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the balls Bj are replaced by the charts Uj . See a survey in [7, Chapter 6] for
extensions and developments of Whitney coverings in other directions.

The assumption of univalence of ψj can be, presumably, omitted in most of
applications. However, below we have to bound the valency of composition functions
f ◦ ψj through the valency of f , and the assumption of univalence of ψj strongly
simplifies this step.

The introduction and study of doubling coverings in this paper is motivated
mostly by the fact that they form a special class of “smooth parameterizations”,
which are used in bounding entropy type invariants in smooth dynamics on one
side, and in bounding density of rational points in Diophantine geometry on the
other. In fact, a doubling covering is a complex counterpart of an “analytic param-
eterization”, as introduced in [32] and further developed in [34, 35]. Other types
of “smooth parameterizations” are Ck-ones, introduced in [30, 31] and studied in
[8, 14, 23] and in other publications, where the size of the derivatives up to order k
is controlled. In “mild parameterizations”, introduced in [21] and further studied in
[22, 26], and others, the growth rate of the derivatives up to infinity is controlled.
There are prominent open problems in dynamics and in diophantine geometry (see,
e.g. [9, 23, 32, 35] and references therein), where constructing analytic and mild
parameterizations, and bounding their complexity, are expected to be important.
Very recently an important progress in these problems was achieved in [3, 4, 10],
in particular, via introducing a new type of “ramified analytic parameterization”.
We expect that these results will strongly contribute to a better understanding of
various types of smooth parameterizations, and of their mutual relations.

Let Y be a non-singular level hypersurface

Y = Yc = {P = c}

where P is a polynomial of degree d ≥ 2 on Cn, with only isolated and non-
degenerate critical points (i.e. the Hessian of P at each of its critical points is
non-zero). Let Ḡc = Yc ∩ Q, where Q = Qn is a closed unit cube in Cn, and
let δ > 0 be the distance of Yc to the critical points of P . We are interested in
doubling coverings U of Ḡc in Yc, as c approaches a certain critical value of P . In
this case δ → 0, and the geometric complexity of Yc (in particular, its curvature)
near the critical points of P “blows up”. One can expect that the minimal number
κ(U) of charts in doubling coverings U of Ḡc in Yc also tends to infinity. However,
this problem turns out to be rather delicate: it was shown in [14] that for each
fixed smoothness k the minimal number of charts in Ck-parameterizations of Yc is
uniformly bounded, in terms of n and d only, independently of c.

The main result of this paper is an upper bound on the complexity κ(U) of a
doubling covering U of Ḡc in Yc of the form

κ(U) ≤ C(P ) log
(1
δ

)
.

In some special cases we provide also the lower bound for κ(U), of the same form.
So for doubling analytic coverings, in a strict contrast with Ck-parameterizations,



DOUBLING COVERINGS OF ALGEBRAIC HYPERSURFACES 223

their complexity, at least in some special cases, grows as a logarithm of the dis-
tance to complex singularities. We conjecture that this result remains true also for
polynomials P with possibly degenerate (and non-isolated) singularities.

As the second main topic of this paper, we present various types of doubling
inequalities, and demonstrate a very general explicit connection between them and
chains of charts in doubling coverings on Y , closely resembling a well-known con-
struction, applied in Harnack-type inequalities.

Let Ω ⊂ G be relatively compact domains in Y . Let f be an analytic function in
a neighborhood of the closure Ḡ of G in Y , the doubling constant of f with respect
to Ω and G is the ratio

DCf (G,Ω) = max
Ḡ

|f(z)|/max
Ω̄

|f(z)|.

Doubling inequalities provide an upper bound on DCf (G,Ω) for various classes
of analytic functions f on Y .

In recent years they have been intensively studied for algebraic functions, in con-
nection with various problems in harmonic analysis and potential theory, differential
equations, diophantine geometry, probability, complexity, etc. (see e.g. [6, 11, 24]
and references therein). However, in these results the variety Y on which the dou-
bling inequalities are considered, is usually fixed, while the degree of the restricted
polynomials grows. An important question of the dependence of the doubling con-
stant on Y (in particular, in families like Yc above), remaind largely open. Using
our main result on the complexity of the doubling coverings of Yc, we show that for
polynomials S of degree d1 restricted to Yc we have

DCS(G,Ω) ≤
(C1

δ

)C2

,

with C1, C2 depending on P , and on the degree d1 of the restricted polynomial S.

We believe that the results of the present paper provide a step towards a better
understanding of the behavior of the doubling constant in families of varieties Y . In
particular, we expect that the assumption of non-degenerate singularities of P can
be dropped, while preserving the polynomial dependence of the doubling constant
on δ.

The paper is organized as follows: in Section 2 we introduce some notations
and definitions with respect to doubling coverings, and discuss their connection to
Kobayashi distance. The complexity of doubling coverings of Y depends only on
a complex analytic structure of Y , and so one can hope to define, in its terms,
certain invariants of Y . We make an initial step in this direction, showing that the
length of chains (or the total complexity κ(U)) in doubling coverings U , bounds the
Kobayashi distance on Y . We also give a special example of a doubling covering
with balls of a punctured cube, which is obtained via a construction in the spirit of
Whitney’s covering lemma ([29], see also [25]), which provides a bound, depending
only on the number of the removed points, but not on their position. We also discuss
briefly the behavior of doubling chains with respect to Harnack-type inequalities for
harmonic functions.
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Section 3 is central in our presentation, we prove here our main result, providing
“controlled” doubling coverings for algebraic hypersurfaces. We provide an explicit
construction of a doubling covering U of G in Y , with the number of charts κ(U) of
order C(n, d) log(c(n, d)/ρ). It is based on the special example of a doubling covering
with balls of a punctured cube, and a quantitative implicit function theorem that
we also provide.

Section 4 is of technical nature, preparing some basic results on doubling inequal-
ities for p-valent functions on balls.

In Section 5 we give a very general form of a doubling inequality for analytic
functions f on a manifold Y in terms of doubling coverings U of Y . We do so via
continuation along chains of charts in U . As a consequence of our upper bound on
κ(U), and this general doubling inequality, we obtain a doubling inequality on Y
for the restrictions to Y of polynomials of certain degree.

Finally, Section 6 provides some examples. In particular, inverting the inequality
of Section 5, and presenting specific polynomials S with a large doubling constant
on Y , we obtain, in certain specific cases, a lower bound, of the same order log(1/δ),
on the number κ(U) of charts in doubling coverings U of Y .

2. Doubling coverings

In this section we introduce some notations and definitions with respect to dou-
bling coverings, and discuss their connection to Kobayashi distance and Harnack-
type inequalities. We also construct a special example of a doubling covering of a
punctured cube in Cn.

Let Y be a complex n-dimensional manifold, let G ⊂ Y be a relatively compact
domain in Y , and let U be a doubling covering of G in Y .

