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OPTIMALITY CONDITIONS IN NONCONVEX AND
NONSMOOTH OPTIMIZATION REVISITED

REFAIL KASIMBEYLI AND EMRE ALPER YILDIRIM

ABSTRACT. This work is a continuation of the paper [15], in which the well-known
necessary and sufficient optimality condition for nonsmooth convex optimization,
given in the form of a variational inequality, is generalized to the nonconvex case
by using the notion of weak subdifferentials. In this paper, we show that the
same optimality conditions can be obtained under weaker conditions.

1. INTRODUCTION

The well-known optimality condition in nonsmooth convex analysis states that
if f:R™ — R is a convex function, then vector T minimizes f over a convex set
S C R™ if and only if there exists a subgradient x* € Jf(T) such that

(1.1) (z*,x—T) >0, VxelS
where
(1.2) of(@) ={z" eR": f(z) — f(T) > (", 2 — T), for all z € R"}

is the subdifferential of f at T (see [21, Theorem 8.15, page 310] or [4, Proposition
1.8.1, page 168]). Equivalently, T minimizes f over a convex set S C R™ if and only
if

(1.3) 0 € df(z) + Ns(T),
where
(1.4) Ng(z) ={a* e R": (2", —T) <0, for all z € S}

denotes the normal cone to the set S at the point 7.

These relations were generalized by Kasimbeyli and Mammadov in [15] for the
case of nonconvex and nonsmooth problems. Probably it was the first generalization
in the form of a necessary and sufficient condition in the nonconvex case. They used
the notions of a weak subdifferential and the augmented normal cone [2,3,15]. One
of the advantages of weak subgradients is that they generate conical supporting
surfaces to the epigraph of a function under investigation, instead of hyperplanes
used by the classical subgradient of convex analysis. The other advantage of weak
subgradients is due to its relation with directional derivatives.
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It is well-known that every convex function f : X — (—o0,+0o0] on a Banach
space admits the directional derivative

Vo i (B ER) = f(T)
(1.5) f (@ h) = lgfgl ;

in any direction h € X at any point of its efficient domain dom(f) = {z € X :
f(z) < +oo}.

There are many generalizations of the directional derivative: generalized de-
rivative introduced by Clarke [6], generalized directional derivative (upper sub-
derivative) introduced by Rockafellar [19, 20], lower semiderivative introduced by
Penot [18], contingent derivative/epiderivative introduced by Aubin [1], lower Dini
(or Dini-Hadamard) directional derivative introduced by Ioffe [10] and so on.

By using a general notation f9 for the generalized directional derivatives men-
tioned above, the corresponding generalized subdifferential of f at T is defined by

(1.6) 89f(T) = {a* € R" : f9(F;h) > (x*, h), for all h € R"}.

This is a standard way to introduce subgradients via directional derivatives. For
convex functions it is equivalent to the classical subdifferential (1.2) of convex anal-
ysis:

(1.7) Af(@) ={z* e R": f'(z;h) > (z*, h), for all h € R"}.

The inequality relation given in (1.6) and (1.7) is strengthened in convex analysis
by showing that the directional derivative of a convex function can be represented
as a pointwise maximum of its subgradients.

By using a special class of superlinear functions, Azimov and Gasimov [2, 3]
introduced the concept of weak subgradient — one of the natural generalizations
of the classic subgradient of convex analysis. The definition of weak subgradients
does not use directional derivatives. Rather, it is based on the (conical) supporting
philosophy directly for the epigraph of the function under consideration.

This approach was used to develop a nonlinear separation methodology without
the convexity assumption (see, e.g., [8,12,13]) and to derive a collection of optimality
conditions, duality relations and solution algorithms for a wide class of nonconvex
optimization problems [5,7,9,16,17,22,23].

Kasimbeyli [11] introduced the notion of radial epiderivative for nonconvex single-
valued and set-valued maps and established relationships between the radial epi-
derivatives, the weak subdifferentials and the directional derivatives. Kasimbeyli
and Mammadov [14] established conditions that guarantee a representation of the
directional derivative as a pointwise supremum of weak subgradients of a nonconvex
real-valued function. A similar representation is also established for the radial epi-
derivative of a nonconvex function. Because of these reasons, the weak subgradient
becomes a powerful tool in nonconvex analysis.

The optimality condition in [15] was proved under the following assumption:

Assumption 1.1. Let the directional derivative f/'(Z;-) of f at T be lower semi-
continuous on K = cone (S — Z) and the following two conditions hold:

(i) there exists o > 0 such that
(1.8) fx)— f(@) >of (T2 —7) forall z €S;
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(ii)
(1.9) B(x) = inf{f'(z;h): he KNU} >0,
where U denotes the unit sphere of R™.

