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substitute desired distributions for various processing times involved. Nowadays, a
sustainable manufacturing strategy is becoming very important as companies have
to respond to continuous changes, environmental and social requirements. Some
organizations have adopted sustainable thinking paradigm in order to optimise per-
formance and competitive advantage [35]. Nevertheless, the majority of companies
are still looking for scientific support allowing them to proceed with transforma-
tions into sustainable business effectively [34]. Some studies are already done on
“sustainable” (“green”) supply chains modelling [5, 18, 29, 30, 39, 43, 36]. One
of the issues of green supply chain development is closing the “material loop” of
products moving from resource extraction through production use to the end of life
[29]. There are two approaches how to proceed with it: the first is to minimise
amount of waste at all stages of product life from production till expiration through
different ways of recycling and rework [5, 18, 29, 36]; the second is to decrease the
amount of rework in production through reengineering technical and business pro-
cesses [19, 30, 43]. These ways seem to be conflicting only at first sight. However,
they supplement each other if we consider them as 2 stages: Stage I is waste min-
imisation through all possible ways; Stage II is production quality maximisation in
order to avoid any other activities that cause additional resources spending. Each
production tends to be flawless, but in reality there is still a huge amount of defects
introduced [31] where rework is a better solution than scrap. That is why rework
becomes vital in production for sustainable supply chains development. The current
paper presents modelling of a production system with rework aiming to be a helpful
tool to support waste reduction process. System can be defined as a set of inter-
acting elements or processes that operate in a coordinated and combined structure
to achieve a predefined common goal. Production system can be defined as a way,
by which resource inputs are transformed to create goods and services. In man-
ufacturing industries, inputs include various raw materials such as energy, labour,
machine, etc. In service industries, inputs are likely to be dominated by labour [8].
This paper focuses on a discrete part of manufacturing system featuring a distinct
processed item and non-Markovian processing times; this is common for industries
that are producing parts for computers, cars, home appliances, etc. Apparently,
production line is an essential part of manufacturing industry, but only few studies
were made on interactions between stages in it [10]. Production systems analysis is
a very old discipline of industrial engineering, but it still needs to be extended [22].
Analysis of systems with 2 phases prompts how to deal with n-stage systems, and
this question has been in the spotlight for the last few years. This is a result of pos-
sibility to analyse any multi n-stage system as a series of two-stage systems [13]. If
we take a closer look at relevant researches, we can notice that several authors such
as Lau (1986) [24], Prasaka Rao (1975) [33], Avi-Itzhak (1965) [3], Avi-Itzhak and
Yadin (1965) [4], Muth (1973) [27], Gupta and Sharma (1983) [17], Berman (1982)
[6], Commault and Dallery (1990) [12] have analysed such production systems with
special attention at processing times and times between states. But the blind sides
of these researches are either absence of inspection or rework as all defected items
were scrapped [38]. However, this is not applying for all production situations, for
example, when the cost of an item is very high. In fact, as it has been acutely no-
ticed by Gupta and Chakraborty (1984) [16], rework is essential for the big part of
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production systems and situations. Furthermore, now we live in a “cradle-to-grave”
society, which considers only the environmental impact of disposal. But we need to
minimise the natural resource consumption, waste generation, and environmental
impact in the life cycle of products; we should aim at realisation of the “cradle-
to-cradle” system that will enable full use of recycled materials and reusable parts
[5, 39, 43, 36]. Nevertheless, not much research has been done on rework. Tayi
and Ballou (1988) made a research on rework of items that were rejected, but their
study is limited by deterministic models [41]. A big part of literature is dedicated to
analysis of steady-state behaviour of production system. It is a rough abstraction
of reality, because in the majority of cases systems will collapse before reaching the
steady state. Few researchers like Prabhu (1966-1967) [32], Altiok (1982) [1], Kumar
(1992) [23], Grassman (1977) [15] have made a research on the transient behaviour
of production systems. In their works, a system was presented as a queuing complex,
dealing only with Markovian distributions without including a possibility of rework.
Processing times become important with implementation of lean manufacturing pro-
duction shifted from batch manufacturing to a combination of batch and balanced
mixed-model assembly system [40]. On the one hand, new practice helps to keep
production load even and effectively manage both production and inventory. On
the other hand, it requires extra efficient loading and processing times management.
Many applications and information systems include an idea that an input queue has
unlimited capacity. This concept is applied in many serial production systems fea-
turing an infinite buffer [28]. Though an assumption of the initial buffer of infinite
capacity sounds artificial in production lines, it only implies that input is always
available, meaning that the initial stage never gets starved [37]. Jingshan Li (2004)
has developed an aggregation procedure to calculate production rate of production
systems with rework loops when machines have identical cycle times [25]. Recently,
Buscher and Lindner (2007) have analysed a production system with rework, but
this model is deterministic [9]. Assembly production systems have been analysed
without taking into consideration the idea of rework in Gopalan and Kumar (1994)
and Liu and Li (2009) [14, 26]. We are considering the below quality control problem
in an assembly production system. At Stage I, components are made and processed.
At Stage II, components are assembled. Assembled products coming out of Stage
II are checked at the inspection point, and properly done items are moved out of
the production line, while bad ones are further classified as products that can be
reworked or scrapped due to major defects. We use semi-regenerative processes
to model the system described above. It requires understanding and knowledge of
renewal processes. Studies of Uematsu et al. (1984) and Birolini (1985) could be
used as a reference [7, 42]. For state probabilities, we have developed an integral
representation. It is done by identifying the system at suitable regeneration epochs
as explained by Cinlar (1975) [11]. Created convolution equations have been solved
using existing numerical methods [20]. This provides means to employ a variety of
distributions, for example, Erlang (two-stage) distribution that is particularly useful
in practical situations. It provides more possibilities than the traditional Laplace
Transform technique, because it is not limited to exponential distribution only [2].
In our paper, we have reflected a numerical example for this particular case; it is
presented considering Erlang distributions of processing times for Machines 1, 2 and
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3. We made an assumption that distributions of processing times of rework and all
other random variables used in modelling are arbitrary. Therefore, we obtained the
following system [21]:

• Expected time of Machine 1 at Stage I being busy in [0, t].
• Expected time of Machine 2 at Stage I being busy in [0, t].
• Expected time of both Machines at Stage I being busy in [0, t]. Expected
time of Machine 1 at Stage I being blocked in [0, t].

• Expected time of Machine 2 at Stage I being blocked in [0, t].
• Expected time of Stage II (i.e., Machine 3) being busy in [0, t].
• Expected time of Stage II being idle in [0, t].
• Expected time of Stage II being busy with rework in [0, t].
• Expected time of Stage II being busy with rework of type i in [0, t].
• Below is a list of assumptions made to model the system under consideration.

2. Assumptions

In this paper, we assume the following:

• Instantaneous type of items delivery from the initial buffer to Machines in
Stage I and from Stage I to Inspection Station and from Inspection Station
to Stage II.

• Inspection is instantaneous.
• Whenever an assembly operation should be reworked, the Stage II machine
will start reworking it immediately.

• Duration of the both stages is random, arbitrarily distributed and indepen-
dent.

• Products from Stage I will be inspected at the inspection station only when
Stage II is free.

• Never blocked Stage II (i.e., machine 3).
• All items are reworked properly.
• Machine 1/2/3 is perfect (i.e., reliable).
• Instantaneous setup time.

3. Notatıons and System Modelıng

Let us introduce the following symbols:

• pdf: Probability density function,
• cdf: Cumulative distribution function,
• sf: Survivor function (also known as reliability function or complementary
cumulative distribution function),

• f(·)/g(·): pdf for Machine 1/Machine 2 processing time at Stage I,
• F (·)/G(·): cdf for Machine 1/Machine 2 processing time at Stage I,
• F̄ (·)/Ḡ(·): sf for Machine 1/Machine 2 processing time at Stage I,
• h(·)/r(·): pdf of assembling and rework time at Stage II,
• H(·)/R(·): cdf of assembling and rework time at Stage II,
• H̄(·)/R̄(·): sf of assembling and rework time at Stage II,
• pg: Probability of an assembly operation to be performed properly at Stage
II,
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State Machine 1 in Stage 1 Machine 2 in Stage 1 Stage II (Machine 3)

1 Busy Busy Free
2 Blocked Busy Free
3 Busy Blocked Free
4 Busy Busy Busy
5 Blocked Busy Busy
6 Busy Blocked Busy
7 Blocked Blocked Busy
8 Busy Busy Busy with Rework
9 Blocked Busy Busy with Rework
10 Busy Blocked Busy with Rework
11 Blocked Blocked Busy with Rework

Table 1. State space

• pr: Probability of an assembly operation to be performed improperly at
Stage II but can be reworked,

• ps: Probability of an assembly operation to be neither performed properly
at Stage II nor reworked. Clearly, pg + pr + ps = 1.