We call two charts Ui and Uj in U neighboring, if Ui∩Uj ̸= ∅. For two neighboring
charts Ui and Uj we define the intersection radius ρ(Ui, Uj) as the maximal radius

ρ > 0 such that both ψ−1
i (Ui ∩ Uj) ⊂ B1 ⊂ Cn, and ψ−1

j (Ui ∩ Uj) ⊂ B1 ⊂ Cn
contain subballs of radius ρ (not necessarily concentric with B1). In a similar way
for Ω ⊂ G a subdomain in G, and a chart Uj ∈ U we define ρ̃(Uj ,Ω) as the maximal

radius ρ > 0 such that ψ−1
j (Uj ∩ Ω) ⊂ B1 contains a subball of radius ρ. We put

ρ(U ,Ω) = minj ρ(Uj ,Ω), the minimum being taken over all j for which Uj ∩Ω ̸= ∅.
A chain Ch in a covering U is a sequence {j1, j2, . . . , jn} of pairwise different

indices, such that Ujp , Ujp+1 are neighboring for each p = 1, . . . , n− 1. The length
n of the chain Ch is denoted by ℓ(Ch). The collection CH(z,Ω,U) consists of all
the chains Ch = {j1, j2, . . . , jn} in U such that ρ(Uj1 ,Ω) > 0, while z ∈ Ujn .

2.1. Doubling coverings and Kobayashi metric. Let Y be a complex
n-dimensional manifold, and let p, q ∈ Y . The Kobayashi distance (or, more
accurately, pseudo-distance) d(p, q) is defined as follows [18]: choose points p =
p0, p1, . . . , pk−1, pk = q ∈ Y , points a1, . . . , ak, b1, . . . , bk in the unit disk D1 ⊂ C,
and holomorphic mappings f1, . . . , fk from D1 to Y , such that fi(ai) = pi−1,

fi(bi) = pi, i = 1, . . . , k. Form a sum
∑k

i=1 ρ(ai, bi), where ρ is a Poincaré met-
ric on D1, and put d(p, q) to be the infimum of these sums for all possible choices.



DOUBLING COVERINGS OF ALGEBRAIC HYPERSURFACES 225

Proposition 2.1. Let G ⊂ Y be a connected relatively compact domain, and let
p, q ∈ G. Let U be a doubling covering of G in Y , and let Ch be a chain in U joining
p and q. Then, the Kobayashi distance d(p, q) satisfies

d(p, q) ≤ 3ℓ(Ch) ≤ 3κ(U).

Proof. Let U1, . . . , Ul be the charts in Ch. Denote p0 = p, pl = q, and for i =
1, . . . , l − 1 pick pi to be a point in Ui ∩ Ui+1. Next, put ãi = ψ−1

i (pi−1), and

b̃i = ψ−1
i (pi) in B1. Now, define an affine map Ti : D1 → B4, requiring the image

Ti(D1) be the intersection disk D̃ of B4 and of the complex line, passing through the

points ãi, b̃i ∈ B1. Clearly, the radius of D̃ is at least 3, while the points ãi, b̃i ∈ B1

belong to a concentric subdisk of D̃ of radius at most 1.

Finally, we put ai = T−1
i (ãi), and bi = T−1

i (b̃i), and take fi = ψi ◦ Ti. It remains
to notice that for each i our points ai, bi belong to the concentric disk D1/3 of radius
1
3 in D1, and hence ρ(ai, bi) ≤ 3/2. Indeed, the Poincaré metric on D1 is given by

ds = 2|dz|
1−|z|2 . So inside D1/3 we have ds ≤ 9/4|dz|, and therefore the Poincaré

distance ρ(ai, bi) does not exceed 3/2. □
2.2. Doubling coverings and Harnack-type inequalities. “Extension along
chains” of doubling charts, which we use in Section 4 in order to obtain doubling
inequalities, is one of the classical and widely used tools in study of Harnack-type
inequalities for harmonic functions and, more generally, for solutions of certain
classes of PDE’s (see, e.g. [1] and references therein).

There is, however, an essential difference: usually, only coverings with balls are
used. The reason is that a general complex analytic change of variables preserves
harmonic functions only in complex dimension one. In the case of two or more
variables already linear changes of variables, if not dilations, destroy the condition
∆f = 0.

In our context, in Section 2.3 below a doubling covering with balls is constructed
for the punctured cube in Rn. We plan to extend this construction to the com-
plements of algebraic varieties of higher dimensions, and apply it to Harnack-type
inequalities for harmonic functions in [13]. However, the doubling charts on the level
hypersurfaces Y constructed in Section 3 are nonlinear. So these charts cannot be
applied to Harnack inequalities directly.

2.3. γ-doubling ball covering of a punctured cube. In this section we con-
struct a γ-doubling ball covering of a punctured cube, where γ > 1 is the doubling
factor. Our construction is inspired by the classical Whitney’s covering lemma
([29]). A similar construction appears also in Calderón-Zygmund decomposition
(e.g. see [25]). In fact, our construction works in the real space Rn, and provides a
covering with Euclidean balls. Notice that a connection between the geometry of a
closed set and of its tabular neighborhoods and counting Whitney cubes in the com-
plement is well known (see [15, 20, 17] and references therein). We provide here an
explicit (non-asymptotic) counting of the Whitney cubes, covering a δ-punctured
unit cube, with the bound depending on the number of the deleted points, but
not on their mutual position. We also describe explicitly the intersections of the
corresponding covering balls.
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Let W ⊂ Rn be an open domain, and let G ⊂W be a compact set. A γ-doubling
ball covering U of G in W is a collection of balls Bj ⊂W , which covers G such that
the concentric balls γBj are contained in W .

In case when R2n is the underlying real space of the complex space Cn, any γ-
doubling ball covering U is a complex γ-doubling covering, with the mappings ψj
being the affine-linear scaling mappings of B1 to the balls Bj of U .

Let Q = [−1, 1]n ⊂ Rn be the n-dimensional unit cube, and let z1, . . . , zd ∈ Rn.
Denote by Uδ a δ-neighborhood of {z1, . . . , zd}, and consider the domain Qδ which
is the interior of Q̄δ = Q \ Uδ, that is, we removed from Q balls of radius δ > 0
around each point z1, . . . , zd.

Theorem 2.2. Let γ > 1. There is a γ-doubling ball covering U of Qδ in Rn \
{z1, . . . , zd} with at most

d(3
√
nγ)n log(3nγ/δ)

balls.

Moreover, for any v, w belonging to the same connected component of Qδ, there
exists a chain Ch in U , joining v and w, such that for any two consequitive balls
Bj1 and Bj2 in Ch the ratio of the radii of these balls is either 1

2 , 1 or 2, and the
intersection Bj1 ∩Bj2 contains a ball of the radius at least 1/3 of the smaller of the
radii.

