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23, 16, 46] and [22, Sec. 11] as well as [15, Chap. 7, 10 and 14], [43, Subsec. 1.6.3
and 2.6.3]) and saddle point theorems ([21, 34], [27, Chap. 11]) are well-known
techniques used to obtain optimality results. We found overviews on duality and
penalty approaches in the books [13, 27, 1] inspirational for our work.

Known results depend on the chosen subdifferential which means that, e.g., the
Lagrangian multiplier rule for nonsmooth functions can be found for the Clarke
subdifferential, the Dini subdifferential (in a fuzzy form), the proximal, the Michel-
Penot, the limiting and the (Mordukhovich) basic subdifferential (see e.g., in [18,
29, 49, 32, 56, 33, 57] and [20, Problem 11.18], [41, Sec. 5.1]). Exact penaliza-
tion with the l1-approach often requires good calculus rules for the subdifferen-
tial. It is therefore not surprising that several works appeared in this research area
[54, 44, 45, 55, 24, 38, 56, 37, 22, 25] which rely on the quasidifferential introduced
by Demyanov and Rubinov (see e.g., [22, Sec. III.2, 1.]). Due to its focus on embed-
ding the cone of convex compact subsets into the vector space of pairs of sets [42],
the quasidifferential inherits excellent calculus rules from this corresponding vector
space.

The directed subdifferential which is the focus of this work is based on an idea
of embedding, i.e., this subdifferential lives in its own Banach space of directed
sets (similarly to the quasidifferential that is effectively an element of Minkowski-
R̊adström-Hörmander space). A visualization of the directed subdifferential as a
usually nonconvex subset of Rn is possible and has close links to other subdifferen-
tials. The positive part of the visualized directed subdifferential of a DC function f
equals to the Dini subdifferential ∂Df(x) in [12, 31], the negative part to the Dini

superdifferential ∂≥
Df(x), and the convex hull of its boundary coincides with the

Michel-Penot subdifferential ∂MP f(x) in [39]. In [6] a possibility for a geometric
calculation of the (Mordukhovich) basic subdifferential in [40, 41] is found for a dif-
ference of convex, positive homogeneous functions in R2. Parts of the visualization
of the directed subdifferential coincides with the basic subdifferential, other parts
with the basic superdifferential.

In this work we formulate optimality conditions based on the directed subdiffer-
ential for unconstrained nonsmooth optimization problems to constrained problems.
Our paper is organised as follows: in Section 2 we briefly remind the definition of
the directed subdifferentials for two function classes, as well as optimality condi-
tions and calculus rules that we use in the sequel. The main results of the paper are
presented in Sections 3–5, devoted to the penalty approach, Lagrange duality and
saddle point optimality conditions, respectively. We subdivide these sections into
“Theory” and “Examples” parts for reader’s convenience. The last section contains
conclusive remarks.

Throughout the paper we use the following notation. For a vector λ =
(λ1, . . . , λn)

T ∈ Rn we denote by λ ≥ 0 the component-wise inequalities λi ≥ 0
for i = 1, . . . , n. By ∥λ∥1 and ∥λ∥2 we denote the sum norm resp. the Euclidean

norm, i.e., ∥λ∥1 =
∑n

i=1 |λi| and ∥λ∥2 =
√∑n

i=1 λ
2
i . We also use the standard scalar

product ⟨x, y⟩ =
∑n

i=1 xiyi on Rn. The canonical unit vectors in Rn are denoted by
e1, . . . , en. By R+ we denote the set of non-negative numbers {α ∈ R | α ≥ 0}, as
usual. We denote by co(M) the convex hull of a set M ⊂ Rn.
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2. The directed subdifferential

The directed subdifferential defined below is an element of the Banach space
D(Rn) of directed sets which are studied in a series of papers [2, 3, 4]. This Ba-
nach space is constructed via the closure of the linear hull of the cone C(Rn) of
compact, convex, non-empty subsets of Rn with respect to the norm introduced

in [3, Definition 4.1]. An n-dimensional directed set
−→
A consists of a pair formed by

two mappings, an (n − 1)-dimensional directed set
−−−→
An−1 and a continuous scalar

function an which are evaluated at a parameter, the direction l ∈ Sn−1, i.e.,

−→
A :=

(−−−−−→
An−1(l), an(l)

)
l∈Sn−1

.

The embedding Jn for a convex set C ∈ C(Rn) introduced in [3, Definitions 3.4
and 4.3] uses the values of the support function δ∗(l, C) = maxc∈C⟨l, c⟩ evaluated
in a direction l ∈ Sn−1 as second component of the directed set and the projection
Πn−1,l of the supporting face Y (l, C) = {c ∈ C | ⟨l, c⟩ = δ∗(l, C)} into Rn−1 which is
embedded into D(Rn−1), i.e.,

Jn(C) =

(
Jn−1(Πn−1,l(Y (l, C))), δ∗(l, C)

)
l∈Sn−1

.(2.1)

For brevity we denote −→v := Jn({v}) for a vector v ∈ Rn.
The projection of Y (l, A) to Rn−1 allows a recursive approach for directed sets.

The first component of a two-dimensional directed set is a directed interval
−−→
[a, b]

introduced by Kaucher [35], where a > b is allowed. This component allows the
definition of a difference of directed sets which is inverse to the Minkowski sum and
operates, like all other arithmetic operations in this space, separately on both com-
ponents. Due to the recursive nature of the definitions, directed sets are described
via n scalar functions

an(l
n)

an−1(l
n−1, ln)
...

a2(l
2, . . . , ln)

a1(l
1, l2, . . . , ln)

 (l1 ∈ S0, l
2 ∈ S1, . . . , l

n ∈ Sn−1)(2.2)

evaluated at unit vectors of dimensions 1, 2, . . . , n, and the operations are reduced
to simple ones on n scalar functions. As an example we mention that the partial

order
−→
A ≤

−→
B for two n-dimensional directed sets is equivalent to the lexicographic

order of the corresponding n describing functions in (2.2) (see [3, Definitions 3.5
and 4.6]). Operations on directed sets extend known operations in C(Rn). As
an example we state that the supremum with respect to the partial order for two
embedded sets C1, C2 ∈ C(Rn) yields

max{Jn(C1), Jn(C2)} = Jn(co(C1 ∪ C2))(2.3)

by [3, Lemma 3.11 and Proposition 4.20]. Here and below we use the notation

max{
−→
A,

−→
B} := sup{

−→
A,

−→
B} for the supremum of two two directed sets

−→
A,

−→
B ∈

D(Rn) defined in [3].



186 W. ACHTZIGER, R. BAIER, E. FARKHI, AND V. ROSHCHINA

In comparison to other approaches of (minimal) embeddings for C(Rn) with equiv-
alence classes of pairs of sets as in [48, 42] or support functions as in [30], directed
sets offer a (generally) nonconvex visualization

Vn(
−→
A ) := Pn(

−→
A ) ∪Nn(

−→
A ) ∪Mn(

−→
A ) ⊂ Rn

with a positive, a negative and a mixed-type part (Pn(
−→
A ), Nn(

−→
A ), Mn(

−→
A )) and

arrows attached to boundary parts, see [4]. We note that

Vn(Jn(C)) = Pn(Jn(C)) = C , Vn(− Jn(C)) = Nn(− Jn(C)) = ⊖C

for C ∈ C(Rn), and ⊖C denotes the pointwise inverse of a set, i.e., (−1) · C.
Directed sets are applied in several fields, and especially the definition and vi-

sualization of their difference have many links to existing set differences (e.g., the
geometric difference C −*D of Hadwiger/Pontryagin in [28, 47] and to the Demyanov
difference C −· D in [22, Sec. III.1], [53]). Especially, we have the inclusion chain(

C −*D
)
∪
(
⊖ (D−*C)

)
⊂ Vn(Jn(C)− Jn(D)) ⊂ C −· D .(2.4)

The visualization of the difference of directed sets is always non-empty and neither
too small nor too big, but usually nonconvex.

Recall that a function f is called DC (difference of convex functions) iff it can be
represented in the form f = g − h with two convex functions g, h.

Definition 2.1 (directed subdifferential). Let f = g − h be a DC function (with
g, h : Rn → R convex), and let x ∈ Rn be a given point. Then the directed
subdifferential of f at x is defined as

−→
∂ f(x) := Jn(∂g(x))− Jn(∂h(x)) ,

where here and below ∂g(x) denotes the classical (Moreau-Rockafellar) convex sub-
differential of the function g at x, and Jn is the embedding in (2.1).

Remark 2.2. The directed subdifferential is well-defined and does not depend
on the chosen DC representation. Also the directed subdifferential of a convex
function g : Rn → R coincides with the embedded convex subdifferential, i.e.,−→
∂ g(x) = Jn(∂g(x)).

The directed subdifferential can be extended to quasidifferentiable functions [7, 8]
and to a more general class of functions defined below. For more details see [9, 10].

Definition 2.3 (directed subdifferentiable function). A function f : Rn → R is
called directed subdifferentiable at x ∈ Rn iff the directional derivative f ′(x; l) exists
at x for all directions l ∈ Rn, the mapping f ′(x; ·) is continuous on Rn and bounded
on Sn−1 by some constant M and, for n ≥ 2, its restriction fl : Rn−1 → R defined
for y ∈ Rn−1 by

fl(y) := f ′(x; l +ΠT
n−1,l(y)), where f ′(x; l) := lim

h↓0

1

h

(
f(x+ hl)− f(x)

)
,

is also directed subdifferentiable at y = 0 with the same constant M for every
l ∈ Sn−1. Here, ΠT

n−1,l maps each point of Rn−1 back to the hyperplane span{l}⊥
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in Rn.
The directed subdifferential for such a function is defined as

−→
∂ f(x) :=

(
−→
∂ fl(0), f

′(l;x)

)
l∈Sn−1

.

Remark 2.4. We mention three special cases of directed subdifferentiable func-
tions. First, a DC function is directed subdifferentiable, since it is a difference of
two Lipschitz functions. Secondly, consider quasidifferentiable functions for which
the directional derivative is a difference of two support functions of sets in C(Rn)
(see, e.g., [22, Chap. III, (2.2)]). Each quasidifferentiable function is directed subdif-
ferentiable (see, e.g., [9, Remark 5.3]). Finally, locally Lipschitz functions definable
on o-minimal structures, and in particular locally Lipschitz semialgebraic functions
are directed subdifferentiable.

By the definition each directed subdifferentiable function is directionally differen-
tiable with a directional derivative being continuous with respect to the direction.
The following example studying the function from [22, Chap. I, Example 3.2] shows
that a directed subdifferentiable or a quasidifferentiable function may not be Lip-
schitz continuous nor even continuous.

Example 2.5. Consider two functions p1, p2 : R → R with p1(x) := x2, p2(x) :=
−x2, and set Ω1 := epi p1 ⊂ R2 and Ω2 := hyp p2 ⊂ R2 as epigraph and hypograph of
the parabolas respectively. Furthermore, let Ω3 := R×{0} and set Ω := Ω1∪Ω2∪Ω3.
We set f(x) := 1 for x ∈ Ω, and f(x) := 0 for x ∈ R2\Ω. Fig. 1 shows a plot of
the graph of f on the square rectangle [−2, 2]2. As indicated in [22] the function is
discontinuous and directionally differentiable at the origin with f ′(0; l) = 0 for all
l ∈ Rn. Clearly, f is quasidifferentiable at the origin.

