn}n∈N is a sequence of integrable functions from T to Rk

+ for which limn

∫
fndµ

exists, then there exists an integrable function f : T → Rk
+ with the following

properties.

(i) f(t) ∈ Ls {fn(t)} a.e. t ∈ T .

(ii)

∫
fdµ ≤ lim

n→∞

∫
fndµ.

As remarked in [76, p. 300]:

When k = 1, the result is a form of Fatou’s lemma. [...] The nontrivial
part of the arguments is limited to the case where T is an atomless
measure space. In the purely atomic case [Theorem 2.2] is reduced
to a simple exercise in series. In any case, [Theorem 2.2] cannot be
proved by a successive application of Fatou’s lemma k times.

This observation is based on the fact that the number of atoms of µ is countable and
any measurable function on T is constant on each atom, so that for the nonatomic
parts of T , the Lyapunov convexity theorem plays a crucial role. It should be noted
that the inclusion form at the limit is a new aspect that is entirely absent from the
classical Fatou’s lemma.

Meanwhile, an alternative proof of Theorem 2.2 appeared in [39], in which the
following open question was raised [39, Remark]:

5See Subsection 3.1 for the definition of well dominance.
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If the sequence {fn}n∈N majorized by an integrable function, then
there is a function f such that a.e. in T , f(t) ∈ Ls {fn(t)} and∫
fdµ = limn

∫
fndµ. Does this still hold when {fn}n∈N is uniformly

integrable?

The affirmative answer was given in the following result.

Theorem 2.3 (Artstein [3]). Let (T,Σ, µ) be a finite measure space. If {fn}n∈N
is a uniformly integrable sequence in L1(µ,Rk) for which limn

∫
fndµ exists, then

there exists f ∈ L1(µ,Rk) with the following properties.

(i) f(t) ∈ Ls {fn(t)} a.e. t ∈ T ;

(ii)

∫
fdµ = lim

n→∞

∫
fndµ.

The significance of [3] does not lie in the solution to the open question per se,
but in the eduction of the following result in the course of the proof. It is this that
leads to a variant of Fatou’s lemma in the so-called “inclusion form”.

Lemma 2.4 (Artstein [3], Hildenbrand and Mertens [39]). Let (T,Σ, µ) be a finite
measure space. If {fn}n∈N is a uniformly integrable sequence in L1(µ,Rk) such that
fn → f weakly in L1(µ,Rk), then:

f(t) ∈ co Ls {fn(t)} a.e. t ∈ T .

In this essay we focus on the following prototype of Fatou’s lemma in finite di-
mensions, in which the order structure is completely replaced by inclusions. To
crystallize the usefulness of Lemma 2.4 and illustrate the role of nonatomicity in
the subject, we provide a proof explored in [46, 48, 89] for completeness.

Theorem 2.5. Let (T,Σ, µ) be a nonatomic finite measure space. If {fn}n∈N is a
uniformly integrable, bounded sequence in L1(µ,Rk), then:

(i) Ls

{∫
fndµ

}
⊂
∫

Ls {fn} dµ.

(ii) There exists f ∈ L1(µ,Rk) such that
(a) f(t) ∈ Ls {fn(t)} a.e. t ∈ T ;

(b)

∫
fdµ ∈ Ls

{∫
fndµ

}
.

Proof. Since the uniformly integrable, bounded sequence {fn}n∈N is relatively weakly
compact in L1(µ,Rk) by the Dunford–Pettis criterion (see [27, Corollary IV.8.11]),
one can extract from it a subsequence {fni}i∈N that converges weakly to f0 in
L1(µ,Rk). Since the integration operator g 7→

∫
gdµ from L1(µ,Rk) to Rk is con-

tinuous in the weak topology for L1(µ,Rk), we obtain
∫
fidµ →

∫
f0dµ, and hence,∫

f0dµ ∈ Ls {
∫
fndµ}. It follows from Lemma 2.4 that f0(t) ∈ co Ls {fn(t)} a.e.

t ∈ T . Integrating the both sides of this inclusion yields
∫
f0dµ ∈

∫
co Ls {fn}dµ =∫

Ls {fn}dµ, where the equality follows from the classical Lyapunov theorem (see
[5, Theorem 8.6.3] or [38, Theorem 3 and Proposition 7, D.II.4]). Hence, there
exists f ∈ L1(µ,Rk) such that f(t) ∈ Ls {fn(t)} a.e. t ∈ T and

∫
fdµ =

∫
f0dµ ∈

Ls {
∫
fndµ}, which verifies condition (ii).
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Condition (i) follows easily from condition (ii). To see this claim, take any x ∈
Ls {

∫
fndµ}. Then there exists a subsequence {fni}i∈N such that limi

∫
fnidµ =

x. It follows from condition (ii) that there exists f ∈ L1(µ,Rk) such that (a)
f(t) ∈ Ls {fni(t)} a.e. t ∈ T ; (b)

∫
fdµ = limi

∫
fnidµ. Integrating the both side of

condition (a) together with condition (b) yields x ∈
∫
Ls {fni}dµ ⊂

∫
Ls {fn}dµ. □

For later reference, given a sequence {fn}n∈N in L1(µ,Rk) such that Ls
{∫

fndµ
}

is nonempty, condition (i) of Theorem 2.5 is referred to the Fatou property and con-
dition (ii) of Theorem 2.5 is referred to the upper closure property.6 Our attempt in
this essay is to exemplify how these notions characterize the structure of nonatomic
finite measure spaces. For a further extension and another variant of the Fatou and
the upper closure properties in the finite-dimensional case, see [9, 20, 67].

To show how Fatou’s lemma for multifunctions easily follows from that for func-
tions, we provide here a proof of Theorem 2.1 exploiting Theorem 2.5 for complete-
ness.

Proof of Theorem 2.1. If Ls {
∫
Γndµ} = ∅, then the result is trivially true. Thus,

without loss of generality, we may assume that Ls {
∫
Γndµ} ̸= ∅. Take any x ∈

Ls {
∫
Γndµ}. Then there is a sequence {xn}n∈N in Rk with xn ∈

∫
Γndµ one can

extract a subsequence {xni}i∈N such that xni → x. Hence, there is an integrably
bounded sequence {fni}i∈N in L1(µ,Rk) such that fni is a measurable selector of
Γni for each i and xni =

∫
fnidµ. It follows from Theorem 2.5 that

x = lim
i→∞

xni ∈ Ls

{∫
fndµ

}
⊂
∫

Ls {fn} dµ ⊂
∫

Ls {Γn} dµ.

Therefore, the desired inclusion holds. □

2.2. Large Economies with Finite-Dimensional Commodity Spaces. Under
the standard setting of large economies with finite-dimensional commodity spaces,
the consumption set of each agent is assumed to be an unbounded subset of Rk

+ and
the preferences of each agent are supposed to be monotonic or locally insatiated (see
[7, 36, 38, 55, 75]). These assumptions cause a serious difficulty in the integrability
(summability) of the demand multifunction and the detection of Walrasian equilibria
in large economies, which is a peculiar problem stemming from the fact that the
agent space is a continuum. To overcome this difficulty, two approaches to the direct
application of Fatou’s lemma were proposed.

(1) The truncation of the consumption set (see [36, 75]): In this approach, the
consumption set of each agent is truncated into a subset that is bounded from
above. The individual demand is restricted to the truncated consumption set
and the upper bound of the consumption set ensures the integrable boundedness
of the truncated demand multifunction.

(2) The truncation of the price simplex (see [55]): In this approach, the price sim-
plex is truncated into a subset that excludes a small neighborhood of the origin.

6We borrow this terminology from Cesari [19], who called the Fatou-like lemma the “lower
closure theorem”, which is most useful in proving the existence of solutions in optimal control
problems. For the relevance of Schmeidler [76] to the lower closure theorem, see [20].
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Since the available prices are away from the zero price, the demand multifunc-
tion restricted to the set of truncated prices is integrably bounded.

In both approaches, the underlying truncation furnishes a sequence of truncated
subeconomies with the original economy, in which truncated equilibria exists. In the
first approach, Fatou’s lemma arises in the limit argument when the upper bound of
the consumption set tends to infinity and in the second approach, so does it when
the neighborhood of the origin shrinks gradually to the singleton. Following the
first approach, we illustrate in the sequel the power of Fatou’s lemma in Walrasian
general equilibrium analysis.

The set of agents is given by a complete finite measure space (T,Σ, µ). There
exists k ∈ N distinct commodities available and the commodity space is given by
Rk. The preference relation ≿(t) of each agent t ∈ T is a complete, transitive binary
relation on a common consumption set Rk

+, which induces the preference mapping

t 7→ ≿(t) ⊂ Rk
+ × Rk

+. We denote by x≿(t) y the relation (x, y) ∈ ≿(t). The
indifference and strict relations are defined respectively by x∼(t) y ⇔ x≿(t) y and
y≿(t)x, and by x≻(t) y ⇔ x≿(t) y and x ̸∼(t) y. Each agent possesses an initial
endowment ω(t) ∈ Rk

+, which is the value of an integrable function ω : T → Rk.

The economy E consists of the primitives E = {(T,Σ, µ),Rk
+,≿, ω}.

The price space is Rk. Given a price p ∈ Rk \ {0}, the budget set of each agent
is B(t, p) = {x ∈ Rk

+ | ⟨p, x⟩ ≤ ⟨p, ω(t)⟩}. A function f ∈ L1(µ,Rk) is called an

assignment if f(t) ∈ Rk
+ a.e. t ∈ T . An assignment f is an allocation for E if∫

fdµ =
∫
ωdµ.

Definition 2.6. A price-allocation pair (p, f) is a Walrasian equilibrium for E if
a.e. t ∈ T : f(t) ∈ B(t, p) and x ̸∈ B(t, p) whenever x≻(t) f(t).

The standing assumption on E is described as follows.

Assumption 2.1. (i) ≿(t) is a closed subset of Rk
+ × Rk

+ for every t ∈ T .
(ii) For every assignment f and g: the set {t ∈ T | f(t)≿(t) g(t)} belongs to Σ.
(iii) For every x, y ∈ Rk

+: x > y implies x≻(t) y.

(iv)

∫
ωdµ ∈ Rk

++.

Condition (i) is referred to as continuity of the preference relation ≿(t). This is
equivalent to the requirement that for every x ∈ Rk

+ both the upper contour set

{y ∈ Rk
+ | y≿(t)x} and the lower contour set {y ∈ Rk

+ | x≿(t) y} are closed in Rk
+.

The measurability of the preference mapping in condition (ii) is introduced in [7],
and condition (iii) is referred to as monotonicity of ≿(t). This means that every
commodity is desirable to each agent. Condition (iv) “asserts that no commodity
is totally absent from the market [7, p. 3]”. It follows from the continuity and the
monotonicity of ≿(t) that:

(⋆) For every x ∈ Rk
+: x belongs to the closure of the upper contour set {y ∈

Rk
+ | y≻(t)x}.

Condition (⋆) is a variant of “local nonsatiation” that originated in [35]: it plays
a crucial role in proving the existence of Walrasian equilibria with free disposal
without the monotonicity of preferences in Section 7.



FATOU’S LEMMA, GALERKIN APPROXIMATIONS, WALRASIAN EQUILIBRIA 325

Theorem 2.7 (Aumann [7]). Let (T,Σ, µ) be a nonatomic finite measure space.
Then for every economy E satisfying Assumption 2.1, there exists a Walrasian equi-
librium (p, f) with p ∈ Rk

++.

Intuitively, the idea of Aumann’s proof is divided into two steps: first, the un-
bounded consumption set of each agent is truncated into a bounded set and equi-
libria are detected in the truncated subeconomy. Towards this end, the Lyapunov
convexity theorem guarantees that the “aggregate preferred multifunction” has com-
pact, convex values (see [6]) and Fatou’s lemma for multifunctions (Theorem 2.1)
guarantees that it is upper semicontinuous in prices (see [8]). This crucial obser-
vation makes it possible for him to apply Brouwer’s fixed point theorem in the
truncated subeconomy. Second, for each sequence of the upper bounds of the con-
sumption set, there exists a sequence of equilibria in the truncated subeconomies.
Letting the upper bounds tend to infinity yields that the limit of the sequence of
equilibria corresponds to a Walrasian equilibrium in the original economy, though
the formal argument is somewhat technically intricate.7

It is Schmeidler [75] who facilitated the limiting argument in the second step using
Fatou’s lemma for functions (Theorem 2.2). We outline here the proof of Theorem
2.7 based on Theorem 2.3 instead of Theorem 2.2 for the sake of simplicity.8 To this
end, let e = (1, . . . , 1) ∈ Rk and define the n-bounded partial budget set by

Bn(t, p) = B(t, p) ∩

{
x ∈ Rk

+ | n

(
1 +

k∑
i=1

ωi(t)e

)}
,

where ωi(t) is the ith component of ω(t) ∈ Rk
+. A price-allocation pair (p, f) is called

an n-bounded partial Walrasian equilibrium for E if a.e. t ∈ T : f(t) ∈ Bn(t, p) and
x ̸∈ Bn(t, p) whenever x≻(t) f(t).

Auxiliary Theorem (Schmeidler [75]). Let (T,Σ, µ) be a nonatomic finite measure
space. If the economy E satisfies Assumption 2.1, then for each n ∈ N there exists
an n-bounded partial Walrasian equilibrium (p, f) with p ∈ Rk

+ \ {0}.

