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In the present paper, we consider an infinite horizon linear-quadratic optimal
control problem with point-wise and distributed state delays in the dynamics. The
coefficients of the equation of dynamics in this problem and the corresponding initial
conditions depend on a parameter. Using the control optimality conditions, the
solution of this problem is reduced to solution of a set of three Riccati-type matrix
equations, one algebraic and two differential equations (ordinary and partial) with
deviating arguments. Based on the assumption of a proper smoothness of the data
of the optimal control problem with respect to the parameter varying in a given
interval, a smooth dependence of the solution to this set of Riccati-type equations
on the parameter is established. Using this result, a smoothness with respect to
the parameter of the state-feedback optimal control, the optimal trajectory and the
optimal value of the cost functional in the considered optimal control problem is
obtained. To the best of our knowledge, such a problem has not yet been studied
in the literature.

Although the results of the present paper are rather theoretical, we would like to
present here one their important application. Namely, these results are extremely
useful in qualitative analysis and quadratic optimization of singularly perturbed lin-
ear time-dependent systems with small delays (see e.g. [14, 17, 18]) by application
of the Boundary Function Method [34] and the Separation of Time-Scales Method
[26]. Both methods are based on an asymptotic decomposition of the original sin-
gularly perturbed system into two simpler unperturbed subsystems (slow and fast
ones). The slow subsystem is undelayed, and its independent variable is the original
one (time). The fast subsystem is a time delay system. Its independent variable is a
new one (stretched time), while the original independent variable becomes a param-
eter. Thus, the fast subsystem depends on the stretched time (as an independent
variable) and on the original time (as a parameter). The stretched time varies from
zero to infinity, while the original time varies in a given bounded and closed inter-
val. One of important assumptions in the analysis and optimization of the original
singularly perturbed system is the requirement on the first-order smoothness with
respect to the parameter of the solution to a proper infinite-horizon linear-quadratic
optimal control problem associated with the parameter dependent fast subsystem.
In the papers [14, 17, 18] such a smoothness either was proven for the simplest par-
ticular case of a single point-wise delay in the fast subsystem [14], or was assumed
to be valid in the general case of multiple point-wise delays and a distributed delay
in the fast subsystem [17, 18]. In the present paper this smoothness is rigorously
proven in the general case.

The paper is organized as follows. In Section 2, the optimal control problem is
formulated rigorously. Its reduction to the set of three Riccati-type matrix equations
is presented. Main assumptions are made. Objectives of the paper are stated. In
Section 3, three important auxiliary lemmas and their corollaries are formulated and
proven. Two main lemmas on continuity and first-order smoothness with respect
to the parameter of the solution to the set of Riccati-type matrix equations are
formulated and proven in Section 4. In Section 5, the smoothness with respect to
the parameter of the state-feedback optimal control, the optimal trajectory and the
optimal value of the cost functional of the considered optimal control problem is
proven.
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The following notations are applied in this paper:

(1) En is the n-dimensional real Euclidean space.
(2) The Euclidean norm of either a matrix or a vector is denoted by ∥ · ∥.
(3) The superscript ”T” denotes the transposition either of a vector x (xT ) or

of a matrix A (AT ).
(4) In denotes the identity matrix of dimension n.
(5) L2[η1, η2;E

n] denotes the Hilbert space of all functions f(η) : [η1, η2) → En

square integrable on the interval [η1, η2). The inner product of the elements
f(η) and g(η) in this space is

⟨
f(η), g(η)

⟩
L2 =

∫ η2
η1

fT (η)g(η)dη.

(6) M[η1, η2;n] denotes the Hilbert space of all pairs f =
(
fE , fL(η)

)
, fE ∈ En,

fL(η) ∈ L2[η1, η2;E
n]. The inner product of the elements f =

(
fE , fL(η)

)
and g =

(
gE , gL(η)

)
in this space is

⟨
f, g
⟩
M = fT

E gE +
⟨
fL(η), gL(η)

⟩
L2 .

(7) Reλ denotes the real part of a complex number λ.

2. Problem Statement

2.1. Control problem formulation. Consider the controlled system

dx(t)

dt
=

N∑
j=0

Aj(ω)x(t− hj) +

∫ 0

−h
G(η, ω)x(t+ η)dη

+B(ω)u(t), t ≥ 0,(2.1)

where x(t) ∈ En; u(t) ∈ Er (u is a control); N ≥ 0 is an integer; 0 = h0 < h1 <
h2 < ... < hN = h are some given constants; ω is a parameter; Aj(ω), (j = 0, ..., N),
G(η, ω) and B(ω) are matrix-valued functions of corresponding dimensions, given
for η ∈ [−h, 0] and ω ∈ [ω1, ω2]; Aj(ω), (j = 0, ..., N) and B(ω) are continuously dif-
ferentiable with respect to ω ∈ [ω1, ω2]; the function G(η, ω) is piecewise continuous
with respect to η ∈ [−h, 0] for each ω ∈ [ω1, ω2], its partial derivative ∂G(η, ω)/∂ω
is continuous with respect to ω ∈ [ω1, ω2] uniformly in η ∈ [−h, 0].

The initial conditions for the system (2.1) have the form

(2.2) x(η) = φ(η, ω), η ∈ [−h, 0); x(0) = x0(ω),

where the vector-valued function φ(η, ω) ∈ L2[−h, 0;En] for any ω ∈ [ω1, ω2], its
partial derivative ∂φ(η, ω)/∂ω is continuous with respect to ω ∈ [ω1, ω2] uniformly
in η ∈ [−h, 0], and ∂φ(η, ω)/∂ω ∈ L2[−h, 0;En] for any ω ∈ [ω1, ω2]; the vector-
valued function x0(ω) is continuously differentiable for ω ∈ [ω1, ω2].

The cost functional, to be minimized by a proper choice of the control u(t), is

(2.3) J(u) =

∫ +∞

0

(
xT (t)x(t) + uT (t)u(t)

)
dt.

2.2. Control optimality conditions in the problem (2.1)-(2.3). Let us denote

(2.4) S(ω)
△
= B(ω)BT (ω), ω ∈ [ω1, ω2].

Using the matrix S(ω), we consider for any ω ∈ [ω1, ω2] the following set, con-
sisting of one algebraic and two differential equations (ordinary and partial) for
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matrices P , Q, and R:

(2.5) PA0(ω) +AT
0 (ω)P − PS(ω)P +Q(0) +QT (0) + In = 0,

dQ(η)

dη
=

(
AT

0 (ω)− PS(ω)
)
Q(η) + PG(η, ω)

+

N−1∑
j=1

PAj(ω)δ(η + hj) +R(0, η),(2.6)

(
∂

∂η
+

∂

∂χ

)
R(η, χ) = GT (η, ω)Q(χ)

+QT (η)G(χ, ω) +

N−1∑
j=1

AT
j (ω)Q(χ)δ(η + hj)

+

N−1∑
j=1

QT (η)Aj(ω)δ(χ+ hj)−QT (η)S(ω)Q(χ),(2.7)

where η ∈ [−h, 0] and χ ∈ [−h, 0] are independent variables; δ(·) is the Dirac
delta-function.

The set of equations (2.5)-(2.7) is subject to the boundary conditions

Q(−h) = PAN (ω),

R(−h, η) = AT
N (ω)Q(η), R(η,−h) = QT (η)AN (ω).

(2.8)

For a given ω ∈ [ω1, ω2], consider the state-feedback control in the system (2.1)

(2.9) ũ(xt) = K̃1(ω)x(t) +

∫ 0

−h
K̃2(η, ω)x(t+ η)dη,

where K̃1(ω) and K̃2(η, ω) are r × n-matrices; K̃2(η, ω) is piece-wise continuous in

η ∈ [−h, 0]; xt
△
= x(t+ η), η ∈ [−h, 0].

Definition 2.1. For a given ω ∈ [ω1, ω2], the system (2.1) is called L2-stabilizable if
there exists the state-feedback control (2.9) such that for any x0(ω) ∈ En, φ(η, ω) ∈
L2[−h, 0;En], the solution x̃(t) of (2.1) with u(t) = ũ(xt) and subject to the initial
conditions (2.2) satisfies the inclusion x̃(t) ∈ L2[0,+∞;En].