Kasimbeyli and Mammadov [15] proved that, under Assumption 1.1, there exists
a weak subgradient (z*, ) € 9§ f(Z) such that the relation

(1.10) (x*,2 —T) +allr -7 >0, forallze S

is necessary and sufficient for the optimality of T € S to the problem of minimization
of f over S, where

(1.11)

Wf(@) ={(a",a) e R" xR : f(z)— f(T) > ("2 —T) + af|lx — || forall z € S}

denotes the weak subdifferential of f at  on S.

The aim of this paper is to generalize and weaken this assumption. We first show
that the claim remains true if there exists a homogeneous function (instead of the
directional derivative) satisfying the conditions in the above assumption. Then, this
condition is used to formulate a weaker condition than (1.8).

The paper is organized as follows. The definition of weak subdifferentials and
some preliminary results are presented in the next section. Necessary and sufficient
conditions for optimality are given in Section 2. In Section 3, we formulate necessary
and sufficient optimality conditions in terms of augmented normal cones. Finally,
Section 4 concludes the paper.

2. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

In this section, we present a generalization of the optimality condition given in
(1.1) to the nonconvex case under some weaker conditions than those presented in
Assumption 1.1. The condition given by (1.1) guarantees the existence of a support-
ing hyperplane to the given convex set of feasible solutions at the optimal point. The
normal vector of this hyperplane is a subgradient of the function being optimized
and the corresponding theorem is based on a well-known separation theorem of
convex analysis. The optimality condition formulated in this section guarantees the
existence of a weak subgradient, that is a pair consisting of some linear functional
and some real number such that the graph of the homogeneous function defined by
this pair, is a conical supporting surface to the (possibly nonconvex) set of feasible
solutions at the optimal point (see (2.4)).

We begin with the definition of the weak subgradient. Let (X, ||-||x) be a real
normed space and let X* be the topological dual of X.

Definition 2.1. Let f: X — R be a real-valued function and let T € X be a given
point where f(Z) is finite. A pair (z*,a) € X* X R is called the weak subgradient
of f at T if

(2.1) f(z)— f(@) > (2", 2 —T) + of|zr — Z||, for all z € X.

The set
(2.2)
f(@) ={(z*,a) e X* xR : f(z)— f(ZT) > (2,2 —T) + a||z — Z||, for all z € X'}



102 R. KASIMBEYLI AND E. A. YILDIRIM

of all weak subgradients of f at T is called the weak subdifferential of f at z. If
OV f(x) # 0, then f is said to be weakly subdifferentiable at T.

Remark 2.2. It is obvious that, when f is subdifferentiable at T (in the convex
analysis sense), then f is also weakly subdifferentiable at Z, that is, if 2* € 0f(Z)
then by definition, (z*, ) € 9" f(T) for every a < 0. It follows from Definition 2.1
that the pair (z*, ) € X* x R is a weak subgradient of f at T € X if there exists a
continuous function

(2.3) g(@) = (a*,0 = 7) + (@) + alle - 7

such that g(z) < f(z) for all z € X. Note that we have ¢(Z) = f(Z). The set

hypo(g) = {(z,7) € X xR : g(z) >~}
is a closed cone in X x R with vertex at (Z, f(Z)) Indeed,
hypo(g) — (z, f (7))
{z =T, a—f(T) e X xR: (2%, 2 —T) —cllz —%|| > a— f(T)}
{(u, ) € X xR : (z*,u) — c|lu|| > B}.
Thus, it follows from (2.1) and (2.3) that

graph(g) = {(z,7) € X xR: g(z) =~}
is a conic surface which is supporting the set

epi(f) = {(,7) € X xR f(x) <7}
at the point (Z, f(Z)) in the sense that

epi(f) C epi(g), and cl(epi(f)) N graph(g) # 0.
The function ¢ from (2.3) is superlinear concave if @ < 0, and in this case hypo(g)
is a closed convex cone. Obviously, when « > 0, the function g becomes convex.

It follows from this remark and from Definition 2.1 that the class of weakly
subdifferentiable functions is essentially larger than the class of subdifferentiable
functions (see [2,3,11,14]).

We consider the following problem: under which conditions there exists a weak
subgradient (z*, ) € ¢ f(Z) such that the relation

(2.4) (%, —7Z)+a|z—=| >0, forallze S

is necessary and sufficient for the optimality of T € S for the problem of minimiza-
tion of f over S, which does not have to be convex?