• ∗: Convolution:

(f ∗ g)(t) =
∫ b

a
f(u)g(t− u)du; a, b ∈ R, a < b.

According to commutative property of convolution [2]:

(f ∗ g)(t) = (g ∗ f)(t).

Conformably to the convolution theorem, two functions’ convolution in the time
domain has a simple effect of multiplying their Fourier transforms (T ) in the fre-
quency domain [2]:

T [f(t) ∗ g(t)] =
∫ b

a
(

∫ b

a
f(u)g(t− u)dt)e−udu.

The change of variables, ξ = t− u, and reversing the order of integration give

T [f(t) ∗ g(t)] =
∫ b

a
f(u)(

∫ b

a
(g(ξ)e−i(ξ+u))dξdu

= (

∫ b

a
f(u)e−iudu)(

∫ b

a
g(ξ)e−iξdξ)

= T [f(t)]T [g(t)].

To model the system under consideration, we have identified the state of the
system at any instant t. An exhaustive list of probable states of the system is given
in Table 1.

Schematic diagram of the production system is presented in Figure 3.
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Figure 1. Schematic diagram of the production system.

4. Evaluation of System Characteristics

In this section, we have obtained analytical expressions for various measures of
the system performance such as busy period durations.

4.1. Expected duration of Machine 1 or Machine 2 at Stage I being busy in [0, t].
An expression for the expected duration when Machine 1 or Machine 2 at Stage I
is busy in [0, t] is obtained as follows.

Let Av1B1 (t) for Machine 1 and Av2B1 (t) for Machine 2 denote the probability of
a corresponding machine at Stage I to be busy at instant t, given that the system
was in State 1 at time t = 0. Starting with State 1, the next regenerative transition
is to State 4 (i.e., finished components from Machines 1 and 2 are transferred to
Machine 3 for merging):

(4.1) Av1B1 (t) = [f(t)G(t) + g(t)F (t)] ∗Av1B4 (t) + F̄ (t).

The term F̄ (t) captures the busy period duration of Machine 1. Now, starting
from State 4, assembling may be performed properly with probability pg or with
defect, which can be reworked with probability pr, or it should be scrapped with
probability ps. In other words, starting from State 4, depending on whether the
assembling has been done properly or not, the system makes a transition to State
4 with probability pg + ps and to State 8 with probability pr. This means:

(4.2)

Av1B4 (t) = {f(t)[h(t)G(t) + g(t)H(t)] + g(t)[f(t)H(t) + h(t)F (t)]

+ h(t)[f(t)G(t) + g(t)F (t)]}
∗ {pgAv1B4 (t) + prAv

1B
8 (t) + psAv1B4 (t)}

+ F̄ (t).
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Similarly, for State 8, the transition equation is

(4.3)

Av1B8 (t) = {f(t)[r(t)G(t) + g(t)R(t)] + g(t)[f(t)R(t) + r(t)F (t)]

+ r(t)[f(t)G(t) + g(t)F (t)]}
∗Av1B4 (t)

+ F̄ (t).

The above set of integral equations can be arranged in a matrix form with refer-
ence to [2, 20] as follows:

(4.4) G(t)−
∫ t

0
W (u)G(t− u)du = L(t),

where W is a square matrix of order n (n = the number of equations) consisting
of coefficients of the functions Av1Bi ; G and L are column matrices of format n× 1
consisting of functions AvIi and terms independent of the Av1Bi , respectively.

The above set of integral equations, being of convolution type, can be solved by
the method suggested by Jones (1961) [2, 20].

Expected duration of Machine 1 being busy in [0, t] is given by

(4.5) µ1B(t) =

∫ t

0
Av1B1 (u)du.

For Machine 2, the matrices G and W remain the same, while the matrix L is

(4.6) LT = [L1, L2, L3],

where

L1 = Ḡ(t), L2 = Ḡ(t), L3 = Ḡ(t).

Expected time of Machine 2 being busy in [0, t] is given by

(4.7) µ2B(t) =

∫ t

0
Av2B1 (u)du.

4.2. Expected duration of Machine 1 or Machine 2 at Stage I being
blocked in [0, t]. We have obtained the following expression for the expected du-
ration of Machine 1 or Machine 2 at Stage I being blocked in [0, t].