Proof of Theorem 2.7. Step 1: By Auxiarily Theorem, there exists an n-bounded

partial Walrasian equilibrium (qn, fn) ∈ (Rk
+ \ {0}) × L1(µ,Rk) for E . We can

normalize the n-bounded partial equilibrium price for E such that pn = qn/∥qn∥ ∈
∆ := {p ∈ Rk

+ | ∥p∥ = 1}. Since the price simplex ∆ is compact, we can extract
a subsequence from {pn}n∈N (which we do not relabel) that converges to p ∈ ∆.
Via a somewhat intricate argument using the monotonicity of ≿(t) in Assumption
2.1(iii), we can also show that p ∈ Rk

++ (see [75, Main Lemma]). This is a crucial
point to guarantee the compactness of the budget set B(t, p) (see also [7, Lemma
6.1]).

Step 2: Since
∫
fndµ =

∫
ωdµ for each n ∈ N, it is obvious that {fn}n∈N is a

uniformly integrable sequence with limn

∫
fndµ =

∫
ωdµ. Invoking Theorem 2.3

7This, and the succeeding paragraph, formalize considerations already informally discussed in
the introduction, but the reader should note that in this essay “trembles” are also relevant to an
approximate Fatou’s lemma with ε-perturbations in Subsections 4.1 and 5.1.

8The proof is, however, rather different from [75], especially in Steps 3 and 4 below. See [86] for
another heuristic illustration based on the argument in [39] employing Theorem 2.2.
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yields that there exist an assignment f ∈ L1(µ,Rk) such that f(t) ∈ Ls {fn(t)} a.e.
t ∈ T and

∫
fdµ = limn

∫
fndµ =

∫
ωndµ. Therefore, f is an allocation for E .

Step 3: We claim that:

For a.e. t ∈ T : x≻(t) f(t) implies that ⟨p, x⟩ > ⟨p, ω(t)⟩.
Suppose that ⟨p, ω(t)⟩ = 0. If ⟨p, x⟩ = 0, then x = 0 in view of p ∈ Rk

++, but
x≻(t) f(t) is impossible by the monotonicity of ≿(t) in Assumption 2.1(iii). Hence,
the claim is automatic whenever ⟨p, ω(t)⟩ = 0. Suppose, by way of contradiction,
that there exists A ∈ Σ of positive measure with the following property. For every
t ∈ A: ⟨p, ω(t)⟩ > 0 and there exists y ∈ Rk such that y≻(t) f(t) and ⟨p, y⟩ ≤
⟨p, ω(t)⟩. It follows from the continuity of ≿(t) that εy≻(t) f(t) and ⟨p, εy⟩ <
⟨p, ω(t)⟩ for some ε ∈ (0, 1). Hence, we may assume without loss of generality that
for every t ∈ A there exists y ∈ Rk such that y≻(t) f(t) and ⟨p, y⟩ < ⟨p, ω(t)⟩.
Define the multifunction Γ : A ↠ Rk by

Γ(t) =
{
x ∈ Rk | x≻(t) f(t), ⟨p, x⟩ < ⟨p, ω(t)⟩

}
.

Then Γ is a graph measurable multifunction with y ∈ Γ(t).9 Let h : A → Rk be a
measurable selector from Γ. Suppose that the set defined by∪

n∈N
{t ∈ A | h(t)≻(t) fn(t), ⟨pn, h(t)⟩ < ⟨pn, ω(t)⟩}

is of measure zero. Then for each n ∈ N: fn(t)≿(t)h(t) or ⟨pn, h(t)⟩ ≥ ⟨pn, ω(t)⟩ a.e.
t ∈ A. Since pn → p, passing to the limit along a suitable subsequence of {fn(t)}n∈N
in Rk yields f(t)≿(t)h(t) or ⟨p, h(t)⟩ ≥ ⟨p, ω(t)⟩ a.e. t ∈ A, a contradiction to the
fact that h is a measurable selector from Γ. Therefore, there exists n ∈ N such
that {t ∈ A | h(t)≻n(t) fn(t), ⟨pn, h(t)⟩ < ⟨pn, ω(t)⟩} is of positive measure, and
hence, h(t) ∈ Bn(t, pn) for every t in this set of positive measure. This is, however,
impossible because (pn, fn) is an n-bounded partial Walrasian equilibrium for E .
Therefore, the claim is true.

Step 4: It remains to show that ⟨p, f(t)⟩ ≤ ⟨p, ω(t)⟩ a.e. t ∈ T . Since f(t)

belongs to the closure of the upper contour set {x ∈ Rk
+ | x≻(t) f(t)} by condition

(⋆), the claim shown in Step 3 implies that ⟨p, f(t)⟩ ≥ ⟨p, ω(t)⟩. Integrating both
sides of this inequality yields

∫
⟨p, f(t)⟩dµ ≥

∫
⟨p, ω(t)⟩dµ. On the other hand, as

demonstrated in Step 2,
∫
fdµ =

∫
ωdµ, and hence,

∫
⟨p, f(t)⟩dµ =

∫
⟨p, ω(t)⟩dµ.

Therefore, we must have the equality ⟨p, f(t)⟩ = ⟨p, ω(t)⟩ a.e. t ∈ T . Therefore,
(p, f) ∈ Rk

++ × L1(µ,Rk) is a Walrasian equilibrium for E . □

3. Vector integration in Banach spaces

In this section we first provide an overview of the two standard formulations
of integration in an infinite-dimensional space: Bochner and Gelfand integrals of
functions, measurable selectors of multifunctions with values in a Banach space or
its dual, the corresponding integrals of multifunctions, and some additional termi-
nologies from vector integration theory. Then we introduce the notion of saturated
measure space and provide its complete characterization in terms of the Lyapunov

9We shall show the graph measurability of Γ as a consequence of a more general result pertaining
to the setting of a separable Banach space in the course of the proof of Theorem 7.2.
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convexity theorem and the compactness and convexity of the corresponding integrals
of multifunctions.

3.1. Bochner Integrals of Multifunctions. Let (T,Σ, µ) be a (complete) finite
measure space. Let (E, ∥ · ∥) be a Banach space with its dual E∗ furnished with
the dual system ⟨·, ·⟩ on E × E∗. A function f : T → E is strongly measurable if
there exists a sequence of simple (or finitely valued) functions fn : T → E such that
∥f(t) − fn(t)∥ → 0 a.e. t ∈ T ; f is Bochner integrable if it is strongly measurable
and

∫
∥f(t)∥dµ < ∞, where the Bochner integral of f over A ∈ Σ is defined by∫

A fdµ = limn

∫
A fndµ. Denote by L1(µ,E) the space of (µ-equivalence classes

of) E-valued Bochner integrable functions on T , normed by ∥f∥1 =
∫
∥f(t)∥dµ,

f ∈ L1(µ,E). By the Pettis measurability theorem (see [26, Theorem II.1.2]), f is
strongly measurable if and only if it is Borel measurable with respect to the norm
topology of E whenever E is separable.

A function g : T → E∗ is weakly∗ scalarly measurable if for every x ∈ E the
scalar function ⟨x, g(·)⟩ : T → R defined by t 7→ ⟨x, g(t)⟩ is measurable. Denote by
L∞(µ,E∗

w∗) the space of (µ-equivalence classes of) weakly∗ measurable, essentially
bounded, E∗-valued functions on T , normed by ∥g∥∞ = ess supt∈T ∥g(t)∥ < ∞.
Then the dual space of L1(µ,E) is given by L∞(µ,E∗

w∗) whenever E is separable
(see [29, Theorem 2.112] or [41, Corollary to Theorem VII.4.7]), and the dual system
is given by ⟨f, g⟩ =

∫
⟨f(t), g(t)⟩dµ with f ∈ L1(µ,E) and g ∈ L∞(µ,E∗

w∗). Denote
by Borel(E∗,w∗) the Borel σ-algebra of E∗ generated by the weak∗ topology. If
E is a separable Banach space, then E∗ is a locally convex Suslin space under the
weak∗ topology (see [83, p. 67]). Hence, under the separability of E, a function
g : T → E∗ is weakly∗ scalarly measurable if and only if it is Borel measurable
with respect to Borel(E∗,w∗) (see [83, Theorem 1]). Weakly∗ scalarly measurable
functions g1, g2 : T → E∗ are weakly∗ scalarly equivalent if ⟨x, g1(t)⟩ = ⟨x, g2(t)⟩ for
every x ∈ E a.e. t ∈ T (the exceptional µ-null set depending on x).

A set-valued mapping from T to the family of nonempty subsets of E is called
a multifunction. A multifunction Γ : T ↠ E is measurable if the set {t ∈ T |
Γ(t) ∩ U ̸= ∅} is in Σ for every open subset U of E; it is graph measurable if the
set gphΓ := {(t, x) ∈ T × E | x ∈ Γ(t)} belongs to Σ ⊗ Borel(E, ∥ · ∥), where
Borel(E, ∥ · ∥) is the Borel σ-algebra of (E, ∥ · ∥) generated by the norm topology. If
E is separable, then Borel(E, ∥ · ∥) coincides with the Borel σ-algebra Borel(E,w)
of E generated by the weak topology (see [78, Corollary 2, Part I, Chap. II] or
[32, p. 21]). It is well-known that for closed-valued multifunctions, measurability
and graph measurability coincide whenever E is separable (see [5, Theorem 8.1.4]
or [18, Theorem III.30]). A function f : T → E is a selector of Γ if f(t) ∈ Γ(t)
a.e. t ∈ T . If E is separable, then by the Aumann measurable selection theorem,
a multifunction Γ with measurable graph admits a measurable selector (see [18,
Theorem III.22] or [38, Theorem 1, D.II.2]) and it is also strongly measurable.

Let B be the open unit ball in E. A multifunction Γ : T ↠ E is integrably
bounded if there exists φ ∈ L1(µ) such that Γ(t) ⊂ φ(t)B a.e. t ∈ T . If Γ is graph
measurable and integrably bounded, then it admits a Bochner integrable selector
whenever E is separable. Denote by S1

Γ the set of Bochner integrable selectors of
Γ. If Γ is an integrably bounded, measurable multifunction with weakly compact,
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convex values, then S1
Γ is weakly compact in L1(µ,E) whenever E is separable

(see [90, Theorem 3.1]). The Bochner integral of Γ is conventionally defined as∫
Γdµ := {

∫
fdµ | f ∈ S1

Γ}. Denote by coΓ the multifunction defined by the
closure of the convex hull of Γ(t).

A subset K of L1(µ,E) is said to be uniformly integrable if

lim
µ(A)→0

sup
f∈K

∫
A
∥f∥dµ = 0.

K is said to be well-dominated if there is an integrably bounded, weakly compact-
valued multifunction Γ : T ↠ E such that f(t) ∈ Γ(t) a.e. t ∈ T for every f ∈ K.
Here, Γ is referred to as a dominating multifunction for K. Denote by M1(µ,E)
the set of integrably bounded multifunctions from T to E. A subset K of M1(µ,E)
is said to be well-dominated if there exists an integrably bounded, weakly compact-
valued multifunction Γ̃ : T ↠ E such that Γ(t) ⊂ Γ̃(t) for every Γ ∈ M1(µ,E) and
t ∈ T .

Theorem 3.1 (Diestel [24], Diestel, Ruess and Schachermayer [25]). Let (T,Σ, µ)
be a finite measure space and E be a Banach space. Then a well-dominated subset
of L1(µ,E) is relatively weakly compact.

Well-dominance provides a Bochner integral analogue of the Dunford–Pettis cri-
terion for the relative weak compactness in L1(µ,E). For the development of the
weak compactness in L1(µ,E), see also [23, 26, 44, 82, 84].

3.2. Gelfand Integrals of Multifunctions. A weakly∗ scalarly measurable func-
tion f : T → E∗ is Gelfand integrable over A ∈ Σ if there exists x∗A ∈ E∗ such
that ⟨x, x∗A⟩ =

∫
A⟨x, f(t)⟩dµ for every x ∈ E. The unique element x∗A is called

the Gelfand integral (or weak∗ integral) of f over A, and is denoted by w∗-
∫
A gdµ.

Denote by G1(µ,E∗) (abbreviated to G1
E∗) the space of equivalence classes of E∗-

valued Gelfand integrable functions on T with respect to weak∗ scalar equivalence,
normed by

∥f∥G1 = sup
x∈B

∫
|⟨x, f(t)⟩|dµ.

This norm is called the Gelfand norm and the normed space (G1(µ,E∗), ∥ · ∥G1), in
general, is not complete.

Denote by L∞(µ) ⊗ E the tensor product of L∞(µ) and E. A typical tensor f∗

in L∞(µ)⊗E has a (not necessarily unique) representation f∗ =
∑n

i=1 φi ⊗ xi with
φi ∈ L∞(µ), xi ∈ E, i = 1, . . . , n. A bilinear form on G1(µ,E∗) × (L∞(µ) ⊗ E) is
given by

⟨f, f∗⟩ =
n∑

i=1

∫
φi(t)⟨xi, f(t)⟩dµ =

n∑
i=1

⟨
xi,w

∗-

∫
φifdµ

⟩
for f ∈ G1(µ,E∗) and f∗ =

∑n
i=1 φi ⊗ xi ∈ L∞(µ) ⊗ E. The pair of these spaces

⟨G1(µ,E∗), L∞(µ)⊗E⟩ equipped with this bilinear form is a dual system. Thus, it is
possible to define the coarsest topology on G1(µ,E∗) such that the linear functional
f 7→ ⟨f, f∗⟩ is continuous for every f∗ ∈ L∞(µ) ⊗ E, denoted by σ(G1

E∗ , L∞ ⊗ E),
which is the topology of pointwise convergence on L∞(µ) ⊗ E. It is evident that
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the σ(G1
E∗ , L∞⊗E)-topology is coarser than the weak topology σ(G1

E∗ , (G1
E∗)∗). A

net {fα} in G1(µ,E∗) converges to f ∈ G1(µ,E∗) for the σ(G1
E∗ , L∞⊗E)-topology

if and only if for every x ∈ E the net {⟨x, fα(·)⟩} in L1(µ) converges weakly to
⟨x, f(·)⟩ ∈ L1(µ).