In what follows, we assume
(A) For all ω ∈ [ω1, ω2] and any complex number λ with Reλ ≥ 0, the following
equality is valid:

(2.10) rank

[
N∑
j=0

Aj(ω) exp(−λhj) +

∫ 0

−h
G(η, ω) exp(λη)dη − λIn , B(ω)

]
= n.

The following assertion is a direct consequence of the results of [35].

Proposition 2.2. Let the assumption (A) be valid. Then, for each ω ∈ [ω1, ω2],
the system (2.1) is L2-stabilizable.
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Lemma 2.3. Let the assumption (A) be valid. Then, for each ω ∈ [ω1, ω2], the
set of equations (2.5)-(2.7) subject to the boundary conditions (2.8) has the unique
solution

{
P (ω), Q(η, ω), R(η, χ, ω), (η, χ) ∈ [−h, 0]× [−h, 0]

}
such that:

(i) the matrix

(2.11)

(
P (ω) Q(χ, ω)(
Q(η, ω)

)T
R(η, χ, ω)

)
defines a linear bounded self-adjoint nonnegative operator mapping the space
M[−h, 0;n] into itself;

(ii) the matrix P (ω) is positive definite;
(iii) the matrix-valued function Q(η, ω) is piece-wise absolutely continuous in

η ∈ [−h, 0] with the bounded jumps at η = −hj, (j = 1, ..., N − 1);
(iv) the matrix-valued function R(η, χ, ω) is piece-wise absolutely continuous in

η ∈ [−h, 0] and in χ ∈ [−h, 0] with the bounded jumps at η = −hj1 and
χ = −hj2, (j1 = 1, ..., N − 1; j2 = 1, ..., N − 1);

(v) the unique state-feedback optimal control in the problem (2.1)-(2.3) has the
form

(2.12) u = u∗ω(xt) = −BT (ω)

[
P (ω)x(t) +

∫ 0

−h
Q(η, ω)x(t+ η)dη

]
;

(vi) the optimal value J∗(ω) of the cost functional (2.3) has the form

J∗(ω) = xT0 P (ω)x0 + 2xT0

∫ 0

−h
Q(η, ω)φ(η)dη

+

∫ 0

−h

∫ 0

−h
φT (η)R(η, ρ, ω)φ(ρ)dηdρ;(2.13)

(vii) the closed-loop system (2.1),(2.12) is L2-stable, implying that all roots λ(ω)
of the equation

det
[
λIn −

(
A0(ω)− S(ω)P (ω)

)
−

N∑
j=1

Aj(ω) exp(−λhj)

−
∫ 0

−h

(
G(η, ω)− S(ω)Q(η, ω)

)
exp(λη)dη

]
= 0(2.14)

satisfy the inequality

(2.15) Reλ(ω) < −2γ(ω), ω ∈ [ω1, ω2],

where γ(ω) > 0 is some function of ω.

Proof. The statements of the lemma immediately follow from Proposition 2.2 and
the results of [4]. □
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2.3. Objectives of the paper. The objectives of the paper are the following:

(I) to establish a continuity with respect to ω of the solution to the set (2.5)-
(2.7),(2.8);

(II) to establish a first-order smoothness with respect to ω of the solution to the
set (2.5)-(2.7),(2.8);

(III) to establish a first-order smoothness with respect to ω of the state-feedback
optimal control in the problem (2.1)-(2.3);

(IV) to establish a first-order smoothness with respect to ω of the optimal tra-
jectory in the problem (2.1)-(2.3);

(V) to establish a first-order smoothness with respect to ω of the optimal value
of the cost functional in the problem (2.1)-(2.3).

3. Auxiliary Lemmas

Consider two quasi-polynomial equations with respect to λ

(3.1) det

[
λIn −

N∑
j=0

Aj exp(−λhj)−
∫ 0

−h
G(η) exp(λη)dη

]
= 0,

(3.2) det

[
λIn−

N∑
j=0

(
Aj+∆Aj

)
exp(−λhj)−

∫ 0

−h

(
G(η)+∆G(η)

)
exp(λη)dη

]
= 0,

where Aj , ∆Aj , (j = 0, ..., N), G(η), ∆G(η) are matrices of the dimension n×n; the
matrix-valued functions G(η) and ∆G(η) are piece-wise continuous in the interval
[−h, 0].

Lemma 3.1. Let all roots λ of the equation (3.1) satisfy the inequality Reλ < −2β,
where β > 0 is some constant. Then, there exists a positive number ν such that for
all ∆Aj, (j = 0, ..., N) and ∆G(η), η ∈ [−h, 0], satisfying the inequalities

(3.3)
∥∥∆Aj

∥∥ ≤ ν, j = 0, ..., N ;
∥∥∆G(η)

∥∥ ≤ ν, η ∈ [−h, 0],

all roots λ∆ of the equation (3.2) satisfy the inequality Reλ∆ < −2β.

Proof. We prove the lemma by contradiction, i.e., we assume that the statement of
the lemma is wrong. This means the existence of the sequences {νk}, {∆Aj,k}, (j =
0, 1, ..., N), {∆Gk(η)} and {λ∆,k} with the following properties: (a) νk > 0, (k =
1, 2, ...), and limk→+∞ νk = 0; (b) the n× n-matrices ∆Aj,k satisfy the inequalities∥∥∆Aj,k

∥∥ ≤ νk, (j = 0, 1, ..., N ; k = 1, 2, ...); (c) the n × n-matrix-valued functions
∆Gk(η) are piece-wise continuous in the interval [−h, 0] and satisfy the inequalities∥∥∆Gk(η)

∥∥ ≤ νk, η ∈ [−h, 0], (k = 1, 2, ...); (d) Reλ∆,k ≥ −2β, (k = 1, 2, ...); (e) λ∆,k

is a root of the equation (3.2) with ∆Aj = ∆Aj,k, ∆G(η) = ∆Gk(η), (k = 1, 2, ...).
The following two cases can be distinguished with respect to the sequence {λ∆,k}:

(i) {λ∆,k} is bounded; (ii) {λ∆,k} is unbounded. We start with the case (i). In this
case, there exists a convergent subsequence of {λ∆,k}. For the sake of simplicity
(but without a loss of generality), we assume that the sequence {λ∆,k} itself is
convergent. Let λ̄∆ = limk→+∞ λ∆,k. Due to the above mentioned property (d),
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Reλ̄∆ ≥ −2β. Substitution of ∆Aj = ∆Aj,k, ∆G(η) = ∆Gk(η), λ = λ∆,k into (3.2),
followed by calculation of the limit of the resulting equality for k → +∞, yields:

(3.4) det

λ̄∆In −
N∑
j=0

Aj exp(−λ̄∆hj)−
∫ 0

−h
G(η) exp(λ̄∆η)dη

 = 0.

The latter means that λ̄∆ is a root of the equation (3.1). Thus, due to the assump-
tion of the lemma on the roots of this equation, we obtain that Reλ̄∆ < −2β. This
contradicts the above obtained inequality Reλ̄∆ ≥ −2β.

Proceed to the case (ii) where the sequence {λ∆,k} is unbounded. In this case,
there exists a subsequence of {λ∆,k}, modules of elements of which tend to infinity.
Similarly to the case (i), we assume that {λ∆,k} itself is such a subsequence, i.e.,
limk→+∞ |λ∆,k| = +∞. By substituting ∆Aj = ∆Aj,k, ∆G(η) = ∆Gk(η), λ = λ∆,k

into (3.2), dividing the resulting equality by
(
λ∆,k

)n
and, then, calculating the limit

of the last equality as k → +∞, one obtains the contradiction (−1)n = 0.
The contradictions, obtained in the cases (i) and (ii), prove the lemma. □

Consider the initial-value problem with respect to the n× n-matrix-valued func-
tion Φ(t)

(3.5)
dΦ(t)

dt
=

N∑
j=0

Hj(ω)Φ(t− hj) +

∫ 0

−h
K(η, ω)Φ(t+ η)dη, t ≥ 0,

(3.6) Φ(η) = 0, η ∈ [−h, 0); Φ(0) = In,

where Hj(ω), (j = 0, ..., N) and K(η, ω) are n × n-matrix-valued functions, given
for η ∈ [−h, 0] and ω ∈ [ω1, ω2]; Hj(ω), (j = 0, ..., N) are continuously differentiable
with respect to ω ∈ [ω1, ω2]; the function K(η, ω) is piecewise continuous with
respect to η ∈ [−h, 0] for each ω ∈ [ω1, ω2], and its partial derivative ∂K(η, ω)/∂ω
is continuous with respect to ω ∈ [ω1, ω2] uniformly in η ∈ [−h, 0].