Let Av1BL
1 (t) for Machine 1 and Av2BL

1 (t) for Machine 2 reflect the probability
of each machine at Stage I to be blocked at instant t, given that the system was in
State 1 at time t = 0. A system of equations will be as follows:

Av1BL
1 (t) = [f(t)G(t) + g(t)F (t)] ∗Av1BL

4 (t) + F (t)Ḡ(t),(4.8)

Av1BL
4 (t) = {f(t)[h(t)G(t) + g(t)H(t)] + g(t)[f(t)H(t) + h(t)F (t)]

+ h(t)[f(t)G(t) + g(t)F (t)]}
∗ {pgAv1BL

4 (t) + prAv1BL
8 (t) + psAv1BL

4 (t)}(4.9)

+ F (t)[Ḡ(t) +G(t)H̄(t)],

Av1BL
8 (t) = {f(t)[r(t)G(t) + g(t)R(t)] + g(t)[f(t)R(t) + r(t)F (t)]

+ r(t)[f(t)G(t) + g(t)F (t)]}(4.10)
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∗ Av1BL
4 (t) + F (t)[Ḡ(t) +G(t)H̄(t)].

The above set of integral equations can be reflected in matrix form [20] as in
Equation (4.4), where W is a square matrix of type n × n, and n is a number
of equations consisting of coefficients of the functions Av1BL

i . Furthermore, L is
a column matrix of dimension n × 1 consisting of the functions Av1BL

i and terms
independent of the Av1BL

i , respectively. Clearly, the matrices G and W remain the
same, while the matrix L changes.

This set of convolution integral equations can be solved as mentioned before [20].
The expected time of Machine 1 being busy in [0, t] is given by

µ1BL(t) =

∫ t

0
Av1BL

1 (u)du.(4.11)

For Machine 2, the matrices G and W stay the same, while elements of the matrix
L will be the following:

L1 = G(t)F̄ (t), L2 = G(t)[F̄ (t) + F (t)H̄(t)], L3 = G(t)[F̄ (t) + F (t)R̄(t)].

The expected time of Machine 2 at Stage I being blocked in [0, t] is given by

µ2BL(t) =

∫ t

0
Av2BL

1 (u)du.(4.12)

4.3. Expected time of Stage II being busy, busy with rework or idle in
[0, t]. Let AvS2B1 (t), AvS2R1 (t) and AvS2I1 (t) denote the probability that Stage II
(i.e., Machine 3) is busy, busy with rework or idle respectively at instant t, given
that the system was in State 1 at time t = 0.

For Stage II being busy at instant t, the matrices G and W remain the same,
while elements of the matrix L will be the following:

L1 = 0, L2 = H̄(t), L3 = R̄(t).

The expected time of Stage II being busy in [0, t] is given by [21]

µS2B(t) =

∫ t

0
AvS2B1 (u)du.(4.13)

For Stage II being busy with rework at instant t, the matrices G and W stay the
same, while the elements of the matrix L corresponding to this case are:

L1 = 0, L2 = 0, L3 = R̄(t).

The expected time of Stage II being busy with rework in [0, t] is given by

µS2R(t) =

∫ t

0
AvS2R1 (u)du.(4.14)

For Stage II being idle at instant t, the elements of the matrix L corresponding
to this case are:

L1 = F̄ (t) + F (t)Ḡ(t), L2 = H(t)[F̄ (t) + F (t)Ḡ(t)], L3 = R(t)[F̄ (t) + F (t)Ḡ(t)].

The expected time of Stage II being idle in [0, t] is given by
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State Machine 1 in Stage I Machine 2 in Stage I Stage II (Machine 3)

1 Busy Busy Free
2 Blocked Busy Free
3 Busy Blocked Free
4 Busy Busy Busy
5 Blocked Busy Busy
6 Busy Blocked Busy
7 Blocked Blocked Busy
8 Busy Busy Busy with Rework of Type 1
9 Busy Busy Busy with Rework of Type 2
10 Blocked Busy Busy with Rework of Type 1
11 Blocked Busy Busy with Rework of Type 2
12 Busy Blocked Busy with Rework of Type 1
13 Busy Blocked Busy with Rework of Type 2
14 Blocked Blocked Busy with Rework of Type 1
15 Blocked Blocked Busy with Rework of Type 2

Table 2. State space with two types of rework.