Let Γ : T ↠ E∗ be a multifunction. Denote by cow∗
Γ : T ↠ E∗ the multifunction

defined by the weakly∗ closed convex hull of Γ(t). A multifunction Γ is measurable
if the set {t ∈ T | Γ(t) ∩ U ̸= ∅} is in Σ for every weakly∗ open subset U of E∗. If
E is separable, then E∗ is a Suslin space, and hence, a multifunction Γ : T ↠ E∗

with measurable graph in Σ ⊗ Borel(E∗,w∗) admits a Borel(E∗,w∗)-measurable
(or equivalently, weakly∗ measurable) selector (see [18, Theorem III.22]). Let s :
(·, C) : E → R ∪ {+∞} be the support function of a set C ⊂ E∗ defined by
s(x,C) = supx∗∈C⟨x, x∗⟩. A multifunction Γ is weakly∗ scalarly measurable if the
scalar function s(x,Γ(·)) : T → R ∪ {+∞} is measurable for every x ∈ E. If E is
separable and Γ has weakly∗compact, convex values, then Γ is scalarly measurable if
and only if it is measurable (see [1, Theorem 18.31]). In view of s(x,Γ) = s(x, cow∗

Γ)
for every x ∈ E, if E is separable and Γ has weakly∗ compact values, then cow∗

Γ is
measurable.

Let B∗ be the open unit ball of E∗. A multifunction Γ : T ↠ E∗ is inte-
grably bounded if there exists φ ∈ L1(µ) such that Γ(t) ⊂ φ(t)B∗ for every t ∈ T .
If Γ is integrably bounded with measurable graph, then it admits a Gelfand in-

tegrable selector whenever E is separable. Denote by S1,w∗

Γ the set of Gelfand
integrable selections of Γ. The Gelfand integral of Γ is conventionally defined as

w∗-
∫
Γdµ := {w∗-

∫
fdµ | f ∈ S1,w∗

Γ }. If Γ is an integrably bounded, weakly∗

closed, convex-valued multifunction with measurable graph, then S1,w∗

Γ is compact
in the σ(G1

E∗ , L∞ ⊗ E)-topology whenever E is separable (see [74, Lemma 2.1]).
A subset K of G1(µ,E∗) is said to be well-dominated if there is an integrably

bounded, weakly∗ compact-valued multifunction Γ : T ↠ E∗ such that f(t) ∈ Γ(t)
a.e. t ∈ T for every f ∈ K. It is evident that K is well-dominated if and only if it
is integrably bounded. Indeed, the dominating multifunction Γ for K is taken so
as to satisfy K ⊂ φ(t)B∗ ≡ Γ(t) with φ ∈ L1(µ). A subset K of M1(µ,E∗) is said
to be well-dominated if there exists an integrably bounded, weakly∗ compact-valued
multifunction Γ̃ : T ↠ E∗ such that Γ(t) ⊂ Γ̃(t) for every Γ ∈ M1(µ,E∗) and t ∈ T .

Theorem 3.2 (Cornet and Medecin [21]). Let (T,Σ, µ) be a finite measure space
and E be a separable Banach space. Then a uniformly integrable subset of G1(µ,E∗)
is sequentially compact in the σ(G1

E∗ , L∞ ⊗ E)-topology.

3.3. Saturation and the Lyapunov Convexity Theorem. A finite measure
space (T,Σ, µ) is said to be essentially countably generated if its σ-algebra can be
generated by a countable number of subsets together with the null sets; (T,Σ, µ) is
said to be essentially uncountably generated whenever it is not essentially countably
generated. Let ΣS = {A∩ S | A ∈ Σ} be the σ-algebra restricted to S ∈ Σ. Denote
by L1

S(µ) the space of µ-integrable functions on the measurable space (S,ΣS) whose
element is identified with a restriction of a function in L1(µ) to S. An equivalence
relation ∼ on ΣS is given by A ∼ B ⇔ µ(A△B) = 0, where A△B is the symmetric
difference of A and B in Σ. The collection of equivalence classes is denoted by

Σ(µ) = Σ/ ∼ and its generic element Â is the equivalence class of A ∈ Σ. We define
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the metric ρ on Σ(µ) by ρ(Â, B̂) = µ(A△B). Then (Σ(µ), ρ) is a complete metric
space (see [1, Lemma 13.13] or [27, Lemma III.7.1]) and (Σ(µ), ρ) is separable if
and only if L1(µ) is separable (see [1, Lemma 13.14]). The density of (Σ(µ), ρ) is
the smallest cardinal number of the form |U|, where U is a dense subset of Σ(µ).

Definition 3.3. A finite measure space (T,Σ, µ) is saturated if L1
S(µ) is nonsepa-

rable for every S ∈ Σ with µ(S) > 0. We say that a finite measure space has the
saturation property if it is saturated.

Saturation implies nonatomicity and several equivalent definitions for saturation
are known; see [28, 30, 40, 43]. One of the simple characterizations of the saturation
property is as follows. A finite measure space (T,Σ, µ) is saturated if and only if
(S,ΣS , µ) is essentially uncountably generated for every S ∈ Σ with µ(S) > 0.
The saturation of finite measure spaces is also synonymous with the uncountability
of the density of ΣS(µ) for every S ∈ Σ with µ(S) > 0; see [30, 331Y(e)]. An
germinal notion of saturation already appeared in [42, 62]. The significance of
the saturation property lies in the fact that it is necessary and sufficient for the
weak/weak∗ compactness and the convexity of the Bochner/Gelfand integral of
a multifunction as well as the Lyapunov convexity theorem in separable Banach
spaces/their dual spaces.

In particular, the following characterization of the saturation property will be
useful for many applications as well as in proving the exact version of Fatou’s
lemma.

Proposition 3.4 (Khan and Sagara [47, 50], Podczeck [70], Sun and Yannelis [80]).
Let (T,Σ, µ) be a finite measure space and let E be an infinite-dimensional separable
Banach space. Then the following conditions are equivalent.

(i) (T,Σ, µ) is saturated.
(ii) For every µ-continuous vector measure m : Σ → E, its range m(Σ) is weakly

compact and convex in E.
(iii) For every µ-continuous vector measure m : Σ → E∗, its range m(Σ) is weakly∗

compact and convex in E∗.
(iv) For every integrably bounded, weakly compact-valued multifunction Γ : T ↠ E

with the measurable graph,
∫
Γdµ =

∫
co Γdµ.

(v) For every integrably bounded, weakly∗ compact-valued multifunction Γ : T ↠
E∗ with the measurable graph, w∗-

∫
Γdµ = w∗-

∫
cow∗

Γdµ.

In particular, the implications (i) ⇒ (ii), (iii), (iv), (v) are true for every separable
Banach space.

Remark 3.5. The equivalence (i) ⇔ (ii) ⇔ (iii) is proven by [47, 50] and (i) ⇔ (iv)
⇔ (v) is due to [70, 80]. The equivalence of saturation and the “bang-bang principle”
in separable Banach spaces/their dual spaces is demonstrated by [49, 51, 74]. For
the equivalence of saturation with the “purification principle”, see [49, 61, 71, 74],
for that with the convexity of the distribution of a multifunction, see [43, 49], and
for that with the “minimization principle”, see [74]. As an application to game
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theory, [43] provides an intriguing characterization of the saturation property in
terms of the existence of Nash equilibria in large games.10

4. Fatou’s lemma based on Bochner integration

We established in Subsection 2.1 a prototype of Fatou’s lemma in finite dimen-
sions (Theorem 2.5). The purpose of this section is to show how it can be extended
to a separable Banach space setting under Bochner integration. We first show an
approximate version of Fatou’s lemma under nonatomicity and discuss the hurdles
that need to be overcome in removing the approximate operation. To overcome
this difficulty, we show the saturation of measure spaces is inevitable to establish
an exact version of Fatou’s lemma. Finally, we characterize the saturation property
itself in terms of the exact Fatou’s lemma.

4.1. Approximate Fatou’s Lemma. The strong upper limit of a sequence {Fn}n∈N
of subsets in E is defined by

Ls {Fn} =

{
x ∈ E | ∃ {xni}i∈N : x = lim

i→∞
xni , xni ∈ Fni ∀i ∈ N

}
,

where {xni}i∈N denotes a subsequence of {xn}n∈N ⊂ E. We denote by w - limn xn
the weak limit point of a sequence {xn}n∈N in E. The weak upper limit of {Fn}n∈N
of subsets in E is defined by

w -Ls {Fn} =

{
x ∈ E | ∃ {xni}i∈N : x = w - lim

i→∞
xni , xni ∈ Fni ∀i ∈ N

}
.

The notion of upper limits plays a central role in the formulation of Fatou’s lemma
discussed in this essay; for a detailed treatment on the calculus of limits of sets, see
[5, 38, 66].

Let {fn}n∈N be a sequence in L1(µ,E). Since the essential range of a Bochner
integrable function is separable by the Pettis measurability theorem (see [26, The-
orem II.1.2]), we may assume without loss of generality that the range of each
fn is contained in a common separable Banach space. To this end, let Vn be the
essential range of fn and take the linear span of V :=

∪
n∈N Vn. Then each fn

essentially takes values in the separable subspace space V of E. This observation
guarantees that the multifunction t 7→ w -Ls {fn(t)} from T into E is measurable
whenever {fn}n∈N is well-dominated (see [32, Proposition 4.3]). Furthermore, the
multifunction t 7→ cow -Ls {fn(t)} is measurable, too (see [5, Theorem 8.2.2]).

Our reference point under investigation is the following result due to [46], which
is the first work in the literature on Fatou’s lemma in infinite-dimensions, where
the slightly improved version of the original result with the current form was given
in [48].11

10We emphasize yet again that in our ignoring of large parts of the applied mathematics litera-
ture, we ignore the role of Fatou’s lemma in the convergence of set-valued conditional expectations
and the strong law of large numbers for multifunctions; see [33, 34, 59, 65] for example.

11For another variant of an approximate Fatou’s lemma in Banach spaces, see [10].



332 M.A. KHAN AND N. SAGARA

Theorem 4.1 (Khan and Majumdar [46]). Let (T,Σ, µ) be a finite measure space
and E be a Banach space. If {fn}n∈N is a well-dominated sequence in L1(µ,E),
then for every ε > 0 there exists f ∈ L1(µ,E) with the following properties.

(i) f(t) ∈ w-Ls {fn(t)} a.e. t ∈ T ;

(ii)

∫
fdµ ∈ w-Ls

{∫
fndµ

}
+ εB.

To prove Theorem 4.1, an infinite-dimensional analogue of Lemma 2.4 is required
(see [46, 88, 89, 90] for details), which also plays a crucial role in proving the main
result of the essay.

Lemma 4.2 (Khan and Majumdar [46]). Let (T,Σ, µ) be a finite measure space and
E be a Banach space. If {fn}n∈N is a well-dominated sequence such that fn → f
weakly in L1(µ,E), then

f(t) ∈ cow-Ls {fn(t)} a.e. t ∈ T .

Under the nonatomicity assumption, however, the ε-approximation (or the clo-
sure operation) cannot be removed from Theorem 4.1. Such a counterexample was
constructed by [73] based on the famous failure of the Lyapunov convexity theorem
for an l2-valued vector measure on the Lebesgue unit interval and then fortified
with any infinite-dimensional Banach space by [48] to the current general form.

Proposition 4.3 (Khan and Sagara [48], Rustichini [73]). For every essentially
countably generated, nonatomic, finite measure space (T,Σ, µ) and infinite-dimen-
sional Banach space E, there exists a well-dominated sequence {fn}n∈N in L1(µ,E)
with the following properties.

(i) Ls

{∫
fndµ

}
̸⊂
∫

w-Ls {fn} dµ.

(ii) There exists no f ∈ L1(µ,E) such that
(a) f(t) ∈ w-Ls {fn(t)} a.e. t ∈ T ;

(b)

∫
fdµ ∈ w-Ls

{∫
fndµ

}
.

Since the inclusion Ls {
∫
fndµ} ⊂ w -Ls {

∫
fndµ} is automatic, this counterexam-

ple is stronger than the negation: w -Ls {
∫
fndµ} ̸⊂

∫
w -Ls {fn}dµ. The failure of

an “exact” Fatou lemma in infinite dimensions leads, as an inevitable consequence,
to the introduction of the saturation property on measure spaces.

4.2. Exact Fatou’s Lemma. To illustrate the power of saturation, we provide the
proof of an exact version of Fatou’s lemma for completeness.

Theorem 4.4 (Khan and Sagara [48]). Let (T,Σ, µ) be a saturated finite mea-
sure space and E be a Banach space. If {fn}n∈N is a well-dominated sequence in
L1(µ,E), then

(i) w-Ls

{∫
fndµ

}
⊂
∫

w-Ls {fn} dµ.