Due to the results of [5], for any ω ∈ [ω1, ω2], the problem (3.5)-(3.6) has the
unique locally absolutely continuous solution Φ(t) = Φ(t, ω), t ≥ 0.

Consider the quasi-polynomial equation with respect to λ

(3.7) det

[
λIn −

N∑
j=0

Hj(ω) exp(−λhj)−
∫ 0

−h
K(η, ω) exp(λη)dη

]
= 0,

Lemma 3.2. Let for any ω ∈ [ω1, ω2], all roots λ(ω) of the equation (3.7) satisfy
the inequality

(3.8) λ(ω) < −2κ(ω),

where κ(ω) > 0 is some function of ω ∈ [ω1, ω2]. Then, there exists a positive
number κ̄ such that all these roots satisfy the inequality

(3.9) λ(ω) < −2κ̄ ∀ω ∈ [ω1, ω2].

Proof. Using the above mentioned smoothness of Hj(ω) and K(η, ω) with respect to
ω ∈ [ω1, ω2], the lemma is proven by contradiction similarly to the proof of Lemma
3.1. □
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Let ω0 be an arbitrary but fixed point in the interval [ω1, ω2], and ∆ω ̸= 0 be an
arbitrary number such that ω0 +∆ω ∈ [ω1, ω2]. Let us denote

(3.10) ∆Φ(t) = Φ(t, ω0 +∆ω)− Φ(t, ω0), t ≥ 0.

Lemma 3.3. Let the condition of Lemma 3.2 be valid. Then, for all sufficiently
small |∆ω|, the matrix-valued function ∆Φ(t) satisfies the inequality

(3.11)
∥∥∆Φ(t)

∥∥ ≤ a exp(−κ̄1t)|∆ω|, t ≥ 0,

where a > 0 and 0 < κ̄1 < κ̄ are some constants independent of ∆ω.

Proof. First of all, let us note that, due to Lemma 3.2 and the results of [4], the
matrix-valued function Φ(t, ω0) satisfies the inequality

(3.12)
∥∥Φ(t, ω0)

∥∥ ≤ a1 exp(−κ̄t), t ≥ 0,

where a1 > 0 is some constant.
Denote

(3.13) ∆Hj = Hj(ω0 +∆ω)−Hj(ω0),

(3.14) ∆K(η) = K(η, ω0 +∆ω)−K(η, ω0), η ∈ [−h, 0].

Due to the smoothness of of Hj(ω) and K(η, ω) with respect to ω ∈ [ω1, ω2], we
obtain the inequalities for all sufficiently small |∆ω|:
(3.15)

∥∥∆Hj

∥∥ ≤ a2|∆ω|, j = 0, 1, ..., N ;
∥∥∆K(η)

∥∥ ≤ a2|∆ω|, η ∈ [−h, 0],

where a2 > 0 is some constant independent of ∆ω.
Using the problem (3.5)-(3.6) at ω = ω0 and ω = ω0+∆ω, we obtain the following

initial-value problem for ∆Φ(t):

d∆Φ(t)

dt
=

N∑
j=0

Hj(ω0 +∆ω)∆Φ(t− hj)

+

∫ 0

−h
K(η, ω0 +∆ω)∆Φ(t+ η)dη +D(t), t ≥ 0,(3.16)

(3.17) ∆Φ(η) = 0, η ∈ [−h, 0],

where

(3.18) D(t) =

N∑
j=0

∆HjΦ(t− hj , ω0) +

∫ 0

−h
∆K(η)Φ(t+ η, ω0)dη, t ≥ 0.

Using inequalities (3.12),(3.15) and the initial conditions (3.6), we immediately have
for all sufficiently small |∆ω|
(3.19)

∥∥D(t)
∥∥ ≤ a3 exp(−κ̄t)|∆ω|, t ≥ 0,

where a3 > 0 is some constant independent of ∆ω.
Now, by virtue of the variation-of-constant formula (see e.g. [5]), we obtain the

unique solution of the problem (3.16)-(3.17)

(3.20) ∆Φ(t) =

∫ t

0
Θ(t− s,∆ω)D(s)ds, t ≥ 0,
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where the n×n-matrix-valued function Θ(t,∆ω) is the unique solution of the initial-
value problem

dΘ(t,∆ω)

dt
=

N∑
j=0

Hj(ω0 +∆ω)Θ(t− hj ,∆ω)

+

∫ 0

−h
K(η, ω0 +∆ω)Θ(t+ η,∆ω)dη, t ≥ 0,(3.21)

(3.22) Θ(η,∆ω) = 0, η ∈ [−h, 0); Θ(0,∆ω) = In.

Consider the following quasi-polynomial equation with respect to λ, which is the
characteristic equation of the delay differential equation (3.21):

(3.23) det

[
λIn−

N∑
j=0

Hj(ω0+∆ω) exp(−λhj)−
∫ 0

−h
K(η, ω0+∆ω) exp(λη)dη

]
= 0.

Due to the inequalities (3.15), and Lemmas 3.1 and 3.2, we obtain that all roots
λ(∆ω) of (3.23) satisfy the inequality Reλ(∆ω) ≤ −2κ̄ for all sufficiently small ∆ω.
The latter, along with the results of [4], yields for such ∆ω the inequality

(3.24)
∥∥Θ(t,∆ω)

∥∥ ≤ a4 exp(−κ̄t), t ≥ 0,

where a4 > 0 is some constant independent of ∆ω.
Now, the statement of the lemma (the inequality (3.11)) follows immediately from

the equation (3.20) and the inequalities (3.19),(3.24). □
Corollary 3.4. Let the condition of Lemma 3.2 be valid. Then, the solution Φ(t, ω)
of the problem (3.5)-(3.6) is continuous with respect to ω ∈ [ω1, ω2] uniformly in
t ∈ [0,+∞).

Proof. The corollary is a direct consequence of Lemmas 3.2 and 3.3. □
Corollary 3.5. Let the condition of Lemma 3.2 be valid. Then, the derivative
∂Φ(t, ω)/∂ω exists and is continuous with respect to ω ∈ [ω1, ω2] uniformly in t ∈
[0,+∞).

Proof. In the proof of this corollary, we use the notations introduced in the proof
of Lemma 3.3.

Applying Corollary 3.4 to the problem (3.21)-(3.22), we obtain that
lim∆ω→0Θ(t,∆ω) exists and satisfies the initial-value problem, obtained from (3.21)-
(3.22) by setting there ∆ω = 0. Thus,

(3.25) lim
∆ω→0

Θ(t,∆ω) = Φ(t, ω0).

Now, dividing the equation (3.20) by ∆ω, calculating the limit of the resulting
equality for ∆ω → 0 and using the equations (3.18),(3.25), we obtain

∂Φ(t, ω0)

∂ω
= lim

∆ω→0

∆Φ(t)

∆ω
=

∫ t

0
Φ(t− s, ω0)

[
N∑
j=0

dHj(ω0)

dω
Φ(s− hj , ω0)

+

∫ 0

−h

∂K(η, ω0)

∂ω
Φ(s+ η, ω0)dη

]
ds, t ≥ 0.(3.26)
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Since ω0 is an arbitrary point of the interval [ω1, ω2], the equation (3.26) is valid
for all ω ∈ [ω1, ω2]. This observation, along with Corollary 3.4, directly yields the
statement of the corollary. □

4. Main Lemmas

4.1. Continuity with respect to the parameter of the solution to the set
(2.5)-(2.7),(2.8).

Lemma 4.1. Let the assumption (A) be valid. Then, the matrices P (ω), Q(η, ω),
R(η, χ, ω), constituting the solution of the set (2.5)-(2.7),(2.8), are continuous func-
tions of ω ∈ [ω1, ω2] uniformly in (η, χ) ∈ [−h, 0]× [−h, 0].