Figure 1. A directionally differentiable, discontinuous function (Example 2.5)

Taken into account the reprojection calculated in [7, Example 4.1], we have Π1,l =
(l2,−l1). The restriction is given by

fl(y) = f ′(0; l +ΠT
1,ly) for y ∈ R.

Since the directional derivative at the origin is zero for all directions, we have
fl(y) = 0 for all y ∈ R. This shows that fl is directionally differentiable and fulfills
all other requirements so that f is directed subdifferentiable.
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The directed subdifferential can be regarded as a generalization of the gradient
(see [10, Remark 3.1] for a proof).

Proposition 2.6 (differentiable function). Let f : Rn → R be (Fréchet-)differentiable
at x ∈ Rn. Then f is directed subdifferentiable, and its directed subdifferential at
the point x is given by

−→
∂ f(x) =

−−−−−−→
{∇f(x)}.

We restate the sum rule for the directed subdifferential, and we recall the calcula-
tion rule for the directed subdifferential of a maximum of directed subdifferentiable
functions proved in [10].

Proposition 2.7 (calculus rules of the directed subdifferential). Let fi : Rn −→ R
be directed subdifferentiable functions, i = 1, 2, and let α, β ∈ R be given constants.
Then the following assertions hold.

(a) The function f := αf1 + βf2 is directed subdifferentiable, and its directed
subdifferential at arbitrary x ∈ Rn is given by

−→
∂ f(x) = α

−→
∂ f1(x) + β

−→
∂ f2(x) .

(b) The pointwise maximum function f := max{f1, f2} with f(x) :=
max{f1(x), f2(x)} is directed subdifferentiable, and its directed subdifferen-
tial at arbitrary x ∈ Rn is given by

−→
∂ f(x) = max

i∈I(x)

−→
∂ fi(x) ,

where I(x) := {i ∈ {1, 2} | fi(x) = f(x)} is the set of active indices.

For proofs see [10, Proposition 2.2 and 2.4].

Theorem 2.8 (optimality conditions). Let f : Rn −→ R be directed subdifferentia-
ble.

(a) (Necessary optimality condition) Let x∗ ∈ Rn be a local minimizer or a local
maximizer, respectively, of f . Then

0 ∈ Pn(
−→
∂ f(x∗)) resp. 0 ∈ Nn(

−→
∂ f(x∗)) .

Moreover, with the development in [10, Proposition 3.1] this inclusion is
equivalent to the inequality

−→
0 ≤

−→
∂ f(x∗) resp.

−→
0 ≤ −

−→
∂ f(x∗) .

(b) (Sufficient optimality condition) Let x∗ ∈ Rn satisfy the condition

0 ∈ intPn(
−→
∂ f(x∗)) .

Then x∗ is a local minimizer of f (similar for a local maximizer).

For proofs see, e.g., [10, Proposition 3.1] and [8, Proposition 4.4].

Remark 2.9. We introduce the Rubinov subdifferential as the visualization of the
directed subdifferential [4, 5, 7],

∂Rf(x) := Vn(
−→
∂ f(x)) .
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As a direct consequence of (2.4) we have the inclusion chain for subdifferentials,

∂Df(x) ∪ ∂≥
Df(x) ⊂ ∂Rf(x) ⊂ ∂MP f(x) ⊂ ∂Clf(x) ,(2.5)

where ∂Clf(x) denotes the Clarke generalized gradient, i.e., Clarke subdifferential
(see, e.g., [17, 19]).
There is a close connection of directed subdifferentiable functions to Nesterov’s lex-
icographically smooth functions in [36] for locally Lipschitz continuous functions,
although the lexicographic subdifferential does not coincide with the Rubinov sub-
differential in general.

The paper discusses optimization problems of the following type.

(P)

min
x∈Rn

f(x)

s.t. gi(x)≤ 0 (i = 1, . . . ,m),
hj(x)= 0 (j = 1, . . . , p).

Let us add a few notations. The set of feasible points of (P), i.e., the feasible set of
(P), is denoted by

F(P) := {x ∈ Rn | gi(x) ≤ 0 (i = 1, . . . ,m), hj(x) = 0 (j = 1, . . . , p)}.
Throughout the paper, we assume the following standard assumptions to hold:

A1. The feasible set of (P) is not empty (for simplicity), i.e.,

(2.6) F(P) ̸= ∅.

A2. The given functions

(2.7)
f, g1, . . . , gm, h1, . . . , hp : Rn → R are

directed subdifferentiable and continuous.

As a special case of A2, notice that each DC function is directed subdifferentiable
(as outlined above) and continuous.
Furthermore, by f∗ we denote

f∗ := inf{ f(x) | x ∈ F(P) } ∈ R ∪ {−∞}
which is called the optimal value of problem (P). Notice that the optimal value may
not be attained or may be infinite, but f∗ < +∞ always holds due to assumption
(2.6). Finally, when speaking about a “(global) solution x∗ of problem (P)” we
mean a (global) minimizer x∗ of (P), i.e., a point x∗ ∈ F(P) with f(x∗) = f∗

(> −∞).
In the following three sections of the paper we consider three approaches which

(first) convert problem (P) into an unconstrained problem, and (secondly) consider
optimality conditions based on the directed subdifferential. We assume that the
background of some readers may be different from the mainstream of non-smooth
optimization. Therefore, we briefly motivate the optimizer’s point of view and cite
the core references for each approach.

3. The penalty approach

In this section we consider the standard penalty approach to constrained nonlin-
ear programming problems. To keep the exposition self-contained we recall some
basics from the theory of penalty functions, and provide links to the literature.
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3.1. Theory. Recall that a function p : Rn −→ R is called a penalty function for
(P) iff p is continuous and satisfies the following conditions

(3.1)
p(x) = 0 for all x ∈ F(P),
p(x) > 0 for all x /∈ F(P).

One of the most useful penalty functions for (P) is the l1-penalty function,

(3.2) p1 : Rn −→ R, p1(x) :=

m∑
i=1

max{0, gi(x)}+
p∑

j=1

|hj(x)| .

Let p be a penalty function for (P). For a fixed penalty parameter

ρ > 0

consider the following auxiliary function of (P),

fρ : Rn −→ R, fρ(x) := f(x) + ρ p(x).(3.3)

If we choose the l1-penalty function (i.e., “p ≡ p1”), then we use the notation
f1,ρ := fρ, i.e., for all x ∈ Rn

f1,ρ(x) := f(x) + ρ

( m∑
i=1

max{0, gi(x)}+
p∑

j=1

|hj(x)|
)

.(3.4)

Coming back to the general situation of arbitrary penalty function p, property (3.1)
enforces that fρ(x) = f(x) for all x ∈ F(P), and fρ(x) > f(x) for all x /∈ F(P).
We mention that for ρ ≫ 0 and x /∈ F(P) we have fρ(x) ≫ f(x) (“penalty”). This
leads to the general idea of penalty approaches, namely, replacing the constrained
problem (P) by the unconstrained(!) penalty problem of (P) (or auxiliary problem
of (P)),

(Pρ) min
x∈Rn

fρ(x) .

If the penalty parameter has been chosen large, ρ ≫ 0, then one hopes that a
minimizer of the (unconstrained) penalty problem (Pρ) is also a minimizer of the
constrained original problem (P) (see, e.g., [13, Chap. 9] or [1, Sec. 8.1] for back-
ground and proofs concerning penalty approaches).
For the formulation of a general classical convergence result we introduce the fol-
lowing notation. For fixed penalty parameter ρ > 0 denote the optimal function
value of the penalty problem (Pρ) by

f∗
ρ := inf

x∈Rn
fρ(x) ∈ R ∪ {−∞} .

Moreover, when speaking about a “solution x∗ of problem (Pρ)” we mean a global
minimizer of the function fρ. Since such minimizer x∗ in general depends on the
parameter ρ, it is denoted by x∗ρ := x∗. Notice, however, that x∗ρ needs not be
unique.

Recall that we assume the standard assumptions A1–A2 to hold throughout the
paper.
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Theorem 3.1. For each ρ > 0 let the penalty problem (Pρ) possess a solution x∗ρ.
Moreover, let the set {x∗ρ | ρ > 0} ⊂ Rn be bounded. Then

f∗ ∈ R, f∗ = lim
ρ→+∞

f∗
ρ ,

and the limit x∗ of each convergent subsequence of x∗ρ, ρ −→ +∞, is a solution of
the original problem (P), i.e.,

x∗ ∈ F(P) and f(x∗) = f∗.

Moreover, lim
ρ−→+∞

ρ p(x∗ρ) = 0.

Proof: Assumption A2 in (2.7) implies that all functions f , gi and hj are contin-
uous. Moreover, F(P) ̸= ∅ by assumption A1 (see (2.6)). These are the conditions
such that a classical result on penalty methods can be applied (see, e.g., [13, The-
orem 9.2.2]). □
Remark 3.2. Theorem 3.1 describes the situation for global minimizers of (P) and
(Pρ). Notice, however, that in our (general) situation the function fρ may well be
non-convex, and therefore the calculation of a global minimizer x∗ρ of fρ may be
difficult or, at least, strenuous.

We focus on another very useful detail (whose proof is straightforward due to
property (3.1)).

Corollary 3.3. Let ρ > 0 be a penalty parameter, and let x∗ρ be a solution of problem

(Pρ). Moreover, let x∗ρ be feasible for the original problem (P) (i.e., let x∗ρ ∈ F(P),

or, equivalently, let p(x∗ρ) = 0). Then the following two assertions hold:

(a) The point x∗ρ is a solution of (P).

(b) For each ρ ≥ ρ the point x∗ρ is a solution of the penalty problem (Pρ).

In view of a practical algorithm, Theorem 3.1 indicates that problem (Pρ) must
be solved for larger and larger ρ. From a numerical view this may be a delicate
matter. It is a pleasant situation if it is not necessary to let ρ tend to infinity. One
possibility of such a situation is described above in Corollary 3.3. From a more
general view, this property is related to the concept of a exact penalty function for
problem (P). In this paper we use the following common definition of exactness
(see, e.g., [23] for a discussion on different notions of exactness).

Definition 3.4. Let x∗ be a solution of problem (P). A penalty function p of
problem (P) is called exact (w.r.t. x∗) if there exists a threshold parameter ρ > 0
such that for each penalty parameter ρ ≥ ρ the point x∗ is a local minimizer of the
auxiliary function fρ (i.e, x∗ is a local minimizer of the penalty problem (Pρ)).

The practical significance of this definition lies in the fact that it may be sufficient
to solve a single (unconstrained) penalty problem (Pρ) to end up with the solution of
the constrained problem (P). Needless to say that Definition 3.4 becomes extremely
powerful in practice if fρ is convex, and then x∗ is a global minimizer of fρ.

Many investigations have been done on the exactness of penalty functions of type
(3.1), see, e.g., [23] and the citations therein. As a general property we first note that
p must be nonsmooth even if f is smooth (To see this, consider differentiable f, p,
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a solution x∗ of (P), and the practical situation that ∇f(x∗) ̸= 0. Assuming that
p is exact w.r.t. x∗ it follows that ∇fρ(x

∗) = 0 for all ρ ≥ ρ, and thus ∇f(x∗) = 0,
a contradiction). Hence, if exactness plays a role, a nonsmooth penalty function
should be considered. In our context we work with functions f , gi, and hj which are
nonconvex and nonsmooth, anyway. Therefore, and since p1 is simply structured,
the l1-penalty function is a top candidate for an exact penalty function in our
framework.

