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and the physical sciences; for example in sensor networks, in radiation therapy
treatment planning, in color imaging and in adaptive filtering, see e.g., [14, 7, 9, 16]
and references therein.

Problem 1.1. The Convex Feasibility Problem (CFP).
Let H be real Hilbert space and for i = 1, . . . , p let Ci ⊆ H be closed and convex
sets. The CFP is:

(1.3) find a point x∗ ∈ C := ∩p
i=1Ci.

The first instance of the split inverse problems is due to Censor and Elfving in [17]
and called the Split Convex Feasibility Problem (SCFP) which is a SIP with IP1 and
IP2 as CFPs. This reformulation was employed for solving an inverse problem in
intensity-modulated radiation therapy (IMRT) treatment planning, see [15]. Other
real-world application for the SCFP include the Multi-Domain Adaptive Filtering
(MDAF) [41] and navigation on the Pareto frontier in Multi-Criteria Optimization,
see [24].

The problem formulates as follows.

Problem 1.2. The Split Convex Feasibility Problem (SCFP).
Let H1 and H2 be two real Hilbert spaces. Let C ⊆ H1 and Q ⊆ H2 be two
non-empty, closed and convex sets, in addition given a bounded linear operator
A : H1 → H2, the SCFP is:

(1.4) find a point x∗ ∈ C such that y∗ = Ax∗ ∈ Q.

The next natural development is a SCFP which allows a finite number of non-
empty, closed and convex sets in the spaces H1 and H2, respectively, [18].

Problem 1.3. The Multiple Set Split Convex Feasibility Problem (MSS-
CFP).
Let H1 and H2 be two real Hilbert spaces and let r and p be two natural numbers.
Given Ci, 1 ≤ i ≤ p and Qj , 1 ≤ j ≤ r, closed and convex subsets of H1 and H2

respectively and a bounded linear operator A : H1 → H2. The MSSCFP is to find
a point x∗ such that

(1.5) x∗ ∈ C := ∩p
i=1Ci such that Ax∗ ∈ Q := ∩r

j=1Qj .

Masad and Reich [29] generalized the MSSCFP in which several bounded and
linear operators Aj : H1 → H2 are involved.

Problem 1.4. The Constrained Multiple Set Split Convex Feasibility
Problem (CMSSCFP).
Let H1 and H2 be two real Hilbert spaces and let r and p be two natural numbers.
Given Ci, 1 ≤ i ≤ p and Qj , 1 ≤ j ≤ r, closed and convex subsets of H1 and H2

respectively; further, for 1 ≤ j ≤ r let Aj : H1 → H2 be bounded linear operators.
In addition let Ω be another convex subsets of H1. The CMSSCFP is to find a
point x∗ ∈ Ω such that

(1.6) x∗ ∈ ∩p
i=1Ci such that Ajx

∗ ∈ Qj .

Censor and Segal [21] replaced the CFPs in the above split inverse problem with
fixed points problems.
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Problem 1.5. The Split Common Fixed Points Problem (SCFPP).
Let H1 and H2 be two real Hilbert spaces and let r and p be two natural numbers.
Given operators Ui : H1 → H1, 1 ≤ i ≤ p, and Tj : H2 → H2, 1 ≤ j ≤ r, with
non-empty fixed points sets Fix (Ui) = Ci, 1 ≤ i ≤ p and Fix (Tj) = Qj , 1 ≤ j ≤ r,
respectively and bounded linear operator A : H1 → H2. The SCFPP is to find a
point x∗ such that

(1.7) x∗ ∈ ∩p
i=1Ci such that Ax∗ ∈Q = ∩r

j=1Qj .

Censor, Gibali and Reich [19] introduced the following Split Variational Inequality
Problem (SVIP).

Problem 1.6. The Split Variational Inequality Problem (SVIP).
Let H1 and H2 be two real Hilbert spaces. Given operators f : H1 → H1 and
g : H2 → H2, a bounded linear operator A : H1 → H2, and non-empty, closed and
convex sets C ⊆ H1 and Q ⊆ H2. The SVIP is formulated as follows:

find a point x∗ ∈ C such that ⟨f(x∗), x− x∗⟩ ≥ 0 for all x ∈ C(1.8)

and such that

the point y∗ = Ax∗ ∈ Q solves ⟨g(y∗), y − y∗⟩ ≥ 0 for all y ∈ Q.(1.9)

Moudafi [31] generalized the SVIP and introduced the Split Monotone Variational
Inclusion (SMVI).