µS2I(t) =

∫ t

0
AvS2I1 (u)du.(4.15)

4.4. Expected duration of Machine 1 at Stage I being busy in [0, t] when
there are two types of rework. Now, we may increase the number of possible
types of defects from 1 to 2. Later, we shall generalise the number of defects to
M (M ≥ 2). Assume that an assembling operation can result in two types of
defects: Type 1 defect with probability pr1 and Type 2 defect with probability pr1.
Clearly, pg+ps+pr = 1. This means that after assembling at Stage II, products are
checked at the inspection station, and the assembling operation clears inspection
with probability pg. Afterwards, products could have Type 1 defect with probability
pr1 or Type 2 with probability pr2. Therefore, the operation is neither performed
properly nor can be reworked (scrap) with probability ps. Additional notations
pertaining to the two types of rework are:

• pr1: Probability that an assembled product has Type 1 defect,
• pr2: Probability that an assembled product has Type 2 defect,
• f1(·)/f2(·): pdf of time to rework Type 1/Type 2 defect at Stage II,
• F1(·)/F2(·) : cdf of time to rework Type 1/Type 2 defect at Stage II,
• F̄1(·)/F̄2(·) : sf of time to rework Type 1/Type 2 defect at Stage II.

The total number of states in the state space increases to 15. The state space is
presented in Table 2.

A schematic diagram, corresponding to two types of defects cases, is provided in
Figure 4.4.

Under varied assumptions on types of rework, we shall obtain an expression for
the expected time of Machine 1 being busy in [0, t].
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Figure 2. Schematic diagram of the production system.
Note: I.S: Inspection Station.

The expression for the expected time of Machine 1 at Stage I being busy in [0, t]
is modelled as follows.

Let Av1B1 (t) denote the probability that Machine 1 at Stage I is busy at instant
t, given that the system was in State 1 at time t = 0.

Av1B1 (t) = [f(t)G(t) + g(t)F (t)] ∗Av1B4 (t) + F̄ (t),(4.16)

Av1B4 (t) = {f(t)[h(t)G(t) + g(t)H(t)] + g(t)[f(t)H(t) + h(t)F (t)]

+ h(t)[f(t)G(t) + g(t)F (t)]}(4.17)

∗ {pgAv1B4 (t) + pr1Av
1B
8 (t) + pr2Av1B9 (t) + psAv1B4 (t)}+ F̄ (t),

Av1B8 (t) = {f(t)[r1(t)G(t) + g(t)R1(t)] + g(t)[f(t)R1(t) + r1(t)F (t)]

+ r1(t)[f(t)G(t) + g(t)F (t)]}(4.18)

∗ Av1B4 (t) + F̄ (t),

Av1B9 (t) = {f(t)[r2(t)G(t) + g(t)R2(t)] + g(t)[f(t)R2(t) + r2(t)F (t)]

+ r2(t)[f(t)G(t) + g(t)F (t)]}(4.19)

∗ Av1B4 (t) + F̄ (t).

The expected time of Machine 1 being busy in [0, t] is given by

µ1B(t) =

∫ t

0
Av1B1 (u)du.(4.20)

One can compare the systems of equations obtained in Subsections 4.1–4.4 to
understand the difference due to the assumption about two types of defects and
consequently two types of rework.

4.5. Expected time of Stage II being busy with rework of Type 1, Type
2 in [0, t]. Let AvR1

1 (t) and AvR2
1 (t) denote the probability that Stage II is busy

with rework of Type 1 and Type 2 defects at instant t respectively, given that the
system was in State 1 at time t = 0.



STOCHASTIC PROCESSING TIME MODELLING IN MANUFACTURING 295

For rework of Type 1 defect, the matrices G and W remain the same, while the
matrix L will be the following:

(4.21) LT = [L1, L2, L3, L4],

where

L1 = 0, L2 = 0, L3 = R̄1(t), L4 = 0.

The expected time of Stage II being busy with Type 1 defect rework in [0, t] is
given by

(4.22) µR1(t) =

∫ t

0
AvR1

1 (u)du.

For rework of Type 2 defect, elements of the matrix L will be the following:

L1 = 0, L2 = 0, L3 = 0, L4 = R̄2(t).

Using the same logic as for Type 1 rework, we can define the expected time of
Stage II being busy with rework of Type 2 in [0, t] as given by

(4.23) µR2(t) =

∫ t

0
AvR2

1 (u)du.