Remark 3.5. The l1-penalty function p1 is well investigated, particularly in view of
exactness, in the case when f , gi, and hj are locally Lipschitz-continuous. For illus-
tration, we recall the well-known relation of the concept of calmness to the exactness
of penalty functions (see, e.g., [16]) or to newer criteria based on the Mordukhovich
calculus [26]. Calmness is a kind of Lipschitz-condition of the function value around
a feasible point of (P) with respect to perturbations of the right-hand sides of the
constraints of (P) (see, e.g., [19, Definition 6.4.1]. There exist also other definitions
of calmness, see, e.g., [51]). In practice, calmness is a “mild” condition. Now, let all
functions f, gi, hj be locally Lipschitz continuous, let x∗ be a local minimizer of (P),
and let (P) be calm at x∗ in the sense of [19, Definition 6.4.1]. Then the l1-penalty
function p1 of (P) is exact w.r.t. x∗ (see [52, Proposition 1] for a proof; see also [19,
Proposition 6.4.3] for an analogous result with a slightly different penalty function).

Summarizing, we arrive at the situation that it is of big practical interest to find
local/global minimizers of the auxiliary function f1,ρ (see (3.4)). Our intention is
to do this by the application of sufficient and necessary optimality conditions via
directed subdifferentials (see Theorem 2.8 above). First we present formulas for the
directed subdifferential of f1,ρ at an arbitrary point x ∈ Rn. For this, we introduce
the following notation of index sets.

Notation 3.6. Let x ∈ Rn. We consider the index sets

I0g (x) :=
{
i ∈ {1, . . . ,m} | gi(x) = 0 },

I+g (x) :=
{
i ∈ {1, . . . ,m} | gi(x) > 0 }

related to the inequality constraints in (P), and

I0h(x) :=
{
j ∈ {1, . . . , p} | hj(x) = 0 },

I±h (x) :=
{
j ∈ {1, . . . , p} | hj(x) ̸= 0 }

related to the equality constraints in (P).

These index sets will now be used for an easier expression of the directed sub-
differential. The background lies in the application of standard calculus rules for
the directed subdifferential. For example, in view of the function |hj | we make use
of the representation |hj | = max{−hj ,+hj} in the second formula of the following
proposition.

Proposition 3.7. Let ρ > 0 and x ∈ Rn be arbitrary. Then the directed subdiffer-
ential of the auxiliary function f1,ρ at x is given by the formula

−→
∂ f1,ρ(x) =

−→
∂ f(x) + ρ

( m∑
i=1

−→
∂ (max{0, gi})(x) +

p∑
j=1

−→
∂ |hj |(x)

)
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=
−→
∂ f(x) + ρ

( ∑
i∈I0g (x)

max
{−→
0 ,

−→
∂ gi(x)

}
+

∑
i∈I+g (x)

−→
∂ gi(x)

+
∑

j∈I0h(x)
max

{
−
−→
∂ hj(x),

−→
∂ hj(x)

}
+

∑
j∈I±h (x)

sign(hj(x))
−→
∂ hj(x)

)
.

Proof. We apply the calculation rules for directed subdifferentials for the auxiliary
function f1,ρ in (3.4) (see Proposition 2.7(a) and (b)). The case for x ∈ Rn with

gi(x) < 0 can be ignored, since
−→
∂ (max{0, gi})(x) =

−→
0 . The third and fourth term

appear by rewriting |hj | as |hj | = max{−hj , hj}. In both cases, if hj(x) = 0 or
hj(x) ̸= 0, the calculus rule for the maximum of two functions is applied. □

By these explicit formulas we are now able to apply the general optimality con-
ditions from Theorem 2.8 above to our special unconstrained penalty problem (Pρ)
with p ≡ p1.

Proposition 3.8 (necessary optimality conditions). Let ρ > 0 be a given penalty
parameter, and consider the penalty problem (Pρ) with the l1-penalty function p ≡
p1. Moreover, let x∗ρ ∈ Rn be a local minimizer of the auxiliary function f1,ρ. Then

(3.5) 0 ∈ Pn(
−→
∂ f1,ρ(x

∗
ρ)), i.e.,

−→
0 ≤

−→
∂ f1,ρ(x

∗
ρ) ,

where
−→
∂ f1,ρ(x

∗
ρ) is given by Proposition 3.7 (for x := x∗ρ).

Proposition 3.9 (sufficient optimality conditions). Let ρ > 0 be a given penalty
parameter, and consider the penalty problem (Pρ) with the l1-penalty function p ≡
p1. Moreover, let x̃ ∈ Rn be a point satisfying the condition

(3.6) 0 ∈ intPn(
−→
∂ f1,ρ(x̃)).

Then x̃ is a local minimizer of the auxiliary function f1,ρ.

3.2. Examples. Let us look at some academic examples.

Example 3.10. Consider the particular problem (P) in one variable

min
x∈R

x2 − 8|x|+ 7

s.t. |x| ≤ 1 .

It is easy to see that the objective function f(x) := x2 − 8|x|+ 7 is strongly mono-
tonically increasing on the interval [−1, 0] and strongly monotonically decreasing
on the interval [0,+1]. Therefore the local=global minimizers of (P) are the two
points x∗1 := −1 and x∗2 := +1 with optimal function value f∗ = f(x∗ℓ) = 0 for
ℓ = 1, 2.
Set g1(x) := |x| − 1 for handling the inequality constraint in (P). The auxiliary
function f1,ρ is given by

f1,ρ(x) = x2 − 8|x|+ 7 + ρ max{0, |x| − 1}
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=

{
x2 − 8|x|+ 7 if |x| ≤ 1,
x2 − (8− ρ)|x|+ (7− ρ) otherwise.

The standard assumptions A1–A2 are fulfilled, since 0 ∈ F(P), g1 is convex and
f(x) = (x2 + 7)− 8|x| is DC.

(i) calculation of minimizers of the auxiliary function

Before we look at optimality conditions, we analyze f1,ρ by elementary means. We
distinguish two cases:

Case 1: It is 0 < ρ < 6. Then x̄ρ := 4 − ρ
2 > 1. Consider f1,ρ(x) for x > 1.

Then f ′
1,ρ(x) = 2x − (8 − ρ), i.e., f ′

1,ρ(x) < 0 for all x ∈ (1, x̄ρ), and f ′
1,ρ(x) > 0

for all x > x̄ρ. For x ∈ [0, 1] we have f(x) = f1,ρ(x), and therefore f1,ρ is strongly
monotonically decreasing on [0, 1] (as seen above for function f). Summarizing, and
using the facts that f1,ρ is continuos and that f1,ρ(x) = f1,ρ(−x) for all x ∈ R, we
deduce that the points

(3.7) x∗1ρ := −x̄ρ = −(4− ρ
2) and x∗2ρ := x̄ρ = 4− ρ

2 for all ρ ∈ (0, 6)

are the only local=global minimizers of f1,ρ. Their optimal function values are

f∗
1,ρ = f1,ρ(x

∗1
ρ ) = f1,ρ(x

∗2
ρ ) = −ρ2

4 + 3ρ− 9 .

Case 2: It is ρ ≥ 6. For each x > 1 we deduce that f ′
1,ρ(x) = 2x − (8 − ρ) >

2−8+ρ = −6+ρ ≥ 0, i.e., f1,ρ is strongly monotonically increasing on the interval
[1,+∞[. Analogously to the considerations in case 1 we see that the points

(3.8) x∗1ρ := x∗1 = −1 and x∗2ρ := x∗2 = +1 for all ρ ∈ [6 +∞)

are the only local=global minimizers of f1,ρ. Their optimal function values are
f∗
1,ρ = f1,ρ(x

∗1) = f1,ρ(x
∗2) = 1− 8 + 7 = 0. This concludes case 2.

Fig. 2 shows plots of the objective function f and of the auxiliary function f1,ρ
for various values of ρ. Notice that x∗ℓρ /∈ F(P), ℓ = 1, 2, for all ρ ∈ ]0, 6[, whereas

Figure 2. The objective function and auxiliary functions for various
values of ρ (Example 3.10)

x∗ℓρ ∈ F(P), ℓ = 1, 2, for all ρ ≥ ρ := 6. This also verifies the assertions of
Corollary 3.3, and we observe the exactness of the l1-penalty function p1. Needless
to say that x∗ℓρ −→ x∗ℓ, ℓ = 1, 2, for ρ ↗ ρ = 6, as predicted by Theorem 3.1 (and,
consequently, f∗

1,ρ −→ f∗ for ρ ↗ ρ).
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(ii) calculation of the directed subdifferential of the auxiliary function

For any ρ > 0 we look at f1,ρ in its defining representation

f1,ρ(x) = x2 − 8|x|+ 7 + ρ max{0, |x| − 1} for x ∈ R.

For any x ∈ R Propositions 2.6, 2.7, and 3.7 lead to the formulas

−→
∂ f(x) = J1({2x})−

{
8J1({sign(x)}) if x ̸= 0,

8J1([−1, 1]) if x = 0,

and

−→
∂ f1,ρ(x) =

−→
∂ f(x) +


ρ · −→0 if x ∈ (−1, 1),

ρ ·max{J1({0}), J1({sign(x)})} if x ∈ {−1, 1},
ρ · J1({sign(x)}) if x /∈ [−1, 1].

Furthermore, by combination of these two formulas and by using that

max{J1({0}), J1({sign(x)})} = J1(co{0, sign(x)}) =
{

[−1, 0] if x = −1
[0, 1] if x = +1

we see that

−→
∂ f1,ρ(x) =



J1({2x+ 8− ρ}) if x ∈ (−∞,−1),

J1({2x+ 8}) + ρ · J1([−1, 0]) if x = −1,

J1({2x+ 8}) if x ∈ (−1, 0),

J1({0})− J1([−8, 8]) if x = 0,

J1({2x− 8}) if x ∈ (0, 1),

J1({2x− 8}) + ρ · J1([0, 1]) if x = 1,

J1({2x− 8 + ρ}) if x ∈ (1,∞),

=



J1({2x+ 8− ρ}) if x ∈ (−∞,−1),

J1([6− ρ, 6]) if x = −1,

J1({2x+ 8}) if x ∈ (−1, 0),

−J1([−8, 8]) if x = 0,

J1({2x− 8}) if x ∈ (0, 1),

J1([−6,−6 + ρ]) if x = 1,

J1({2x− 8 + ρ}) if x ∈ (1,∞).

(3.9)



196 W. ACHTZIGER, R. BAIER, E. FARKHI, AND V. ROSHCHINA

(iii) necessary optimality conditions by the directed subdifferential

Now we identify all points x satisfying the necessary optimality condition 0 ∈
P1(

−→
∂ f1,ρ(x)) for a local minimizer of f1,ρ (cf. Proposition 3.8). By the formulas in

(3.9) we conclude that 0 ∈ P1(
−→
∂ f1,ρ(x)) holds if and only if

(3.10)

(
0 = 2x+ 8− ρ = 2

(
x−

(
− 4 + ρ

2

))
and x ∈ (−∞,−1)

)
or(

6− ρ ≤ 0 and x = −1
)
or(

0 = 2x+ 8 and x ∈ (−1, 0)
)
or(

0 = 2x− 8 and x ∈ (0, 1)
)
or(

−6 + ρ ≥ 0 and x = 1
)
or(

0 = 2x− 8 + ρ = 2
(
x−

(
4− ρ

2

))
and x ∈ (1,∞)

)
.