Proof. Let ω0 be an arbitrary but fixed point in the interval [ω1, ω2], and ∆ω ̸= 0
be an arbitrary number such that ω0 +∆ω ∈ [ω1, ω2]. Let us denote

∆Aj = Aj(ω0 +∆ω)−Aj(ω0), j = 0, 1, ..., N,

∆S = S(ω0 +∆ω)− S(ω0), ∆G(η) = G(η, ω0 +∆ω)−G(η, ω0),(4.1)

∆P = P (ω0 +∆ω)− P (ω0),

∆Q(η) = Q(η, ω0 +∆ω)−Q(η, ω0)− P (ω0)∆AN ,

∆R(η, χ) = R(η, χ, ω0 +∆ω)−R(η, χ, ω0)−QT (η, ω0)∆AN

−
(
∆AN

)T
Q(χ, ω0)−

(
∆AN

)T
P (ω0)∆AN .(4.2)

Using the set of equations (2.5)-(2.7) at ω = ω0 and ω = ω0 +∆ω, we obtain the
following problem for ∆P , ∆Q(η), ∆R(η, χ):

(4.3) ∆Pα(ω0) + αT (ω0)∆P +∆Q(0) +
(
∆Q(0)

)T
+ΥP (∆P ) = 0,

d∆Q(η)

dη
= αT (ω0)∆Q(η) + ∆Pθ(η, ω0)

+

N−1∑
j=1

∆PAj(ω0)δ(η + hj) + ∆R(0, η) + ΥQ

(
∆P,∆Q(η)

)
,(4.4)

(
∂

∂η
+

∂

∂χ

)
∆R(η, χ) =

(
∆Q(η)

)T
θ(χ, ω0)

+θT (η, ω0)∆Q(χ) +
N−1∑
j=1

AT
j (ω0)∆Q(χ)δ(η + hj)

+

N−1∑
j=1

(
∆Q(η)

)T
Aj(ω0)δ(χ+ hj) + ΥR

(
∆Q(η),∆Q(χ)

)
,(4.5)

∆Q(−h) = ∆P
(
AN (ω0) + ∆AN

)
,

∆R(−h, η) =
(
AN (ω0) + ∆AN

)T
∆Q(η),

∆R(η,−h) =
(
∆Q(η)

)T (
AN (ω0) + ∆AN

)
,(4.6)
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where

(4.7) α(ω) = A0(ω)− S(ω)P (ω), θ(η, ω) = G(η, ω)− S(ω)Q(η, ω),

ΥP (∆P ) =
(
P (ω0) + ∆P

)
∆A0 +

(
∆A0

)T (
P (ω0) + ∆P

)
−
(
P (ω0) + ∆P

)
∆S
(
P (ω0) + ∆P

)
−∆PS(ω0)∆P

−P (ω0)∆AN −
(
∆AN

)T
P (ω0),(4.8)

ΥQ

(
∆P,∆Q(η)

)
=

[
∆A0 −∆S

(
P (ω0) + ∆P

)]T (
Q(η, ω0) + ∆Q(η)

)
−∆PS(ω0)∆Q(η) +

(
P (ω0) + ∆P

)
∆G(η)

+

N−1∑
j=1

(
P (ω0) + ∆P

)
∆Ajδ(η + hj) + αT (ω0)P (ω0)∆AN ,(4.9)

ΥR

(
∆Q(η),∆Q(χ)

)
=

(
∆G(η)

)T (
Q(χ, ω0) + ∆Q(χ)

)
+
(
Q(η, ω0) + ∆Q(η)

)T
∆G(χ)

+
N−1∑
j=1

(
∆Aj

)T (
Q(χ, ω0) + ∆Q(χ)

)
δ(η + hj)

+

N−1∑
j=1

(
Q(η, ω0) + ∆Q(η)

)T
∆Ajδ(χ+ hj)

−
(
∆Q(η)

)T
S(ω0)∆Q(χ)

−
(
Q(η, ω0) + ∆Q(η)

)T
∆S
(
Q(χ, ω0) + ∆Q(χ)

)
+

(
dQ(η, ω0)

dη

)T

∆AN +
(
∆AN

)T dQ(χ, ω0)

dχ

+
(
∆AN

)T
P (ω0)θ(χ, ω0) + θT (η, ω0)P (ω0)∆AN

+
N−1∑
j=1

AT
j (ω0)P (ω0)∆ANδ(η + hj)

+

N−1∑
j=1

(
∆AN

)T
P (ω0)Aj(ω0)δ(χ+ hj).(4.10)

By virtue of the results of [4], we can rewrite the problem (4.3)-(4.6) in the
equivalent integral form

∆P =

∫ +∞

0

[
LT (σ, ω0,∆ω)ΥP (∆P )L(σ, ω0,∆ω)

+

∫ 0

−h
LT (σ, ω0,∆ω)ΥQ

(
∆P,∆Q(η)

)
L(σ + η, ω0,∆ω)dη

+

∫ 0

−h
LT (σ + η, ω0,∆ω)ΥT

Q

(
∆P,∆Q(η)

)
L(σ, ω0,∆ω)dη
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+

∫ 0

−h

∫ 0

−h
LT (σ + η, ω0,∆ω)ΥR

(
∆Q(η),∆Q(χ)

)
×L(σ + χ, ω0,∆ω)dηdχ

]
dσ,(4.11)

∆Q(η) =

∫ +∞

0

[
LT (σ, ω0,∆ω)ΥP (∆P )L̃(σ, η, ω0,∆ω)

+

∫ 0

−h
LT (σ, ω0,∆ω)ΥQ

(
∆P,∆Q(χ)

)
L̃(σ + χ, η, ω0,∆ω)dχ

+

∫ 0

−h
LT (σ + χ, ω0,∆ω)ΥT

Q

(
∆P,∆Q(χ)

)
L̃(σ, η, ω0,∆ω)dχ

+

∫ 0

−h

∫ 0

−h
LT (σ + χ, ω0,∆ω)ΥR

(
∆Q(χ),∆Q(χ1)

)
×L̃(σ + χ1, η, ω0,∆ω)dχdχ1

]
dσ

+

∫ η+h

0

[
LT (σ, ω0,∆ω)ΥQ

(
∆P,∆Q(η − σ)

)
+

∫ 0

−h
LT (σ + χ, ω0,∆ω)ΥR

(
∆Q(χ),∆Q(η − σ)

)
dχ

]
dσ,(4.12)

∆R(η, χ) =

∫ +∞

0

[
L̃ T (σ, η, ω0,∆ω)ΥP (∆P )L̃(σ, χ, ω0,∆ω)

+

∫ 0

−h
L̃ T (σ, η, ω0,∆ω)ΥQ

(
∆P,∆Q(χ1)

)
L̃(σ + χ1, χ, ω0,∆ω)dχ1

+

∫ 0

−h
L̃ T (σ + χ1, η, ω0,∆ω)ΥT

Q

(
∆P,∆Q(χ1)

)
L̃(σ, χ, ω0,∆ω)dχ1

+

∫ 0

−h

∫ 0

−h
L̃ T (σ + χ1, η, ω0,∆ω)ΥR

(
∆Q(χ1),∆Q(χ2)

)
×L̃(σ + χ2, χ, ω0,∆ω)dχ1dχ2

]
dσ

+

∫ η+h

0

[
ΥT

Q

(
∆P,∆Q(η − σ))L̃(σ, χ, ω0,∆ω)

+

∫ 0

−h
ΥR

(
∆Q(χ1),∆Q(η − σ)