Proof. We construct the balls B in the required γ-doubling covering U as the cir-
cumscribed balls of certain sub-cubes in binary subdivisions of Q such that for any
B ∈ U

{z1, . . . , zd} ∩ γB = ∅.(2.1)

For s = 1, 2, . . . we call the closed sub-cubes Qps, obtained by a subdivision of Q
into 2ns equal parts, the level-s sub-cubes, i.e. level-s sub-cubes are derived by sub-
dividing level-(s− 1) sub-cubes into 2n parts. Since some of the points {z1, . . . , zd}
may be out of Q, we extend this subdivision to the entire space Rn. We say that
two sub-cubes Qql , Q

p
r are neighbors if Qql ∩ Q

p
r ̸= ∅, and the k-neighborhood of a

given level-s sub-cube consists of all its neighbor level-s sub-cubes up to “distance”
k. Naturally, a k-neighborhood contains at most (2k + 1)n level-s sub-cubes (for
any s). The length of an edge of a level-s sub-cube is edges = 2/2s, and the radius

of the corresponding ball is rs =
√
n (2/2s)2/2 =

√
n/2s. With these notation in

hand, and in view of condition (2.1), we wrap each point zj with its k-neighborhood
so that the following inequality holds

(2.2) γrs ≤ k · edges + edges/2

which is satisfied for

(2.3) k =

⌈√
nγ − 1

2

⌉
.

In other words, assume that zj ∈ Qps then for any circumscribed ball B of a level-s
sub-cube outside the k-neighborhood of Qps we have γB ∩Qps = ∅. We are fixing k
to be as in (2.3) for the remainder of the proof.
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Now, assume that in step s the collections S1, . . . , Ss,Σs of sub-cubes inside Q
have been constructed, with the following properties:

1) For each l = 1, . . . , s the collection Sl consists of certain level-l sub-cubes Qrl
inside Q, their number is at most (2k + 1)n2nd. Denote by Br

l the circumscribed
ball of Qrl ∈ Sl, then B

r
l satisfies condition (2.1), that is, {z1, . . . , zd} ∩ γBr

l = ∅.
2) The sub-cubes of Sl for 1 ≤ l ≤ s−1 may have neighbors only from Sl−1, Sl, Sl+1,

while sub-cube of Ss may have neighbors from Ss−1, Ss,Σs. Moreover, the “s-
distance” between any sub-cube in Σs to sub-cubes in Ss−1 is at least k.

3) Σs consists of exactly those level-s sub-cubes Qps inside Q, which either contain
some points of {z1, . . . , zd}, or which are in (level-s) k-neighborhoods of certain Qrs
containing points {z1, . . . , zd}. The number of sub-cubes in Σs is at most (2k+1)nd.
The sub-cubes in Σs may have non-empty intersection only with level-s sub-cubes
of Ss,Σs (these last two properties of Σs are consequences of the definition of Σs,
and of the preceding assumptions).

4) The collections S1, . . . , Ss,Σs are disjoint and all their sub-cubes form a cov-
ering of Q.

The induction step. We proceed as follows, we subdivide each Qps ∈ Σs into 2n

equal sub-cubes Qqs+1. Altogether we get at most (2k + 1)n2nd sub-squares.

Let Σs+1 be the union of those Qqs+1, which either contain some points of
{z1, . . . , zd}, or which are in (level-s) k-neighborhoods of certain Qrs containing
points {z1, . . . , zd}. The number of sub-cubes in Σs+1 is at most (2k + 1)n · d.

The sub-cubes in Σs+1 have non-empty intersection only with level-(s + 1) sub-
cubes. Indeed, by property 3, Σs consists of all the level-s sub-cubes Qps inside Q,
which are in s-distance at most k from the sub-cubes containing points {z1, . . . , zd}.
After subdividing, the new level-(s+1) k-neighborhood of {z1, . . . , zd} is of (s+1)-
distance at least 2 · k − k = k from any level-s sub-cubes in Ss, and the in-between
sub-cubes are of level-(s+ 1) (these sub-cubes actually belong to Ss+1, as we shall
see below). This proves, for Σs+1, property 3 and the last part of property 2.

Let Ss+1 be the union of the remainingQqs+1, their number is at most (2k+1)n2nd.

Clearly, Ss+1,Σs+1 are disjoint. Each Qqs+1 may have non-empty intersection with
level-s sub-cubes of Ss, and with level-(s + 1) sub-cubes of Ss+1,Σs+1 (as we sub-
divide Σs and it has neighbors from Ss). It also means that now, after subdivision,
sub-cubes of Ss may have non-empty intersection with sub-cubes of Ss+1. However,
sub-cubes of Ss+1 cannot intersect sub-cubes of Ss−1. Indeed, they appear in sub-
division of sub-cubes in Σs, which are at s-distance from Ss−1 at least k, by the last
part of property 2.

For each Qqs+1 ∈ Ss+1 we build the circumscribed concentric ball Bq
s+1. By

inequality (2.2) and the choice of k (i.e. the construction of Σs+1) the concentric
ball γBq

s+1 does not contain the points z1, . . . , zd. This completes the proof of
properties 1 and 2.

We’ve subdivided only sub-cubes in Σs. So, the collections S1, . . . , Ss, Ss+1, Σs+1

are disjoint, and their sub-cubes form a covering of Q. Note that it could be that
S1, . . . , St are empty, for t which satisfies 2t ≤ 2k + 1. This completes the proof of
property 4 and the induction step.
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Figure 1. 2-doubling ball covering of a 2-dimensional cube with a point
z1 and parameters n = 2, γ = 2 and k = 1 (after s = 5 iterations).

Now, we complete the proof of Theorem 2.2. By property 1, each Sl contains at
most (2k + 1)n2nd sub-cubes of level l. Hence, the total number of sub-cubes in

Ss = S1 ∪ · · · ∪ Ss
is at most s(2k + 1)n2nd ≤ sd(3

√
nγ)n (by the choice of k in (2.3)).

On the other hand, if Σs ⊂ Uδ then the process stops, and thus the collection of
the circumscribed balls of the sub-cubes in Ss provides a γ-doubling covering U of

Qδ. So, if the maximal possible distance 1
2

√
n
(
(2k + 1) 2

2s

)2
of points in Σs from

{z1, . . . , zd} is equal to δ, or s = log(3nγ/δ) then Σs is contained in Uδ, and for this
value of s the process stops. Therefore, the total number of sub-cubes in Ss is at
most

d(3
√
nγ)n log(3nγ/δ).

It remains to find, for any v, w in the same connected component of Qδ, a chain
Ch in U joining v and w, such that for any two neighbor balls Bj1 and Bj2 in Ch
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the ratio of the radii of these balls is either 1 or 2, and the intersection Bj1 ∩ Bj2
contains a ball of radius at least 1/3 of the smaller of the radii.

We construct a chain Ch in U joining v, w along a certain continuous path ω in
Qδ. We can assume that ω intersects only with the interiors of the subdivision sub-
cubes, and with their faces of dimension n− 1, but does not touch faces of smaller
dimensions. Since the sub-cubes in Ss form a covering of Qδ, following ω, taking
the subsequent sub-cubes, crossed by ω, and omitting possible repetitions, we find
a chain Ĉh of sub-cubes in Ss joining v and w, in which any two neighboring sub-
cubes not only have a non-empty intersection, but, in fact, intersect along a part
of their common face of dimension n − 1. Now, we define Ch as the chain of the
circumscribed balls for Ĉh.

By property 1 above the levels of the neighboring sub-cubes in Ĉh may differ at
most by one. Hence, the ratio of the radii of the corresponding circumscribed balls
is either 1

2 , 1 or 2. Indeed, the ratio between two neighbor balls of level l and l + 1
is

rl/rl+1 = (
√
n/2l)/(

√
n/2l+1) = 2.