This problem is considered in [15]. Under the conditions given in Assumption
1.1, it was proved that the existence of such a subgradient is necessary and sufficient
for the optimality of T € S for the problem of minimization of f over S.

The aim of this paper is to weaken this assumption. Consider the following
assumption.

Assumption 2.3. Let g : R”™ — R be a homogeneous function. Let K = cone (S —
Z) and suppose that the following two conditions hold:

(i)
(2.5) f(x)— f(T) > g(x —) forall z € S,
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(i)
(2.6) B(z) =inf{g(h): he KNU} > 0.

It should be noted that, if T € S is a minimizer of the function f and if f is
differentiable at that point with V f(Z) = 0, then the condition (2.4) is satisfied for
the zero weak subgradient (z*, ) = (0,0) € 0¢ f(Z). In addition, if T € int S, then
this zero weak subgradient is the only weak subgradient in 0% f(Z) satisfying the
condition a > 0. Therefore, in the case Vf(Z) = 0, the necessity of the condition
(2.4) is trivial.

Before formulating the necessary and sufficient optimality conditions, we first
present the following definition from [12] that provides a certain kind of separation

property.

Definition 2.4. [12, Definition 4.1] Let C' and K be closed cones in R", let U denote
the unit sphere of R", and let Cy = CNU and Ky = K NU. Denote C' = co(Cy),
K§ = Kynbd(K) and K2 = co(KZ U {0}). The cones C and K are said to satisfy

the separation property with respect to the given norm || - || (the same norm that
defines the unit sphere), if
(2.7) CNK?=40,

where co and bd denote the convex hull and the boundary of a set, respectively.

The following lemma is proved in [15, Lemma 3]. We will use it in the proof of
the main theorem.

Lemma 2.5. Let a € U and let € € (0,1/2). Let
(2.8) C=cone({z €U : ||z —a|| <e}),

where the FEuclidean norm is used, and K be a closed cone (which does not have to
be convex) in R"™ such that C N K = {0}. Then, C is a closed conver and pointed
cone, and the cones C' and K satisfy the separation property given in Definition 2./
with respect to the Euclidean norm.

The following theorem quoted from [15] gives a sufficient condition for a point to
be a minimizer of some function over given set, in terms of weak subgradients.

Theorem 2.6. ( [15, Theorem 3]) Let f : S — R be a given function. If there
exists a weak subgradient (x*, o) € 0¢ f(T) such that the relation (2.4) is satisfied,
then T € S minimizes f on S.

Proof. If, for some weak subgradient (z*, ) € 9% f(T), the relation (2.4) is satisfied,
then by definition (1.11) of 0§ f(Z), we obtain f(x) — f(Z) > 0 for all € S, which
means that T minimizes f over S. g

Now we consider the problem when the relation (2.4) becomes also a necessary
condition for being a minimizer. We are interested in the existence of non-zero weak
subgradients satisfying (2.4). This is true for the trivial case when S = {Z}. Below
it is assumed that set S\ {Z} is nonempty.
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Definition 2.7. A nonempty subset S of R" is called cone-shaped at T € S if
cl(cone(S — 7)) # R™.

Theorem 2.8. Let S C R"™ be cone-shaped at T. Suppose that S\ {T} # 0 and let
f: S8 = R be a given function. Assume that T € S is a minimizer of f over S, and
Assumption 2.3 holds. Then, there exists a weak subgradient (x*, o) € 08 f(T) with
x* # 0 and o > 0 such that

(2 —Z) +alz—Z|| >0 for all z € S,
and
(2.9) (%, 2 —Z) + allz — || <0 for some z ¢ S.

Proof. Suppose that T minimizes f over S. Denote K = cl(cone(S — 7)). By the
hypotheses, S is cone-shaped at Z, which means that K # R". Then, there exists a
point a € U such that a € R"\ K, where U is the unit sphere. Take any ¢ > 0 and
define the cone

C=cone{zr eU: |la—z|| <e}.

Since R™\ K is an open set, there exists a positive number € such that C'\ {0} C
int(R" \ K); that is, C N K = {0}. Then, by Lemma 2.5, it follows that C' and K
satisfy the separation property given in Definition 2.4 with respect to the Euclidean
norm in R™. Then, by [12, Theorem 4.3], there exists a pair (y*,v) with y* # 0
and v > 0 such that the function ¢(y) = (v*,y) + 7||y|| is strongly monotonically
increasing (with respect to the cone C') on R™ and the sublevel set of this function
separates the cones C' and bd(K) in the following sense:

(2.10) Wy +lyll <0< (", z) + ||

for all y € C'\ {0} and for all # € bd(K). Clearly, this relation holds for all
y € C'\ {0} and for all z € K, and in particular for all € S — Z. Therefore, the
right-hand side of the inequality in the last relation can also be written as

(2.11) (', x —T)+v|le —%| >0 forall z € S.
Take any A > 0 and denote z} = A\y*, ay = Avy. Consider

(2.12) n(A)isup{<ﬂz/\,||x__|>+a>\: z €S, x#f}.