Problem 1.7. The Split Monotone Variational Inclusion (SMVI).
Let H1 and H2 be two real Hilbert spaces. Given two operators f : H1 → H1 and
g : H2 → H2, a bounded linear operator A : H1 → H2, and two set-valued mappings
B1 : H1 → 2H1 and B2 : H2 → 2H2 , the SMVI is formulated as follows:

find a point x∗ ∈ H1 such that 0 ∈ f(x∗) +B1(x
∗)(1.10)

and such that the point

y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) +B2(y
∗).(1.11)

Byrne, Censor, Gibali and Reich [10] generalized and introduced the following
Split Common Null Point Problem (SCNPP).

Problem 1.8. The Split Common Null Point Problem (SCNPP).
Let H1 and H2 be two real Hilbert spaces. Given set-valued mappings Bi : H1 →
2H1 , 1 ≤ i ≤ p, and Fj : H2 → 2H2 , 1 ≤ j ≤ r, respectively, and bounded linear
operators Aj : H1 → H2, 1 ≤ j ≤ r, the SCNPP is formulated as follows:

find a point x∗ ∈ H1 such that 0 ∈ ∩p
i=1Bi(x

∗)(1.12)

and such that the points

y∗j = Ajx
∗ ∈ H2 solve 0 ∈ ∩r

j=1Fj(y
∗
j ).(1.13)

Following the above SIPs we wish to introduce a new SIP which is a generalization
of the split common fixed points problem.

Problem 1.9. TheGeneral Split CommonFixedPoints Problem (GSCFPP).
Let H1 and H2 be two real Hilbert spaces and let r and p be two natural numbers.
Given operators Ui : H1 → H1, 1 ≤ i ≤ p, and Tj : H2 → H2, 1 ≤ j ≤ r, with
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non-empty fixed points sets Fix (Ui) = Ci, 1 ≤ i ≤ p and Fix (Tj) = Qj , 1 ≤ j ≤ r,
respectively; further, for 1 ≤ j ≤ r let Aj : H1 → H2 be bounded linear operators.
The problem is

(1.14) find a point x∗ ∈ C := ∩p
i=1Ci such that Ajx

∗ ∈ Qj .

Our main contribution in this manuscript is not only the introductory of the new
SIP instance but also the kind of operators involved, which are demicontractive, and
the strong convergence theorems of the proposed algorithms. The analysis combines
arguments from Moudafi [30] and Senter and Dotson [37]. We also present a special
case of the problem with firmly nonexpansive operators.

The paper is organized as follows. In Section 2, we collect some definitions of
operator classes that will be needed later on. In Section 3, we present and analyze
our main result which consists of strong convergence theorems for demicontractive
operators as well as for the special case of firmly nonexpansive operators. Finally in
Section 4 we illustrate the performance of our proposed scheme to find a minimum
solution of a SCFP which is motivated from the field of intensity-modulated radi-
ation therapy (IMRT) treatment planning and called there least-intensity feasible
solution.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, and let D
be a non-empty, closed and convex subset of H. We write xk ⇀ x and xk → x to
indicate that the sequence

{
xk
}∞
k=0

converges weakly and strongly to x, respectively.
Next we present some properties of operators, which will be useful later on.

Definition 2.1. Let h : H → H be an operator and D ⊆ H.

• The operator h is called ν-inverse strongly monotone (ν-ism) on D if
there exists ν ≥ 0 such that

(2.1) ⟨h(x)− h(y), x− y⟩ ≥ ν∥h(x)− h(y)∥2 for all x, y ∈ D.

• The operator h is called firmly nonexpansive, if

(2.2) ⟨h(x)− h(y), x− y⟩ ≥ ∥h(x)− h(y)∥2 for all x, y ∈ D,

i. e., 1-ism.
• The operator h is called Lipschitz continuous with constant κ > 0 on D,
if

(2.3) ∥h(x)− h(y)∥ ≤ κ∥x− y∥ for all x, y ∈ D.

• The operator h is called nonexpansive, if

(2.4) ∥h(x)− h(y)∥ ≤ ∥x− y∥ for all x, y ∈ D.

• The operator h is called quasi-nonexpansive, if

(2.5) ∥h(x)− q∥ ≤ ∥x− q∥ for all (x, q) ∈ D × Fix (h)

here Fix (h) denotes the fixed points set of h, that is

(2.6) Fix (h) := {x ∈ H | h(x) = x} .
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• The operator h is called firmly quasi-nonexpansive [39, 40, Section B]
and [27], namely

(2.7) ∥h(x)− q∥2 ≤ ∥x− q∥2 − ∥x− h(x)∥2 for all (x, q) ∈ D × Fix (h) .