(ii) There exists f ∈ L1(µ,E) such that
(a) f(t) ∈ w-Ls {fn(t)} a.e. t ∈ T ;
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(b)

∫
fdµ ∈ w-Ls

{∫
fndµ

}
.

Proof. Since the well-dominated sequence {fn}n∈N is relatively weakly compact in
L1(µ,E), by Theorem 3.1, one can extract from it a subsequence {fni}i∈N that
converges weakly to f0 in L1(µ,E). Since the integration operator g 7→

∫
gdµ from

L1(µ,E) to E is continuous in the weak topologies for L1(µ,E) and E, we obtain∫
fidµ →

∫
f0dµ weakly in E, and hence,

∫
f0dµ ∈ w -Ls {

∫
fndµ}. It follows from

Lemma 4.2 that f0(t) ∈ cow -Ls {fn(t)} a.e. t ∈ T . Integrating this inclusion yields∫
f0dµ ∈

∫
cow -Ls {fn} dµ =

∫
w -Ls {fn} dµ,

where the equality follows from Proposition 3.4. Hence, there exists a Bochner
integrable selector f of w -Ls {fn} such that

∫
fdµ =

∫
f0dµ ∈ w -Ls {

∫
fndµ},

which verifies condition (ii).
Condition (i) follows easily from condition (ii). To show this claim, take any x ∈

w -Ls {
∫
fndµ}. Then there exists a subsequence {fni}i∈N such that w - limi

∫
fnidµ =

x. It follows from condition (ii) that there exists f ∈ L1(µ,E) such that (a)
f(t) ∈ w -Ls {fni(t)} a.e. t ∈ T ; (b)

∫
fdµ = w - limj

∫
fnjdµ, where {fnj}j∈N is

a further subsequence of {fni}i∈N. Integrating the inclusion (a) together with con-
dition (b) yields x ∈

∫
w -Ls {fn}dµ. □

Corollary 4.5 (Khan and Sagara [48]). Let (T,Σ, µ) be a saturated finite measure
space and E be a separable Banach space. If {Γn}n∈N is a well-dominated sequence
of multifunctions in M1(µ,E), then:

w-Ls

{∫
Γndµ

}
⊂
∫

w-Ls {Γn}dµ.

Proof. If w -Ls {
∫
Γndµ} = ∅, then the result is trivially true. Thus, without loss of

generality, we may assume that w -Ls {
∫
Γndµ} ̸= ∅. Take any x ∈ w -Ls {

∫
Γndµ}.

Then there is a sequence {xn}n∈N in E with xn ∈
∫
Γndµ for each n such that xni →

x weakly. Hence, there is an integrably bounded sequence {fni}i∈N in L1(µ,E) such
that xni =

∫
fnidµ and fni ∈ S1

Γni
for each i. It follows from Theorem 4.4 that

x = w - lim
i→∞

xni ∈ w -Ls

{∫
fndµ

}
⊂
∫

w -Ls {fn} dµ ⊂
∫

w -Ls {Γn} dµ.

Therefore, the desired inclusion holds. □

Following the terminology of the finite-dimensional case, given a sequence {fn}n∈N
in L1(µ,E) such that w -Ls {

∫
fndµ} is nonempty, condition (i) of Theorem 4.4 is

referred to the weak Fatou property and condition (ii) of Theorem 4.4 is referred
to the weak upper closure property. Similar to the function case, given a sequence
of multifunctions {Γn}n∈N in M1(µ,E) such that w -Ls {

∫
Γndµ} is nonempty, the

inclusion of Corollary 4.5 is referred to the weak Fatou property.
We now turn to the saturation property of nonatomic finite measure spaces, and

show that it can be completely characterized by the weak Fatou property and the
weak closure property and formalized as follows.
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Proposition 4.6 (Khan and Sagara [48]). Let (T,Σ, µ) be a nonatomic finite mea-
sure space and E be an infinite-dimensional Banach space. Then the following
conditions are equivalent.

(i) (T,Σ, µ) has the saturation property.
(ii) Every well-dominated sequence of functions in L1(µ,E) has the weak Fatou

property.
(iii) Every well-dominated sequence of functions in L1(µ,E) has the weak upper

closure property.
(iv) Every well-dominated sequence of multifunctions functions in M1(µ,E) has

the weak Fatou property.

Proof. The implication (i) ⇒ (iii) ⇒ (ii) ⇒ (iv) is already shown in the proof of
Theorem 4.4 and Corollary 4.5. We show the implication (iv) ⇒ (i). Suppose that a
nonatomic finite measure space (T,Σ, µ) is not saturated. Then there exists S ∈ Σ
with µ(S) > 0 such that (S,ΣS , µ) is countably generated. Since µ is nonatomic, it
follows from Proposition 4.3 that there exists a well-dominated sequence of Bochner
integrable functions {fn}n∈N from S to E such that the weak Fatou property fails
to hold for (S,ΣS , µ). Let Γ : S ↠ E be a dominating multifunction for {fn}n∈N.
Extend the functions to T by f̃n(t) = fn(t) if t ∈ S and f̃n(t) = {0} otherwise,

and similarly Γ̃(t) = Γ(t) if t ∈ S and Γ̃(t) = {0} otherwise. By construction, the

well-dominated sequence of Bochner integrable functions {f̃n}n∈N fails to satisfy the
weak Fatou property for (T,Σ, µ). □

5. Fatou’s lemma based on Gelfand integration

We demonstrate in this section how the prototype Fatou’s lemma in finite di-
mensions is extended to the dual space of a separable Banach space with Gelfand
integrals. As in Section 4, we first show an approximate version of Fatou’s lemma
under nonatomicity and then derive an exact version of Fatou’s lemma under the sat-
uration hypothesis. Finally, we derive the necessity of saturation for Fatou’s lemma.
Although the proofs need an independent treatment, their method is parallel to the
one developed in Section 4 with a suitable replacement of the weak topology and
Bochner integrals by the weak∗ topology and Gelfand integrals respectively.

5.1. Approximate Fatou’s Lemma. The strong upper limit of a sequence {Fn}n∈N
of subsets in E∗ is defined by

Ls {Fn} =

{
x∗ ∈ E∗ | ∃

{
x∗ni

}
i∈N : x∗ = lim

i→∞
x∗ni

, x∗ni
∈ Fni ∀i ∈ N

}
,

where {x∗ni
}i∈N denotes a subsequence of {x∗n}n∈N ⊂ E∗ and the convergence is with

respect to the dual norm in E∗. We denote by w∗- limn xn the weak∗ limit point of
a sequence {x∗n} in E∗. The weak∗ upper limit of {Fn}n∈N is defined by

w∗-Ls {Fn} =

{
x∗ ∈ E∗ | ∃{x∗ni

}i∈N : x∗ = w∗- lim
i→∞

x∗ni
, x∗ni

∈ Fni ∀i ∈ N
}
.

If {fn}n∈N is an integrably bounded sequence inG1(µ,E∗), then the multifunction
from T into E∗ defined by t 7→ w∗-Ls {fn(t)} is measurable whenever E is separable
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(see [13, Lemma 4.5]). Furthermore, the multifunction t 7→ cow∗
w∗-Ls {fn(t)} is

measurable as noted in Subsection 3.2.
A Gelfand integral analogue of Theorem 4.1 is the following result.12

Theorem 5.1 (Cornet and Medecin [21]). Let (T,Σ, µ) be a complete finite measure
space and E be a separable Banach space. If {fn}n∈N is an integrably bounded
sequence in G1(µ,E∗), then for every ε > 0 there exists f ∈ G1(µ,E∗) with the
following properties.

(i) f(t) ∈ w∗-Ls {fn(t)} a.e. t ∈ T ;

(ii) w∗-

∫
fdµ ∈ w∗-Ls

{
w∗-

∫
fndµ

}
+ εB∗.

Similarly, a Gelfand integral analogue of Lemma 4.2 is the following result.

Lemma 5.2 (Cornet and Medecin [21]). Let (T,Σ, µ) be a finite measure space and
E be a separable Banach space. If {fn}n∈N is an integrably bounded sequence in
G1(µ,E∗) such that fn → f in the σ(G1

E∗ , L∞ ⊗ E)-topology, then:

f(t) ∈ cow∗
w∗-Ls {fn(t)} a.e. t ∈ T .

Similar to Proposition 4.3, nonatomicity is insufficient to remove the ε-approx-
imation (or the closure operation) from Theorem 5.1. Specifically, the following
negative result holds.

Proposition 5.3 (Khan, Sagara and Suzuki [54], Rustichini [73]). For every
nonatomic finite measure space (T,Σ, µ) that is not saturated and for every infinite-
dimensional Banach space E, there exists an integrably bounded sequence {fn}n∈N
in G1(µ,E∗) with the following properties.

(i) Ls

{
w∗-

∫
fndµ

}
̸⊂ w∗-

∫
w∗-Ls {fn} dµ.

(ii) There exists no f ∈ G1(µ,E∗) such that
(a) f(t) ∈ w∗-Ls {fn(t)} a.e. t ∈ T ;

(b) w∗-

∫
fdµ ∈ w∗-Ls

{
w∗-

∫
fndµ

}
.

The similar remark with Proposition 4.3 is valid here: Since the inclusion
Ls {

∫
fndµ} ⊂ w∗-Ls {w∗-

∫
fndµ} is automatic, this counterexample is stronger

than the negation: w∗-Ls {w∗-
∫
fndµ} ̸⊂ w∗-

∫
w∗-Ls {fn}dµ.

5.2. Exact Fatou’s Lemma.

Theorem 5.4 (Khan, Sagara and Suzuki [54]). Let (T,Σ, µ) be a saturated finite
measure space and E be a separable Banach space. If {fn}n∈N is an integrably
bounded sequence in G1(µ,E∗), then:

(i) w∗-Ls

{
w∗-

∫
fndµ

}
⊂ w∗-

∫
w∗-Ls {fn} dµ.

(ii) There exists f ∈ G1(µ,E∗) such that
(a) f(t) ∈ w∗-Ls {fn(t)} a.e. t ∈ T ;

12As shown in [12, 17], the integrable boundedness condition in Theorem 5.1 and Lemma 5.2
can be extended to the uniform integrability condition.



336 M.A. KHAN AND N. SAGARA

(b) w∗-

∫
fdµ ∈ w∗-Ls

{
w∗-

∫
fndµ

}
.

Proof. Since the sequence {fn}n∈N has a subsequence that converges to some f0 ∈
G1(µ,E∗) in the σ(G1

E∗ , L∞ ⊗ E)-topology by Theorem 3.2, we have⟨
x, lim

i→∞
w∗-

∫
fnidµ

⟩
= lim

i→∞

∫
⟨x, fni(t)⟩dµ =

∫
⟨x, f0(t)⟩dµ

=

⟨
x,w∗-

∫
f0dµ

⟩
for every x ∈ E. Hence, w∗-

∫
f0dµ ∈ w∗-Ls

{
w∗-

∫
fndµ

}
. By Lemma 5.2, we have

f0(t) ∈ cow∗
w∗-Ls {fn(t)} a.e. t ∈ T . Integrating this inclusion yields

w∗-

∫
f0dµ ∈ w∗-

∫
cow∗

w∗-Ls {fn} dµ = w∗-

∫
w∗-Ls {fn} dµ,

where the equality follows from Proposition 3.4. Therefore, there exists a
Gelfand integrable selector f of w∗-Ls {fn} such that w∗-

∫
fdµ = w∗-

∫
f0dµ ∈

w∗-Ls {w∗-
∫
fndµ}, which verifies condition (i).

To show condition (ii), take any x∗ ∈ w∗-Ls {w∗-
∫
fndµ}. Then there exists a

subsequence {fni}i∈N such that w∗- limi w
∗-
∫
fnidµ = x∗. It follows from condition

(i) that there exists f ∈ G1(µ,E∗) such that (a) f(t) ∈ w∗-Ls {fni(t)} a.e. t ∈ T ;
and (b) w∗-

∫
fdµ = w∗- limj w

∗-
∫
fnjdµ, where {fnj}j∈N is a further subsequence

of {fni}i∈N. Integrating the inclusion (a) together with condition (b) yields x∗ =
w∗-

∫
fdµ ∈

∫
w∗-Ls {fn}dµ. □

Corollary 5.5 (Khan, Sagara and Suzuki [54]). Let (T,Σ, µ) be a saturated finite
measure space and E be a separable Banach space. If {Γn}n∈N is a well-dominated
sequence of multifunctions in M1(µ,E∗), then:

w∗-Ls

{
w∗-

∫
Γndµ

}
⊂ w∗-

∫
w∗-Ls {Γn} dµ.

Proof. If w∗-Ls {w∗-
∫
Γndµ} = ∅, then the result is trivially true. Thus, without

loss of generality, we may assume that w∗-Ls {w∗-
∫
Γndµ} ̸= ∅. Take any x ∈

w∗-Ls {w∗-
∫
Γndµ}. Then there is a sequence {xn}n∈N in E∗ with xn ∈ w∗-

∫
Γndµ

for each n such that xni → x weakly∗. Hence, there is an integrably bounded

sequence {fni}i∈N in G1(µ,E∗) such that xni = w∗-
∫
fnidµ and fni ∈ S1,w∗

Γni
for

each i. It follows from Theorem 5.4 that

x = w∗- lim
i→∞

xni ∈ w∗-Ls

{
w∗-

∫
fndµ

}
⊂
∫

w∗-Ls {fn} dµ

⊂ w∗-

∫
w∗-Ls {Γn} dµ.