It is not difficult to observe that
r—7T

n()\)gsup{<x)\,H __H>+a,\: z € R", m#f}

© T
=\ Tx * + a)
<A!Wﬂ>
= Myl +)-
This implies 7(\) — 0 as A — 0. Then, from (2.6) there exists a number A > 0 such

that n(\) < 3(Z). By denoting z* = a5 and a = ay, we have

sup{<x*,¥>+a: r €S, x#f}ﬁinf{g(xif): r €S, x#f}
||z — || ||z — ||
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Hence, for all z € S, x # 7, we have
x T —T r—T
<$7_>+Oé§g<_>a
||z — | ||z — ]

(e —Z)+a||z—T|< glx — 7).

or

Together with condition (2.5), we obtain that
flxz) = f(T) = (=", 2 —7) + a|lz — T||, Yz € 5,

which means (z*,a) € 0% f(z). Now, recalling that 2* = A\y* and a = Iy, the
desired relation follows from (2.11):

(z*,2 = T) + alle = 7|l = A({y", 2 = T) +9llz —T|) 2 0, Vz € S.
Now we prove (2.9). From (2.10), there exists z € C'\ {0} such that

(v, 2) +ll2l] < 0.

Denote z = z + Z. Then,

(2.13) (y*,2 —7) + 9|z —7|| <0.

On the other hand, since (C'\ {0}) N (S —T) =0, we have z —T =2 ¢ S -7,
which means that z ¢ S. Therefore, multiplying (2.13) by A > 0 and noting that
x* = \y* and a = Ay, we obtain (2.9). O

The following corollary is a straightforward consequence of the previous theorem.

Corollary 2.9. Let S C R" be cone-shaped at T. Suppose that S\ {T} # 0 and let
f:8 = R be a given function. Assume that T € S minimize f over S. Then, there
exists a weak subgradient (x*,a) € 0F f(T) with x* # 0 and o > 0 such that

(¥, —7Z) +alz—Z|| >0 for all x € S,
and

(%, 2 —Z)+ allz — 7| <0 for some z ¢ S
if either one of the following statements holds:

(i) f is a weakly subdifferentiable function at &, and there exists a weak subgra-
dient (u*,9) such that the function g(h) = (u*, h) +9J||h| satisfies conditions
(2.5) and (2.6) of Assumption 2.3.

(ii) f is a directionally differentiable function at T, and there exists a real number
d such that the function g(h) = f'(T; h)+0||h|| satisfies conditions (2.5) and
(2.6) of Assumption 2.3.
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3. OPTIMALITY CONDITIONS VIA AUGMENTED NORMAL CONES

Let S C R™ and T € S. As mentioned above (see (1.4)), the normal cone to S at
T is defined as follows:

(3.1) Ng(@) ={z* e R": (", 2 —7T) <0, Vx € S}.

Clearly, if T € int S, then the set Ng(Z) contains only the element 0 € R". Such a
normal cone is called trivial. If T ¢ int S and S is convex, then the normal cone
Ng(T) contains non-zero elements. However, if S is not convex, 0 € R™ may be the
only element in this cone. A normal cone is called nontrivial if it contains non-zero
elements.

Below, we recall the definition of the augmented normal cone introduced by
Kasimbeyli and Mammadov [15].

Definition 3.1. Let S C R” and T € S with S\ {Z} # 0. The set
N§(@) ={(z",a) e R" xR : (", 2 — T) + allx — || <0 for all z € S},

is called an augmented normal cone to S at .

Since, for pairs (z*, o) with o < —||z*||, the inequality (z*, 2 —Z) + ||z —7Z|| <0
is obviously satisfied for all z € R", an augmented normal cone consisting of only
such elements is called trivial. The trivial augmented normal cone is denoted by
NI (Z) and defined as

NE®(@) = {(z*,0) e R" x R : a < —||z*||}.

It follows from the definitions of normal and augmented normal cones that, if
the normal cone Ng(T) is not empty for a given set S C R", then for every z* €
Ng(T), the pair (z*,0) belongs to the augmented normal cone N§(Z). Conversely,
if (%, ) € N¢(7) with o > 0, then z* € Ng(T).

