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Y ⊆ Rm such that

(1.1) F(x∗, y) ≤ F(x∗, y∗) ≤ F(x, y∗) for any x ∈ X and y ∈ Y .

Subgradient methods provide a popular and practical decentralized computa-
tional technique for solving non-smooth saddle point and optimization problems in
many disciplines. Subgradient methods originated with the works of Polyak [30]
and Ermoliev [8], and many extensions and generalizations have been considered
and numerous applications have been proposed; see [4, 15, 16, 21, 26, 27, 29, 33]
and references therein. Nowadays, because of the simple formulation and low stor-
age requirement, subgradient methods remain important for solving nonsmooth or
stochastic optimization problems, especially for large-scale problems.

Many works have been devoted to the study of subgradient methods for ap-
proaching the saddle value (or a saddle point) of a convex-concave function; see,
e.g., [1, 19, 24, 28, 29, 32]. In particular, Larsson et al. [24] and Nesterov [29] studied
convergence properties of primal-dual subgradient methods along with the averag-
ing scheme and using the diminishing stepsize rule. Sen and Sherali [32] proposed a
class of primal-dual subgradient methods that employed Lagrangian dual functions
along with suitable penalty functions, and proved that the sequence of primal-dual
iterates converges to a saddle point when using several classical types of penalty
functions. Recently, Nedić and Ozdaglar [28] adopted the constant stepsize rule and
estimated the convergence rate of the sequence generated by subgradient methods
to the saddle value per iteration.

In recent years, a central challenge to many fields of science and engineering
involves nonconvex optimization in high-dimensional spaces. One of the most im-
portant types beyond convex optimization is the quasiconvex optimization, which
have many important applications in various areas, such as economics, engineering,
management science and various applied sciences; see [3, 7, 14, 34] and references
therein. However, the study of subgradient methods for solving quasiconvex opti-
mization problems is limited. In particular, Kiwiel [20] studied convergence proper-
ties of the exact subgradient method for solving quasiconvex optimization problems
in the use of the diminishing stepsize rule. By extending this work and further us-
ing the constant stepsize rule, Hu et al. [17] proposed a generic inexact subgradient
method to solve quasiconvex optimization problems, and studied the influence of
the deterministic noise by describing convergence results in both objective values
and iterates and finite convergence to the approximate optimality. Furthermore,
Hu et al. [18] studied convergence properties of the stochastic subgradient method
for solving quasiconvex optimization problems. On the other hand, the modified
dual subgradient algorithms were investigated in Gasimov [11] and Burachik et al.
[6] for solving a general nonconvex optimization problem with equality constraints
by virtue of a sharp augmented Lagrangian.

Extending to the quasiconvex setting, in this paper, we consider the following
saddle point problem in the quasiconvex setting

(1.2) min
x∈X

max
y∈Y

F(x, y)

where F : Rn × Rm → R is a quasiconvex-quasiconcave function, and X and Y are
the nonempty, closed and convex sets in Rn and Rm, respectively. In particular,
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F(·, y) is quasiconvex for any y ∈ Y , and F(x, ·) is quasiconvex for any x ∈ X. It
is clear that a solution of problem (1.2) is a pair (x∗, y∗) ∈ X × Y satisfying (1.1).
Such a vector pair (x∗, y∗) is also referred to as a saddle point of the function F on
the set X × Y .

In this paper, we will introduce a subgradient method to solve the constrained
minimax problem (1.2) of a quasiconvex-quasiconcave function, and explore conver-
gence properties of the subgradient method when using the constant or diminishing
stepsize rules. Lacking the convexity assumed in [28], the quasiconvex optimization
is more difficult to deal with, and the main technical challenge of convergence anal-
ysis of the subgradient method is to establish a proper basic inequality, which is a
key tool in the literature of subgradient methods. To this end, we will adopt the
quasi-subdifferential and assume the Hölder condition, as in [17]. We will show that
the subgradient method converges to the optimal value of problem (1.2) within some
tolerance (given in terms of the stepsize) when using the constant stepsize rule, and
exactly converges to the optimal value in the use of the diminishing stepsize rule.