Therefore, the desired inclusion holds. □
For the earlier exact result in nonatomic Loeb measure spaces (which forms spe-

cial class of saturated measure spaces), see [60, 79].
For the sake of simplicity, given a sequence {fn}n∈N in G1(µ,E∗) such that

w∗-Ls {w∗-
∫
fndµ} is nonempty, condition (i) of Theorem 5.4 is referred to the
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weak∗ Fatou property and condition (ii) of Theorem 5.4 is referred to the weak∗ up-
per closure property. Similar to the function case, given a sequence of multifunctions
{Γn}n∈N in M1(µ,E∗) such that w∗-Ls {w∗-

∫
Γndµ} is nonempty, the inclusion of

Corollary 5.5 is referred to the weak∗ Fatou property.

Proposition 5.6 (Khan, Sagara and Suzuki [54]). Let (T,Σ, µ) be a nonatomic
finite measure space and E be an infinite-dimensional separable Banach space. Then
the following conditions are equivalent:

(i) (T,Σ, µ) has the saturation property.
(ii) Every integrably bounded sequence of functions in G1(µ,E∗) has the weak∗

Fatou property.
(iii) Every integrably bounded sequence of functions in G1(µ,E∗) has the weak∗

upper-closure property.
(iv) Every well-dominated sequence of multifunctions in M1(µ,E∗) has the weak∗

Fatou property.

Proof. The implication (i) ⇒ (iii) ⇒ (ii) ⇒ (iv) is already shown in the proof of
Theorem 5.4 and Corollary 5.5. We show the implication (iv) ⇒ (i). Suppose that a
nonatomic finite measure space (T,Σ, µ) is not saturated. Then there exists S ∈ Σ
with µ(S) > 0 such that (S,ΣS , µ) is countably generated. Since µ is nonatomic, it
follows from Proposition 5.3 that there exists a well-dominated sequence of Gelfand
integrable functions {fn}n∈N from S to E∗ such that the weak∗Fatou property fails
to hold for (S,ΣS , µ). Let Γ : S ↠ E∗ be a dominating multifunction for {fn}n∈N.
Extend the functions to T by f̃n(t) = fn(t) if t ∈ S and f̃n(t) = {0} otherwise,

and similarly Γ̃(t) = Γ(t) if t ∈ S and Γ̃(t) = {0} otherwise. By construction, the

well-dominated sequence of Gelfand integrable functions {f̃n}n∈N fails to satisfy the
weak∗ Fatou property for (T,Σ, µ). □

6. Galerkin approximations with fnite-dimensional projections

In this section, we describe some useful properties of projections in locally con-
vex Hausdorff spaces (lcHs) to deal with Banach spaces with the norm topology
and their dual spaces with the weak∗ topology simultaneously. Furthermore, we
provide an intimate relation between finite-dimensional projections and Galerkin
approximation schemes.

6.1. Projections in LcHs. Let E be a locally convex Hausdorff space. For a
vector subspace V of E, we denote by V ⊥ the annihilator of V , i.e., V ⊥ = {p ∈
E∗ | ⟨p, x⟩ = 0 ∀x ∈ V }. If V is a closed vector subspace of E topologically
complemented in E, then there is a continuous projection P of E onto V such that
E = V ⊕R(I −P ), where R(I −P ) is the range of the continuous projection I −P
and it is a topologically complemented subspace of V in E (see [57, §10, 7(6)]). Let
P ∗ : E∗ → E∗ be the adjoint operator of P . Then P ∗ is a continuous projection
of E∗ onto V ∗ and I − P ∗ is a continuous projection of E∗ onto (R(I − P ))∗, and
hence, E∗ = V ∗⊕ (R(I −P ))∗, where E∗ = V ∗⊕ (R(I −P ))∗ and V ∗ = R(I −P )⊥

and R(I − P ∗) = V ⊥ (see [57, §10, 8(5), (6)]).
In particular, if V n is an n-dimensional vector subspace of E, there is a continuous

projection Pn of E onto V n such that E = V n ⊕ R(I − Pn) and R(I − Pn) is a
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topologically complemented subspace of V n in E (see [57, §10, 7(8)]). It is easy
to see that PnPm = PmPn = Pmin{m,n} for each m,n ∈ N. Let P ∗

n : E∗ → E∗

be the adjoint operator of Pn. Then P ∗
n is a continuous projection of E∗ onto

(V n)∗ = R(I − Pn)
⊥ and I − P ∗

n is a projection of E∗ onto (R(I − Pn))
∗ = (V n)⊥.

It is easy to see that P ∗
nP

∗
m = P ∗

mP ∗
n = P ∗

min{m,n}.

The following simple observation is employed for the finite truncation method in
separable Banach spaces and L∞ explored in Section 7.

Theorem 6.1. Let E be a lcHs and P be a continuous projection of E onto a closed
vector subspace V .

(i) If {xn}n∈N is a sequence in E converging weakly to x ∈ V , then {Pxn}n∈N is
a sequence in E converging weakly to x.

(ii) If {pn}n∈N is a sequence in E∗ converging weakly∗ to p ∈ V ∗, then {P ∗pn}n∈N
is a sequence in E∗ converging weakly∗ to p.

Proof. (i): In view of Px = x, for every p ∈ E∗:

lim
n→∞

⟨p, Pxn⟩ = lim
n→∞

⟨P ∗p, xn⟩ = ⟨P ∗p, x⟩ = ⟨p, Px⟩ = ⟨p, x⟩.

Thus, Pxn → x weakly in E.
(ii) Since P ∗ is the projection of E∗ onto V ∗, we have P ∗p = p. Thus, for every

x ∈ E:

lim
n→∞

⟨P ∗pn, x⟩ = lim
n→∞

⟨pn, Px⟩ = ⟨p, Px⟩ = ⟨P ∗p, x⟩ = ⟨p, x⟩.

Hence, P ∗pn → p weakly∗ in E∗. □

Let E be a (real) vector space which is endowed with an order structure defined
by a reflexive, transitive, and anti-symmetric binary relation ≥. Then (E,≥) is
called an ordered vector space if the following conditions are satisfied: (i) x ≥ y
implies x + z ≥ y + z for every x, y, z ∈ E; (ii) x ≥ y implies αx ≥ αy for every
x, y ∈ E and α > 0. The subset E+ = {x ∈ E | x ≥ 0} is called a positive cone of
an ordered vector space E. A subset C of a vector space E is called a proper cone
if C + C ⊂ C, αC ⊂ C for every α > 0, and C ∩ (−C) = {0}. Every positive cone
of an ordered vector space is a proper cone. Conversely, every proper cone C of a
vector space E defines, by virtue of x ≥ y ⇔ y − x ∈ C, an order under which E is
an ordered vector with positive cone C. If V is a vector subspace of an order vector
space E, then the induced ordering on V is determined by the proper cone V ∩E+,
and hence, V+ = V ∩ E+ is a positive cone of V .

As a convention, by an ordered lcHs, we always assume that its positive cone
is closed (see [77, V.4.(LTO)]). Let E be an ordered lcHs. A continuous linear
functional x∗ ∈ E∗ is said to be positive if ⟨x, x∗⟩ ≥ 0 for every x ∈ E+. Denote by
E∗

+ the set of continuous linear functionals on E. Let E and F be ordered vector
spaces. A linear operator u : E → F is said to be positive if u(E+) ⊂ u(F+).

The following observation is also useful in Section 7.

Theorem 6.2. Let E be an ordered lcHs and P be a continuous projection of E
onto a closed vector subspace V . Then P : E → V is a positive linear operator.



FATOU’S LEMMA, GALERKIN APPROXIMATIONS, WALRASIAN EQUILIBRIA 339

Proof. Choose any x ∈ E+. If Px ̸∈ V+, then by the separation theorem (see [72,
Theorem 3.5]), there exists x∗ ∈ E∗ such that ⟨Px, x∗⟩ = 1 and ⟨y, x∗⟩ = 0 for every
y ∈ V . Let x = x1 ⊕ x2 be the direct sum decomposition of x into x1 ∈ V and
x2 ∈ R(I − P ). Since ⟨x1, x∗⟩ = 0 and ⟨x2, P ∗x∗⟩ = 0, we have

1 = ⟨Px, x∗⟩ = ⟨x1 + x2, P
∗x∗⟩ = ⟨x1, P ∗x∗⟩ = ⟨Px1, x

∗⟩ = ⟨x1, x∗⟩ = 0,

a contradiction. Therefore, Px ∈ V+. □
6.2. Galerkin Approximations.

A quite natural idea when considering an infinite dimensional (varia-
tional) problem is to approximate it by finite dimensional problems.
This has important consequences both from theoretical (existence,
etc.) and the numerical point of view. [...] We stress the fact that
this type of finite dimensional approximation method is very flexible
and can be applied [...] to a large number of linear or nonlinear
problems. [4, p. 71].

Definition 6.3. A Galerkin approximation scheme of a lcHs E is a sequence
{V n}n∈N of finite-dimensional subspaces of E such that for every x ∈ E, there
exists a sequence {xn}n∈N with xn ∈ V n for each n ∈ N and xn → x in the locally
convex topology of E.

The following result is fundamental.

Proposition 6.4. Let (E, ∥ · ∥) be a separable Banach space.

(i) There exists a Galerkin approximation scheme {V n}n∈N of (E, ∥ · ∥) such that

V 1 ⊂ V 2 ⊂ · · · and
∪

n∈N V n
∥·∥

= E.
(ii) There exists a Galerkin approximation scheme {Wn}n∈N of (E∗,w∗) such that

W 1 ⊂ W 2 ⊂ · · · and
∪

n∈NWn
w∗

= E∗.

Proof. (i): For the construction of a Galerkin approximation scheme, just take a
countable dense subset {xi}i∈N of E and let V n be the linear span of the finite set
{x1, . . . , xn}. See [4, Proposition 3.1.1] for details.

(ii): Let S∗ be the closed unit ball in E∗. Since E∗ is separable with respect to
the weak∗ topology because of the separability of E (see [77, IV.1.7]), there is a

countable set {qi}i∈N in S∗ such that {qi}i∈N
w∗

= S∗. Let Wn be the linear span of

the finite set {q1, . . . , qn}. By construction, W 1 ⊂ W 2 ⊂ · · · and
∪

n∈NWn
w∗

= E∗.
Let p ∈ E∗ \{0} be arbitrarily fixed. We must construct pn ∈ Wn such that pn → p
weakly∗. By virtue of normalization, without loss of generality we may assume that
p ∈ S∗. Since S∗ is metrziable with respect to the weak∗ topology in view of the
separability of E (see [27, Theorem V.3.1]), for a compatible metric δ on S∗ with
the weak∗ topology, there exists a mapping k 7→ n(k) from N into N such that

δ(p, qn(k)) < 1/k for each k ∈ N. Since qn(k) ∈ Wn(k) ⊂ Wn for each k, n ∈ N with

n ≥ n(k), we obtain dist(p,Wn) ≤ dist(p,Wn(k)) < 1/k for each n ≥ n(k), and
hence, dist(p,Wn) → 0 as n → ∞, which guarantees that there exists pn ∈ Wn

such that δ(p, pn) → 0. □
Theorem 6.5. Let (E, ∥ · ∥) be a separable Banach space.
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(i) If {V n}n∈N is a Galerkin approximation scheme of (E, ∥ · ∥) such that V 1 ⊂
V 2 ⊂ · · · and

∪
n∈N V n

∥·∥
= E, and Pn is a continuous projection of E onto

V n, then for every x ∈ E the sequence {Pnx}n∈N contains a subsequence
converging weakly to x.

(ii) If {Wn}n∈N is a Galerkin approximation scheme of (E∗,w∗) such that W 1 ⊂
W 2 ⊂ · · · and

∪
n∈NWn

w∗
= E∗, and Qn is a continuous projection of E∗

onto Wn, then for every p ∈ E∗ the sequence {Qnx}n∈N contains a subsequence
converging weakly∗ to p.

Proof. (i): Let x ∈ E be arbitrarily fixed. It suffices to show that there is a
subsequence {Pmx}m∈N of {Pnx}n∈N such that ⟨p, Pmx⟩ → ⟨p, x⟩ for every p ∈
E∗. By Proposition 6.4(i), there exists xn ∈ V n such that xn → x. Choose any
p ∈ E∗. Since {(I − P ∗

n)p}n∈N is a bounded sequence in E∗ in view of R(I −
P ∗
n+1) ⊂ R(I − P ∗

n) ⊂ · · · for each n ∈ N and {xi}i∈N is a bounded sequence
in E, the numerical double sequence {⟨(I −P ∗

n)p, xi⟩}(i,n)∈N2 contains a convergent

subsequence {⟨(I−P ∗
m)p, xj⟩}(j,m)∈N2 . It follows from I−P ∗

m = (V m)⊥ and xj ∈ V j

that ⟨(I − P ∗
m)p, xj⟩ = 0 for each j,m ∈ N with j ≤ m. Hence,

lim
m→∞

sup
j∈N

|⟨(I − P ∗
m)p, xj⟩| = lim

m→∞
sup
j>m

|⟨(I − P ∗
m)p, xj⟩|

= lim
j,m→∞

|⟨(I − P ∗
m)p, xj⟩|

= lim
j→∞

lim
m→∞

⟨(I − P ∗
m)p, xj⟩ = 0,

where the third equality employs [2, Theorem 8.3]. This means that the convergence
limm⟨(I − P ∗

m)p, xj⟩ = 0 is uniform in j. We thus obtain

lim
m→∞

⟨p, x− Pmx⟩ = lim
m→∞

⟨p, (I − Pm)x⟩ = lim
m→∞

⟨(I − P ∗
m)p, x⟩

= lim
m→∞

lim
j→∞

⟨(I − P ∗
m)p, xj⟩

= lim
j→∞

lim
m→∞

⟨(I − P ∗
m)p, xj⟩ = 0,

where the forth equality exploits the commutativity of the double limit of the double
sequence (see [2, Theorem 9.16]). Therefore, Pmx → x weakly.