4.6. Expected time of Stage II being busy with rework of Type i defect
in [0, t]. Now, we may increase and generalise the number of defects from 2 to
M (M ≥ 2). We assume that an assembly operation can result in M types of
defects. Completed assembling is defected with Type 1 with probability pr1, with
Type 2 with probability pr2, and so on. Clearly, pg + ps + pr1 + pr2 + . . .+ prM =
1. This means that after assembling at Stage II products are inspected at the
inspection station, and the assembly operation clears inspection with probability pg.
Afterwards, products could have Type 1 defect with probability pr1 or Type 2 with
probability pr2,. . . , or Type M with probability prM . Therefore, the operation is
neither performed properly nor can be reworked with probability ps. The additional
notation pertaining to M types of rework are:

(1) pri: probability that an assembled product is defective of type i
(i ∈ {2, . . . ,M}),

(2) fi(·): pdf of time to rework Type 1/Type 2 defect in Stage II,
(3) Fi(·): cdf of time to rework Type 1/Type 2 defect in Stage II,
(4) F̄i(·): sf of time to rework Type 1/Type 2 defect in Stage II.

When the number of defects types increases and gets generalised to M , the number
of states in the state space increases to 4M + 7. The state space is presented in
Table 4.6.

A schematic diagram, corresponding to M types of defect cases, is provided in
Figure 4.6.

States in the state space can be clustered together, and the abbreviated version
of State Space (the clustered state space) is presented in Table 4.

The system of equations have been developed using the clustered state space of
Table 4. For a specific value of M , the state space can be extended to get the
system of equations. An expression for the expected time of Stage II (i.e., Machine
3) being busy with rework Type i defect in [0, t] is obtained as follows.
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State Machine 1 in Stage I Machine 2 in Stage I Stage II (Machine 3)

1 Busy Busy Free
2 Blocked Busy Free
3 Busy Blocked Free
4 Busy Busy Busy
5 Blocked Busy Busy
6 Busy Blocked Busy
7 Blocked Blocked Busy
8 Busy Busy Busy with Rework of Type 1
9 Busy Busy Busy with Rework of Type 2
... ... ... ...

M+7 Busy Busy Busy with Rework of Type M
M+8 Blocked Busy Busy with Rework of Type 1
M+9 Blocked Busy Busy with Rework of Type 2
... ... ... ...

2M+7 Blocked Busy Busy with Rework of Type M
2M+8 Busy Blocked Busy with Rework of Type 1
2M+9 Busy Blocked Busy with Rework of Type 2

... ... ... ...
3M+7 Busy Blocked Busy with Rework of Type M
3M+8 Blocked Blocked Busy with Rework of Type 1
3M+9 Blocked Blocked Busy with Rework of Type 2

... ... ... ...
4M+7 Blocked Blocked Busy with Rework of Type M

Table 3. State Space with M Types of rework.

Figure 3. Schematic diagram of the production system.
Note: I.S: Inspection Station.
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State Machine 1 in Stage I Machine II in Stage II Stage II (Machine 3)

1 Busy Busy Free
2 Blocked Busy Free
3 Busy Blocked Free
4 Busy Busy Busy
5 Blocked Busy Busy
6 Busy Blocked Busy
7 Blocked Blocked Busy

8(i) Busy Busy Busy with Rework of Type i
9(i) Blocked Busy Busy with Rework of Type i
10(i) Busy Blocked Busy with Rework of Type i
11(i) Blocked Blocked Busy with Rework of Type i

Table 4. Clustered state space (with M types of rework).

Let AvRi
1 (t) denote probability that Stage II is busy with rework of type i at

instant t, given that the system was in state 1 at time t = 0. Then, the system of
equations can be written following similar logic:

AvRi
1 (t) = [f(t)G(t) + g(t)F (t)] ∗AvRi

4 (t),(4.24)

AvRi
4 (t) = {f(t)[h(t)G(t) + g(t)H(t)] + g(t)[f(t)H(t) + h(t)F (t)]

+ h(t)[f(t)G(t) + g(t)F (t)]}(4.25)

∗ {pgAvRi
4 (t) +

M∑
i=1

pr1Av
Ri
8 (t) + psAvRi

4 (t)},

AvRi
8 (t) = {f(t)[ri(t)G(t) + g(t)Ri(t)] + g(t)[f(t)Ri(t) + ri(t)F (t)]

+ ri(t)[f(t)G(t) + g(t)F (t)]}(4.26)

∗ AvRi
4 (t) + F̄ (t) (i ∈ {1, . . . ,M}).