In these considerations the point x̂ := 0 has been eliminated because its directed

subdifferential
−→
∂ f1,ρ(0) = −J1([−8, 8]) (see (3.9)) consists only of a negative visu-

alization part, i.e., P1(
−→
∂ f1,ρ(0)) = ∅ for all ρ > 0. Consequently, for any ρ > 0

the necessary optimality condition for a local minimizer is not satisfied at x̂ = 0.
We mention, however, that x̂ = 0 satisfies the necessary optimality conditions for

a local max imizer of f1,ρ for all ρ > 0, because 0 ∈ N1(
−→
∂ f1,ρ(0)) = [−8, 8] for all

ρ > 0.
Further straightforward elaborations on the conditions in (3.10) and sorting by

the magnitude of ρ we arrive at the set Xnec
ρ collecting all points satisfying the

necessary optimality conditions for local minimizers of f1,ρ given by Proposition 3.8,

(3.11)

Xnec
ρ := {x ∈ R | 0 ∈ P1(

−→
∂ f1,ρ(x))}

=

{{
−
(
4− ρ

2

)
, +
(
4− ρ

2

)}
if ρ < 6,

{−1,+1} if ρ ≥ 6.

Hence, for each fixed ρ > 0 the necessary optimality conditions identify exactly
those points which are the true local=global minimizers of f1,ρ (compare to (3.7)
and (3.8))!

(iv) sufficient optimality conditions by the directed subdifferential

For the application of sufficient conditions (cf. Proposition 3.9) we must consider

situations where int(P1(
−→
∂ f1,ρ(x))) ̸= ∅. The formulas in (3.9) show that this is

the case if and only if x ∈ {−1,+1} and ρ > 6. Moreover, we see that in these
situations also the sufficient optimality condition is satisfied, because

0 ∈ int
(
P1(

−→
∂ f1,ρ(−1))

)
= (6− ρ, 6)

0 ∈ int
(
P1(

−→
∂ f1,ρ(+1))

)
= (−6,−6 + ρ)

}
for all ρ > 6.

Hence, for ρ > 6 the sufficient optimality conditions hold at the local=global mini-
mizers x∗1 = −1, x∗2 = +1 of f1,ρ (compare to (3.8)).
We add that at the point x̂ = 0 the sufficient optimality condition for a local

max imizer of f1,ρ is satisfied for all ρ > 0, because 0 ∈ (−8,+8) = int(N1(
−→
∂ f1,ρ(0)))

for all ρ > 0.

(v) comparison to the Clarke subdifferential
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A careful calculation of the Clarke subdifferential ∂Clf1,ρ(x) for any ρ > 0 and any
x leads to formulas which are closely related to the expressions in (3.9). Since the
calculus based on the Clarke subdifferential, however, is more unspecific in view of
minimization and maximization, one obtains the set of critical points

{x ∈ R | 0 ∈ ∂Clf1,ρ(x)} = Xnec
ρ ∪ {0} for all ρ > 0

with Xnec
ρ from (3.11) above. We see that by using the Clarke subdifferential cal-

culus the local maximizer x̂ = 0 is not excluded from critical points.

Example 3.11. Consider the optimization problem of type (P) in two variables
with one equality constraint

min
x∈R2

{
max{x41 + 2x2, x

4
1 + x21 + x2} −max{−x42,−x42 + x21 + x2}

}
s.t. x1x2 = 0 .

For simplicity in notation we set F1, F2, F3 : R2 −→ R,
F1(x1, x2) := max{2x2, x21 + x2},
F2(x1, x2) := max{0, x21 + x2},
F3(x1, x2) := x41 + x42 .

Then the objective function takes the form

f = F1 − F2 + F3 .

The standard assumptions A1–A2 are satisfied, since F1−F2 is DC, F3 and h1(x) =
x1x2 are C2 and hence, DC. The function F1 −F2 appears in well-studied academic
examples to illustrate different kinds of subdifferentials (see, e.g., [22, Sec. III.4,
Ex. 4.2] and [5, Ex. 4.7]). From the latter reference we cite that

(3.12)
−→
∂ (F1 − F2)(0, 0) = J2({(0, 1)T })

while the Clarke subdifferential at the origin is given by

(3.13) ∂Cl(F1 − F2)(0, 0) = co({
(
0
0

)
,
(
0
1

)
}) .

The plots in Fig. 3(a) and Fig. 3(b) show the graph and the level lines, respec-
tively, of the objective function f on the rectangular domain [−1, 1]2 respectively

Figure 3. Plot of the objective function and corresponding contour
lines (Example 3.11)
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[−0.6, 0.6]2.
(i) calculation of minimizers of the original problem

For feasible points we obtain the objective function values

f(x1, 0) = x41 for all x1 ∈ R,
f(0, x2) = x42 + x2 for all x2 ∈ R.

This shows that the unique global=local minimizer of (P) is the feasible point

x∗ := (0,− 1
3√4

)T = (0,−4−1/3)T ≈ (0,−0.6299605)T

with optimal function value

f∗ = f(x∗) = 4−4/3 − 4−1/3 ≈ −0.4724704 < 0 .

(ii) calculation of the directed subdifferential of the auxiliary function

Now we have a look at the auxiliary function f1,ρ of (P) for any given ρ > 0.
With the above defined functions F1, F2, F3, and with the function F4 : R2 −→ R,
F4(x1, x2) := |x1x2|, we have

f1,ρ = F1 − F2 + F3 + ρF4.

The functions F1 and F2 (and F3) are convex, and F3 is continuous differentiable.
Hence, Remark 2.2 and Propositions 2.6, 2.7 show that

−→
∂ F1(x1, x2) =


J2({(0, 2)T }) if x2 > x21,

J2
(
co
({(

0
2

)
,
(
2x1

1

)}))
if x2 = x21,

J2({(2x1, 1)T }) if x2 < x21,

(3.14)

−→
∂ F2(x1, x2) =


J2({(0, 0)T }) if x2 < −x21,

J2
(
co
({(

0
0

)
,
(
2x1

1

)}))
if x2 = −x21,

J2({(2x1, 1)T }) if x2 > −x21,

(3.15)

−→
∂ F3(x1, x2) = J2({4(x31, x32)T })(3.16)

for all (x1, x2)
T ∈ R2. Moreover, writing F4 in the form F4(x1, x2) =

max{−x1x2,+x1x2} for all x ∈ R2 Propositions 2.7(b) and 2.6 show that

(3.17)
−→
∂ F4(x1, x2) =



J2({(−x2,−x1)
T }) if x1x2 < 0

J2([−|x2|,+|x2|]× {0}) if x1 = 0 and x2 ̸= 0,

J2({0} × [−|x1|,+|x1|]) if x1 ̸= 0 and x2 = 0,

J2({(0, 0)T }) if x1 = x2 = 0,

J2({(x2, x1)T }) if x1x2 > 0

for all (x1, x2)
T ∈ R2 (note that F4 is Fréchet-differentiable at the origin which is

easy to prove). From Proposition 2.7(a) we deduce that

−→
∂ f1,ρ(x) =

−→
∂ F1(x)−

−→
∂ F2(x) +

−→
∂ F3(x) + ρ

−→
∂ F4(x) for all x ∈ R2.

By the help of the formulas in (3.14), (3.15), (3.16), and (3.17) above it is easy to

calculate
−→
∂ f1,ρ(x) at any point x ∈ R2.
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For brevity, we calculate
−→
∂ f1,ρ(x) just at two points, namely, at the optimal

point x∗ = (0,− 1
3√4

)T from above, and at the origin x̂ := (0, 0)T .

For x = x∗ we obtain
−→
∂ f1,ρ(x

∗) = J2({(2x∗1, 1)T })− J2({(0, 0)T }) + J2({(4(x∗1)3, 4(x∗2)3)T })
+J2([x

∗
2,−x∗2]× {0})

[Notice that x∗1 = 0.]

= J2({(0, 1)T })− J2({(0, 0)T }) + J2({(0, 4(x∗2)3)T })
+J2([x

∗
2,−x∗2]× {0})

= J2({(0, 1 + 4(x∗2)
3)T }) + J2([x

∗
2,−x∗2]× {0})

= J2([x
∗
2,−x∗2]× {1 + 4(x∗2)

3})
[Notice that x∗2 = − 1

3√4
, i.e., 1 + 4(x∗2)

3 = 0.]

= J2([x
∗
2,−x∗2]× {0}).

At the origin we obtain
−→
∂ f1,ρ(0, 0) = J2

(
co
((

0
2

)
,
(
0
1

)))
− J2

(
co
((

0
0

)
,
(
0
1

)))
+ J2({(0, 0)T })

+ρJ2({(0, 0)T })
= J2({(0, 1)T }) + J2({(0, 0)T }) + ρJ2({(0, 0)T })
= J2({(0, 1)T }).

(iii) considerations at the points x∗ and at the origin

As calculated above, we have
−→
∂ f1,ρ(x

∗) = J2([x
∗
2,−x∗2] × {0}) for all ρ > 0. This

yields P2(
−→
∂ f1,ρ(x

∗)) = [x∗2,−x∗2]× {0}. We conclude that

(0, 0)T ∈ P2(
−→
∂ f1,ρ(x

∗)) for all ρ > 0,

i.e., at the optimal point x∗ of (P) the necessary optimality condition for a local
minimizer of f1,ρ is satisfied for all ρ > 0.

Since the interior of P2(
−→
∂ f1,ρ(x

∗)) is empty, the sufficient condition is not satisfied
at x∗.

At the origin we have
−→
∂ f1,ρ(0, 0) = J2({(0, 1)T }) for all ρ > 0 (see above), and

therefore neither the necessary optimality condition nor the sufficient optimality
condition is satisfied. Since f ′

1,ρ((0, 0)
T ; (0, 1)T ) = 1 and f ′

1,ρ((0, 0)
T ; (0,−1)T ) =

−1, however, we can identify a strict saddle point in the sense of [5, Sec. 5].

(iv) comparison to the Clarke subdifferential

Consequently, neither the necessary optimality condition nor the sufficient optimal-
ity condition for a local minimizer of f1,ρ is satisfied at the origin for any ρ > 0.
This is in contrast to the standard necessary optimality condition based on the
Clarke subdifferential calculus. Analogously to the situation for f mentioned above
in (3.12) and (3.13) we have that

(0, 0)T ∈ ∂Clf1,ρ(0, 0) for all ρ > 0.

This can be seen as follows. Let ρ > 0 be arbitrary, and choose any sequence
(αk)k∈N ⊂ {α ∈ R | α > 0} such that αk −→ 0. Set βk := 1

2α
2
k for all k. Then for
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all k ∈ N the function f1,ρ is differentiable at (αk, βk)
T with

∇f1,ρ(αk, βk) =

(
2αk

1

)
−
(
2αk

1

)
+

(
4α3

k

4β3
k

)
+ ρ

(
βk
αk

)
=

(
4α3

k + ρβk
4β3

k + ραk

)
.

Since αk −→ 0 implies βk −→ 0, we see that ∇f1,ρ(αk, βk) −→ (0, 0)T as k −→ +∞.
This shows that (0, 0)T ∈ ∂f1,ρ(0, 0) (see, e.g., [19, Theorem 2.5.1]).

Example 3.12. Consider the special optimization problem (P) with a convex ob-
jective function and a single concave inequality constraint.