Finally, an easy geometric calculation shows that in case when the neighboring
sub-cubes in U intersect along a part of their common face of dimension n − 1,
the intersection of the circumscribed balls contains a ball of the radius at least
1/3 of the smaller of the radii. Consider such sub-cubes of levels s and s + 1,
the case of sub-cubes of the same level being completely similar. Now, the largest
distance between the centers of two neighbor sub-cubes of level s and s+ 1 with a
common face is obtained (after putting in a standard position) for Qps with center
at A = (12

2
2s , . . . ,

1
2

2
2s ), and Q

q
s+1 with center at B = ( 2

2s +
1
2

2
2s+1 , . . . ,

1
2

2
2s+1 ), where

Qqs+1 is placed in a corner of an (n− 1)-dimensional face of Qps

∥A−B∥ =

√(
1

2

2

2s
−

(
2

2s
+

1

2

2

2s+1

))2

+ (n− 1)

(
1

2

2

2s
− 1

2

2

2s+1

)2

=

√
n+ 8

2s+1
.

The maximal radius r of a ball, which can be placed inside the intersection of the
corresponding circumscribed balls of Qps, Q

q
s+1 is given by

r =
1

2
(rs + rs+1 − |A−B|) = 3

√
n−

√
n+ 8

2s+2
.

Thus, the ratio of the radii of this ball and of a ball of level-s+ 1 is

r/rs+1 =
3
√
n−

√
n+ 8

2s+2

2s+1

√
n

=
3

2
−

√
1

4
+

2

n
≥ 1

3
.

This completes the proof of Theorem 2.2. □
Note that the bound of Theorem 2.2 is sharp with respect to the parameters d,

γ and δ, up to coefficients depending only on the dimension n. Consider the case
of only one point z1 = 0 ∈ Rn, and let U be a γ-doubling ball covering of Qδ in
Rn \ {0}. Each ball B in U , centered at z0 of radius R satisfies Rγ < ||z0||. So to
cover a spherical shell γR ≤ ||z|| ≤ γR + 1 we need at least C1(n)γ

n−1 balls in U .
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Now, to “reach” the δ-neighborhood of 0 we need log(C2(n)γ/δ) concentric spherical
shells as above. Finally, for several points z1, . . . , zd, and for δ small enough, we can
apply the above considerations to each point zj separately. Altogether we obtain a
lower bound for κ(U) of the form dC1(n)γ

n−1 log(C2(n)γ/δ).

Remark 1. In the construction of the chain above it was not necessary to require
the subsequent sub-cubes to have a common part of an (n−1)-face. Instead we could
require them only to intersect by more than a vertex. This would just provide an
absolute bound smaller than 1/3 for the radius of the ball in the intersection.

Remark 2. Theorem 3 of [28] compares the multiplicities of a covering with cer-
tain balls, and with the twice larger concentric balls. It would be interesting to see
implications of this result for Whitney-type doubling coverings.

3. Covering algebraic hypersurfaces

Let P (z) =
∑

|α|≤d aαz
α be a polynomial of degree d on Cn, with the usual

multi-index notations: for z = (z1, . . . , zn) ∈ Cn, and for α = (α1, . . . , αn) ∈ Nn,
we have |α| =

∑n
i=1 αi and zα = zα1

1 · · · zαn
n . We denote the ℓ1-norm of P by

∥P∥1 =
∑

|α|≤d |aα|.
The complex singular set Σ = Σ(P ) of the polynomial P is defined by vanishing of

all the partial derivatives ∂P
∂zj

, j = 1, . . . , n. For a generic P its singular set consists

of isolated and non-degenerate critical points: Σ(P ) = {w1, . . . , wm}. By Bézout
theorem m ≤ (d−1)n, and a strict inequality may happen if some of singular points
of P are at infinity.

In what follows we always assume that the polynomial P is normalized, i.e.
∥P∥1 = 1, and that all the affine complex singular points w1, . . . , wm of P are iso-
lated and non-degenerate. In particular, this assumption implies, for z ∈ Q (where
Q denotes the 2n-dimensional unit cube in the underlying space R2n), the following
inequality

(3.1) K(P )dist(z,Σ) ≤ ∥∇P (z)∥ ≤ nd4dist(z,Σ)

where the gradient ∇P (z) = (∂P (z)
∂z1

, . . . , ∂P (z)
∂zn

), K(P ) > 0 is a constant depending

on P , and ∥ · ∥ is the usual Euclidean norm of the gradients. The upper bound for
∥∇P (z)∥ easily follows from Markov’s inequality: the second partial derivatives of
P are bounded for z ∈ Q by nd4∥P∥1 = nd4. Integrating along the straight segment
from z to the nearest point in Σ we obtain ∥∇P (z)∥ ≤ nd4dist(z,Σ). However, the
bound from below for ∥∇P (z)∥ of the form (3.1) is valid only under our “general
position” assumption.

Let us stress that the constant K(P ) in (3.1) depends not only on the degree of
the polynomial P , but on its specific coefficients. It can be bounded from below
in terms of the minimal eigenvalues of the Hessians of P at the critical points in
Σ(P ) = {w1, . . . , wm}. To simplify the presentation, we just take K(P ) as an
explicit input parameter. Notice that by (3.1) we always have K(P ) ≤ nd4.

We consider complex algebraic hypersurfaces Y , which are the level sets of P

Y = {P (z) = c} ⊂ Cn
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where c is assumed to be a regular value of P . Thus, Y is a nonsingular submanifold
of dimension d− 1 in Cn.

Theorem 3.1. Let P (z) be a normalized polynomial on Cn of degree d ≥ 2, with
isolated and non-degenerate critical points Σ = Σ(P ) = {w1, . . . , wm}, so P satisfies
condition (3.1) with K = K(P ).

Let Y = {P (z) = c} be a regular level hypersurface of P . Denote G = Y ∩ Q,
and put δ = dist(G,Σ(P )) > 0. Then, there exists a doubling covering U of G in Y
with ρ(U) ≥ 1

10 and

κ(U) ≤ C1(n, d)

K2n
log(

C2(n, d)

Kδ
)

where the constants C1(n, d), C2(n, d) depend only on n, d.

Proof. The main steps of the proof are as follows: as usual in differential topology,
we produce doubling covering charts of Y (which are special coordinate charts),
using implicit function theorem. However, to count these charts, we need a “quan-
titative” version of this theorem, stated below. It produces, at a given point z ∈ Y ,
a coordinate chart of the size proportional to the norm of the gradient ∇P (z). So,
near the critical points of P we need more charts. By our assumptions the hyper-
surface Y is at the distance at least δ from the critical set Σ = Σ(P ). Hence, it is
contained in Qδ = Q \ Σδ, where Σδ is the δ-neighborhood of Σ. So, in order to
control the construction explicitly, we apply Theorem 2.2, with γ of order 1/K, and
obtain a γ-doubling ball covering U of Qδ, with C(n, d, γ) log(c(n, d, γ)/δ) charts.
Because of the assumption (3.1) on P , in each ball of U we get a lower bound on
the norm of ∇P (z).