In the literature one can find different names for firmly quasi nonexpansive
operators. The term cutter was introduced by Cegielski and Censor in [13],
Bauschke and Combettes call it the T -class [2]. Zaknoon [42], and Segal
and Censor [36, 21] called it directed operator and in [11] these operators
were called separating operators. Another equavalent definition for this
class of operators is, domh = H and

(2.8) ⟨h(x)− x, h(x)− q⟩ ≤ 0 for all (x, q) ∈ D × Fix (h) .

• The operator h is called averaged if there exists a nonexpansive operator
N : H → H and a number c ∈ (0, 1) such that

(2.9) h = (1− c)I + cN,

we say that h is c-av.

(i) It can be easily verified that if h is ν-ism, then it is Lipschitz continuous
with constant 1/ν. (ii) It is known that an operator h is averaged if and only if its
complement G := I − h is ν-ism for some ν > 1/2, see, e.g., [9, Lemma 2.1]. (iii) A
well known identity relates an operator h to its complement G

(2.10) ∥x− y∥2 − ∥h(x)− h(y)∥2 = 2 ⟨G(x)−G(y), x− y⟩ − ∥G(x)−G(y)∥2 .
It follows immediately that the operator h is nonexpansive if and only if G is 1/2-
ism.

• The operator h is called a strongly nonexpansive [6] if it is nonexpansive
and whenever {xk−yk}∞k=1 is bounded and ∥xk−yk∥−∥h(xk)−h(yk)∥ → 0,

it follows that (xk − yk)− (h(xk)− h(yk)) → 0.
• The operator h is called demicontractive operator [28] (see also [5, 25,
32]), if the exists β ∈ [0, 1) such that

(2.11) ∥h(x)− q∥2 ≤ ∥x− q∥2 + β ∥x− h(x)∥2 for all (x, q) ∈ D × Fix (h) ,

which is equivalent to

(2.12) ⟨x− h(x), x− q⟩ ≥ 1− β

2
∥x− h(x)∥2 for all (x, q) ∈ D × Fix (h) .

• The operator h is called demiclosed [4, Definition 2] at y ∈ H, if for any
sequence

{
xk
}∞
k=0

such that xk ⇀ x and h(xk) → y, we have h(x) = y.
• The operator h is called a asymptotically regular [6] if

(2.13) lim
k→∞

(hk(x)− hk+1(y)) = 0 for all x ∈ H.

where hk denotes the k iterate of h.
• The operator h is called odd if

(2.14) h(−x) = −h(x) for all x ∈ H.
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The Demiclosedness Principle. Let H be a real Hilbert space, D a closed
and convex subset of H, and N : D → H a nonexpansive operator. Then I −N (I
is the identity operator of H) is demiclosed at y ∈ H.

If I − h (I is the identity operator) is demiclosed at 0 we get xk ⇀ x and
(I − h)xk → y, implies x ∈ Fix (h).

Definition 2.2. Let H be a real Hilbert space and
{
xk
}∞
k=0

⊂ H. Given a closed

subset M ⊆ H , we say that
{
xk
}∞
k=0

is regular with respect to M if

(2.15) lim
k→∞

dist(xk,M) = 0.

Next we recall Opial’s Theorem [33], also known in the literature as the Kras-
nosel’skĭı-Mann Theorem.

Theorem 2.3. Let H be a real Hilbert space and D ⊂ H be closed and convex.
Assume that h : D → D is an averaged operator with Fix(h) ̸= ∅. Then, for an
arbitrary x0 ∈ D, the sequence

(2.16) xk+1 = h(xk)

converges weakly to x∗ ∈ Fix(h).

The convergence obtained in Theorem 2.3 is not strong in general [23, 3]!

3. Main result

In order to present our algorithm for solving Problem 1.9 and its strong conver-
gence theorem we first discuss the case of two operators split common fixed point
problem, and then by using an appropriate product space reformulation we show
how the general case can be presented as a two operators split common fixed point
problem.

3.1. The two operators split common fixed points problem. Now we are
focus in Problem 1.9 where p, r = 1. In this case there is one linear bounded
operator A : H1 → H2 and U : H1 → H1, T : H2 → H2 demicontractive operators
(with constants β and µ, respectively). We assume the non-emptness of Fix (U) = C
and Fix (T ) = Q. The two operators split common fixed points problem is to find
a point x∗ such that

(3.1) x∗ ∈ C and Ax∗ ∈ Q.

Let us denote the solution set of the two operators SCFPP by

(3.2) Γ ≡ Γ(U, T ) := {y ∈ C | Ay ∈ Q} .
If (3.1) is restricted to Euclidean spaces and both U and T are cutters, then Censor
and Segal [21] presented the following algorithm.