)
L̃(σ + χ1, χ, ω0,∆ω)dχ1

]
dσ

+

∫ χ+h

0

[
L̃ T (σ, η, ω0,∆ω)ΥQ

(
∆P,∆Q(χ− σ)

)
+

∫ 0

−h
L̃ T (σ + χ1, η, ω0,∆ω)ΥR

(
∆Q(χ1),∆Q(χ− σ))dχ1

]
dσ
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+

∫ min(η+h,χ+h)

0
ΥR

(
∆Q(η − σ),∆Q(χ− σ)

)
dσ,(4.13)

where L(σ, ω0,∆ω) is the solution of the problem

dL(σ, ω0,∆ω)

dσ
= α(ω0)L(σ, ω0,∆ω) +

N−1∑
j=1

Aj(ω0)L(σ − hj , ω0,∆ω)

+AN (ω0 +∆ω)L(σ − hN , ω0,∆ω)

+

∫ 0

−h
θ(η, ω0)L(σ + η, ω0,∆ω)dη, σ > 0,

(4.14) L(0, ω0,∆ω) = In, L(σ, ω0,∆ω) = 0 ∀σ < 0,

and L̃(σ, η, ω0,∆ω) is defined as follows:

L̃(σ, η, ω0,∆ω)
△
=

N−1∑
j=1

{
L(σ − η − hj , ω0,∆ω)Aj(ω0), η − σ < −hj ≤ η
0, otherwise

}

+

{
L(σ − η − h, ω0,∆ω)AN (ω0 +∆ω), η − σ < −h ≤ η
0, otherwise

}
+

∫ h

−η
L(σ − η − χ, ω0,∆ω)θ(−χ, ω0)dχ, σ ≥ 0, η ∈ [−h, 0].(4.15)

Using Lemmas 2.3 and 3.1, the equation (4.7) and the continuity of AN (ω), we
obtain that, for all sufficiently small |∆ω|, all roots λ of the equation

(4.16) det
[
λIn − α(ω0)−

N−1∑
j=1

Aj(ω0) exp(−λhj)

−AN (ω0 +∆ω) exp(−λh)−
∫ 0

−h
θ(η, ω0) exp(λη)dη

]
= 0

satisfy the inequality

(4.17) Reλ < −2γ(ω0).

The latter, along with the results of [4], and the equations (4.14) and (4.15), yields
the following inequalities for all sufficiently small |∆ω|, and all σ ≥ 0, η ∈ [−h, 0]:∥∥L(σ, ω0,∆ω)

∥∥ ≤ a exp
(
− γ(ω0)σ

)
,∥∥L̃(σ, η, ω0,∆ω)

∥∥ ≤ a exp
(
− γ(ω0)σ

)
,(4.18)

where a > 0 is some constant independent of ∆ω.
Due to the smooth dependence of Aj(ω), (j = 0, 1, ..., N), G(η, ω) and S(ω) on

the parameter ω, we have the following inequalities for all sufficiently small |∆ω|:∥∥∆Aj

∥∥ ≤ a|∆ω|, j = 0, 1, ..., N,∥∥∆S
∥∥ ≤ a|∆ω|,

∥∥∆G(η)
∥∥ ≤ a|∆ω|, η ∈ [−h, 0],(4.19)

where a > 0 is some constant independent of ∆ω.
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Now, applying the procedure of successive approximations with zero initial ap-
proximation to the set (4.11)-(4.13), and using the equations (4.7)-(4.10) and the
inequalities (4.18)-(4.19), one can show after a routine algebra that for all suffi-
ciently small |∆ω| there exists the unique solution

{
∆P, ∆Q(η), ∆R(η, χ)

}
of this

set, such that the matrix

(4.20)

(
∆P ∆Q(χ)(
∆Q(η)

)T
∆R(η, χ)

)
defines a linear bounded self-adjoint operator mapping the space M[−h, 0;n] into
itself. Moreover, the following inequality is satisfied:

max
[∥∥∆P

∥∥, ∥∥∆Q(η)
∥∥, ∥∥∆R(η, χ)

∥∥] ≤ a∆ω,

(η, χ) ∈ [−h, 0]× [−h, 0],(4.21)

where a > 0 is some constant independent of ∆ω.
Since (4.11)-(4.13) is a set of nonlinear equations and may have multiple

solutions, we must show that its solution, satisfying (4.21), indeed satisfies
the equation (4.2), where

{
P (ω0 + ∆ω), Q(η, ω0 + ∆ω), R(η, χ, ω0 + ∆ω)

}
and{

P (ω0), Q(η, ω0), R(η, χ, ω0)
}
are the solutions of the set (2.5)-(2.8) at the param-

eter values ω = ω0 +∆ω and ω = ω0, satisfying Lemma 2.3.
Consider the matrices

P̃
△
= P (ω0) + ∆P, Q̃(η)

△
= Q(η, ω0) + ∆Q(η) + P (ω0)∆AN ,

R̃(η, χ)
△
= R(η, χ, ω0) + ∆R(η, χ) +QT (η, ω0)∆AN

+
(
∆AN

)T
Q(χ, ω0) +

(
∆AN

)T
P (ω0)∆AN .(4.22)

It is clear that the triplet
{
P̃ , Q̃(η), R̃(η, χ)

}
satisfies the set (2.5)-(2.7),(2.8) for

ω = ω0 +∆ω, i.e.,

(4.23) P̃A0(ω0+∆ω)+AT
0 (ω0+∆ω)P̃ − P̃S(ω0+∆ω)P̃ + Q̃(0)+ Q̃T (0)+ In = 0,

dQ̃(η)

dη
=

(
AT

0 (ω0 +∆ω)− P̃S(ω0 +∆ω)
)
Q̃(η) + P̃G(η, ω0 +∆ω)

+

N−1∑
j=1

P̃Aj(ω0 +∆ω)δ(η + hj) + R̃(0, η),

(4.24)(
∂

∂η
+

∂

∂χ

)
R̃(η, χ) = GT (η, ω0 +∆ω)Q̃(χ)

+Q̃ T (η)G(χ, ω0 +∆ω) +
N−1∑
j=1

AT
j (ω0 +∆ω)Q̃(χ)δ(η + hj)

+

N−1∑
j=1

Q̃ T (η)Aj(ω0 +∆ω)δ(χ+ hj)

−Q̃ T (η)S(ω0 +∆ω)Q̃(χ),(4.25)
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Q̃(−h) = P̃AN (ω0 +∆ω),

R̃(−h, η) = AT
N (ω0 +∆ω)Q̃(η), R̃(η,−h) = Q̃ T (η)AN (ω0 +∆ω),(4.26)

where η ∈ [−h, 0], χ ∈ [−h, 0].
The set (4.23)-(4.25) is transformed equivalently as:

(4.27) P̃ α̃+ α̃T P̃ + In + Υ̃P = 0,

dQ̃(η)

dη
= α̃T Q̃(η) + P̃ θ̃(η)

+
N−1∑
j=1

P̃Aj(ω0 +∆ω)δ(η + hj) + R̃(0, η) + Υ̃Q(η),(4.28)

(
∂

∂η
+

∂

∂χ

)
R̃(η, χ) = θ̃T (η)Q̃(χ)

+Q̃ T (η)θ̃(χ) +

N−1∑
j=1

AT
j (ω0 +∆ω, 0)Q̃(χ)δ(η + hj)

+
N−1∑
j=1

Q̃ T (η)Aj(ω0 +∆ω, 0)δ(χ+ hj) + Υ̃R(η, χ),(4.29)

where α̃ = A0(ω0+∆ω)−S(ω0+∆ω)P̃ , θ̃(η) = G(η, ω0+∆ω)−S(ω0+∆ω)Q̃(η),

Υ̃P = P̃S(ω0 + ∆ω)P̃ , Υ̃Q(η) = P̃S(ω0 + ∆ω)Q̃(η), Υ̃R(η, χ) = Q̃ T (η)
)
S(ω0 +

∆ω)Q̃(χ).