Now, we present the construction in detail. We use the following notations:
BR = Bn

R is a complex ball of dimension n and of radius R. Assuming that a
coordinate system z1, . . . , zn in Cn is fixed, we consider Cn−1 ⊂ Cn corresponding
to the first n − 1 coordinates z1, . . . , zn−1. For z = (z1, . . . , zn) in Cn we denote
z̄ = (z1, . . . , zn−1) its projection to Cn−1, and we denote B̄R = Bn−1

R a complex
ball of dimension n − 1 and of radius R. Finally, a “diskoball” DBR is a product
B̄R×DR of the ball of radius R with respect to the first n−1 coordinates, and a disk
of radius R with respect to the last coordinate. We shall use a certain quantitative
version of the standard implicit function theorem. Various settings of this result are
known (see e.g. [5, 33]), however, they do not cover exactly the specific statements
of the result below, so we provide a short proof.

Theorem 3.2. Let f(z1, . . . , zn) be a complex analytic function on an open (suf-

ficiently large) domain W ⊂ Cn, 0 ∈ W . Assume that f(0) = 0, ∂f(0)
∂zj

= 0 for

j = 1, . . . , n − 1, while |∂f(0)∂zn
| = η > 0. Assume also that the supremum on W of

the absolute value of the second partial derivatives of f does not exceed M . Put
θ = η

50M
√

2n(n−1)
. Then, the following properties hold:

1) Inside the diskoball DBθ centered at 0 ∈ Cn the set of zeroes of f , i.e. Y =
{z : f(z) = 0}, is a regular analytic hypersurface, which is the graph of a regular
analytic function zn = ϕ(z1, . . . , zn−1), with ∥∇ϕ∥ ≤ 1

49 on B̄θ.
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2) Inside the diskoball DBθ the hypersurface Y is contained in a tabular neigh-
borhood Wν of the coordinate hyperplane zn = 0, of the size ν = θ

49 . The projection

π : Y → Cn−1, π(z) = z̄, restricted to Y ∩ DBθ, shortens distances at most as

1 :
√

1 + (1/49)2 ≥ 0.99.

Proof. For each z ∈ DBθ, integrating the appropriate second derivatives of f along
the real segment [0, z] (whose length does not exceed

√
2θ) we get for j = 1, . . . , n−1,

(3.2)

∣∣∣∣∂f(z)∂zj

∣∣∣∣ ≤ √
2nMθ =

η

50
√
n− 1

,

∣∣∣∣∂f(z)∂zn
− η

∣∣∣∣ ≤ η

50
√
n− 1

.

In particular, |∂f(z)∂zn
− η| ≤ η

50 , and hence |∂f(z)∂zn
| ≥ 49

50η. Applying to f the

standard (local) implicit function theorem at each point z ∈ Y ∩DBθ, we conclude
that there is a neighborhood V ⊂ B̄θ of z̄ such that over V the set Y = {f(z) = 0}
is the graph of a regular analytic function zn = ϕ(z1, . . . , zn−1). It is easy to see
that these local functions define in fact a unique regular analytic function zn =
ϕ(z1, . . . , zn−1) over the entire ball B̄θ. Indeed, on each line L parallel to Ozn inside
DBθ and for any zn, z

′
n ∈ L we have, via (3.2)

f(z1, . . . , zn−1, zn)− f(z1, . . . , zn−1, z
′
n) ≈ η(zn − z′n)

and hence f may have on L at most one zero inside DBθ.

Next, by the chain rule and by (3.2) we have∣∣∣∣∂ϕ(0)∂zj

∣∣∣∣ = ∣∣∣∣∂f(z)∂zj
/
∂f(z)

∂zn

∣∣∣∣ ≤ 1

49
√
n− 1

, j = 1, . . . , n− 1,

and hence ||∇ϕ(z)|| ≤ 1
49 . For each z̄ ∈ B̄θ integrating along the real segment [0, z̄]

we get |zn| = |ϕ(z̄)| ≤ 1
49θ, and hence inside the diskoball DBθ the hypersurface

Y is contained in a tabular neighborhood Wν of the coordinate hyperplane zn = 0,
of the size ν = θ

49 . Finally, for z′n = ϕ(z̄′) and z′′n = ϕ(z̄′′) integrating along the

real segment [z̄′, z̄′′] we get |z′n − z′′n| ≤ 1
49 ||z̄

′ − z̄′′||. So the projection π : Y → B̄θ
shortens distances at most as 1 :

√
1 + (1/49)2 ≥ 0.99. This completes the proof of

Theorem 3.2. □

In order to use Theorem 3.2, we recall that by Markov’s inequality the second
partial derivatives of P are bounded for z ∈ Q by nd4∥P∥1 = nd4. So, we put

M = nd4. Now, we cover Y with diskoballs DBj
rj , centered at zj ∈ Y , whose radii

rj satisfy the requirement rj ≤ ∥∇P (zj)∥/50M
√

2n(n− 1) of Theorem 3.2. To
build DBj we first apply Theorem 2.2 to Qδ = Q \ Σδ, with

γ =
600M

√
2n(n− 1)

K
+ 1 =

600nd4
√

2n(n− 1)

K
+ 1.

This theorem provides a γ-doubling ball covering U of Qδ in Cn, with κ(U) ≤
m(3

√
2nγ)2n log(6nγ/δ) (since by assumptions of Theorem 3.1 the number of critical

points wj of P in Σ is m ≤ (d− 1)n, while the real dimension is 2n). This yields

κ(U) ≤ C1(n, d)

K2n
log(

C2(n, d)

Kδ
)
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where we can put, taking into account that K ≤ nd4, and after some simplifica-
tions, C1(n, d) = (4000n2d5)2n, C2(n, d) = 6000n3d4. This is the complexity bound
required in Theorem 3.1, so it remains to construct the required covering of Y
subordinated to the covering U of Qδ in Cn.

Lemma 3.3. Let Bj ∈ U be a ball of radius Rj, and let z ∈ Bj. Then, we have

∥∇P (z)∥ ≥ 600
√
2n(n− 1)MRj .

Proof. Since, by definition of the γ-doubling ball covering U the concentric ball B̃j

to Bj of radius γRj = (
600M

√
2n(n−1)

K + 1)Rj does not touch Σ, we conclude that

for each z ∈ Bj we have dist(z,Σ) ≥ 600M
√

2n(n−1)

K Rj . By (3.1) we obtain

∥∇P (z)∥ ≥ Kdist(z,Σ) ≥ 600M
√

2n(n− 1)Rj .

□

Now, we proceed as follows, consider all the balls Bj ∈ U , which intersect Y . For
each Bj we fix a point zj ∈ Bj ∩ Y . Applying a unitary coordinate transformation,
we define a new coordinate system (v1, . . . , vn) at z

j , such that the direction of the
last coordinate axis Ovn coincides with the direction of ∇P (zj).

Finally, we fix a diskoball DBj = DBj
rj , with respect to (v1, . . . , vn), centered at

zj , with rj = 12Rj . By Lemma 3.3 we have

∥∇P (zj)∥
50M

√
2n(n− 1)

≥
600

√
2n(n− 1)MRj

50M
√

2n(n− 1)
= 12Rj = rj .