Algorithm 3.1.
Initialization: Let x0 ∈ H1 be arbitrary.
Iterative step: For k ≥ 0 let

(3.3) xk+1 = U
(
xk + γA∗(T − I)(Axk)

)
,
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where γ ∈ (0, 2/L), L is the spectral radius of the operator A∗A (A∗ is the adjoint
of A).

In case where U and T are demicontractive, Moudafi presented the following
algorithm.

Algorithm 3.2.
Initialization: Let x0 ∈ H1 be arbitrary.
Iterative step: For k ≥ 0 set uk = xk + γA∗(T − I)Axk and let

(3.4) xk+1 = (1− αk)u
k + αkU

(
uk
)
,

where γ ∈ (0, (1 − µ)/L), L is the spectral radius of the operator A∗A, µ is the
demicontractivity constant of U and {αk}∞k=0 ⊂ (0, 1).

Moudafi’s weak convergence theorem [30, Theorem 2.1] of Algorithm 3.2 is next.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces and let A : H1 → H2 be
a linear bounded operator. Let U : H1 → H1 and T : H2 → H2 be demicontractive
operators (with constants β and µ) with non-empty Fix (U) = C and Fix (T ) = Q.
Assume that U − I and T − I are demiclosed at 0. If Γ ̸= ∅ then any sequence{
xk
}∞
k=0

, generated by Algorithm 3.2 converges weakly to x∗ ∈ Γ, provided that
γ ∈ (0, (1− µ)/L) and {αk}∞k=0 ⊂ (δ, 1− β − δ) for small enough δ > 0.

Since our goal is to obtain strong convergence theorem of Algorithm 3.2, we can
discuss the following Senter and Dotson [37] condition.

Condition 3.4. There exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r > 0, such that

(3.5) f(dist(x,Fix(T )) ≤ ∥x− T (x)∥.

Petryshyn and Williamson [34], point out the significant role of the behavior of a
sequence

{
xk
}∞
k=0

with respect to the set of fixed points in the following theorem.

Theorem 3.5. Petryshyn and Williamson [34]. Let H be a real Hilbert space,
T : D ⊂ H → H a quasi-nonexpansive operator such that Fix(T ) is non-empty
and closed set. Let x0 ∈ D such that xk = T k(x0). Then the sequence

{
xk
}∞
k=0

converges strongly to a fixed point of T if and only if
{
xk
}∞
k=0

is regular with respect
to Fix(T ).

Following this theorem, Măruşter and Popirlan [28] proved that any sequence{
xk
}∞
k=0

generated by the Mann iteration with demicontractive operator converges
strongly to Fix(T ) if and only if it is regular with respect to Fix(T ).

Inspired by the above works we are able to present strong convergence theorem
for Algorithm 3.2 using either Condition 3.4 or regularity assumption. The proof
uses a similar arguments as in [26, Theorem 2].

Theorem 3.6. Let H1 and H2 be two real Hilbert spaces and let A : H1 → H2 be a
linear bounded operator. Let U : H1 → H1 and T : H2 → H2 be a demicontractive
operators (with constants β and µ, respectively) with non-empty Fix (U) = C and
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Fix (T ) = Q. Assume that U − I and T − I are demiclosed at 0 and there exists
0 ̸= σ ∈ H1 such that

(3.6)

{
⟨U(y)− y, σ⟩ ≤ 0 for all y ∈ H1,

⟨A∗(T − I)Ay, σ⟩ ≤ 0 for all y ∈ H1.

If Γ ̸= ∅ then for a suitable x0 ∈ H1 any sequence
{
xk
}∞
k=0

, generated by Algorithm
3.2 converges strongly to x∗ ∈ Γ, provided that γ ∈ (0, (1 − µ)/L) and {αk}∞k=0 ⊂
(δ, 1− β − δ) for small enough δ > 0.

Proof. Let x∗ ∈ Γ and choose x0 ∈ H1 such that

(3.7) ⟨x0 − x∗, σ⟩ > 0,

then there exists ϵ > 0 such that

(3.8) ⟨x0 − x∗, σ⟩ ≥ ϵ∥x0 − x∗∥2.
We now prove by induction that

(3.9) ⟨xk − x∗, σ⟩ ≥ ϵ∥xk − x∗∥2 for all k ≥ 0.