Consider the following quasi-polynomial equation with respect to λ̃:

(4.30) det

[
λ̃In − α̃−

N∑
j=1

Aj(ω0 +∆ω) exp(−λ̃hj)−
∫ 0

−h
θ̃(η) exp(λ̃η)dη

]
= 0.

Due to Lemma 2.3, all roots λ̃ of this equation satisfy the inequality

(4.31) Reλ̃ < −2γ(ω0 +∆ω).

Also, consider the operator, defined by the matrix

(4.32)

 Υ̃P Υ̃Q(χ)

Υ̃T
Q(η) Υ̃R(η, χ)

 ,

and mapping the space M[−h, 0;n] into itself. Since S(ω0+∆ω) is a symmetric and
positive semi-definite matrix, then this operator is self-adjoint and non-negative.

Now, based on the inequality (4.31) and the properties of the operator defined
by (4.32), we obtain by virtue of the results of [4] that the set (4.27)-(4.29),(4.26)

has the unique solution
{
P̃ , Q̃(η), R̃(η, χ)

}
, (η, χ) ∈ [−h, 0] × [−h, 0]. Moreover,
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the operator, defined by the matrix

(4.33)

 P̃ Q̃(χ)

Q̃ T (η) R̃(η, χ)

 ,

and mapping the space M[−h, 0;n] into itself, is self-adjoint and non-negative.
Note that the set (4.27)-(4.29),(4.26) is equivalent to the set (4.23)-(4.25), (4.26).

Moreover, the latter coincides with the set (2.5)-(2.7),(2.8) for ω = ω0+∆ω. There-

fore, by the above mentioned properties of the solution
{
P̃ , Q̃(η), R̃(η, χ)

}
to the

set (4.27)-(4.29),(4.26), and by virtue of Lemma 2.3, we immediately have that for
all (η, χ) ∈ [−h, 0]× [−h, 0]:

(4.34) P̃ = P (ω0 +∆ω), Q̃(η) = Q(η, ω0 +∆ω), R̃(η, χ) = R(η, χ, ω0 +∆ω).

These equalities, along with the equation (4.2) and the inequality (4.21), imply
the continuity of the matrix-valued functions P (ω), Q(η, ω), R(η, χ, ω) with respect
to ω at ω = ω0 uniformly in (η, χ) ∈ [−h, 0] × [−h, 0]. Since ω0 is any point
of the interval [ω1, ω2], then P (ω), Q(η, ω), R(η, χ, ω) are continuous functions of
ω ∈ [ω1, ω2] uniformly in (η, χ) ∈ [−h, 0]× [−h, 0]. This completes the proof of the
lemma. □

4.2. Smoothness with respect to the parameter of the solution to the set
(2.5)-(2.7),(2.8).

Lemma 4.2. Let the assumption (A) be valid. Then, the derivatives dP (ω)/dω,
∂Q(η, ω)/∂ω, ∂R(η, χ, ω)/∂ω exist and are continuous functions of ω ∈ [ω1, ω2]
uniformly in (η, χ) ∈ [−h, 0]× [−h, 0].

Proof. In the proof of this lemma, we use the notations introduced in the proof of
Lemma 4.1.

Let us divide the equalities (4.11)-(4.13) by ∆ω. Then, let us calculate the
limits of the resulting equalities for ∆ω → 0. Using the equations (4.1)-(4.2),(4.7)-
(4.10),(4.14)-(4.15) and the inequalities (4.19),(4.21), we obtain that the derivatives
dP (ω0)/dω, ∂Q(ω0, η)/∂ω, ∂R(ω0, η, χ)/∂ω exist for any pair (η, χ) ∈ [−h, 0] ×
[−h, 0], and these derivatives have the form

dP (ω0)

dω
= lim

∆ω→0

∆P

∆ω

=

∫ +∞

0

[
LT
lim(σ, ω0)ΠP (ω0)Llim(σ, ω0)

+

∫ 0

−h
LT
lim(σ, ω0)ΠQ(η, ω0)Llim(σ + η, ω0)dη

+

∫ 0

−h
LT
lim(σ + η, ω0)Π

T
Q(η, ω0)Llim(σ, ω0)dη

+

∫ 0

−h

∫ 0

−h
LT
lim(σ + η, ω0)ΠR(η, χ, ω0)Llim(σ + χ, ω0)dηdχ

]
dσ,(4.35)
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∂Q(η, ω0)

∂ω
= lim

∆ω→0

∆Q(η)

∆ω
+ P (ω0)

dAN (ω0)

dω

=

∫ +∞

0

[
LT
lim(σ, ω0)ΠP (ω0)L̃lim(σ, η, ω0)

+

∫ 0

−h
LT
lim(σ, ω0)ΠQ(χ, ω0)L̃lim(σ + χ, η, ω0)dχ

+

∫ 0

−h
LT
lim(σ + χ, ω0)Π

T
Q(χ, ω0)L̃lim(σ, η, ω0)dχ

+

∫ 0

−h

∫ 0

−h
LT
lim(σ + χ, ω0)ΠR(χ, χ1, ω0)L̃lim(σ + χ1, η, ω0)dχdχ1

]
dσ

+

∫ η+h

0

[
LT
lim(σ, ω0)ΠQ(η − σ, ω0)

+

∫ 0

−h
LT
lim(σ + χ, ω0)ΠR

(
χ, η − σ, ω0)dχ

]
dσ + P (ω0)

dAN (ω0)

dω
,(4.36)

∂R(η, χ, ω0)

∂ω
= lim

∆ω→0

∆R(η, χ)

∆ω
+QT (η, ω0)

dAN (ω0)

dω

+

(
dAN (ω0)

dω

)T

Q(χ, ω0)

=

∫ +∞

0

[
L̃ T

lim(σ, η, ω0)ΠP (ω0)L̃lim(σ, χ, ω0)

+

∫ 0

−h
L̃ T

lim(σ, η, ω0)ΠQ(χ1, ω0)L̃lim(σ + χ1, χ, ω0)dχ1

+

∫ 0

−h
L̃ T

lim(σ + χ1, η, ω0)Π
T
Q(χ1, ω0)L̃lim(σ, χ, ω0)dχ1

+

∫ 0

−h

∫ 0

−h
L̃ T

lim(σ + χ1, η, ω0)ΠR

(
χ1, χ2, ω0)

×L̃lim(σ + χ2, χ, ω0)dχ1dχ2

]
dσ

+

∫ η+h

0

[
ΠT

Q(η − σ, ω0)L̃lim(σ, χ, ω0)

+

∫ 0

−h
ΠR(χ1, η − σ, ω0)L̃lim(σ + χ1, χ, ω0)dχ1

]
dσ

+

∫ χ+h

0

[
L̃ T

lim(σ, η, ω0)ΠQ

(
χ− σ, ω0)

+

∫ 0

−h
L̃ T

lim(σ + χ1, η, ω0)ΠR(χ1, χ− σ, ω0)dχ1

]
dσ

+

∫ min(η+h,χ+h)

0
ΠR(η − σ, χ− σ, ω0)dσ
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+QT (η, ω0)
dAN (ω0)

dω
+

(
dAN (ω0)

dω

)T

Q(χ, ω0),(4.37)

where

ΠP (ω) = P (ω)
dA0(ω)

dω
+

(
dA0(ω)

dω

)T

P (ω)− P (ω)
dS(ω)

dω
P (ω)

−P (ω)
dAN (ω)

dω
−
(
dAN (ω)

dω

)T

P (ω),(4.38)

ΠQ(η, ω) =

[
dA0(ω)

dω
− dS(ω)

dω
P (ω)

]T
Q(η, ω) + P (ω)

∂G(η, ω)

∂ω

+
N−1∑
j=1

P (ω)
dAj(ω)

dω
δ(η + hj) + αT (ω)P (ω)

dAN (ω)

dω
,(4.39)

ΠR(η, χ, ω) =

(
∂G(η, ω)

∂ω

)T

Q(χ, ω) +QT (η, ω)
∂G(χ, ω)

∂ω

+

N−1∑
j=1

(
dAj(ω)

dω

)T

Q(χ, ω)δ(η + hj)