Figure 4. Graphs of objective function and constraint (Example 3.12)

min
x∈R2

|x1|+ |x2| − 2

s.t. −
√

x21 + x22 + 2 ≤ 0

The feasible set describes “the plane with a hole” (see Fig. 4(b)), i.e.,

(3.18) F(P) = R2\{x ∈ R2 : ∥x∥2 < 2 } = {x ∈ R2 : ∥x∥2 ≥ 2 } .

We set g1(x) := −∥x∥2 + 2 for all x ∈ R2. As in the examples above, we state that
the standard assumptions A1–A2 are fulfilled, since f(x) = ∥x∥1− 2 and g1 are DC
and (2, 0)T ∈ F(P).

(i) consideration of original problem

We first calculate all global minimizers of (P) by analytic means. We use that
∥y∥1 ≥ ∥y∥2 for all y ∈ R2, and therefore

∥x∥1 ≥ ∥x∥2 ≥ 2 for all x ∈ F(P)

with equality if and only if ∥x∥1 = ∥x∥2 = 2. This yields the four (isolated) global
minimizers of the problem

(3.19) x∗1 := (2, 0)T , x∗2 := (0, 2)T , x∗3 := (−2, 0)T , x∗4 := (0,−2)T

located on the boundary of F(P). The corresponding optimal function value is
f∗ = 0.

As in the previous example, we provide some plots. Fig. 4(a) displays the graphs
of the convex objective function f (light colors) as well as of the concave constraint
function g1 (dark colors) on the square box [−2,+2]2. The four minimizers x∗ℓ,
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Figure 5. Level lines of objective function f and of f1,ρ for various
values of ρ (Example 3.12)

ℓ = 1, 2, 3, 4, are found on the coordinate axes where f(x∗ℓ) = g1(x
∗ℓ) = 0. Fig. 4(b)

again displays the function graph of g1 (dark colors) and the feasible set F(P) in
the x1-x2-plane (light brown) (cf. (3.18)). Moreover, Fig. 5(a) shows the level lines
of the objective function f on the square box [−3,+3]2.

Figure 6. Graphs of objective function f and of auxiliary functions
f1,ρ for various values of ρ (Example 3.12)

(ii) consideration of auxiliary problem

Now we analyze the penalty problem (Pρ) with penalty function p ≡ p1 and (arbi-
trary) penalty parameter ρ > 0, i.e., minimization of the

f1,ρ(x) = ∥x∥1 − 2 + ρ max{0,−∥x∥2 + 2} for x ∈ R2.



202 W. ACHTZIGER, R. BAIER, E. FARKHI, AND V. ROSHCHINA

Fig. 6(a) (again) shows the graph of the objective function f . In comparison to this,
the plots in the Figs. 6(b), 6(c), 6(d) show the graph of f1,ρ for the parameter values
ρ = 1

2 , ρ = 1, and ρ = 3
2 , respectively. Accordingly, the level lines of the auxiliary

function f1,ρ are displayed in the Figs. 5(b), 5(c), and 5(d) for the parameter values
ρ = 1

2 , ρ = 1, and ρ = 3
2 , respectively.

(iii) necessary and sufficient optimality conditions by the directed subdifferential

Now we consider optimality conditions based on the directed subdifferential. Since

(3.20) f1,ρ(x1, x2) = f1,ρ(|x1|, |x2|) = f1,ρ(|x2|, |x1|) for all x ∈ R2,

it suffices to calculate the directed subdifferential only at points x from the set

X0 := {x ∈ R2 | x1 ≥ 0, x2 > 0 } ∪ {(0, 0)T } .

These calculations are presented in Appendix A. We obtain

(3.21)
−→
∂ f1,ρ(x) =



J2





1− ρ x1

∥x∥2
1− ρ x2

∥x∥2




 if x1 > 0, x2 > 0, ∥x∥2 < 2,

J2
((

1
1

)
+ ρ · co

{(
0
0

)
,−1

2x
})

if x1 > 0, x2 > 0, ∥x∥2 = 2,

J2
( {(

1
1

)})
if x1 > 0, x2 > 0, ∥x∥2 > 2,

J2([−1, 1]2)− ρ J2(B1(0, 0)) if x = (0, 0)T ,

J2([−1, 1]× {1− ρ}) if x1 = 0, 0 < x2 < 2,

J2([−1, 1]× [1− ρ, 1]) if x = (0, 2)T ,

J2([−1, 1]× {1}) if x1 = 0, x2 > 2

where B1(0, 0) := {s ∈ R2 : ∥s∥2 ≤ 1}. From these formulas we calculate the points
x ∈ X0 satisfying the necessary conditions for a local minimizer auxiliary function
of f1,ρ,

Xnec
0,ρ := {x ∈ X0 | (0, 0)T ∈ P2(

−→
∂ f1,ρ(x)) },

and get (see Appendix A, eq. (A.2))

(3.22) Xnec
0,ρ =



{(0, 0)T } if ρ ∈ (0, 1),

{(0, x2)T | 0 ≤ x2 ≤ 2} if ρ = 1,

{(0, 2)T } if ρ ∈ (1,
√
2),

{(δ, δ)T | 0 < δ ≤
√
2} ∪ {(0, 2)T } if ρ =

√
2,

{(
√
2,
√
2)T } ∪ {(0, 2)T } if ρ >

√
2.

For each ρ > 0 the function f1,ρ is continuous and coercive (i.e., f1,ρ(y
k) −→ +∞ for

all sequences (yk)k ⊂ R2 with ∥yk∥1 −→ +∞). Hence, the infimal function value
of f1,ρ is attained, i.e., f1,ρ possesses global minimizers. Therefore, (3.20) shows
that global minimizers of f1,ρ are contained in the set X0. By Proposition 3.8 these
global minimizers are contained in the set Xnec

0,ρ . Summarizing, for each ρ > 0 we
find all global minimizers of f1,ρ on X0 by picking out the points in Xnec

0,ρ with the
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smallest function values. By this we obtain

(3.23) argmin
x∈X0

f1,ρ(x) =


{(0, 0)T } if ρ ∈ (0, 1),

{(0, x2)T | 0 ≤ x2 ≤ 2} if ρ = 1,

{(0, 2)T } if ρ > 1

with corresponding optimal function value

(3.24) f∗
1,ρ =

{
2ρ− 2 if ρ ∈ (0, 1),

0 if ρ ≥ 1.

Of course, the set of points in X0 satisfying the sufficient conditions for a local
minimizer of f1,ρ,

Xsuff
0,ρ := {x ∈ X0 | (0, 0)T ∈ int(P2(

−→
∂ f1,ρ(x))) },

must be contained in the set of minimizers argmin
x∈X0

f1,ρ(x). Let us verify this. By

calculations in Appendix A (see eq. (A.3)) we have

(3.25) Xsuff
0,ρ =


{(0, 0)T } if ρ ∈ (0, 1),

∅ if ρ = 1,

{(0, 2)T } if ρ > 1,

and together with (3.23) we see that, indeed, Xsuff
0,ρ ⊂ argmin

x∈X0

f1,ρ(x) holds for all

ρ > 0 (we even have an equality for all ρ ̸= 1).
From (3.23) and (3.20) we deduce that the set of all global minimizers of f1,ρ is

given by

(3.26) argmin
x∈R2

f1,ρ(x) =


{(0, 0)T } if ρ ∈ (0, 1),(
{0} × [−2,+2]

)
∪
(
[−2,+2]× {0}

)
if ρ = 1,

{(0, 2)T , (−2, 0)T , (0,−2)T , (2, 0)T } if ρ ∈ (1,+∞).

By comparison to (3.19) we observe the exactness of the penalty with ρ := 1. More
precisely, for each ρ ≥ ρ each global minimizer of (P) is also a global minimizer of
f1,ρ. For ρ > ρ = 1 also the opposite implication holds.

The above derived results are also nicely observed in the plots of the function graphs
and the level lines. Fig. 6(a) (graph of objective function f) and 6(b) (graph of f1,ρ
for ρ = 1

2) illustrate that only the origin x = 0 is optimal. This is also illustrated by
the level lines (see Figs. 5(a) and 5(b), respectively). For ρ = 1 we observe that all
the points in ({0}×[−2,+2])∪([−2,+2]×{0}) are optimal (see Fig. 6(c) for the graph
of f1,ρ=1, and Fig. 5(c) for corresponding level lines). Finally, for ρ = 3

2 we observe

that f1,ρ possesses the four global minimizers (0, 2)T , (−2, 0)T , (0,−2)T , (2, 0)T (see
Fig. 6(d) and 5(d)). Moreover, one detects that the origin is a local maximizer.

From the expressions in (3.22) and from the calculations in Appendix A we argue
that the situation ρ =

√
2 is special. The plots in Fig. 7 show the graph and the level

lines of f1,ρ=
√
2. One can see that for this value of ρ the function values f1,ρ=

√
2(x)
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Figure 7. Graphs and contour lines of auxiliary functions f1,ρ for

ρ =
√
2 (Example 3.12)

for points x contained in the “cross-shaped” set

{(δ, δ)T | δ ∈ [−
√
2,+

√
2] } ∪ {(−δ, δ)T | δ ∈ [−

√
2,+

√
2] }

are constant, and, furthermore, these points are local maximizers of f1,ρ=
√
2. Since

f1,ρ=
√
2 is differentiable at these points x, the directed subdifferential

−→
∂ f1,ρ=

√
2(x)

consists of only an embedded point.

(iv) visualized directed subdifferential of auxiliary function at minimizer

Let us have a look at the visualization of the directed subdifferential at an optimal
point of (P). Just as an example, let us consider the optimal point

x∗2 = (0, 2)T .

For any ρ > 0 the directed subdifferential of f1,ρ at this point is given by

−→
∂ f1,ρ(x

∗2) = J2([−1,+1]× [1− ρ, 1])

(see (3.21)). Fig. 8 displays visualizations of different directed subdifferentials at
the point x∗2 = (0, 2)T . Subfigure 8(a) shows the directed subdifferential of the
objective function f of the original problem (P). Subfigures 8(b) to 8(d) show the
subdifferentials of the auxiliary function f1,ρ for the values ρ = 1

2 , ρ = ρ = 1, and

ρ = 3
2 , respectively.
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Figure 8. The directed subdifferential
−→
∂ f1,ρ(x

∗2) for various values
of ρ (Example 3.12)

As already seen above, the necessary optimality condition for a local minimizer
of f1,ρ at the point x∗2 = (0, 2)T

(0, 0)T ∈ P2(
−→
∂ f1,ρ(x

∗2))

(i.e., (0, 2)T ∈ Xnec
0,ρ ) is satisfied if and only if ρ ≥ ρ = 1 (see (3.22)). This is also

nicely observed in the plots of Fig. 8.
Analogously, the sufficient optimality condition

(0, 0)T ∈ int(P2(
−→
∂ f1,ρ(x

∗2)))

for a local minimizer of f1,ρ at the point x∗2 = (0, 2)T is satisfied if and only if
ρ > ρ = 1 (see (3.25)). This is also nicely seen from the plots (see, e.g., Subfig. 8(d)).

(v) sufficient optimality condition by the directed subdifferential for local maximizer
at the origin

We mention that for all ρ >
√
2 the origin x̂ = (0, 0)T is a local maximizer of f1,ρ.

This is “detected” by the calculus of the directed subdifferential

−→
∂ f1,ρ(0, 0) = J2([−1, 1]2)− ρJ2(B1(0, 0))

(see (3.21)). This difference is closer analyzed in [5, Example 5.7] and in [4, Exam-
ple 3.20]. In these papers it is illustrated that

(0, 0)T ∈ intN2

(
J2([−1, 1]2)− ρJ2(B1(0, 0))

)
⇐⇒ ρ >

√
2 .