The expected time of Stage II being busy with rework Type 1 defect in [0, t] is
given by

µRi(t) =

∫ t

0
AvRi

1 (u)du.(4.27)

5. Numerical illustration

Analysis of production system (Figure 3, Figure 4.4, Figure 4.6) with rework per-
formed in the article resulted in analytical expressions for expected time of Machine
1/2/3 being busy, blocked, idle, and busy with rework of any given type in a given
time interval. It was used for the development of a tool that allows smart process-
ing of our problem. We have written a program using VBA language in MS Excel
application in order to obtain numerical values of blocked and busy time durations.
Number of defects types is taken to be 2 (an assembly operation, when not correct,
can result in an item that has Type 1 or Type 2 defect). With respect to changes in
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λ2 = 3; λ3 = 4; λ4 = 1

λ1 T
Expected Duration

M/c I of Stage is M/c II of Stage I is M/c III of Stage II is
Busy Blocked Busy Blocked Busy Idle

2.0

1.0 0.878 0.122 0.720 0.280 0.124 0.876
2.0 1.700 0.300 1.270 0.729 0.507 1.493

3.0 2.510 0.489 1.808 1
.1
91

0.934 2.066
4.0 3.307 0.693 2.337 1.662 1.378 2.622
5.0 4.096 0.904 2.862 2.138 1.832 3.168

3.0

1.0 0.787 0.213 0.787 0.213 0.184 0.816
2.0 1.465 0.535 1.465 0.535 0.669 1.331
3.0 2.120 0.880 2.121 0.879 1.198 1.802
4.0 2.761 1.239 2.761 1.239 1.744 2.256
5.0 3.396 1.604 3.396 1.604 2.295 2.705

Table 5. Effect of change in Machine 1 processing rate on system
characteristics; Part 1.

λ1 = 2; λ3 = 4; λ4 = 1; λ5 = 1

λ1 T
Expected duration (Machine III at Stage II)

Busy with Busy with
Rework Rework of Type 1 Rework of Type 2

2.0

1.0 0.001 0.001 0.000
2.0 0.027 0.040 0.001
3.0 0.110 0.161 0.002
4.0 0.226 0.323 0.003
5.0 0.352 0.496 0.006

3.0

1.0 0.002 0.002 0.000
2.0 0.051 0.075 0.001
3.0 0.171 0.246 0.002
4.0 0.319 0.450 0.004
5.0 0.474 0.660 0.007

Table 6. Effect of change in Machine 1 processing rate on system
characteristics; Part 2.

processing rates of Machine 1, numerical values for the above mentioned measures
of the system performance are presented in Table 5 and Table 6.

Using the same logic as for Machine 1, we have obtained results for Busy and
Blocked durations for Machine 2, presented in Table 7 and Table 8.
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λ2 = 3; λ3 = 4; λ4 = 1

λ1 T
Expected Duration

M/c I of Stage is M/c II of Stage I is M/c III of Stage II is
Busy Blocked Busy Blocked Busy Idle

2.0

1.0 0.912 0.088 0.623 0.377 0.151 0.849
2.0 1.786 0.214 1.056 0.944 0.561 1.439
3.0 2.640 0.360 1.480 1.520 1.014 1.986
4.0 3.479 0.521 1.896 2.104 1.484 2.516
5.0 4.310 0.690 2.310 2.690 1.962 3.038

3.0

1.0 0.934 0.066 0.543 0.457 0.168 0.832
2.0 1.832 0.168 0.893 1.107 0.590 1.410
3.0 2.707 0.293 1.239 1.761 1.055 1.946
4.0 3.565 0.435 1.580 2.420 1.537 2.464
5.0 4.415 0.585 1.919 3.081 2.026 2.974

Table 7. Effect of change in Machine 2 processing rate on system
characteristics; Part 1.

λ1 = 2; λ3 = 4; λ4 = 1; λ5 = 1

λ2 T
Expected duration (Machine III at Stage II)

Busy with Busy with
Rework Rework of Type 1 Rework of Type 2

2.0

1.0 0.001 0.002 0.000
2.0 0.036 0.053 0.001
3.0 0.130 0.188 0.002
4.0 0.253 0.360 0.004
5.0 0.387 0.542 0.006

3.0

1.0 0.002 0.002 0.000
2.0 0.041 0.061 0.001
3.0 0.140 0.202 0.002
4.0 0.267 0.379 0.004
5.0 0.404 0.565 0.006

Table 8. Effect of change in Machine 2 processing rate on system
characteristics; Part 2.