+
N−1∑
j=1

QT (η, ω)
dAj(ω)

dω
δ(χ+ hj)

−QT (η, ω)
dS(ω)

dω
Q(χ, ω)

+

(
dQ(η, ω)

dη

)T dAN (ω)

dω
+

(
dAN (ω)

dω

)T dQ(χ, ω)

dχ

+

(
dAN (ω)

dω

)T

P (ω)θ(χ, ω) + θT (η, ω)P (ω)
dAN (ω)

dω

+
N−1∑
j=1

AT
j (ω)P (ω)

dAN (ω)

dω
δ(η + hj)

+

N−1∑
j=1

(
dAN (ω)

dω

)T

P (ω)Aj(ω)δ(χ+ hj),(4.40)

Llim(σ, ω) is the solution of the problem

dLlim(σ, ω)

dσ
= α(ω)Llim(σ, ω) +

N∑
j=1

Aj(ω)Llim(σ − hj , ω)

+

∫ 0

−h
θ(η, ω)Llim(σ + η, ω)dη, σ > 0,

(4.41) Llim(0, ω) = In, Llim(σ, ω) = 0 ∀σ < 0,
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and L̃lim(σ, η, ω) is defined as follows:

L̃lim(σ, η, ω)
△
=

N∑
j=1

{
Llim(σ − η − hj , ω)Aj(ω), η − σ < −hj ≤ η
0, otherwise

}

+

∫ h

−η
Llim(σ − η − χ, ω)θ(−χ, ω)dχ, σ ≥ 0, η ∈ [−h, 0].(4.42)

Since ω0 is any point of the interval [ω1, ω2], then the derivatives dP (ω)/dω,
∂Q(η, ω)/∂ω, ∂R(η, χ, ω)/∂ω exist for any ω ∈ [ω1, ω2] and any pair (η, χ) ∈
[−h, 0] × [−h, 0]. Now, let as show that these derivatives are continuous in ω ∈
[ω1, ω2] uniformly with respect to (η, χ) ∈ [−h, 0]× [−h, 0].

Let us denote

P(ω)
△
=

dP (ω)

dω
, Q(η, ω)

△
=

∂Q(η, ω)

∂ω
− P (ω)

dAN (ω)

dω
,

R(η, χ, ω)
△
=

∂R(η, χ, ω)

∂ω
−QT (η, ω)

dAN (ω)

dω
−
(
dAN (ω)

dω

)T

Q(χ, ω).(4.43)

Using these notations and the equations (4.35)-(4.37), we have for any ω ∈ [ω1, ω2]

P(ω) =

∫ +∞

0

[
LT
lim(σ, ω)ΠP (ω)Llim(σ, ω)

+

∫ 0

−h
LT
lim(σ, ω)ΠQ(η, ω)Llim(σ + η, ω)dη

+

∫ 0

−h
LT
lim(σ + η, ω)ΠT

Q(η, ω)Llim(σ, ω)dη

+

∫ 0

−h

∫ 0

−h
LT
lim(σ + η, ω)ΠR(η, χ, ω)Llim(σ + χ, ω)dηdχ

]
dσ,(4.44)

Q(η, ω) =

∫ +∞

0

[
LT
lim(σ, ω)ΠP (ω)L̃lim(σ, η, ω)

+

∫ 0

−h
LT
lim(σ, ω)ΠQ(χ, ω)L̃lim(σ + χ, η, ω)dχ

+

∫ 0

−h
LT
lim(σ + χ, ω)ΠT

Q(χ, ω)L̃lim(σ, η, ω)dχ

+

∫ 0

−h

∫ 0

−h
LT
lim(σ + χ, ω)ΠR(χ, χ1, ω)L̃lim(σ + χ1, η, ω)dχdχ1

]
dσ

+

∫ η+h

0

[
LT
lim(σ, ω)ΠQ(η − σ, ω)

+

∫ 0

−h
LT
lim(σ + χ, ω)ΠR

(
χ, η − σ, ω)dχ

]
dσ,(4.45)

R(η, χ, ω) =

∫ +∞

0

[
L̃ T

lim(σ, η, ω)ΠP (ω)L̃lim(σ, χ, ω)
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+

∫ 0

−h
L̃ T

lim(σ, η, ω)ΠQ(χ1, ω)L̃lim(σ + χ1, χ, ω)dχ1

+

∫ 0

−h
L̃ T

lim(σ + χ1, η, ω)Π
T
Q(χ1, ω)L̃lim(σ, χ, ω)dχ1

+

∫ 0

−h

∫ 0

−h
L̃ T

lim(σ + χ1, η, ω)ΠR

(
χ1, χ2, ω)

×L̃lim(σ + χ2, χ, ω)dχ1dχ2

]
dσ

+

∫ η+h

0

[
ΠT

Q(η − σ, ω)L̃lim(σ, χ, ω)

+

∫ 0

−h
ΠR(χ1, η − σ, ω)L̃lim(σ + χ1, χ, ω)dχ1

]
dσ

+

∫ χ+h

0

[
L̃ T

lim(σ, η, ω)ΠQ

(
χ− σ, ω)

+

∫ 0

−h
L̃ T

lim(σ + χ1, η, ω)ΠR(χ1, χ− σ, ω)dχ1

]
dσ

+

∫ min(η+h,χ+h)

0
ΠR(η − σ, χ− σ, ω)dσ,(4.46)

where Llim(σ, ω) and L̃lim(σ, η, ω) are given by (4.41) and (4.42), respectively.
Remember that in the proof of Lemma 4.1, we transformed equivalently the set

(4.3)-(4.6) to the set of integral equations (4.11)-(4.13). In the present proof, we
apply the inverse transformation of the set (4.44)-(4.46). Due to this transformation,
we obtain the following set of equations, equivalent to (4.44)-(4.46):

(4.47) P(ω)α(ω) + αT (ω)P(ω) +Q(0, ω) +QT (0, ω) + ΠP (ω) = 0,

dQ(η, ω)

dη
= αT (ω)Q(η, ω) + P(ω)θ(η, ω)

+

N−1∑
j=1

P(ω)Aj(ω)δ(η + hj) +R(0, η, ω) + ΠQ(η, ω),(4.48)

(
∂

∂η
+

∂

∂χ

)
R(η, χ, ω) = QT (η, ω)θ(χ, ω)

+θT (η, ω)Q(χ, ω) +

N−1∑
j=1

AT
j (ω)Q(χ, ω)δ(η + hj)

+

N−1∑
j=1

QT (η, ω)Aj(ω)δ(χ+ hj) + ΠR(η, χ, ω),(4.49)

Q(−h, ω) = P(ω)AN (ω),
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R(−h, η, ω) = AT
N (ω)Q(η, ω), R(η,−h, ω) = QT (η, ω)AN (ω),(4.50)

where ω ∈ [ω1, ω2] is the parameter.
Now, based on the set (4.47)-(4.50) and using the statement of Lemma 4.1, one

can show (similarly to the proof of Lemma 4.1) the continuity of P(ω), Q(η, ω),
R(η, χ, ω) in ω ∈ [ω1, ω2] uniformly with respect to (η, χ) ∈ [−h, 0]×[−h, 0]. The lat-
ter, along with the equation (4.43) implies the continuity of dP (ω)/dω, ∂Q(η, ω)/∂ω,
∂R(η, χ, ω)/∂ω in ω ∈ [ω1, ω2] uniformly with respect to (η, χ) ∈ [−h, 0] × [−h, 0].
This completes the proof of the lemma. □

5. Main Theorems

5.1. Dependence on the parameter of the state-feedback optimal control.
Based on the expression (2.12) for the state-feedback optimal control of the problem
(2.1)-(2.3), let us consider for any ω ∈ [ω1, ω2] the operator Fω : M[−h, 0;n] → En,
given as:

(5.1) Fω

(
fE , fL(η)

) △
= PF (ω)fE +

∫ 0

−h
QF (η, ω)fL(η)dη,

where

(5.2) PF (ω) = −BT (ω)P (ω), QF (η, ω) = −BT (ω)Q(η, ω),(
fE , fL(η)

)
∈ M[−h, 0;n], fE ∈ En, fL(η) ∈ L2[−h, 0;En]; P (ω) and Q(η, ω) are

the components of the unique solution to the set (2.5)-(2.8) mentioned in Lemma
2.3.