206 W. ACHTZIGER, R. BAIER, E. FARKHI, AND V. ROSHCHINA

Consequently, for all ρ >
√
2 the sufficient optimality conditions for a local maxi-

mizer hold at x̂ = (0, 0)T . The situation in this example parallels the situation at
the (1D)-origin in Example 3.10.

(vi) comparison to the Clarke subdifferential

We close this example with the remark that the use of the Clarke subdifferential
calculus generally leads to a larger set of critical points. For example, at the origin
x̂ = (0, 0)T we have (see below)

(3.27) (0, 0)T ∈ ∂Clf1,ρ(x̂) for all ρ > 0

in contrast to x̂ ∈ Xnec
0,ρ iff ρ ∈ (0, 1] (compare to (3.22)).

A simple proof for the inclusion (3.27) is as follows. Let ρ > 0, and set e :=
(1, 1)T . Then f1,ρ is differentiable at all points x = ±δe for all δ ∈ (0, 12

√
2)

with ∇f1,ρ(±δe) = ±(1 − ρ/
√
2)e for all δ. Hence, trivially, limδ↘0∇f1,ρ(±δe) =

±(1− ρ/
√
2)e, and thus ±(1− ρ/

√
2)e ∈ ∂f1,ρ(0, 0) (see, e.g., [19, Theorem 2.5.1]).

If ρ =
√
2 then we are done. If ρ ̸=

√
2 then we use that ∂f1,ρ(0, 0) is a convex set

and that, trivially, (0, 0)T ∈ co(−(1− ρ/
√
2)e,+(1− ρ/

√
2)e).

4. Lagrange duality

In this section we apply Lagrange duality to problem (P).

4.1. Theory. In the following we briefly state the needed basic notations and re-
sults. For an introduction to Lagrange duality we refer, e.g., to [13, Chap. 6] and
to [27, Chap. 11].

We start by defining the Lagrange function of problem (P) (the Lagrangian of
(P) for short),

(4.1)

L : Rn × Rm
+ × Rp −→ R,

L(x;λ, µ) := f(x) +
m∑
i=1

λigi(x) +
p∑

j=1
µjhj(x) .

Furthermore, we define the Lagrange dual function of problem (P),

(4.2) θ : Rm
+ × Rp −→ R ∪ {−∞}, θ(λ, µ) := inf

x∈Rn
L(x;λ, µ) .

With this notation the (standard) Lagrange-dual problem of (P) can be stated as

(D)
max

λ∈Rm,µ∈Rp
θ(λ, µ)

s.t. λ ≥ 0.

The optimal function value of this problem (whether attained or not attained;
whether finite or not finite) is denoted by

θ∗ := sup
λ∈Rm

+ ,µ∈Rp
θ(λ, µ) ∈ R ∪ {−∞,+∞}.

We mention that θ∗ = −∞ is possible iff θ(λ, µ) = −∞ for all (λ, µ) ∈ Rm
+ × Rp.

Moreover, we mention that the case θ∗ = +∞ does not occur in our framework, as
is shown in the following theorem. In this (standard) theorem we collect the main
properties and relations of (P) and (D).
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Theorem 4.1. Consider problem (P) and its associated Lagrange-dual problem
(D). Then the following assertions hold.

(a) (“weak duality I”) For the feasible points in both problems, respectively, we
have the inequalities

f(x) ≥ θ(λ, µ) for all x ∈ F(P) and all (λ, µ) ∈ Rm
+ × Rp.

(b) (“weak duality II”) For the optimal values f∗ and θ∗ of (P) and (D), re-
spectively, we have the inequalities

+∞ > f∗ ≥ θ∗ ≥ −∞.

(c) (“strong duality”, simple situation) Let (λ∗, µ∗) ∈ Rm
+ × Rp be a maximizer

of problem (D), and let x∗ ∈ F(P) be a point such that θ(λ∗, µ∗) = f(x∗).
Then x∗ is a solution of problem (P).

Proof: Assertion (a) follows directly from the definitions (or see, e.g., [13, Theo-
rem 6.2.1]). By our general assumption F(P) ̸= ∅ (see A1 in (2.6)) we know that
f∗ < +∞. Hence, the assertions in (b) and in (c) are simple consequences of (a).□
Remark 4.2 (duality gap). From assertion (b) of this theorem we see that +∞ >
f∗ ≥ θ∗. Moreover, θ∗ > −∞ if and only if there is at least one point (λ̄, µ̄) ∈ Rm

+ ×
Rp with θ(λ̄, µ̄) > −∞. In this situation the (finite!) value (f∗ − θ∗) ∈ R is called
the duality gap of the problems (P) and (D). In the situation of Theorem 4.1(c)
the duality gap is zero.
In the pathologic case where the mapping θ is identically to −∞, i.e., θ∗ = −∞,
the value (f∗ − θ∗) = +∞ is also denoted as duality gap (“infinite duality gap”).

As Theorem 4.1(b) shows, we have θ(λ, µ) < +∞ for all (λ, µ) ∈ Rm
+ × Rp, i.e.,

−θ(λ, µ) > −∞ for all (λ, µ) ∈ Rm
+×Rp. Recall that a function Φ : Y −→ R∪{+∞}

not identically +∞ defined on a non-empty convex set Y ⊂ Rm+p is called (proper)
convex (on Y ) iff

Φ(λy1 + (1− λ)y2) ≤ λΦ(y1) + (1− λ)Φ(y2)
for all λ ∈ ]0, 1[ and all y1, y2 ∈ Y

(including infinite function values of Φ), see, e.g., [51, p. 5]. A function Ψ: Y −→
R ∪ {−∞} not identically −∞ defined on a non-empty convex set Y ⊂ Rm+p is
called concave (on Y ) iff (−Ψ) is convex.

Proposition 4.3. Let the Lagrange-dual function θ not be identical −∞. Then the
function θ is concave on Rm

+ × Rp, i.e., the function (−θ) is convex on Rm
+ × Rp.

Proof: The function −θ is not identical to +∞, by assumption. Moreover, −θ
does not attain the value −∞ by Theorem 4.1(a). Finally, −θ is the point-wise
supremum function of affine-linear (i.e., convex) functions, and thus is convex itself
(see, e.g., [51, Proposition 2.9]). □
This result shows that the dual problem (D) can be treated as a convex optimization
problem when written in the form

(D′)
min

λ∈Rm,µ∈Rp
(−θ)(λ, µ)

s.t. λ ≥ 0
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possessing optimal value −θ∗.
Coming back to the intention of the paper, we would like to apply optimality

conditions of unconstrained(!) optimization in terms of directed subdifferentials. If
there are no inequality constraints in problem (P), i.e., m = 0, then problem (D)
(or, equivalently, problem (D′)) is an unconstrained problem,

max
µ∈Rp

θ(µ), resp. min
µ∈Rp

(−θ)(µ).

By the use of optimality conditions, we may be able to calculate the value θ(µ) of
the dual function at arbitrary points µ. Using the optimality conditions once more,
we may then determine a (globally) optimal point µ∗ of the Lagrange-dual problem.
In the presence of inequality constraints in (P), i.e., m > 0, even the simple sign
constraints on the variables λi in problem (D) are an obstacle for the direct appli-
cation of optimality conditions for unconstrained(!) optimization. Since we have
applications in mind, however, where the functions f, gi, hj (or only some of them)
are nonsmooth anyway, we do not see a hindrance to rewrite problem (P) in the
following form without(!) inequality constraints. Consider the auxiliary functions

(4.3) ĝi : Rn −→ R, ĝi(x) := max{0, gi(x)}, i = 1, . . . ,m .

Then (P) takes the form

(P̂)

min
x∈Rn

f(x)

s.t. ĝi(x)= 0 (i = 1, . . . ,m),
hj(x)= 0 (j = 1, . . . , p).

The two problems (P) and (P̂) are equivalent in the sense that both problems
possess the same feasible set F(P) and the same solutions x∗.

The Lagrangian of problem (P̂) is the function (compare to (4.1))

(4.4)
L̂ : Rn × Rm × Rp −→ R,

L̂(x;λ, µ) := f(x) +
m∑
i=1

λiĝi(x) +
p∑

j=1
µjhj(x)

where now λ is taken from entire space Rm (instead from Rm
+ only). In analogous

manner, the Lagrange-dual function of problem (P̂) is defined on the whole space
Rm × Rp,

(4.5) θ̂ : Rm × Rp −→ R ∪ {−∞}, θ̂(λ, µ) := inf
x∈Rn

L̂(x;λ, µ)

(compare to (4.2)). We end up with the corresponding Lagrange-dual problem of

(P̂) which is unconstrained(!),

(D̂) max
λ∈Rm,µ∈Rp

θ̂(λ, µ) .

Remark 4.4. Notice that in the situation m = 1 and p = 0 we obtain a direct
relation to the l1-penalty approach from the previous section. In this situation the

definition of ĝ1 (see (4.3)) and the definition of L̂ (see (4.4)) yield

L̂(x;λ) = f(x) + λĝ1(x) = f(x) + λmax{0, g1(x)}
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for all x ∈ Rn and all λ ∈ R (compare to (3.4) for m := 1 and p := 0). This means,
we have the identity

L̂(x;λ) = f1,ρ(x) for all x ∈ Rn and all λ = ρ > 0.

4.2. Examples.

Example 4.5 (Example 3.10 cont’d). Let us have a look at problem (P) from Ex-

ample 3.10 in its equivalent form (P̂), i.e., with the inequality constraint expressed
as an equality constraint. Its Lagrangian is

L̂(x;λ) = x2 − 8|x|+ 7 + λmax{0, |x| − 1} for (x, λ) ∈ R× R,

and the Lagrange-dual map of (P̂) is given by

θ̂(λ) = inf
x∈R

{
x2 − 8|x|+ 7 + λmax{0, |x| − 1}

}
for λ ∈ R.

As outlined in Rem 4.4 above, for λ > 0 the inner min-problem is identical to the l1-
penalty problem solved with ρ := λ (see equations (3.7) and (3.8) in Example 3.10).
For λ ≤ 0 we obtain the same formulas as for ρ ∈ ]0, 6[ (repeat the considerations
in Case 1 of Example 3.10), i.e., summarizing,

(4.6) argmin
x∈R

L̂(x;λ) =
{

{−(4− λ
2 ),+(4− λ

2 )} if λ ∈ (−∞, 6),
{−1,+1} if λ ∈ [6,+∞),

and

θ̂(λ) =

{
−λ2

4 + 3λ− 9 (< 0) if λ ∈ (−∞, 6),
0 if λ ∈ [6,+∞).

It is easy to see that this function is differentiable (and concave, as expected by
Proposition 4.3 above). In the fashion of the considerations in this paper, we apply
optimality conditions based on the directed subdifferential. First we apply Propo-
sition 2.6 and obtain that

−→
∂ θ̂(λ) =


−−−−−−−→
{−1

2λ+ 3} if λ ∈ (−∞, 6),
−→
{0} if λ ∈ [6,+∞).