Definition 3.2. = € S is called an n-interior point of S C R" if the augmented
normal cone at this point contains only trivial elements: NZ(Z) = NE(z). By
n-int(5), we denote the set of all n-interior points of S.

The following assertions, which characterize the trivial augmented normal cones
and interior points, are proved in [15].

Proposition 3.3. (i) ([15, Lemma 4]) If T € int S, then N(T) = N§™(T).
(i1) ([15, Lemma 5]) S is cone-shaped at T if and only if T ¢ n-int(S) (i.e.
N§(z) # N§™(z))-

Now we present a generalization of the optimality condition given in (1.3) to
optimization problems without any convexity assumption. The new condition is
formulated in terms of weak subdifferentials and augmented normal cones. We
prove that the optimality condition given in the form of the existence of nonzero
solutions to the variational inequality (2.4) can equivalently be formulated as the
existence of nontrivial solutions to the following problem:

(3-2) (0,0) € 95 f(7) + N3 (),
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where (0,0) denotes the zero of R™ x R.

Note that such a generalization was firstly given in [15], where the authors pre-
sented nice illustrative examples. Here, we prove the same assertion under the
weakened conditions.

Theorem 3.4. Let S C R" and let f : S — R be a given function. Assume that
T € S minimizes f over S, S is cone-shaped at T, S\ {Z} # 0, and Assumption 2.3
holds. Then, there exists a nontrivial solution to (3.2):
(0,0) € 95 f(z) + N5(7);

that is, there exists a weak subgradient (x*, ) € 0¢ f(T) such that —(x*,a) € N(T),
z* # 0 and a > —||z*].
Proof. Note that all conditions of Theorem 2.8 are satisfied. By this theorem, there
exists a weak subgradient (z*, ) € 0¢f(T) such that z* # 0, o > 0 and the
variational inequality (2.4) is satisfied, that is:

(", —Z)+a|z—T|| >0foral zes.
By multiplying both sides of this inequality by —1, we obtain:

(—x", 2 —T)+ (—a) ]z —Z| <0 for all x € S,

which means that (—2*, —a) € N¢(T), and since z* # 0 and o > 0, we obtain
a > 0> —||z*|| and the proof is complete. O

It is not difficult to observe that the proof of Theorem 3.4 establishes a much
stronger fact, which states that a nontrivial solution (z*, @) to (3.2) could be chosen
so that not only a > —||z*|| but also a > 0.

Theorem 3.5. If (3.2) has a solution, then T € S is a minimizer of function f on

S.

Proof. Let (z*,a) be a solution to (3.2). That is, let (z*,a) € 0¢f(T) and let
—(2*, ) € N¢(7). Then, from the last inclusion we have:
(—2x*, 2 —T)+ (—a)|lz — 7| <0 for all x € S,
or
(x*,x —T)+allr —7| >0 for all x € S.
Now, by taking into account the inclusion (z*,«) € 0% f(Z), the last inequality
yields:

fl) = f(@)> ("2 —T)+al|z—7Z| >0forall x €S,
which completes the proof. O

Corollary 3.6. Let S C R"™ be cone-shaped at T. Suppose that S\ {T} # 0 and
let f: S — R be a given function. Assume that T € S is a minimizer of f over
S. Then, there exists a nontrivial solution to (3.2) if either one of the following
statements holds:

(i) f is a weakly subdifferentiable function at T, and there exists a weak sub-
gradient (u*,0) such that the function g(h) = (u*,h) + 0||h|| satisfies the
conditions (2.5) and (2.6) of Assumption 2.35.
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(ii) f is a directionally differentiable function at T, and there exists a real number
d such that the function g(h) = f'(T; h) 4 d||h|| satisfies the conditions (2.5)
and (2.6) of Assumption 2.35.

Proof. The proof is obvious and is therefore omitted. O

4. CONCLUSIONS

In this paper, necessary and sufficient optimality conditions for optimization
problems without any convexity assumption are studied. The class of problems
considered is described by a special class of directionally differentiable and weakly
subdifferentiable functions. The necessary and sufficient optimality condition of
nonsmooth convex optimization, given in the form of variational inequality (1.1), is
generalized to the nonconvex case by using the notion of weak subdifferential. This
is a generalization of the theorem obtained by Kasimbeyli and Mammadov [15] in
nonconvex and nonsmooth optimization. The condition (1.1) has an equivalent for-
mulation (1.3) in terms of subgradients and normal cones in convex optimization.
In this paper, a similar condition is obtained in terms of the weak subdifferentials
and the augmented normal cones.
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