Assume it holds for k > 0,

⟨xk+1 − x∗, σ⟩ = ⟨xk+1 − xk + xk − x∗, σ⟩

= ⟨xk+1 − xk, σ⟩+ ⟨xk − x∗, σ⟩

= γ⟨A∗(T − I)Axk + αk(U(uk)− uk), σ⟩+ ⟨xk − x∗, σ⟩.(3.10)

Since γ > 0, αk > 0 and by (3.6) we get

(3.11) ⟨xk+1 − x∗, σ⟩ ≥ ⟨xk − x∗, σ⟩
by the induction assumption, we get that

(3.12) ⟨xk+1 − x∗, σ⟩ ≥ ϵ∥xk − x∗∥2,
by [30, Lemma 2.1] the sequence

{
xk
}∞
k=0

, generated by Algorithm 3.2 is Féjer-

monotone with respect to Γ, i.e., for all k ≥ 0, ∥xk+1 − x∗∥ ≤ ∥xk − x∗∥. So we
get

(3.13) ⟨xk+1 − x∗, σ⟩ ≥ ϵ∥xk+1 − x∗∥2,
therefore (3.9) holds for all k ≥ 0. Finally, by Theorem 3.3 xk ⇀ x∗, we get
∥xk − x∗∥ → 0, which completes the proof. □
3.2. The general split common fixed points problem. Now we employ a prod-
uct space formulation similar to [21], originally due to Pierra [35], to derive and ana-
lyze a simultaneous algorithm for Problem 1.9. Let Γ be the solution set of Problem
1.9. Let H1 and H2 be two real Hilbert spaces, we introduce the spaces V =H1 and
W = Hp

1 × Hr
2, where p and r are as in Problem 1.9. Define the following sets in

the product spaces

C̃ := H1 and(3.14)

Q̃ :=

(
p∏

i=1

√
λiCi

)
×

 r∏
j=1

√
βjQj

 ,(3.15)
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and the operator

(3.16) A: =
(√

λ1I, . . . ,
√

λpI,
√

β1A
∗
1, . . . ,

√
βrA

∗
r

)∗
,

where λi > 0, for i = 1, . . . , p, and βj > 0, for j = 1, . . . , r. Let y =
(y1, . . . , yp, . . . , yp+r) ∈ W, where y1, . . . , yp ∈ H1 and yp+1, . . . , yp+r ∈ H2. De-
fine the operator T : W → W by

T (y) = T


y1
y2
...

yp+r

 = ((U1 (y1)) , (U2 (y2)) , . . . , (Up (yp)) ,

(T1 (yp+1)) , (T2 (yp+2)) , . . . , (Tr (yp+r))) .(3.17)

We have obtained a two operators split fixed points problem in the product space,
with sets C̃ = H1, Q̃ ⊆ W , the operator A, the identity operator I : C̃ → C̃ and
the operator T : W → W . This problem can be solved using Algorithm 3.2. It is
also easy to verify that the following equivalence holds

(3.18) x ∈ Γ if and only if Ax ∈ Q̃.

Therefore, we may apply Algorithm 3.2

xk+1 = (1− αk)(x
k + γA∗(T − I)Axk) + αkI(x

k + γA∗(T − I)Axk)

= xk + γA∗(T − I)Axk(3.19)

to the problem (3.14)–(3.17) in order to obtain a solution of the original SCFPP.
Observe that in this case Algorithm 3.2 and Algorithm 3.1 coincides. The transla-
tion of the iterative step (3.19) to the original spaces H1 and H2 is obvious by using
the relation

(3.20) T (Ax) =
(√

λ1U1(x), . . . ,
√

λpUp(x),
√

β1A1T1(x), . . . ,
√

βtArTr(x)
)∗

,

and obtain the following algorithm,

Algorithm 3.7.
Initialization: Select an arbitrary starting point x0 ∈ H1.
Iterative step: Given the current iterate xk, compute

(3.21) xk+1 = xk + γ

 p∑
i=1

λi

(
Ui(x

k)− xk
)
+

r∑
j=1

βjA
∗
j (Tj − I)Ajx

k

 .

Here γ ∈ (0, (1 − µ)/L), L =
∑p

i=1 λi +
∑r

j=1 βj∥Tj∥2 and µ is the maximum

demicontractivity constant of {Ui}pi=1.

The following convergence result follows from Theorem 3.6.

Theorem 3.8. Let H1 and H2 be two real Hilbert spaces and let A : H1 → H2

be a linear bounded operator. Let Ui : H1 → H1, i = 1, . . . , p, and Tj : H2 → H2,
j = 1, . . . , r be a demicontractive operators (with constants β and µ) with non-empty
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Fix (U) = C and Fix (T ) = Q. Assume that (Ui − I), i = 1, . . . , p and (Tj − I),
j = 1, . . . , r, are demiclosed at 0 and there exists 0 ̸= σ ∈ H1 such that

(3.22)

{ ⟨Ui(y)− y, σ⟩ ≤ 0 for all y ∈ H1, i = 1, . . . , p

⟨A∗
j (Tj − I)Ajy, σ⟩ ≤ 0 for all y ∈ H1, j = 1, . . . , r.