We see that N1(
−→
∂ θ̂(λ∗)) = {−1

2λ + 3} for all λ < 6, and N1(
−→
∂ θ̂(λ∗)) = {0} for

all λ ≥ 6. Hence, the necessary optimality condition 0 ∈ N1(
−→
∂ θ̂(λ∗)) for a local

maximizer is satisfied if and only if λ∗ ≥ 6. The sufficient optimality condition

0 ∈ int(N1(
−→
∂ θ̂(λ))) for a local maximizer is not satisfied at any λ. Nevertheless,

the function θ̂ is constant on [6,+∞), concave on R (see above) and finite. Hence,

the set of optimal points of the Lagrange-dual problem (D̂) is given by

argmax
λ∈R

θ̂(λ) = {λ∗ | λ∗ ≥ 6}

(coinciding with the set of points satisfying the necessary optimality conditions, cf.
the paragraph before). The corresponding optimal function value is

θ̂∗ = 0 .

Since the points x∗1 = −1 and x∗2 = +1 are feasible for (P), and since f(−1) =

f(+1) = 0 = θ̂∗, Theorem 4.1(c) proves that x∗1 = −1 and x∗2 = +1 are global
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minimizers of problem (P). Moreover, we see that the duality gap is zero (see
Rem 4.2).

Example 4.6 (Example 3.12 cont’d). We consider Lagrange-duality for Exam-

ple 3.12. For this, we rewrite problem (P) in its equivalent form (P̂), and consider

the corresponding Lagrangian L̂ and its dual problem (D̂). Since m = 1 and p = 0,

the calculation of the dual function θ̂ for arguments λ > 0 is just a copy of some
(main) results in Example 3.12.
For λ ≤ 0 we may use optimality conditions as well. Alternatively, we may use the
following elementary arguments:
If ∥x∥2 < 2 then x /∈ F(P), i.e., (notice that λ ≤ 0, i.e., −λ = |λ|)

L̂(x;λ) = ∥x∥1 − 2 + λ(2− ∥x∥2) = 2λ− 2 + ∥x∥1 + |λ| · ∥x∥2 ≥ 2λ− 2.

Equality holds iff ∥x∥1 + |λ| · ∥x∥2 = 0, i.e., iff x = (0, 0)T .
If ∥x∥2 ≥ 2 then x ∈ F(P), i.e., ĝ1(x) = 0, and thus

L̂(x;λ) = ∥x∥1 − 2 ≥ ∥x∥2 − 2 ≥ 0 > −2 ≥ 2λ− 2.

All in all, this shows that

argmin
x∈R2

L̂(x, λ) = {(0, 0)T }, and θ̂(λ) = 2λ− 2 for all λ ≤ 0.

Together with the results from Example 3.12 (see (3.24) and (3.26)) we summarize
that

(4.7)

argmin
x∈R2

L̂(x;λ)

=


{(0, 0)T } if λ ∈ (−∞, 1),(
{0} × [−2,+2]

)
∪
(
[−2,+2]× {0}

)
if λ = 1,

{(0, 2)T , (−2, 0)T , (0,−2)T , (2, 0)T } if λ ∈ (1,+∞),

and

(4.8) θ̂(λ) =

{
2λ− 2 if λ ∈ (−∞, 1),
0 if λ ∈ [1,+∞).

We observe that the dual function θ̂ is piecewise linear (and concave, as expected
by Proposition 4.3). Although this function is extremely simple, we stick to our

methodology and apply optimality conditions. For this we write θ̂ in the form

θ̂(λ) = min{2λ− 2, 0} = −max{2− 2λ, 0} for all λ ∈ R.
For λ ̸= 1 we apply Proposition 2.6

−→
∂ θ̂(1) = −J1(∂(−θ̂)(1)) = −J1([−2, 0]) = −

−−−−→
[−2, 0] ,

and for λ = 1 we apply Remark 2.2. Summarizing, the directed subdifferential of θ̂
is given by

−→
∂ θ̂(λ) =


−→
{2} if λ < 1,

−
−−−−→
[−2, 0] if λ = 1,

−→
{0} if λ > 1.
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The necessary optimality condition for a local maximizer 0 ∈ N1(
−→
∂ θ̂(λ∗)) is satisfied

if and only if λ∗ ≥ 1. The sufficient optimality condition for a local maximizer

0 ∈ int(N1(
−→
∂ θ̂(λ∗))) is never satisfied.

Clearly, the optimal value of the Lagrange-dual problem maxλ θ̂(λ) is zero,

θ̂∗ = 0.

Since f∗ = 0 (see Example 3.12), we see that also in this example the duality gap
is zero. Once more we obtain that the four points {x∗ℓ | ℓ = 1, 2, 3, 4} = {±2ei | i =
1, 2} are solutions of (P) by the application of Theorem 4.1(c).

5. Saddle point optimality conditions

In this section we discuss saddle point optimality criteria, yet another approach
for the application of optimality conditions of unconstrained optimization for the
detection of solutions of the constrained problem (P).

5.1. Theory. As in the previous section we first sketch the standard development,
and then change it to our purposes.

Definition 5.1. Consider the Lagrange function L of problem (P) (see (4.1) above).
A triple (x∗, λ∗, µ∗) ∈ Rn ×Rm

+ ×Rp is called a saddle point of L if the inequalities

L(x∗;λ, µ) ≤ L(x∗;λ∗, µ∗) ≤ L(x;λ∗, µ∗)

hold for all x ∈ Rn and all (λ, µ) ∈ Rm
+ × Rp.

We refer to the literature stating standard relations of saddle points of L and
solutions of (P) and (D) (see, e.g., [13, Theorem 6.2.5]). As will become clear
below, from analogous reasons as in the previous chapter we want to avoid the
constraint “λ ∈ Rm

+” in the saddle point conditions if m > 0. Therefore, again

consider problem (P) in its equivalent form (P̂) and its corresponding Lagrangian

L̂ (see previous section). Moreover, consider the Lagrange-dual problem (D̂) of (P̂).

Since problem (P̂) possesses only equality constraints, Definition 5.1 directly leads
to the inequalities

L̂(x∗;λ, µ) ≤ L̂(x∗;λ∗, µ∗) ≤ L̂(x;λ∗, µ∗)
for all x ∈ Rn and all (λ, µ) ∈ Rm × Rp

defining a saddle point of L̂. The next (standard) result fully characterizes saddle

points of the Lagrangian L̂.

Proposition 5.2. The following three assertions are equivalent.

(a) The triple (x∗, λ∗, µ∗) ∈ Rn × Rm × Rp is a saddle point of L̂.
(b) The following two conditions (b1) and (b2) are satisfied.

(b1) L̂(x∗;λ∗, µ∗) = min{L̂(x;λ∗, µ∗) | x ∈ Rn}
(b2) The point x∗ is feasible for problem (P), i.e., x∗ ∈ F(P).

(c) The following three conditions (c1) to (c3) are satisfied.
(c1) The point x∗ is a solution of the original problem (P).

(c2) The pair (λ∗, µ∗) is a solution of the Lagrange-dual problem (D̂).
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(c3) The duality gap of (P̂) and (D̂) is zero, i.e.,

+∞ > f∗ = θ̂∗ > −∞.

The proof of this proposition is a student’s exercise (or apply, e.g., [13, Theo-

rem 6.2.5], and notice that F(P) is the feasible set of (P̂), and that each solution

of (P̂) is a solution of (P) and vice versa). Notice also that L̂ is linear in the vari-

ables (λ, µ), and therefore the problem max(λ,µ) L̂(x∗;λ, µ) possesses a solution if

and only if x∗ ∈ F(P) (and then the objective function L̂(x∗; ·, ·) is constant on
Rm × Rp with value f(x∗)). □

Notation 5.3. For fixed (λ, µ) consider the function

L̂
∣∣
[λ,µ]

: Rn −→ R, L̂
∣∣
[λ,µ]

(x) := L(x;λ, µ) .

Moreover, for fixed (λ, µ) put

X∗(λ, µ) :=
(
argmin
x∈Rn

L̂
∣∣
[λ,µ]

(x)
)
∩ F(P)

(where X∗(λ, µ) = ∅ may well occur).

The combination of this notation with Proposition 5.2(a) and (b) leads to the
following result.

Proposition 5.4. The following two assertions (a) and (b) are equivalent.

(a) The triple (x∗, λ∗, µ∗) ∈ Rn × Rm × Rp is a saddle point of L̂.
(b) x∗ ∈ X∗(λ∗, µ∗)

This proposition tells how saddle points of L̂ can be calculated (at least, formally)
in two steps:

Step 1: For each (fixed) (λ, µ) ∈ Rm × Rp calculate the set

argmin
x∈Rn

L̂
∣∣
[λ,µ]

(x)

using optimality conditions of unconstrained optimization.
Step 2: From Step 1 select those (λ, µ) with X∗(λ, µ) ̸= ∅.

Notice that Step 1 is nothing else than for all (λ, µ) finding the corresponding

minimizers in x when calculating the value θ̂(λ, µ) of the Lagrange-dual map as
propagated in the previous section.

5.2. Examples.

Example 5.5 (Examples 3.10, 4.5 cont’d). Again we consider Example 3.10 and
the further elaborations in Example 4.5. We want to calculate all saddle points of

L̂. As mentioned above (“Step 1”), we first calculate the solution sets

argmin
x∈Rn

L̂
∣∣
[λ]
(x) for all λ ∈ R.

As also mentioned above, for each λ ∈ R this amounts to finding the corresponding

minimizers x such that L̂(x;λ) = θ(λ). This has been done already, see eq. (4.6).
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Hence, with F(P) = [−1,+1] it is no difficulty to calculate the sets

X∗(λ) =

{
∅ if λ ∈ (−∞, 6),
{−1,+1} if λ ∈ [6,+∞).

By Proposition 5.4 we see that the set of saddle points of L̂ is given by

{ (+1, λ) | λ ≥ 6 } ∪ { (−1;λ) | λ ≥ 6 } .

Finally, by Proposition 5.2(a) and (c) we (once more) get that the points x∗1 = −1
and x∗2 = +1 are solutions of the original problem (P).

Example 5.6 (Exs. 3.12, 4.6 cont’d). Let us again consider problem (P) from

Example 3.12 and Example 4.6. We consider the equivalent problem (P̂), and we

try to find saddle points of the corresponding Lagrangian L̂. According to the
previous calculations (see (4.7)), and since F(P) = {x ∈ R2 : ∥x∥2 ≥ 2 }, it is no
difficulty to come up with

(5.1) X∗(λ) =

{
∅ if λ ∈ (−∞, 1),

X̃ if λ ∈ [1,+∞)

where X̃ := {(2, 0)T , (0, 2)T , (−2, 0)T , (0,−2)T } = {x∗ℓ | ℓ = 1, 2, 3, 4} with the
notation in (3.19). Hence, according to Proposition 5.4 the set of saddle points of

L̂ is given by

{(x∗, λ∗) | x∗ ∈ X̃, λ∗ ≥ 1}.
Finally, by Proposition 5.2(a) and (c) we (once more) get that the points x∗ℓ,
ℓ = 1, 2, 3, 4, are solutions of the original problem (P).

Conclusions

In all three approaches (l1-penalty approach, Lagrange duality, saddle point con-
ditions) optimality conditions of unconstrained optimization based on the directed
subdifferential can be used for the treatment of the constrained problem. This is
possible, at least, for academic problems where the directed subdifferential can be
analytically calculated. The power of the approaches lies in the strength of the
calculus of directed subdifferentials (i.e., of directed sets). In principle, neither
non-convexity nor non-differentiability of the objective function or of the constraint
functions cause theoretical difficulties. From this point of view, in practice the
discussed l1-penalty approach is attractive because of its useful exactness proper-
ties. The consideration of Lagrange duality and saddle point optimality conditions
is applicable, at least, if the number of constraints in the original problem (P) is
small. Here the straight calculus of directed subdifferentials also allows the circum-
vention of sign constraints for multipliers via the treatment of a max-term. This
methodology may be favorable in theoretical calculations.