(ii): Let p ∈ E∗ be arbitrarily fixed. It suffices to show that there is a subse-
quence {Qmp}m∈N of {Qnp}n∈N such that ⟨Qmp, x⟩ → ⟨p, x⟩ for every x ∈ E. By
Proposition 6.4(ii), there exists pn ∈ Wn such that pn → p weakly∗. Choose
any x ∈ E. Since {(I − Q∗

n)x}n∈N is a bounded sequence in E∗∗ in view of
R(I −Q∗

n+1) ⊂ R(I −Q∗
n) ⊂ · · · for each n ∈ N and {pi}i∈N is a bounded sequence

in E∗, the numerical double sequence {⟨pi, (I − Q∗
n)x⟩}(i,n)∈N2 contains a conver-

gent subsequence {⟨pj , (I −Q∗
m)x⟩}(j,m)∈N2 . It follows from I −Q∗

m = (Wm)⊥ and

pj ∈ W j that ⟨pj , (I −Q∗
m)x⟩ = 0 for each j,m ∈ N with j ≤ m. Hence,

lim
m→∞

sup
j∈N

|⟨pj , (I −Q∗
m)x⟩| = lim

m→∞
sup
j>m

|⟨pj , (I −Q∗
m)x⟩|

= lim
j,m→∞

|⟨pj , (I −Q∗
m)x⟩|

= lim
j→∞

lim
m→∞

⟨pj , (I −Q∗
m)x⟩ = 0.
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This means that the convergence limm⟨pj , (I −Q∗
m)x⟩ = 0 is uniform in j. We thus

obtain

lim
m→∞

⟨p−Qmp, x⟩ = lim
m→∞

⟨(I −Qm)p, x⟩ = lim
m→∞

⟨p, (I −Q∗
m)x⟩

= lim
m→∞

lim
j→∞

⟨pj , (I −Q∗
m)x⟩

= lim
j→∞

lim
m→∞

⟨pj , (I −Q∗
m)x⟩ = 0,

where the forth equality exploits the commutativity of the double limit of the double
sequence. Therefore, Qmp → p weakly∗. □

7. Existence of Walrasian equilibria in Banach spaces

In infinite-dimensional commodity spaces, another idea for the application of
Fatou’s lemma is required to establish the existence of Walrasian equilibria. It
is Bewley [14] who first brought the idea of Galerkin approximations into play in
general equilibrium theory to deal with the L∞ commodity space in economies
with finite agents.13 Roughly speaking, his approach is as follows. Take a net of
finite dimensional vector subspaces of L∞ directed by set inclusion and consider a
net of truncated subeconomies in which a finite-dimensional vector subspace is a
commodity space. Each truncated subeconomy has equilibria by the classical finite-
dimensional result of Arrow–Debreu. Take the limit of the net of equilibria. Then
it corresponds to a Walrasian equilibria in the original L∞ economy.

We exemplify in this section that the idea of the finite-dimensional truncation
method explored in [14] and then followed by [15, 45, 81] provides a natural approach
to the existence of Walrasian equilibria also in large economies with a separable Ba-
nach space and L∞ without convexity assumptions on preferences by the effective
combination of the Galerkin approximation scheme with finite-dimensional projec-
tions and Fatou’s lemma in infinite dimensions. Thus, this offers an alternative
technique to the existence result such as [52, 56, 58, 69], which employs the Gale–
Nikaido lemma in infinite dimensions (see [87]), a variant of fixed point theorems.

7.1. Large Economies with Infinite-Dimensional Commodity Spaces with
Bochner Integrals. As before, (T,Σ, µ) is a (complete) finite measure space of
agents. The commodity space is given by an ordered Banach space E. The con-
sumption set X(t) of each agent t is a subset of E+, which induces the consumption
set mapping t 7→ X(t) ⊂ E. The preference relation ≿(t) is a complete, transitive
binary relation on a consumption set X(t), which induces the preference mapping
t 7→ ≿(t) ⊂ E × E. We denote by x≿(t) y the relation (x, y) ∈ ≿(t). Indifference
∼(t) and strict preference ≻(t) are defined in the same manner as in Subsection
2.2. Each agent possesses an initial endowment ω(t) ∈ X(t), which is the value of a
Bochner integrable function ω : T → E. The economy E consists of the primitives
E = {(T,Σ, µ), X,≿, ω}.

The price space is E∗. Given a price p ∈ E∗ \ {0}, the budget set of each agent
is B(t, p) = {x ∈ X(t) | ⟨p, x⟩ ≤ ⟨p, ω(t)⟩}. A function f ∈ L1(µ,E) is called an

13Bewley ascribes the idea to a suggestion of Jean-François Mertens; see [14, Acknowledgments].
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assignment if f(t) ∈ X(t) a.e. t ∈ T . An assignment f is called an allocation with
free disposal for E if

∫
fdµ ≤

∫
ωdµ.

Definition 7.1. A price-allocation pair (p, f) is a Walrasian equilibrium with free
disposal for E if for a.e. t ∈ T : f(t) ∈ B(t, p) and x ̸∈ B(t, p) whenever x≻(t) f(t).

The standing hypothesis for the economy E is as follows.

Assumption 7.1. (i) X : T ↠ E+ is an integrably bounded multifunction with
weakly compact, convex values.

(ii) gphX belongs to Σ⊗ Borel(E,w).
(iii) For every t ∈ T there exists z(t) ∈ X(t) such that ω(t)− z(t) ∈ intE+.
(iv) ≿(t) is a weakly closed subset of X(t)×X(t) for every t ∈ T .
(v) {(t, x, y) ∈ T × E × E | x≿(t) y} belongs to Σ⊗ Borel(E,w)⊗ Borel(E,w).
(vi) If x ∈ X(t) is a satiation point for ≿(t), then x ≥ ω(t); if x ∈ X(t) is not

a satiation point for ≿(t), then x belongs to the weak closure of the upper
contour set {y ∈ X(t) | y≻(t)x}.

Conditions (i) to (v) are imposed in [56]. Unlike to Assumption 2.1, we do not
assume here the monotonicity of preferences. Instead, additional condition (vi)
substitutes the monotonicity assumption and contains condition (⋆) in the Banach
space setting, which is imposed also in [35, 58, 69]. The measurability condition (v)
of preferences implies Assumption 2.1(ii) under the separability of E:

(v′) For every assignment f and g: the set {t ∈ T | f(t)≿(t) g(t)} belongs to Σ.

Let projT be the projection of T×E×E onto T . Since the set {t ∈ T | f(t)≿(t) g(t)}
coincides with the set

projT ({(t, x, y) ∈ T × E × E | x≿(t) y} ∩ gph(f, g))

it belongs to Σ by the projection theorem (see [18, Theorem III.23]).
Another important assumption on the commodity space E we make below is

that the norm interior of E+ is nonempty. As well-known, this is an inevitable
assumption to deal with infinite dimensionality in general equilibrium theory (see
[64]).

The first main result of the essay is as follows.

Theorem 7.2. Let (T,Σ, µ) be a saturated finite measure space and E be an ordered
separable Banach space such that intE+ is nonempty. Then for every economy
E satisfying Assumption 7.1, there exists a Walrasian equilibrium (p, f) with free
disposal for E with p ∈ E∗

+ \ {0}.

The proof of this result relies on the following auxiliary result for finite-dimensional
Euclidean spaces, and it may be worth underscoring why we work with it rather than
others available in the literature, obvious candidates being results in [7, 36, 38, 75].
The reason lies in the monotonicity assumption on preferences. This is the only
result in the literature known to us that explicitly avoids the use of this assumption
by exploiting the compactness of the consumption set correspondence.14

14The original result in [56] assumed convexity of preferences in separable Banach spaces. In the
finite-dimensional setting, the convexity hypothesis can be removed from [56] because of the classical
Lyapunov convexity theorem. This is indeed possible since the aggregate demand multifunction
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Auxiliary Theorem (Khan and Yannelis [56]). Let (T,Σ, µ) be a nonatomic finite
measure space. Suppose that the economy E with a finite-dimensional commodity
space Rk satisfies the following conditions.

(i) X : T ↠ Rk
+ is an integrably bounded multifunction with compact, convex

values.
(ii) gphX belongs to Σ⊗ Borel(Rk).
(iii) For every t ∈ T there exists z(t) ∈ Rk

+ such that ω(t)− z(t) ∈ Rk
++.

(iv) ≿(t) is a closed subset of Rk
+ × Rk

+ for every t ∈ T .

(v) {(t, x, y) ∈ T × Rk × Rk | x≿(t) y} belongs to Σ⊗ Borel(Rk)⊗ Borel(Rk).

Then there exists a Walrasian equilibrium (p, f) with free disposal for E with p ∈
Rk
+ \ {0}.

Proof of Theorem 7.2. Step 1: By virtue of Proposition 6.4(i), let {V n}n∈N be

a Galerkin approximation scheme of (E, ∥ · ∥) such that V 1 ⊂ V 2 ⊂ · · · and∪
n∈N V n

∥·∥
= E, and Pn be a continuous projection of E onto V n. Then V n

+ =
V n∩E+ is a positive cone of V n. Furthermore, Pn : E → V n is a positive linear op-
erator by Theorem 6.2. Construct a sequence of economies with a finite-dimensional
truncation as follows:

• Xn(t) := Pn(X(t)) ⊂ Pn(E+) ⊂ V n
+ is a consumption set of each agent

restricted to the finite-dimensional commodity space V n.
• ≿n(t) is the restriction of the preference ≿(t) to Xn(t), i.e., ≿n(t) := ≿(t)∩
(Xn(t)×Xn(t)).

• ωn(t) = Pnω(t) ∈ Xn(t) is the initial endowment with ωn ∈ L1(µ, V n).
• En = {(T,Σ, µ), Xn,≿n, ωn} is a finite-dimensional truncation of economy
E with commodity space V n conformed with the Galerkin approximation
scheme.

Corresponding to Assumption 7.1, the finite-dimensional truncated economy En
of E satisfies the following conditions:

(in) Xn : T ↠ V n
+ is an integrably bounded multifunction with compact, convex

values.
(iin) gphXn belongs to Σ⊗ Borel(V n).
(iiin) For every t ∈ T there exists zn(t) ∈ Xn(t) such that ωn(t)− zn(t) ∈ intV n

+ .
(ivn) ≿n(t) is a closed subset of V n

+ × V n
+ for every t ∈ T .

(vn) {(t, x, y) ∈ T × V n × V n | x≿(t) y} ∈ Σ⊗ Borel(V n)⊗ Borel(V n).

To verify conditions (in), (iin), (ivn), and (vn) is easy. To demonstrate (iiin), let
z : T → E be a function satisfying Assumption 7.1(ii) and set zn(t) = Pnz(t). Since
Pn is a continuous linear operator from E onto V n, by the open mapping theorem
(see [27, Theorem II.1.18] or [72, Corollaries 2.12]), it is an open mapping. Thus, Pn

maps interior points of E to those of V n. Therefore, ωn(t)− zn(t) = Pn(ω(t)− z(t))
belongs to intV n

+ . By Auxiliary Theorem, we may assume without loss of generality
that for every n ∈ N there exists a Walrasian equilibrium (qn, fn) ∈ ((V n)∗+ \{0})×
L1(µ, V n) with free disposal for En.
is compact and convex, and the upper semicontinuity of the aggregate demand multifunction is
preserved under integration from that of the individual demand multifunction. Thus, the standard
application of the Gale–Nikaido lemma works perfectly in finite dimensions.
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Step 2: Invoking Theorem 4.4 yields that there exist f, g ∈ L1(µ,E) such that

f(t), g(t) ∈ X(t), (f(t), g(t)) ∈ w -Ls {(fn(t), ωn(t))} a.e. t ∈ T

and (∫
fdµ,

∫
gdµ

)
∈ w -Ls

{(∫
fndµ,

∫
ωndµ

)}
.

Hence, we can extract a subsequence from {(fn, ωn)}n∈N in L1(µ,E) × L1(µ,E)
(which we do not relabel) such that (

∫
fndµ,

∫
ωndµ) → (

∫
fdµ,

∫
gdµ) weakly.