If Γ ̸= ∅ then any sequence
{
xk
}∞
k=0

, generated by Algorithm 3.7 converges strongly

to x∗ ∈ Γ, provided that γ ∈ (0, (1 − µ)/L), L =
∑p

i=1 λi +
∑r

j=1 βj∥Tj∥2 and µ is

the maximum demicontractivity constant of {Ui}pi=1 .

Proof. Applying Theorems 3.3 and 3.6 to the two operators split fixed points prob-
lem in the product space setting with U = I : H1 → H1, Fix (U) = C̃ and

T = T : W → W , Fix (T ) = Q̃ the proof follows. □
3.3. Firmly nonexpansive operators. In this subsection we wish to present an
interesting special case of demicontractive operators, which is firmly nonexpansive
operators and establish strong convergence theorem of algorithm Algorithm 3.2.
Our analysis follows similar arguments from the proof of [1, Theorem 1.1], see also
[29, Lemma 7].

Lemma 3.9. Let X be a Banach space which is uniformly convex. If the operator
S : X → X is nonexpansive, odd and asymptotically regular, then for any x ∈ X ,
the sequence

{
Sk(x)

}∞
k=1

converges strongly to a fixed point of S.

The next theorem is focus in a special case of Algorithm 3.2, in which αk ≡ 1,
that is a Landweber-type operator, see [12]. The theorem’s proof follows the same
lines as in [12] and is given for the convenient of the reader.

Theorem 3.10. Let H1 and H2 be two real Hilbert spaces and let A : H1 → H2 be
a linear bounded operator. Let U : H1 → H1 and T : H2 → H2 be odd and firmly
nonexpansive operators with non-empty Fix (U) = C and Fix (T ) = Q. If Γ ̸= ∅
and γ ∈ (0, 2/L), where L is the spectral radius of the operator A∗A, then for any
x0 ∈ H1 any sequence

{
xk
}∞
k=0

, generated by Algorithm 3.2 with αk ≡ 1, i.e.,

(3.23) xk+1 = U
(
xk − γA∗(I − T )Axk

)
,

converges strongly to x∗ ∈ Γ.

Proof. First we prove that the operator A∗(T − I)A is 1/L-inverse strongly mono-
tone. So

∥A∗(I − T )Ax−A∗(I − T )Ay∥2

= ⟨A∗((I − T )Ax− (I − T )Ay), A∗((I − T )Ax− (I − T )Ay)⟩
= ⟨(I − T )Ax− (I − T )Ay,AA∗((I − T )Ax− (I − T )Ay)⟩
≤ L∥(I − T )Ax− (I − T )Ay∥2.(3.24)

In addition

∥(I − T )Ax− (I − T )Ay∥2 = ∥(Ax− T (Ax)− (Ay − T (Ay))∥2

= ∥Ax−Ay∥2 + ∥T (Ay)− T (Ax)∥2

− 2⟨T (Ax)− T (Ay), Ax−Ay⟩,(3.25)
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since T is firmly nonexpansive

(3.26) ⟨T (Ax)− T (Ay), Ax−Ay⟩ ≥ ∥T (Ax)− T (Ay) ∥2.
Combining the above inequalities yields,

∥A∗(I − T )Ax−A∗(I − T )Ay∥2 ≤ L(∥Ax−Ay∥2 − ∥T (Ax)− T (Ay)∥2)
≤ L∥Ax−Ay∥2 = L⟨x− y,A∗A(x− y)⟩
= L⟨A(x− y), A(x− y)⟩ = L⟨x− y,A∗A(x− y)⟩
≤ L2∥x− y∥2.(3.27)

So we get that the operator is L Lipschitz, i.e.,

(3.28) ∥A∗(I − T )Ax−A∗(I − T )Ay∥2 ≤ L2∥x− y∥2,
and it is easy to verify that it is 1/L-inverse strongly monotone. From now on we
abbreviate G = A∗(I − T )A. Now we get that for γ ∈ (0, 2/L) the operator I − γG
is averaged (see e.g., [29, Lemma 3]). Since U is firmly nonexpansive, it is averaged
and therefore the composition U (I − γG). By [29, Lemma 5], U (I − γG) is strongly
nonexpansive and as a result of [6, Corollary 1.1] it is asymptotically regular. Since
T and U are odd then I − γG and also the composition U (I − γG). Finally the
strong convergence is obtained by [29, Lemma 7] and [21, Lemma 3.4]. □

4. Applications

In this section we compare our new SIP instance with a standard split convex
feasibility modeling. While the standard SCFP modeling allow to obtain some
solution, ours enable to find the projection of a given point onto the solution set.
In order to motivate to this advantage we briefly recall the Intensity-Modulated
Radiation Therapy (IMRT) in which, for example, the minimum solution of a SCFP
is called least-intensity feasible solution, see Xiao et al. [38].