Appendix A. Calculations for Example 3.12

Consider the auxiliary function of problem (P) in Example 3.12,

f1,ρ : R2 −→ R, f1,ρ(x) = ∥x∥1 − 2 + ρmax{0, 2− ∥x∥2}

= |x1|+ |x2| − 2 + ρmax{0, 2−
√

x21 + x22} .
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In this appendix we summarize the calculation of the directed subdifferential of f1,ρ
for arbitrary ρ > 0 and at each point x ∈ X0 where

X0 := {x ∈ R2 | x1 ≥ 0, x2 > 0 } ∪ {(0, 0)T } .

Moreover, we discuss whether necessary and sufficient optimality conditions are
satisfied (based on the directed subdifferential).
We start by partitioning of X0 into the seven subsets

X1 := {x ∈ R2 | x1 > 0, x2 > 0, ∥x∥2 < 2 },
X2 := {x ∈ R2 | x1 > 0, x2 > 0, ∥x∥2 = 2 },
X3 := {x ∈ R2 | x1 > 0, x2 > 0, ∥x∥2 > 2 },
X4 := { (0, 0)T },
X5 := {x ∈ R2 | x1 = 0, 0 < x2 < 2 },
X6 := { (0, 2)T },
X7 := {x ∈ R2 | x1 = 0, x2 > 2 },

and we consider x from each of these sets, respectively. Moreover, for each ρ > 0
and each i ∈ {1, . . . , 7} we set

Xnec
i,ρ := {x ∈ Xi | 0 ∈ P2(

−→
∂ f1,ρ(x)) } and

Xsuff
i,ρ := {x ∈ Xi | 0 ∈ int(P2(

−→
∂ f1,ρ(x))) }

denoting all points in Xi which satisfy the necessary or, respectively, sufficient
optimality conditions for a local minimizer of f1,ρ (cf. the Propositions 3.8 and 3.9).

Case 1: x ∈ X1 = {x ∈ R2 | x1 > 0, x2 > 0, ∥x∥2 < 2 }
The function f1,ρ is differentiable at x, because max{0, 2 − ∥x̃∥2} = 2 − ∥x̃∥2 and
x̃ ̸= 0 for all x̃ ≈ x. Therefore

−→
∂ f1,ρ(x) = J2

({(
1

1

)})
+ ρ · J2

({
− 1

2∥x∥2
· 2x
})

= J2

({(
1− ρ x1

∥x∥2
1− ρ x2

∥x∥2

)})
.

Now we calculate the sets Xnec
1 and Xsuff

1 . Clearly,

P2(
−→
∂ f1,ρ(x)) =

{(
1− ρ x1

∥x∥2
1− ρ x2

∥x∥2

)}
.

Hence, 0 ∈ P2(
−→
∂ f1,ρ(x)) if and only if ρx1 = ρx2 = ∥x∥2. Straightforward calcu-

lations (taking into account that x ∈ X1) show that this is the case if and only if
0 < x1 = x2 <

√
2 and ρ = ∥x∥2/x1 =

√
2x1/x1 =

√
2. Hence

Xnec
1,ρ =

{
{(δ, δ)T | 0 < δ <

√
2} if ρ =

√
2,

∅ otherwise.

Since P2(
−→
∂ f1,ρ(x)) is a singleton, its interior is empty. Therefore

Xsuff
1,ρ = ∅ for all ρ > 0.
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Case 2: x ∈ X2 = {x ∈ R2 | x1 > 0, x2 > 0, ∥x∥2 = 2 }
We use the formula for the maximum of two functions, and obtain

−→
∂ f1,ρ(x) = J2

({(
1

1

)})
+ ρ ·max

{
−→
0 , J2

({
− 1

2∥x∥2
· 2x
})}

= J2
( {(

1
1

)})
+ ρ · J2

(
co
{(

0
0

)
,−1

2x
})

= J2
((

1
1

)
+ ρ · co

{(
0
0

)
,−1

2x
})

.

We see that 0 ∈ P2(
−→
∂ f1,ρ(x)) if and only if there exists λ ∈ [0, 1] such that(

0
0

)
=
(
1
1

)
+ ρ ·

(
(1− λ)

(
0
0

)
+ λ(−1

2x)
)
.

This identity is equivalent to the component-wise equations

(A.1) ρλx1 = 2 and ρλx2 = 2 .

We see that (necessarily) x1 = x2 and λ > 0. Hence, ∥x∥2 = 2 implies x =
(
√
2,
√
2)T , and we arrive at ρλ

√
2 = 2. The condition λ ≤ 1 shows that ρ ≥

√
2.

Vice versa (sufficiently), for each ρ ≥
√
2 the equations (A.1) are satisfied with

λ :=
√
2/ρ and x := (

√
2,
√
2)T where, additionally, λ ∈ (0, 1]. Summarizing,

Xnec
2,ρ =

{
∅ if ρ ∈ (0,

√
2)

{(
√
2,
√
2)T } if ρ ≥

√
2.

For all ρ > 0 and all x ∈ X2 the interior of the set
(
1
1

)
+ ρ · co

{(
0
0

)
,−1

2x
}
is empty.

Hence,

Xsuff
2,ρ = ∅ for all ρ > 0.

Case 3: x ∈ X3 = {x ∈ R2 | x1 > 0, x2 > 0, ∥x∥2 > 2 }
Again the function f1,ρ is differentiable at x where the max term reduces to zero.
Therefore

−→
∂ f1,ρ(x) = J2

( {(
1
1

)})
+ ρ · −→0 = J2

( {(
1
1

)})
.

Since P2(
−→
∂ f1,ρ(x)) = {(1, 1)T } we have

Xnec
3,ρ = Xsuff

3,ρ = ∅ for all ρ > 0.

Case 4: x ∈ X4 = { (0, 0)T }, i.e., x = (0, 0)T

The function ∥ . ∥1 : y 7−→ ∥y∥1 is convex, and thus Remark 2.2 shows that
−→
∂ ∥ . ∥1(0, 0) = J2([−1,+1]2). Analogously,

−→
∂ ∥ . ∥2(0, 0) = J2(B1(0, 0)) (where

B1(0, 0) := {s ∈ R2 : ∥s∥2 ≤ 1}). Since 2− ∥x∥2 > 0, we obtain

−→
∂ f1,ρ(0, 0) = J2([−1, 1]2) + ρ

(
− J2(B1(0, 0))

)
= J2([−1, 1]2)− ρJ2(B1(0, 0)) .

This difference is closer analyzed in [5, Example 5.7] and in [4, Example 3.20]. In
these papers the two equivalences

(0, 0)T ∈ P2

(
J2([−1, 1]2)− ρJ2(B1(0, 0))

)
⇐⇒ ρ ∈ (0, 1] ,

(0, 0)T ∈ intP2

(
J2([−1, 1]2)− ρJ2(B1(0, 0))

)
⇐⇒ ρ ∈ (0, 1)
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are illustrated. Consequently,

Xnec
4,ρ =

{
{(0, 0)T } if ρ ∈ (0, 1]
∅ if ρ > 1

}
, and Xsuff

4,ρ =

{
{(0, 0)T } if ρ ∈ (0, 1)

∅ if ρ ≥ 1 .

Case 5: x ∈ X5 = {x ∈ R2 | x1 = 0, 0 < x2 < 2 }
Similarly to Case 4 before,

−→
∂ ∥ . ∥1(x) = J2([−1,+1]×{1}). The max-term in f1,ρ is

differentiable at x because x1 = 0 and x2 < 2 (and thus max{0, 2−∥x̃∥2} = 2−∥x̃∥2
for all x̃ ≈ x). Hence,

−→
∂ f1,ρ(x) = J2([−1, 1]× {1}) + ρ · J2

({
− 1

2∥x∥2
· 2x
})

= J2([−1, 1]× {1}) + ρ · J2
({(

0
−1

)})
= J2([−1, 1]× {1− ρ}) .

We see that (0, 0)T ∈ ([−1, 1]× {1− ρ}) if and only if ρ = 1. We also see that the
interior of this set is empty. All in all,

Xnec
5,ρ =

{
{0} × (0, 2) if ρ = 1
∅ otherwise

}
, and Xsuff

5,ρ = ∅ for all ρ > 0.

Case 6: x ∈ X6 = { (0, 2)T }, i.e., x = (0, 2)T

In this situation, the mapping ∥ . ∥1 as well as the mapping (y 7−→ max{0, 2−∥y∥2})
are nonsmooth at x = (0, 2)T . Analogously to above we get

−→
∂ f1,ρ(x) = J2([−1, 1]× {1}) + ρ ·max

{
−→
0 , J2

({
− 1

2∥x∥2
· 2x
})}

= J2([−1, 1]× {1}) + ρ ·max

{
J2({0}), J2

({
− 1

x2

(
0

x2

)})}
= J2([−1, 1]× {1}) + ρ ·max

{
J2({0}), J2

({(
0
−1

)})}
= J2([−1, 1]× {1}) + ρ · J2({0} × [−1, 0])

= J2([−1, 1]× [1− ρ, 1]) .

Clearly, (0, 0)T ∈ ([−1, 1]× [1−ρ, 1]) if and only if ρ ≥ 1, and (0, 0)T ∈ int([−1, 1]×
[1− ρ, 1]) if and only if ρ > 1. Hence,

Xnec
6,ρ =

{
∅ if ρ ∈ (0, 1)
{(0, 2)T } if ρ ≥ 1

}
, and Xsuff

6,ρ =

{
∅ if ρ ∈ (0, 1]

{(0, 2)T } if ρ > 1 .

Case 7: x ∈ X7 = {x ∈ R2 | x1 = 0, x2 > 2 }
Again, the max-term reduces to zero in a neighbourhood of x, and hence

−→
∂ f1,ρ(x) = J2([−1, 1]× {1}) + ρ · −→0 = J2([−1, 1]× {1}) .

We see that (0, 0)T /∈ ([−1, 1]× {1}), and therefore

Xnec
7,ρ = Xsuff

7,ρ = ∅ for all ρ > 0.
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This finishes the consideration of all seven cases. Finally, from all cases we collect
the points x ∈ X0 satisfying the optimality conditions. By the above,

Xnec
0,ρ := {x ∈ X0 | (0, 0)T ∈ P2(

−→
∂ f1,ρ(x)) } =

7∪
i=1

Xnec
i,ρ

=



{(0, 0)T } if ρ ∈ (0, 1),

{(0, x2)T | 0 ≤ x2 ≤ 2} if ρ = 1,

{(0, 2)T } if ρ ∈ (1,
√
2),

{(δ, δ)T | 0 < δ ≤
√
2} ∪ {(0, 2)T } if ρ =

√
2,

{(
√
2,
√
2)T } ∪ {(0, 2)T } if ρ >

√
2,

(A.2)

and

Xsuff
0,ρ := {x ∈ X0 | (0, 0)T ∈ int(P2(

−→
∂ f1,ρ(x))) } =

7∪
i=1

Xsuff
i,ρ

=


{(0, 0)T } if ρ ∈ (0, 1),

∅ if ρ = 1,

{(0, 2)T } if ρ > 1.

(A.3)
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