Note also that for a.e. t ∈ T we can extract a subsequence from {ωn(t)}n∈N in
E that converges weakly to g(t). Furthermore, by virtue of Theorem 6.5(i), for
a.e. t ∈ T we can extract a subsequence from {ωn(t)}n∈N that converges weakly to
ω(t). Therefore, g(t) = ω(t) a.e. t ∈ T , and hence,

∫
ωndµ →

∫
ωdµ weakly. Since∫

fndµ ≤
∫
ωndµ for each n ∈ N, we have

∫
fdµ ≤

∫
ωdµ at the limit. Therefore, f

is an allocation with free disposal for E . Since 0 ̸= qn ∈ (V n)∗ = (R(I−Pn))
⊥ ⊂ E∗,

by the Krein–Rutman theorem (see [77, Corollary V.5.4.2]), qn can be extended as
a continuous positive linear functional to E. Thus, we can normalize equilibrium
price for En such that pn = qn/∥qn∥ ∈ ∆∗ := {p ∈ E∗

+ | ∥p∥ = 1}. Since ∆∗ is
weakly∗ compact, we can extract a subsequence from {pn}n∈N (which we do not
relabel) that converges weakly∗ to p ∈ ∆∗. Therefore, p ∈ E∗

+ \ {0}.
Step 3: We claim that:

For a.e. t ∈ T : x≻(t) f(t) implies that ⟨p, x⟩ > ⟨p, ω(t)⟩.
Suppose, by way of contradiction, that there exists A ∈ Σ of positive measure with
the following property: for every t ∈ A there exists y ∈ X(t) such that y≻(t) f(t)
and ⟨p, y⟩ ≤ ⟨p, ω(t)⟩. Since ⟨p, ω(t)⟩ > 0 by Assumption 7.1(iii), it follows from the
weak continuity of ≿(t) that εy≻(t) f(t) and ⟨p, εy⟩ < ⟨p, ω(t)⟩ for some ε ∈ (0, 1).
Hence, we may assume without loss of generality that for every t ∈ A there exists
y ∈ X(t) such that y≻(t) f(t) and ⟨p, y⟩ < ⟨p, ω(t)⟩. Define the multifunction
Γ : A ↠ E by

Γ(t) = {x ∈ X(t) | x≻(t) f(t), ⟨p, x⟩ < ⟨p, ω(t)⟩} .
Then Γ is an integrably bounded multifunction with y ∈ Γ(t). We claim that Γ
has measurable graph. Since Γ(t) is the intersection of the multifunctions defined
by Γ1(t) := {x ∈ X(t) | x≻(t) f(t)} and Γ2(t) := {x ∈ E | ⟨p, x⟩ < ⟨p, ω(t)⟩}, we
need to show that Γ1 and Γ2 have measurable graph. The graph measurability of
Γ2 follows easily from the joint measurability of the Carathéodory function given
by (t, x) 7→ ⟨p, x⟩ − ⟨p, ω(t)⟩ (see [1, Lemma 4.51] or [5, Lemma 8.2.6]). To show
the graph measurability of Γ1, let θ : T × E → T × E × E be a mapping given by
θ(t, x) = (t, x, f(t)) and projT×E×E be a projection of (T×E)×(T×E×E) onto the
range space T ×E ×E of θ. Since projT×E×E(gph θ) belongs to Σ⊗Borel(E,w)⊗
Borel(E,w) by the projection theorem (see [18, Theorem III.23]), the set defined
by

G := {(t, x, y) ∈ T × E × E | x≻(t) y} ∩ ((gphX)× E) ∩ projT×E×E(gph θ)

belongs to Σ⊗Borel(E,w)⊗Borel(E,w) in view of Assumption 7.1. Since gphΓ1 =
projT×E(G), again by the projection theorem, gphΓ1 belongs to Σ ⊗ Borel(E,w),
where projT×E is a projection of (T × E)× E onto T × E.
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Let h : A → E be a measurable selector from Γ. Define hn : A → E by
hn(t) = Pnh(t). Invoking Theorem 4.4, there exists a Bochner integrable function

ĥ : A → E such that ĥ(t) ∈ w -Ls {hn(t)} and ĥ(t) ∈ X(t) a.e. t ∈ A. Hence, for

a.e. t ∈ A there is a subsequence of {hn(t)}n∈N in E converging weakly to ĥ(t).
Furthermore, by virtue of Theorem 6.1(i), there is a subsequence of {hn(t)}n∈N
converging weakly to h(t). We thus have ĥ(t) = h(t) a.e. t ∈ A, and hence,
(f(t), h(t)) ∈ w -Ls {(fn(t), hn(t))} a.e. t ∈ A in view of Step 1. Suppose that
the set defined by∪

n∈N
{t ∈ A | hn(t)≻n(t) fn(t), ⟨pn, h(t)⟩ < ⟨pn, ω(t)⟩}

is of measure zero. Then for each n ∈ N: fn(t)≿(t)hn(t) or ⟨pn, h(t)⟩ ≥ ⟨pn, ω(t)⟩
a.e. t ∈ A. Since pn → p weakly∗, passing to the limit along a suitable subsequence
of {(fn(t), hn(t))} in E × E yields f(t)≿(t)h(t) or ⟨p, h(t)⟩ ≥ ⟨p, ω(t)⟩ a.e. t ∈ A,
a contradiction to the fact that h is a measurable selector from Γ. Therefore,
there exists n ∈ N such that {t ∈ A | hn(t)≻n(t) fn(t), ⟨pn, h(t)⟩ < ⟨pn, ω(t)⟩} is
of positive measure. This is, however, impossible because (pn, fn) is a Walrasian
equilibrium for En. Therefore, the claim is true.

Step 4: It remains to show that ⟨p, f(t)⟩ ≤ ⟨p, ω(t)⟩ a.e. t ∈ T . If f(t) is a
satiation point for ≿(t), then Assumption 7.1(vi) implies that ⟨p, f(t)⟩ ≥ ⟨p, ω(t)⟩.
If f(t) is not a satiation point, then it belongs to the weak closure of the upper
contour set {y ∈ X(t) | y≻(t) f(t)} by Assumption 7.1(vi). The claim shown in
Step 3 implies that ⟨p, f(t)⟩ ≥ ⟨p, ω(t)⟩. Integrating the both sides of this inequality
yields

∫
⟨p, f(t)⟩dµ ≥

∫
⟨p, ω(t)⟩dµ. On the other hand, as demonstrated in Step 2,∫

fdµ ≤
∫
ωdµ, and hence,

∫
⟨p, f(t)⟩dµ =

∫
⟨p, ω(t)⟩dµ. Therefore, we must have

the equality ⟨p, f(t)⟩ = ⟨p, ω(t)⟩ a.e. t ∈ T . Therefore, (p, f) ∈ (E∗
+\{0})×L1(µ,E)

is a Walrasian equilibrium with free disposal for E . □

7.2. Large Economies with Infinite-Dimensional Commodity Spaces with
Gelfand Integrals. Let (Ω,F , ν) be a countably generated, σ-finite measure space.
Then L1(ν) is separable with respect to the L1-norm topology (see [1, Lemma 13.14]
or [16, Theorem 19.2]). The norm dual of L1(ν) is L∞(ν) (see [27, Theorem IV.8.5]).
The norm dual of L∞(ν) is ba(ν), the space of finitely additive signed measures
on F of bounded variation that vanishes on ν-null sets with the duality given by
⟨π, φ⟩ =

∫
φdπ for π ∈ ba(ν) and φ ∈ L∞(ν) (see [27, Theorem IV.8.14]). Note

that L∞(ν) is Suslin, and hence, separable with respect to the weak∗ topology in
view of the separability of L1(ν).

The commodity space is L∞(ν) with the order given by f ≥ g ⇔ f(t) ≥ g(t)
a.e. t ∈ T . The consumption set X(t) of each agent t is a subset of the positive
cone L∞

+ (ν), which induces the consumption set mapping t 7→ X(t) ⊂ L∞(ν). The
preference relation ≿(t) is a complete, transitive binary relation on a consumption
set X(t), which induces the preference mapping t 7→ ≿(t) ⊂ L∞(ν)× L∞(ν). Each
agent possesses an initial endowment ω(t) ∈ X(t), which is the value of a Gelfand
integrable function ω : T → L∞(ν). The (Gelfand) economy E consists of the
primitives E = {(T,Σ, µ), X,≿, ω}.
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The price space is ba(ν). Given a price π ∈ ba(ν) \ {0}, the budget set of each
agent is B(t, π) = {x ∈ X(t) | ⟨π, x⟩ ≤ ⟨π, ω(t)⟩}. A function f ∈ G1(µ,E) is called
an assignment if f(t) ∈ X(t) a.e. t ∈ T . An assignment f is called an allocation
with free disposal for E if w∗-

∫
fdµ ≤ w∗-

∫
ωdµ.

Definition 7.3. A price-allocation pair (π, f) ∈ (ba(ν) \ {0}) ×G1(µ,L∞(ν)) is a
Walrasian equilibrium with free disposal for EG if for a.e. t ∈ T : f(t) ∈ B(t, π) and
x ̸∈ B(t, π) whenever x≻(t) f(t).

The norm dual ba(ν) of L∞(ν) is much larger than L1(ν).

One could call any element of ba a price system, but since those
elements of ba not belonging to L1 have no economic interpretation,
we will be interested only in equilibria with price systems in L1 [14,
p. 519].

The theorem ... would be of little interest if one could not find
interesting conditions under which equilibrium price systems could
be chosen from L1 [14, p. 523].

Another contribution of [14] is an effective application of the Yosida–Hewitt decom-
position of finitely additive measures to derive of an equilibrium price in L1(ν) (i.e.,
it is countably additive). Toward this end, we make the following assumption.

Assumption 7.2. (i) X : T ↠ L∞
+ (ν) is a multifunction with weakly∗ compact,

convex values such that there exists a weakly∗ compact subset K of L∞(ν)
such that X(t) ⊂ K for every t ∈ T .

(ii) gphX belongs to Σ⊗ Borel(L∞(ν),w∗).
(iii) For every t ∈ T there exists z(t) ∈ X(t) such that ω(t) − z(t) belongs to the

norm interior of L∞
+ (ν).

(iv) ≿(t) is a weakly∗ closed subset of X(t)×X(t) for every t ∈ T .
(v) {(t, x, y) ∈ T × E × E | x≿(t) y} belongs to Σ ⊗ Borel(L∞(ν),w∗)⊗

Borel(L∞(ν),w∗).
(vi) If x ∈ X(t) is a satiation point for ≿(t), then x ≥ ω(t); if x ∈ X(t) is not

a satiation point for ≿(t), then x belongs to the weak∗ closure of the upper
contour set {y ∈ X(t) | y≻(t)x}.

Assumption 7.2 and the saturation of the measure space overcome the three
difficulties raised in [15, p. 224]:

(1) There exists no infinite dimensional version of Fatou’s lemma,
similar to Schmeidler’s version in the finite dimensional case.

(2) Budget sets in L∞ are typically not norm bounded and hence
not weak-star compact, even when they are defined in L1. [...
W]e see that in this case demand functions with respect to price
systems in L1 need not be defined.

(3) The evaluation function ⟨π, x⟩ is not continuous on L∞ × ba
or on L∞ × L1, when L∞ is given the σ(L∞, L1) topology, ba
the σ(ba, L∞) topology, and L1 the σ(L1, L∞) topology. This
means that if some agent’s demand function ξ were defined
on a certain set of price systems, ξ would not necessarily be
σ(L∞, L1) continuous there.
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The next theorem is the second main result of the essay: it offers a completely
different proof from that available in [52] and removes the monotonicity and the
convexity of preferences from [15, 81]. Steps 1 to 4 of the proof below follow the
same argument with that of Theorem 7.2 with a suitable replacement of the weak
topology and the Bochner integrals by the weak∗ topology and the Gelfand integrals.
A new aspect in the proof specific to the L∞ setting is Step 5, which follows the
argument of [14].

Theorem 7.4. Let (T,Σ, µ) be a saturated finite measure space and (Ω,F , ν) be a
countably generated σ-finite measure space. Then for every economy EG satisfying
Assumption 7.2, then there exists a Walrasian equilibrium (π, f) with free disposal
for EG with π ∈ L1

+(ν) \ {0}.

Proof. Step 1: By virtue of Proposition 6.4(ii), let {Wn}n∈N be a Galerkin ap-

proximation scheme of (L∞(ν),w∗) such that W 1 ⊂ W 2 ⊂ · · · and L∞(ν) =∪
n∈NWn

w∗
, and Qn be a continuous projection of L∞(ν) onto Wn. Then Wn

+ =
Wn∩L∞

+ (ν) is a positive cone of Wn. Furthermore, Qn : L∞(ν) → Wn is a positive
linear operator. As shown in the proof of Theorem 7.2, for every n ∈ N there exists
a Walrasian equilibrium (λn, fn) ∈ ((Wn)∗+ \ {0}) × G1(µ,Wn) with free disposal
for En.

Step 2: Invoking Theorem 5.4 yields that there exist f, g ∈ G1(µ,L∞(ν)) such
that

f(t), g(t) ∈ X(t), (f(t), g(t)) ∈ w∗-Ls {(fn(t), ωn(t))} a.e. t ∈ T

and (
w∗-

∫
fdµ,w∗-

∫
gdµ

)
∈ w∗-Ls

{(
w∗-

∫
fndµ,w

∗-

∫
ωndµ

)}
.