Intensity-modulated radiation therapy (IMRT) is an advanced mode of
high-precision radiotherapy that uses computer-controlled linear accelerators to de-
liver precise radiation doses to a malignant tumor or specific areas within the tumor.
The idea is that beamlets of radiation with different intensities are transmitted into
the body of the patient. Each voxel within the patient will then absorb a certain
dose of radiation from each beamlet. The goal is to allows higher radiation doses to
be focused to regions within the tumor while minimizing the dose to surrounding
normal critical structures.

Censor et al. see e.g., [15], showed how the IMRT treatment planning can be
formulated as a split convex feasibility problem. The idea is to consider (by dis-
cretization) J beamlets and divide also the region of interest of the patient into I
voxels. So, the problem consists of two spaces, RJ - the radiation intensity space
and RI - the dose space. Denote by x := (xj)

J
j=1 ∈ RJ the vector of intensities and

let dij ≥ 0 denotes the dose absorbed in voxel i due to radiation of unit intensity
from the j-th beamlet. In order to present the linear transformation between the
two spaces RJ and RI we denote by h := (hi)

I
i=1 ∈ RI the dose vector, whose

entries, hi represent the total dose absorbed in voxel i, therefore

(4.1) hi = ΣJ
j=1dijxj .
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In each space there are several convex constraints sets, for example non-negativity
of the intensities, that is

(4.2) RJ
+ = {x ∈ RJ | xj ≥ 0 for all j ∈ J}.

In the dose space typical constraints can be of the following nature. Let St be some
volume of interest. In case that it represent an organ at risk, then it is natural to
require that the dose should not exceed an upper bound Ut. This corresponds to
the constraint set:

(4.3) Qmax,t = {h ∈ RI | hi ≤ Ut for all i ∈ St}.

Similarly, if St is a tumor volume, the dose should not fall below a lower bound lt
and we can write the set

(4.4) Qmin,t = {h ∈ RI | hi ≥ lt for all i ∈ St}.

There exists other kind of constraints sets but we our focus here is only in the above.
Now it looks natural to search for the least-intensity feasible (LIF) solution of the
above SCFP as in Xiao et al. paper [38].

4.1. Numerical example. In order to illustrate the performance and advantage
of our proposed scheme, algorithm we compare the algorithm runs for a linear split
feasibility problem taken from Dang and Xue [22]. It is worth mentioning again
that our scheme allow to find the projection of a given point onto the solution
set of the SCFP. All computations were performed using MATLAB R2015a on an
Intel Core i5-4200U 2.3GHz running 64-bit Windows. The cpu time is measured in
seconds using the intrinsic MATLAB function cputime. The exact solution of the
problem (0.2645,−0.6568, 0.4890,−0.7548,−0.3836) is obtained by using Matlab
built-in function fmincon. The first 89 iterations of our scheme are presented in
Table 1, where the iteration’s number 89 is taken from Dang and Xue [22] when
the stopping criteria is achieved. We obtain and approximate solution after 89
iterations after 0.0781 seconds. In Figure 1 we present the quintiles (in blue) and
median (in red) of the iteration’s trajectories of Algorithm 3.7 for different choices
of parameters γ, λi, for 1 ≤ i ≤ 2, and βj for 1 ≤ j ≤ 3.

Let the Euclidean spaces R5 and R4 and consider the constraints sets

C1 = {x ∈ R5 | x1 + 2x2 + x3 + x4 ≤ 5}
C2 = {x ∈ R5 | x2 + 4x4 + 4x5 ≤ 1}(4.5)

and

Q1 = {y ∈ R4 | y1 + y4 ≤ 1}
Q2 = {y ∈ R4 | 2y2 + 3y3 ≤ 6}
Q3 = {y ∈ R4 | y3 + 2y4 ≤ 10}.(4.6)

In addition

(4.7) A =


2 −1 3 2 3
1 2 5 2 1
2 0 2 1 −2
2 −1 0 −3 5

 .
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Given this data Dang and Xue considered the following SCFP

find a point x∗ ∈ ∩2
i=1Ci(4.8)

and such that

the point y∗ = Ax∗ ∩3
j=1 Qj .(4.9)

They compared their scheme with Censor et al. method [18] which is Algorithm
3.7). Our SIP problem enable us to solve a more general problem, for example
best approximation problem is obtained if IP1 is variational inequality and IP2 is
feasibility problem. So, for a given point p ∈ R5 we wish to solve

(4.10)
min f(x) := 1

2 ∥x− p∥2
such that x solves (4.8)–(4.9).