So, the conditions of Theorem 3.2 are satisfied for the polynomial P (z)−P (z0) =
P (z)− c on the diskoball DBj . We conclude that Y ∩DBj

rj is a graph of a regular

analytic function vn = ϕj(v1, . . . , vn−1), such that ∥∇ϕj(v1, . . . , vn−1)∥ ≤ 1
49 on the

ball B̄j
rj . Denote by ϕ̃j the corresponding mapping of B̄j

rj to Y :

ϕ̃j(v1, . . . , vn−1) = (v1, . . . , vn−1, ϕj(v1, . . . , vn−1)).

Finally, we apply a linear mapping λj of the unit ball B̄1 to the concentric ball

B̄j
rj/4

of a four time smaller size, and define a chart ψj in the covering UY of Y

under construction as ψj = ϕ̃j ◦λj . It remains to show that the images Uj = ψj(B1)
of the charts ψj form a doubling covering of Y ∩Q with the required properties.

1) Clearly, ψj are extendable from B̄1 to B̄4 and remain there univalent. Indeed,
with λj we shrink four times the domain, provided by the implicit function theorem.

2) The charts Uj = ψj(B1) form a covering of Y ∩ Q. Indeed, put D̂Bj =

DBj
rj/4

= DBj
3Rj

. We have Uj = Y ∩ D̂Bj . But the diskoball D̂Bj contains

the ball Bj
2Rj

, and already the balls Bj
Rj

of U cover Qnδ . Since, by conditions

Y ⊂ Qδ, we conclude that the diskoballs D̂B
j , intersecting Y , and hence the charts

Uj = Y ∩ D̂Bj , form a covering of Y .

3) For each two points u1, u2 belonging to the same connected component of
Y ∩Q there is a chain Ch in UY joining u1 and u2, with ρ(Uj1 , Uj2) ≥ 1/10 for each
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couple of subsequent charts Uj1 , Uj2 . Indeed, consider a curve ω joining u1 and u2
in Y ∩Q. As in the proof of Theorem 2.2 we can assume that ω does not touch faces
of real dimension smaller than 2n− 1 in the sub-cubes constructed in the proof of
Theorem 2.2. Marking the subsequent sub-cubes along ω and omitting cycles, we
obtain, taking the corresponding balls in U , a chain of balls Bjs in U , which covers

ω, such that for each couple of subsequent balls the intersection Y ∩Q∩Bjs ∩Bjs+1

is non-empty, while the corresponding sub-cubes intersect along a common (n− 1)-
face. By the construction, for the chain Ch of charts Ujs in UY with the same
indices, each couple of subsequent charts Ujs has a non-empty intersection.

4) Consider now a couple of subsequent charts, say, U1, U2, in Ch. By our con-
struction, for the corresponding balls B1 and B2 in U the intersection Y ∩Q∩B1∩B2

is non-empty. By Theorem 2.2, the ratio of the radii R1 and R2 is 1
2 , 1, or 2, and

their intersection contains a ball of radius at least 1
3 of the smallest of R1 and R2.

Now, we notice that the intersection of the charts U1, U2 on Y contains the intersec-
tion B1

2R1
∩B2

2R2
∩Y of the twice larger ball concentric to B1 and B2. On the other

hand, by Theorem 3.2, inside the diskoball DB1 the hypersurface Y is contained
in a tabular neighborhood Wν of the size ν = r1/49 of the coordinate hyperplane
vn = 0. The inverse mapping ψ−1

1 : U1 → B1 is just the projection to the first n− 1
coordinates v1, . . . , vn−1, and by Theorem 3.2, it shortens distances at most to a
factor 0.99. Now, an easy calculation, shows that ρ(U1, U2) ≥ 1

10 . This completes
the proof of Theorem 3.1. □

4. Doubling inequalities on balls

4.1. Doubling inequalities on concentric one-dimensional disks. In this pa-
per we work with algebraic functions. However, it is technically convenient to
consider (in dimension one) a much larger class of p-valent functions. Let p ∈ N,
and let f(z) be an analytic function in a domain W ⊂ C. The function f(z) is said
to be p-valent in W if the equation f(z) = c has at most p roots for any complex
c. The study of p-valent functions is a classical topic in complex analysis (see [16]
and references therein).

The following theorem presents one of possible accurate formulations of the con-
nection between p-valency and doubling inequalities, which is convenient for our
purposes. For more general settings see e.g. [24, 27]. One can get sharper constants
replacing p-valent functions with (s, p)-valent ones, as defined in [12], but we try to
keep analytic tools to the minimum in this paper.

Theorem 4.1. Let 1 > α > β > 0, and let f(z) be p-valent in the disk D. Then,
f(z) satisfies a doubling inequality with respect to the disks βD ⊂ αD ⊂ D so that

DCf (αD, βD) ≤ ((p+ 1)αp +A′
p/(1− α)2p+1)/βp =: cp(α, β)

where A′
p depends only on p.

Proof. First, we recall the classical result of Biernacki [2]:

Proposition 4.2 (Biernacki). Let f(z) =
∑∞

k=0 akz
k be p-valent in the disk D1.

Then, for any k ≥ p+ 1
|ak| ≤ Ap max

i=0,...,p
|ai|k2p−1
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where Ap depends only on p.

Via rescaling it is enough to consider only the unit disk D = D1. Put m =
maxβD |f |. By Cauchy formula, applied to βD for any k we have |ak| ≤ m/βk.
Hence, by Proposition 4.2 for k ≥ p+ 1 we get

|ak| ≤ Apk
2p−1m/βp.

Now, we obtain an upper bound for |f | on αD

max
αD

|f(z)| ≤
∞∑
k=0

|ak|αk =
p∑

k=0

|ak|αk +
∞∑

k=p+1

|ak|αk

≤
p∑

k=0

mαk

βk
+

∞∑
k=p+1

Apk
2p−1mαk

βp

=

1− (α/β)p+1

1− α/β
+
Ap
βp

∞∑
k=p+1

k2p−1αk

max
βD

|f |.

Now, we shall analyse the constant above. First, let us recall the polylog function

Lis(z) =
∑∞

k=1
zk

ks . Note that the infinite sum
∑∞

k=p+1 k
2p−1αk is in fact a tail of

Lis(z) with the parameters s = 1 − 2p and z = α. In this case, when s = −n for
n ∈ N, we have the following formula (e.g. see [19])

Li−n(z) =
1

(1− z)n+1

n∑
k=1

an−1,k−1z
k

where the coefficients (aka Eulerian numbers) can be obtained by the recurrence
equation an,k = (n+ 1− k)an−1,k−1 + kan−1,k. Thus, for s = 1− 2p and z = α, we
get

1− (α/β)p+1

1− α/β
+
Ap
βp

∞∑
k=p+1

k2p−1αk ≤

≤ 1− (α/β)p+1

1− α/β
+

Ap
βp(1− α)2p

2p−1∑
k=1

a2p,k−1α
k

≤ 1− (α/β)p+1

1− α/β
+

A′
p

βp(1− α)2p

2p−1∑
k=1

αk

≤ 1− (α/β)p+1

1− α/β
+

A′
p

βp(1− α)2p
· 1− α2p

1− α

≤ (p+ 1)(α/β)p +
A′
p

βp(1− α)2p+1
= cp(α, β)

where A′
p is another constant, which depends only on p. □
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4.2. Concentric higher-dimensional balls. We consider analytic functions
f(z1, . . . , zn) of complex variables z = (z1, . . . , zn). Let W ⊂ Cn be a domain.
A function f(z) analytic on W is called sectionally p-valent, if it possesses the fol-
lowing property: for each straight line L the restriction fL of f to L∩W is p-valent.
Algebraic functions f of degree d are sectionally p(d)-valent (where p(d) being a
constant depending only on d) by the Bézout theorem, as well as other important
classes of functions.