Hence, we can extract a subsequence from {(fn, ωn)}n∈N in G1(µ,L∞(ν))×
G1(µ,L∞(ν)) (which we do not relabel) such that (w∗-

∫
fndµ,w

∗-
∫
ωndµ) →

(w∗-
∫
fdµ,w∗-

∫
gdµ) weakly∗. Note also that for a.e. t ∈ T we can extract a

subsequence from {ωn(t)}n∈N in L∞(ν) that converges weakly∗ to g(t). Further-
more, by virtue of Theorem 6.5(ii), for a.e. t ∈ T we can extract a subsequence from
{ωn(t)}n∈N that converges weakly∗ to ω(t). Therefore, g(t) = ω(t) a.e. t ∈ T , and
hence, w∗-

∫
ωndµ → w∗-

∫
ωdµ weakly∗. Since w∗-

∫
fndµ ≤ w∗-

∫
ωndµ for each

n ∈ N, we have w∗-
∫
fdµ ≤ w∗-

∫
ωdµ at the limit. Therefore, f is an allocation

with free disposal for EG. Since 0 ̸= λn ∈ (V n)∗ = (R(I−Pn))
⊥ ⊂ L∞(ν)∗ = ba(ν),

by the Krein–Rutman theorem (see [77, Corollary V.5.4.2]), λn can be extended as a
continuous positive linear functional to L∞(ν). Thus, we can normalize equilibrium
price for En such that πn = λn/∥λn∥ ∈ ∆∗ := {π ∈ ba+(ν) | ∥π∥ = 1}. Since ∆∗

is weakly∗ compact, we can extract a subsequence from {πn}n∈N (which we do not
relabel) that converges weakly∗ to π ∈ ∆∗. Therefore, π ∈ ba+(ν) \ {0}.

Step 3: We claim that:

For a.e. t ∈ T : x≻(t) f(t) implies that ⟨π, x⟩ > ⟨π, ω(t)⟩.
Suppose, by way of contradiction, that there exists A ∈ Σ of positive measure with
the following property: for every t ∈ A there exists y ∈ X(t) such that y≻(t) f(t)
and ⟨π, y⟩ ≤ ⟨π, ω(t)⟩. Since ⟨π, ω(t)⟩ > 0 by Assumption 7.1(iv), it follows from the
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weak∗ continuity of ≿(t) that εy≻(t) f(t) and ⟨π, εy⟩ < ⟨π, ω(t)⟩ for some ε ∈ (0, 1).
Hence, we may assume without loss of generality that for every t ∈ A there exists
y ∈ X(t) such that y≻(t) f(t) and ⟨π, y⟩ < ⟨π, ω(t)⟩. Define the multifunction
Γ : A ↠ L∞(ν) by

Γ(t) = {x ∈ X(t) | x≻(t) f(t), ⟨π, x⟩ < ⟨π, ω(t)⟩}.
Then Γ is an integrably bounded multifunction with y ∈ Γ(t). We claim that Γ has
measurable graph. Since Γ(t) is the intersection of the multifunctions defined by
Γ1(t) := {x ∈ X(t) | x≻(t) f(t)} and Γ2(t) := {x ∈ L∞(ν) | ⟨p, x⟩ < ⟨p, ω(t)⟩}, we
need to show that Γ1 and Γ2 have measurable graph. Since the weakly∗ compact
subset K of L∞(ν) is metrziable with respect to the weak∗ topology in view of the
separability of L1(ν) (see [72, Theorem 3.16] or [77, IV.1.7]), K is a Polish space.
Then the graph measurability of Γ2 follows easily from the joint measurability of
the Carathéodory function on T × K given by (t, x) 7→ ⟨p, x⟩ − ⟨p, ω(t)⟩ (see [1,
Lemma 4.51] or [5, Lemma 8.2.6]). To show the graph measurability of Γ1, let
θ : T × L∞(ν) → T × L∞(ν) × L∞(ν) be a mapping given by θ(t, x) = (t, x, f(t))
and projT×L∞(ν)×L∞(ν) be a projection of (T ×L∞(ν))× (T ×L∞(ν)×L∞(ν)) onto

the range space T × L∞(ν)× L∞(ν) of θ. Since projT×L∞(ν)×L∞(ν)(gph θ) belongs

to Σ ⊗ Borel(L∞(ν),w∗) ⊗ Borel(L∞(ν),w∗) by the projection theorem (see [18,
Theorem III.23]), the set defined by

G := {(t, x, y) ∈ T × L∞(ν)× L∞(ν) | x≻(t) y} ∩ ((gphX)× L∞(ν))

∩ projT×L∞(ν)×L∞(ν)(gph θ)

belongs to Σ ⊗ Borel(L∞(ν),w∗) ⊗ Borel(L∞(ν),w∗) in view of Assumption 7.1.
Since gphΓ1 = projT×L∞(ν)(G), again by the projection theorem, gphΓ1 belongs

to Σ⊗Borel(L∞(ν),w), where projT×L∞(ν) is a projection of (T ×L∞(ν))×L∞(ν)

onto T × L∞(ν).
Let h : A → L∞(ν) be a measurable selector from Γ. Invoking Theorem 5.4, there

exists a Gelfand integrable function ĥ : A → L∞(ν) such that ĥ(t) ∈ w∗-Ls {hn(t)}
and ĥ(t) ∈ X(t) a.e. t ∈ A. Hence, for a.e. t ∈ A there is a subsequence of {hn(t)}n∈N
in L∞(ν) converging weakly∗ to ĥ(t). Furthermore, by virtue of Theorem 6.1(ii),
there is a subsequence of {hn(t)}n∈N converging weakly∗ to h(t). We thus have

ĥ(t) = h(t) a.e. t ∈ A, and hence, (f(t), h(t)) ∈ w∗-Ls {(fn(t), hn(t))} a.e. t ∈ A in
view of Step 1. Suppose that the set defined by∪

n∈N
{t ∈ A | hn(t)≻n(t) fn(t), ⟨pn, h(t)⟩ < ⟨pn, ω(t)⟩}

is of measure zero. Then for each n ∈ N: fn(t)≿(t)hn(t) or ⟨πn, h(t)⟩ ≥ ⟨πn, ω(t)⟩
a.e. t ∈ A. Since πn → p weakly∗, passing to the limit along a suitable subsequence
of {(fn(t), hn(t))} in L∞(ν)×L∞(ν) yields f(t)≿(t)h(t) or ⟨p, h(t)⟩ ≥ ⟨p, ω(t)⟩ a.e.
t ∈ A, a contradiction to the fact that h is a measurable selector from Γ. Therefore,
there exists n ∈ N such that {t ∈ A | hn(t)≻n(t) fn(t), ⟨πn, h(t)⟩ < ⟨πn, ω(t)⟩} is
of positive measure. This is, however, impossible because (πn, fn) is a Walrasian
equilibrium for En. Therefore, the claim is true.

Step 4: It remains to show that ⟨π, f(t)⟩ ≤ ⟨π, ω(t)⟩ a.e. t ∈ T . If f(t) is a
satiation point for ≿(t), then Assumption 7.2(vi) implies that ⟨π, f(t)⟩ ≥ ⟨π, ω(t)⟩.
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If f(t) is not a satiation point, then it belongs to the weak closure of the upper
contour set {y ∈ X(t) | y≻(t) f(t)} by Assumption 7.2(vi). The claim shown in
Step 3 implies that ⟨π, f(t)⟩ ≥ ⟨π, ω(t)⟩. Integrating the both sides of this inequality
yields

∫
⟨π, f(t)⟩dµ ≥

∫
⟨π, ω(t)⟩dµ. On the other hand, as demonstrated in Step

2, w∗-
∫
fdµ ≤ w∗-

∫
ωdµ, and hence,

∫
⟨π, f(t)⟩dµ =

∫
⟨π, ω(t)⟩dµ. Therefore,

we must have the equality ⟨π, f(t)⟩ = ⟨π, ω(t)⟩ a.e. t ∈ T . Therefore, (π, f) ∈
(ba+(ν) \ {0})×G1(µ,L∞(ν)) is a Walrasian equilibrium with free disposal for EG.

Step 5: By the Yosida–Hewitt decomposition of finitely additive measures (see
[91, Theorems 1.22 and 1.24]), π is decomposed uniquely into π = π1 + π2, where
π1 ≥ 0 is countably additive and π2 ≥ 0 is purely finitely additive. (Here, π2 is purely
finitely additive if every countably additive measure π′ on F satisfying 0 ≤ π′ ≤ π2
is identically zero.) Furthermore, there exists a sequence {Ωn} in F such that (a)
Ωn ⊂ Ωn+1 for each n = 1, 2, . . . ; (b) limn π1(Ω \ Ωn) = 0; (c) π2(Ωn) = 0 for each
n = 1, 2, . . . .

We claim that (π1, f) a Walrasian equilibrium with free disposal for EG. To this
end, suppose that x≻(t) f(t). We need to demonstrate that ⟨π1, x⟩ > ⟨π1, ω(t)⟩. It
follows from the definition of Walrasian equilibria that ⟨π, x⟩ > ⟨π, ω(t)⟩. Take any
φ ∈ L1(ν). Then we have∣∣∣∣∫ xχΩnφdν −

∫
xφdν

∣∣∣∣ ≤ ∥x∥∞
∫

|1− χΩn ||φ|dν = ∥x∥∞
∫
Ω\Ωn

|φ|dν → 0.

Hence, xχΩn → x weakly∗ in L∞(ν).15 Since ⟨π2, xχΩn⟩ =
∫
xχΩndπ2 =

∫
Ωn

xdπ2 =

0 by condition (c), we have ⟨π, xχΩn⟩ = ⟨π1, xχΩn⟩ + ⟨π2, xχΩn⟩ = ⟨π1, xχΩn⟩. In
view of x ≥ xχΩn , we obtain

⟨π1, x⟩ ≥ ⟨π1, xχΩn⟩ = ⟨π, xχΩn⟩ > ⟨π, ω(t)⟩ ≥ ⟨π1, ω(t)⟩

as desired. This also implies that π1 ̸= 0. Since π1 is absolutely continuous with
respect to ν, the Radon–Nikodym derivative of π1 is an equilibrium price in L1

+(ν)\
{0}. □

8. Concluding remarks

In conclusion, we ask ourselves and the reader as to where we go next: what
lacunae and open questions remain in the subject? One obvious opening that needs
to be closed emerges when we ask whether the sufficiency of the saturation property,
as brought out in the principal substantive results of this essay, Theorems 7.2 and
7.4, can be complemented by the necessity of the property, as has been shown
in the theory of large non-atomic games, following [43]. This is a question of some
urgency because it is only after answering it that one can confidently move on to the
consideration of commodity spaces that are not circumscribed by the assumptions
that we have worked under: separability and the non-empty norm-interiority of
the non-negative orthant of the commodity spaces underlying the formalizations
of the economies that we investigate. As regards the former, it has already been
emphasized that a commodity space with a countable dense set is a rather severe

15More specifically, one can show that this convergence is in the Mackey topology on L∞(ν);
see [14, Appendix I(24)].
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restriction on the cardinality of a commodity space, and may well require higher-
order Maharam types of agent spaces if it is to be jettisoned; see for example
[47, 49, 50, 52]. Here, the problem of measurable selectors in non-separable spaces
can hardly be bypassed and would have to be squarely and honestly faced; see [53]
for one attempt.

In this connection, it is worth pointing to the fact that one of the principal,
though implied, subtexts of this essay is that infinite-dimensional Walrasian general
equilibrium theory has by now reached a level of mathematical maturity that a
distinction between the technical and the substantive, the mathematics and the
economics, is parochial and constraining. It does no favor to either subject, and the
perspective to the problem that it brings, to insist on a separation of the registers
in this way. As such, the very basic notion of an allocation, a concept that we have
formalized through either the Bochner or the Gelfand integral, is intimately tied
to the price-system that is invoked to value the bundles constituting it. The clean
and independent split between the operation of summation, on the one hand, and
the notion of the valuation that one has chosen to work with on the other hand,
can hardly be expected to hold in an investigation of economies with a continuum
of agents and commodities. In short, what we are drawing attention to is our total
silence on Pettis integration, and the substantive implications that would have to
be faced once we consider it.

It may be worthwhile to underscore the motivation behind Pettis integration:
what is so ‘natural’ about Pettis integration? As the reader has already seen,
there is a remarkable parallelism in the proof of existence of Walrasian equilibria in
economies modelled on separable Banach spaces and those modelled on L∞, a par-
allelism that also extends to the proof of the exact Fatou’s lemma for Banach spaces
and their dual spaces. This cries out for a synthesis, one that deals with Bochner
and Gelfand integration simultaneously in a single framework. It is from this point
of view that one is inevitably led to a space that is inclusive of both a Banach space
with its norm topology, and the dual space endowed with its weak∗ topology. This
is to say that one is inevitably led to a locally convex Hausdorff space, and to the
integration of multifunctions taking values in such a space. Indeed, as demonstrated
in [50, 51], the Lyapunov convexity theorem for dual spaces of a separable Banach
space follows from that in lcHs under saturation. For the application of an approx-
imate Fatou’s lemma with Pettis integrals in lcHs to Walrasian equilibrium theory,
see [68, 69] for initial exploratory attempts.

We close this essay with a final remark that returns to Galerkin approximations.
It is fair to say that Walrasian general equilibrium theory in its computable mani-
festation has largely been confined to finite representation relating both to the set
of agents and commodities. In this essay, we have illustrated the importance of
finite-dimensional truncations of an infinite-dimensional commodity space, but it
stands to reason that one go the full stretch and exploit double-barrelled trunca-
tions, ones that pertain to both the set of commodities and the set of agents. After
all, the theory of Lebesgue integration begins with simple functions, which is to say
in our context, that it begins with a finite partition of the continuum of agents, all



FATOU’S LEMMA, GALERKIN APPROXIMATIONS, WALRASIAN EQUILIBRIA 351

making the same choice, and that therefore it begins with a finite set of agents.16

We leave this consideration of the ideal as emerging out of two truncations — out
of a double-tremble, so to speak — for future investigation.
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