We take p = (1,−1, 1,−1, 1) as x0 in [22]. We also choose Ui = PCi (I − λ (I − p))

for positive λ and i = 1, 2 (this choice is due to the fact that∇
(
1
2 ∥x− p∥2

)
= I−p).

Moreover Tj = PQj for positive j = 1, 2, 3 and Aj = A. For simplicity we take
λi = 1, βj = 1, γ = 0.1. So the iterative step of our scheme translates to the
following
(4.11)

xk+1 = xk + 0.1

 2∑
i=1

(
PCi

(
xk + p

2

)
− xk

)
+

3∑
j=1

At
(
PQj

(
Axk

)
−Axk

) .

Figure 1. The quintiles (in blue) and median (in red) of the itera-
tion’s trajectories calculated via (4.11) for different choices of γ, λi,
for 1 ≤ i ≤ 2, and βj for 1 ≤ j ≤ 3.
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Table 1. The first 89 coordinate wise iterations generated by the
iterative step (4.11).

Iterations x1 x2 x3 x4 x5
1 1 -1 1 -1 1
2 0.9489 -0.9788 0.9658 -0.98 0.9117
3 0.90177426 -0.95898452 0.93444442 -0.9614787 0.82964858
4 0.85832628 -0.940456015 0.905712211 -0.944333172 0.753390518
5 0.818281537 -0.923123976 0.879399031 -0.928467843 0.682503979
6 0.781385862 -0.906904421 0.855315995 -0.913793957 0.616598063
...

...
...

...
...

...
40 0.300783969 -0.675872355 0.517753296 -0.761538378 -0.307677191
...

...
...

...
...

...
89 0.264826996 -0.656992447 0.48929388 -0.754801155 -0.382801781
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[28] Şt. Măruşter, and C. Popirlan, On the Mann-type iteration and convex feasibility problem, J.
Comput. Appl. Math. 212 (2008), 390–396.

[29] E. Masad and S. Reich, A note on the multiple-set split convex feasibility problem in Hilbert
space , J. Non. Con. Anal. 8 (2007), 367–371.

[30] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Probl.
26 (2010), 587–600.

[31] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275–
283.

[32] M. O. Osilike and A. Udomene, Demiclosedness principle and convergence theorems for stictly
pseudocontractive mappings of the Browder-Petryshyn type, J. Math. Anal. Appl. 256 (2001),
431–445.

[33] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive
mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.

[34] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of
successaive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973),
459–497.

[35] G. Pierra, Decomposition through formalization in a product space, Math. Program. 28 (1984),
96–115.

[36] A. Segal, Directed Operators for Common Fixed Point Problems and Convex Programming
Problems, PhD Thesis, University of Haifa, Haifa, Israel, 2008.

[37] H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc.
Amer. Math. Soc. 44 (1974), 375–380.

[38] Y. Xiao, Y. Censor, D. Michalski and J.M. Galvin, The least-intensity feasible solution for
aperture-based inverse planning in radiation therapy, Ann. Oper. Res. 119 (2003), 183–203.



258 AVIV GIBALI

[39] I. Yamada, The hybrid steepest descent method for the variational inequality problem over
the intersection of fixed point sets of nonexpansive mappings, Inherently Parallel Algorithms
in Feasibility and Optimization and their Applications, Editors: D. Butnariu, Y. Censor, S.
Reich, Elsevier, Amsterdam, 2001, 473–504.

[40] I. Yamada, N. Ogura, Hybrid steepest descent method for variational inequality problem over
the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim. 25
(2004), 619–655.

[41] M. Yukawa, K. Slavakis, and I. Yamada, Multi-domain adaptive filtering by feasibilty spliting,
ICASSP (2010), 3814–3817.

[42] M. Zaknoon, Algorithmic Developments for the Convex Feasibility Problem, PhD Thesis, Uni-
versity of Haifa, Haifa, Israel, 2003.

Manuscript received May 24 2016

revised July 14 2016

A. Gibali
Department of Mathematics, ORT Braude College, Karmiel 2161002, Israel

E-mail address: avivg@braude.ac.il