Theorem 4.3. Let 1 > α > β > 0, and let f(z) be sectionally p-valent in the
ball B ⊂ Cn. Then, f(z) satisfies a doubling inequality with respect to the balls
βB ⊂ αB ⊂ B, with the doubling constant DCf (αB, βB) ≤ cp(α, β).

Proof. Let z ∈ αB. Consider the complex straight line L passing through the points
0 and z, and let fL be the restriction of f to L. Now, applying Theorem 4.1 to fL
with βB ∩L ⊂ αB ∩L ⊂ B ∩L, we obtain the required inequality for fL(z) = f(z)

|f(z)| ≤ max
αB∩L

|fL| ≤ DCf (αB ∩ L, βB ∩ L) max
βB∩L

|fL| ≤ cp(α, β)max
βB

|f |.

□

4.3. Doubling inequalities on non-concentric balls. Now, we extend the dou-
bling inequality for sectionally p-valent functions, provided by Theorem 4.3 to cou-
ples of non-concentric balls.

Corollary 4.4. Let f(z) be sectionally p-valent in the ball B4, and let B1 be the
concentric ball. Let ∆ρ ⊂ B1 be a ball of radius ρ in B1, not necessarily concentric
to it. Then,

DCf (B1,∆ρ) ≤ cp/ρ
p

where cp > 0 depends only on p.

Proof. Let ∆ρ̂ ⊂ B4 be the maximal sub-ball of B4 concentric to ∆ρ. We have
3 < ρ̂ < 4. Consider now the ball ∆ρ̂/2 concentric to ∆ρ. By Theorem 4.3, applied
to the concentric balls ∆ρ ⊂ ∆ρ̂/2 ⊂ ∆ρ̂ we get

max
∆ρ̂/2

|f | ≤ cp(ρ̂/2ρ̂, ρ/ρ̂)max
∆ρ

|f |.

Now, notice that ∆ρ̂/2 contains the disk B1/2 concentric to B1. Hence,
maxB1/2

|f | ≤ max∆ρ̂/2
|f |. Once more, By Theorem 4.3, applied to the concen-

tric disks B1/2 ⊂ B1 ⊂ B4, we conclude that

max
B1

|f | ≤ cp(1/4, 1/8)max
B1/2

|f |.

Taking these two inequalities into account yields

DCf (B1,∆ρ) ≤ cp(1/4, 1/8)cp(1/2, ρ/ρ̂).

Finally, simply observe that the constant cp(1/4, 1/8)cp(1/2, ρ/ρ̂) can be written
as cp/ρ

p, where cp > 0 depends only on p. □
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5. Doubling inequalities on complex manifolds

In this section we give a very general form of a doubling inequality for analytic
functions f on a manifold Y that are sectionally p-valent with respect to a certain
fixed doubling covering U of Y . We do so via continuation along chains of charts in
U .

An analytic function f on Y is called sectionally p-valent with respect to the
doubling covering U of Y if for each chart Uj in U the function fj = f ◦ ψj is
sectionally p-valent in B4. Certainly, polynomials or algebraic functions on algebraic
manifolds Y satisfy this property for each covering U with algebraic charts, with p
depending only on the degrees of the algebraic objects involved.

Theorem 5.1. Let Y be a complex manifold, Ω ⊂ G be relatively compact domains
in Y , and z ∈ G. Let f be an analytic function in a neighborhood of Ḡ in Y , and let
U be a doubling covering of G in Y such that f is sectionally p-valent with respect
to U . Then, we have

|f(z)| ≤ K(z,Ω, f)max
Ω

|f |

where

K(z,Ω, f) = inf
Ch∈CH(z,Ω,U)

c
ℓ(Ch)
p

ρ̃(Uj1 ,Ω)
p
∏ℓ(Ch)−1
m=1 ρ(Ujm , Ujm+1)

p

and cp > 0 being the constant from Corollary 4.4.

Proof. By the assumptions, for each chart Uj of U the function fj = f ◦ ψj is
sectionally p-valent in B4. Let Ch = {j1, . . . , jn} be a chain in CH(z,Ω,U). By
renaming the indices we may assume that Ch = {1, . . . , n}. By the definition of
ρ(Uj , Uj+1), there is a subball ∆ρ(Uj ,Uj+1) of radius ρ(Uj , Uj+1), such that

∆ρ(Uj ,Uj+1) ⊂ ψ−1
j+1(Uj ∩ Uj+1) ⊂ B1.

Thus, by the definition of fj+1 we have

max
∆ρ(Uj,Uj+1)

|fj+1| ≤ max
ψ−1
j+1(Uj∩Uj+1)

|fj+1| = max
Uj∩Uj+1

|f | ≤ max
Uj

|f |.

Now, applying Corollary 4.4 to fj+1, we have

max
B1

|fj+1| ≤
cp

ρ(Uj , Uj+1)p
max

∆ρ(Uj,Uj+1)

|fj+1|.

Thus, by combining these two inequalities, we conclude

max
Uj+1

|f | = max
B1

|fj+1| ≤
cp

ρ(Uj , Uj+1)p
max
Uj

|f |.

This allows us to pass from one chart to the next along the chain. Verbally
repeating this calculation, as we pass from Ω to U1 in the chain, we get for each
chain Ch ∈ CH(z,Ω,U)

|f(z)| ≤ max
Un

|f | ≤ c
ℓ(Ch)
p

ρ̃(U1,Ω)p
∏ℓ(Ch)−1
m=1 ρ(Um, Um+1)p

max
Ω

|f |.

Taking infimum over all the chains in CH(z,Ω,U) completes the proof of Theorem
5.1. □
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Let us give a weaker, but more simple version of Theorem 5.1. We assume that
Ω ⊂ G ⊂ Y , and f as before, and fix a certain doubling covering U of G in Y , such
that f is sectionally p-valent with respect to U .

Let us make the following assumption on U : there are constants ℓ(U) ≤ κ(U),
and ρ(U) > 0, such that any two points in the same connected component of G can
be joined by a chain Ch in U of the length ℓ(Ch) ≤ ℓ(U), with any two subsequent
charts Ui, Uj in Ch satisfying ρ(Ui, Uj) ≥ ρ(U). This condition is satisfied in our
main results below. Assuming in addition that ρ̃(U ,Ω), ρ(U) ≥ ρ, we have the
following simple and natural corollary of Theorem 5.1.