Theorem 5.1. Let the assumption (A) be valid. Then, for any given
(
fE , fL(η)

)
∈

M[−h, 0;n], the derivative dFω

(
fE , fL(η)

)
/dω of the image Fω

(
fE , fL(η)

)
exists

and is a continuous function of ω in the interval [ω1, ω2]. Moreover, for any given
bounded set S ⊂ M[−h, 0;n], this derivative is continuous in the interval [ω1, ω2]
uniformly with respect to

(
fE , fL(η)

)
∈ S.

Proof. Using the smoothness of the matrix B(ω) with respect to ω ∈ [ω1, ω2], as
well as the equation (5.2) and Lemma 4.2, we directly obtain that the derivatives
dPF (ω)/dω and ∂QF (η, ω)/∂ω exist. The first of these derivatives is continuous in
ω ∈ [ω1, ω2], and the second is continuous in ω ∈ [ω1, ω2] uniformly with respect
to η ∈ [−h, 0]. Therefore, for any given

(
fE , fL(η)

)
∈ M[−h, 0;n], the derivative

dFω

(
fE , fL(η)

)
/dω exists, has the form

(5.3)
dFω

(
fE , fL(η)

)
dω

=
dPF (ω)

dω
fE +

∫ 0

−h

∂QF (η, ω)

∂ω
fL(η)dη, ω ∈ [ω1, ω2],

and is continuous for ω ∈ [ω1, ω2].
Proceed to the proof of the second statement of the theorem. Since the set

S ⊂ M[−h, 0;n] is bounded, there exists a positive number KS such that any(
fE , fL(η)

)
∈ S satisfies the inequalities

(5.4)
∥∥fE∥∥ ≤ KS ,

∥∥fL(η)∥∥L2 ≤ KS .

Let ω0 be an arbitrary but fixed point in the interval [ω1, ω2], and ∆ω ̸= 0 be
an arbitrary number such that ω0 + ∆ω ∈ [ω1, ω2]. Using the equation (5.3), the
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inequalities (5.4) and the Cauchy-Bunyakovsky-Schwarz inequality, we obtain the
following inequality for any

(
fE , fL(η)

)
∈ S:

(5.5)∥∥∥∥∥dFω0+∆ω

(
fE , fL(η)

)
dω

−
dFω0

(
fE , fL(η)

)
dω

∥∥∥∥∥ ≤ KS

[∥∥∥∥dPF (ω0 +∆ω)

dω
− dPF (ω0)

dω

∥∥∥∥
+

(∫ 0

−h

∥∥∥∥∂QF (η, ω0 +∆ω)

∂ω
− ∂QF (η, ω0)

dω

∥∥∥∥2 dη
)1/2]

.

This inequality implies immediately the continuity of dFω

(
fE , fL(η)

)
/dω at ω = ω0

uniformly with respect to
(
fE , fL(η)

)
∈ S. The observation that ω0 is an arbitrary

point in the interval [ω1, ω2] completes the proof of the second statement of the
theorem. □

5.2. Dependence on the parameter of the optimal trajectory. Substitution
of the expression (2.12) for the state-feedback optimal control into the system (2.1)
and using (2.4) yield the system

dx(t)

dt
= α(ω)x(t) +

N∑
j=1

Aj(ω)x(t− hj)

+

∫ 0

−h
θ(η, ω)x(t+ η)dη, t ≥ 0,(5.6)

where α(ω) and θ(η, ω) are given by (4.7).
The system (5.6) and the initial conditions (2.2) constitute the initial-value prob-

lem for obtaining the optimal trajectory of the optimal control problem (2.1)-(2.3).
Due to the results of [5], for any ω ∈ [ω1, ω2], the problem (5.6),(2.2) has the unique
locally absolutely continuous solution x(t) = x(t, ω), t ≥ 0.

Theorem 5.2. Let the assumption (A) be valid. Then, the derivative ∂x(t, ω)/∂ω
exists and is continuous with respect to ω ∈ [ω1, ω2] uniformly in t ∈ [0,+∞).

Proof. Using the variation-of-constant formula (see e.g. [5]), for any ω ∈ [ω1, ω2],
we obtain the unique solution of the problem (5.6),(2.2) in the form:

(5.7) x(t, ω) = Llim(t, ω)x0(ω) +

∫ 0

−h
L̃lim(t, η, ω)φ(η, ω)dη, t ≥ 0,

Llim(t, ω) is the solution of the problem (4.41) and L̃lim(t, η, ω) is given by (4.42),
where σ is replaced with t.

Due to the equation (4.7), Lemma 2.3 (item vii, equations (2.14)-(2.15)) and
Corollaries 3.4-3.5, the functions Llim(t, ω), ∂Llim(t, ω)/∂ω are continuous with re-

spect to ω ∈ [ω1, ω2] uniformly in t ≥ 0. Therefore, the functions L̃lim(t, η, ω),

∂L̃lim(t, η, ω)/∂ω also are continuous with respect to ω ∈ [ω1, ω2] uniformly in
(t, η) ∈ [0,+∞)× [−h, 0].
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Using (5.7) and the assumptions on the smoothness of x0(ω) and φ(η, ω) with
respect to ω ∈ [ω1, ω2], we obtain

∂x(t, ω)

∂ω
=

∂Llim(t, ω)

∂ω
x0(ω) + Llim(t, ω)

dx0(ω)

dω

+

∫ 0

−h

[
∂L̃lim(t, η, ω)

∂ω
φ(η, ω) + L̃lim(t, η, ω)

∂φ(η, ω)

∂ω

]
dη,

t ≥ 0, ω ∈ [ω1, ω2].(5.8)

By virtue of Lemma 2.3 (item vii, equations (2.14)-(2.15)), as well as the proofs
of Lemma 3.3 (equation (3.12)) and Corollary 3.5 (equation (3.26)), we obtain the
following inequalities for any prechosen ω = ω0 ∈ [ω1, ω2] and all t ≥ 0:

(5.9)
∥∥Llim(t, ω0)

∥∥ ≤ c1 exp
(
− γ(ω0)t

)
,

∥∥∥∥∂Llim(t, ω0)

∂ω

∥∥∥∥ ≤ c1 exp
(
− γ(ω0)t

)
,

where c1 > 0 is some constant.
The equation (4.42) and the inequalities (5.9) yield the following inequalities for

all t ≥ 0 and η ∈ [−h, 0]:

(5.10)
∥∥L̃lim(t, η, ω0)

∥∥ ≤ c2 exp
(
−γ(ω0)t

)
,

∥∥∥∥∥∂L̃lim(t, η, ω0)

∂ω

∥∥∥∥∥ ≤ c2 exp
(
−γ(ω0)t

)
,

where c2 > 0 is some constant.
Now, using the equation (5.8), the inequalities (5.9)-(5.10), and the continuity

of all the functions in the right-hand side of (5.8) with respect to ω at ω = ω0

uniformly in (t, η) ∈ [0,+∞) × [−h, 0], we obtain that the derivative ∂x(t, ω)/∂ω
is continuous with respect to ω at ω = ω0 uniformly in t ≥ 0. The observation
that ω0 is any point of the interval [ω1, ω2] implies the continuity of the derivative
∂x(t, ω)/∂ω with respect to ω ∈ [ω1, ω2] uniformly in t ≥ 0. Thus, the theorem is
proven. □

5.3. Dependence on the parameter of the optimal value of the cost func-
tional.

Theorem 5.3. Let the assumption (A) be valid. Then, the derivative dJ∗(ω)/dω
exists and is continuous with respect to ω ∈ [ω1, ω2], where the optimal value of the
cost functional J∗(ω) of the problem (2.1)-(2.3) is given by (2.13).

Proof. The statement of the theorem directly follows from the equation (2.13) and
Lemma 4.2. □
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