This is done with respect to changes in the processing rates of Machine 2 and
has been given in Appendix B, where f(t) = λ2

1t exp(−λ1t), g(t) = λ2
2t exp(−λ2t),

h(t) = λ2
3t exp(−λ3t), r1(t) = λ4 exp(−λ4t) and r2(t) = λ5 exp(−λ5t).

Sensitivity of the numerical values of Busy and Blocked durations of Machine 1
with respect to changes in time (Figure 5): blocked duration increase with time
passed, proportions that are measured in terms of % value of the time are actually
decreasing are presented on Figure 5.
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Figure 4. Busy and blocked durations of Machine 1 (λ1 = 2; λ2 =
3; λ3 = 4; λ4 = 1).

Figure 5. Rate of % Decrease in Blocked Durations (λ1 = 2; λ2 =
3; λ3 = 4; λ4 = 1).

Similarly, one can analyse busy or blocked/idle durations of Machines 2 and 3.
Using such analyses, one can test sensitivity of various durations with respect to
changes in processing rates of Machines 1, 2 and 3. Such a sensitivity analysis can
be useful in two ways. The first one is to fix desired busy, blocked or idle durations
(including that of rework) and to experiment on processing rates of various machines
until desired durations are obtained. It is very helpful for tuning manufacturing rate
when production needs to be speeded up or slowed down. The second way is to
fix processing times of machines and to experiment on the sensitivity of changes in
busy, blocked or idle durations. Such a transient state analysis will be highly useful
at the design stage of transfer-line production systems under random conditions [6]
and, likewise, when it is needed, to monitor the system condition over a finite time
horizon. These situations are also common during testing working conditions when
new machines are installed or regular inspection is done.

We are considering usage of regularization techniques to further stabilize the ob-
tained numerical result. In general case of our problem dealing with production
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systems, we are facing multiple Machines, Products and types of Operations and
Rework. Therefore, either dimension reduction techniques could be applied, or it is
possible to subdivide the problem into smaller problems with the further paralleliz-
ing their solutions.

In order to make our model closer to real life situations, it could be embedded into
a time-continuous model with a possibly infinite number of scenarios, and Monte-
Carlo Markov-Chain methods and Regime-Switching models could be incorporated.

6. Conclusion and outlook

In this paper, the concept of rework and its generalisation to multi-type rework
was investigated in the probabilistic modelling of two-stage assembly production
systems with an inspection point. Analytical expressions for expected time of Ma-
chine 1/2/3 being busy, blocked, idle, and busy with rework of any given type in a
given time interval have been obtained. Such an analysis of transient time is highly
useful at the design stage of transfer-line production systems.

Results create a basis to model recycling process efficiency that could be used to
develop a closed-loop supply chain as a part of reverse logistics process. In this case,
types of defects could be replaced by recycling reasons (product expiration, power
unit expiration, power unit defect, quality defect, etc.). It will give an opportunity
to evaluate change of consumption of resources (time, cost, energy, etc.) caused by
recycling process and manage its efficiency.

It is beneficial to have such a tool when we need to monitor a system over a finite
time horizon. For example, to save energy, reduce waste, and efficiently rework
a product without compromising production time or quality control processes, a
greener solution is going to be implemented. Hence, we need to monitor a system
in order to tune it up.

Also, it is helpful to learn when a machine could finish its task to enable a
real-time adjustment. Knowing sensitivity of various durations with respect to
changes in processing rates makes a production system more flexible and adaptable
to changes. It is important to be able to respond to volatile customer demand by
manipulation of busy, blocked and idle durations. This could be used for setting
needed parameters for situations when demand is changing and manufacturing rate
should be increased or decreased. That helps to solve the problem of controlling
machines’ usage within acceptable parameters of work. Furthermore, it facilitates
adjusting to demand changes while avoiding product shortage or overstock. This al-
lows to elude extra expenses (additional storage costs in case of overstock, penalties
from clients in case of shortage, etc.) and to receive expected financial outcome.

Finally, our presented model creates a basis for a further algorithm and software
development that will automate a system’s efficiency evaluation.
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