Corollary 5.2. Let f be an analytic function in Y . Let U be a doubling covering,
such that f is sectionally p-valent with respect to U . Assume that ρ(U ,Ω), ρ(U) ≥ ρ.
Then, we have

DCf (G,Ω) ≤ (cp/ρ
p)ℓ(U) ≤ (cp/ρ

p)κ(U) .

Finally, we use Corollary 5.2 to reverse the inequality, obtaining a lower bound
on the number of charts in doubling coverings in terms of the doubling constant for
certain functions.

Corollary 5.3. Let f be an analytic function in Y . Let U be a doubling covering,
such that f is sectionally p-valent with respect to U . Assume that ρ(U ,Ω), ρ(U) ≥ ρ.
Then, we have

κ(U) ≥
logDCf (G,Ω)

log(cp/ρp)
.

5.1. Doubling inequality for polynomials on Y . As an immediate consequence
of Theorem 3.1 we obtain an explicit bound in a doubling inequality for polynomials
S of degree d1 on hypersurfaces Y . Let P (z), Y , Σ = Σ(P ), Ḡ = Y ∩ Q, δ =
dist(G,Σ(P )) > 0 be as in Section 3 above, and let UY be the doubling covering of
G in Y constructed in Theorem 3.1. Let Ω ⊂ G be a relatively compact sub-domain
of G. To simplify the presentation we shall assume that ρ(U ,Ω) ≥ 1

10 .

Corollary 5.4. Let Y,G,Ω be as above. Let f be a restriction of a polynomial S
of degree d1 to Y . Then, we have

DCf (G,Ω) ≤ (C2(n, d)/Kδ)
C3(n,d,d1)/K2n

.

Proof. By Theorem 3.1 we have κ(U) ≤ (C1(n, d)/K
2n) log(C2(n, d)/Kδ). We also

have, by Theorem 3.1, ρ = min(ρ̃(U ,Ω), ρ(U)) ≥ 1
10 . Thus, in order to apply

Corollary 5.2, we need to study the valency p of the restrictions of S ◦ ψj to the
straight lines L in B̄1, for a polynomial S of degree d1 on Y .

So, we have to bound the number of solutions of S ◦ ψj = h on such lines. Let L
be defined in the subspace Cn−1 ⊂ Cn by the affine equations li = 0, i = 1, . . . , n−2,
which we extend to Cn via the projection π. (Here we use the fact that the charts
are given by the inverse maps of linear projections - see the proof of Theorem 3.1).

The solutions of S ◦ ψj = h on L are in a one-to-one correspondence with the
points, defined in Cn by the system of n equations

li = 0 , i = 1, . . . , n− 2 , P = c , S = h
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of degrees 1, d, d1, respectively. By Bézout theorem, this number is at most dd1.
So, we set ρ = 1

10 , p = dd1 in Corollary 5.2, and obtain

DCf (G,Ω) ≤ (10pcp)
(C1/K2n) log(C2/Kδ) = (C2/Kδ)

C3/K2n

where C3 = C3(n, d, d1) = log(10pcp)C1(n, d), with p = dd1. □

6. Concluding remarks

6.1. The hyperbola Hε = {zy = ε2} in C2, and similar curves. The example
of hyperbola Hε = {zy = ε2} in C2 plays a prominent role in study of smooth
parameterizations. Already Ck-parameterization of the real hyperbola Qrealε = Hε∩
I2, for k ≥ 2 is a nontrivial question. Finding an exact number of charts in C2-
parameterization of Hreal

ε was suggested as an exercise in [14]. This exercise was
partially completed in [34], where also some initial results on the complexity of
analytic parameterizations of Hreal

ε were obtained. How many mild charts (with
fixed parameters) do we need to cover Hreal

ε , as ε tends to zero, is an open question.
Application of Theorem 3.1, and of Corollary 5.3 provide the following result:

Theorem 6.1. There is a doubling covering U of the interior Gε of Ḡε = Hε∩Q in
Hε such that ρ(U) ≥ 1

10 and κ(U) ≤ c1 log(c2/ε), where c1, c2 are absolute constants.

For any doubling covering Ũ of Gε with ρ(Ũ) ≥ 1
10 , we have κ(Ũ) ≥ c3 log(1/ε).

Proof. The polynomial P (z, y) = zy − ε2, defining Hε, has the only singular point
at the origin 0 ∈ C2, and the norm of ∇P (z, y) = (y, z) is exactly the distance√

|z|2 + |y|2 from the point (z, y) to the origin. So, K = K(P ) = 1. Now, the

distance of Hε to the origin is equal to
√
2ε, and it is achieved along the “vanishing

cycle” z = εeiθ, y = εe−iθ. Application of Theorem 3.1 provides the required dou-
bling covering U of Gε, with κ(U) ≤ c1 log(c2/ε), where c1, c2 are absolute constants.

Consider now a linear polynomial y restricted to He. Its maximal absolute value
on Ḡε is one. Put Ω = {|z| > 1

2} ∩ Ḡε. We have maxΩ̄ |y| = 2ε2. Therefore, we get

DCy(G,Ω) =
1

2ε2
. By Corollary 5.3, we conclude that in any doubling covering Ũ of

Ḡε in Hε, with ρ(Ũ), ρ̃(Ũ ,Ω) ≥ 1
10 the number of charts κ(U) is at least c3 log(1/ε),

with c3 an absolute constant. □
In the same way we can work with more general polynomials P (z, y) representable

as products of regular factors. In particular, consider a polynomial

P (z, y) = z(z − 1) · · · (z − d)y(y − 1) · · · (y − d)

of degree 2d + 2. This polynomial has exactly (d − 1)2 isolated non-degenerate
singular points. Proceeding as above, we construct a doubling covering of the curve
Yε = {P (z, y) = ε2} in a cube Qd+1 of size d+ 1, with an order of (d− 1)2 log(1/ε)
charts, and show that for any doubling covering the number of charts must be of
the same order.

6.2. Higher-dimensional quadrics. Let

P (z) = P (z1, . . . , zn) =

n∑
j=1

z2j .
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As for the hyperbola, P has the only singular point at the origin 0 ∈ Cn, and the
norm of ∇P (z) = (2z1, . . . , 2zn) is exactly twice the distance from the point z to
the origin. So, K = K(P ) = 2. Consider

Yε = {P (z) = ε2}.
The distance of Yε to the origin is equal to ε, and it is achieved at the real points

of the form (0, 0, . . . ,±ε, 0, . . . 0). Indeed, for any point (z1, . . . , zn) ∈ Yε we have

∥z∥2 =
n∑
j=1

|zj |2 ≥ |
n∑
j=1

z2j | = ε2.

As above, Theorem 3.1 produces a doubling covering U of G = Hε ∩Q with not
more than c5 log(c6/δ) charts, where c5, c6 depend only on n.

Algebraic geometry of complex algebraic hypersurfaces, considered from the point
of view of doubling coverings and doubling inequalities provides a variety of impor-
tant phenomena. We plan to present some further results in this direction separately.
In particular, it would be very interesting to estimate the covering complexity of the

Brieskorn-Milnor fibers P (z) =
∑n

j=1 z
kj
j = ε. However, in this case the singular

point of P at the origin, although isolated, is not non-degenerate any more, and
Theorem 3.1 does not work.
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