Due to errors in measurements or uncertainty in problem data, the direct applica-
tion of the exact subgradient may not be meaningful. In such situations, we propose
a stochastic subgradient method, where the noisy (unbiased) quasi-subgradient (see
Definition 2.2) is adopted in each iteration, to solve problem (1.2). The convergence
theory presented in this paper extends the one shown in [18] to the saddle point
problem or the constrained minimax problem, and improves the one reported in [17].
In particular, our convergence results show that the stochastic subgradient method
shares the same convergence behavior as that of the exact subgradient method (see
Theorems 3.2 and 3.3) with probability 1, and it achieves a better tolerance than
that of the inexact subgradient method reported in [17] (see Theorems 4.3 and 4.4).

The motivation of our work also stems from a major application of subgradient
methods, which is to the Lagrangian function of a constrained optimization problem.
For example, we usually face the following constrained quasiconvex optimization
problem (the primal problem)

(1.3)
min f(x)
s.t. g(x) ≤ 0,

x ∈ X,

where f : Rn → R is a quasiconvex function, g = (g1, . . . , gm)⊤ with each gi : Rn →
R being quasiconvex, and X ⊆ Rn is a closed and convex set. Although the primal
subgradient method has been investigated in [17, 18, 20] to solve the primal problem
(1.3), but all these works are under an assumption that the projection onto the
feasible set is easy to compute. However, the projection onto {x : g(x) ≤ 0} ∩X,
the feasible set associated with (1.3), is not easily implemented in general. An
alternative and popular technique for (1.3) is to adopt the dual approach, which is
defined by the Lagrangian relaxation of the inequality constraint g(x) ≤ 0 and is
given by

(1.4)
max q(µ)
s.t. µ ∈ Rm

+ ,
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where the dual function q : Rm → R is defined by

q(µ) = inf
x∈X

L(x, µ) via L(x, µ) = f(x) + µ⊤g(x).

The strong duality between (1.3) and (1.4) has been established in [10, Theorems
9 and 14] for quasiconvex optimization under some mild conditions. The dual sub-
gradient method has been investigated in [6, 13, 27] for convex optimization, while
the implementation of dual subgradient method deeply relies on the assumption
that the subgradient of the dual function can be estimated efficiently. However, the
dual function q(·) and its subgradient are difficult to calculate in the quasiconvex
setting, since it requires to solve a nonconvex optimization problem. This hinders
the implementation of the dual subgradient method for quasiconvex optimization.
To overcome this obstacle, we consider the following primal-dual problem

(1.5) max
µ∈Rm

+

min
x∈X

L(x, µ).

It is clear that L(x, ·) is quasiconcave (in particular, it is linear) for any x ∈ X. For
some classical types of quasiconvex functions, such as fractional functions (see, e.g.,
[34]), L(·, µ) is quasiconvex for any µ ∈ Rm

+ . An example is that

f(x) =
p(x)

r(x)
and g(x) =

q(x)

r(x)
,

where p(·) > 0 and q(·) > are convex, and r(·) > 0 is concave. Directly applying the
proposed subgradient methods to solve the primal-dual problem (1.5), we obtain a
primal-dual subgradient method to approximate a saddle value (or a saddle point)
of the Lagrangian function. In contrast to the dual subgradient method, the primal-
dual subgradient method approaches a saddle value without solving any auxiliary
problems, and thus avoids the difficulty in computing subgradients of the dual
function.

The paper is organized as follows. In section 2, we present the notation and
preliminary results used in this paper. In section 3, we introduce a subgradient
method to approximate a saddle value of quasiconvex-quasiconcave function, and
investigate convergence properties of the subgradient method when using the con-
stant or diminishing rules. In section 4, we propose a stochastic subgradient method
and establish its convergence properties in sense of with probability 1.

2. Notation and preliminary results

We consider the n-dimensional Euclidean space Rn with inner product ⟨·, ·⟩ and
norm ∥ · ∥. In particular, we use S to denote the unit sphere centered at the origin.
For x ∈ Rn and Z ⊆ Rn, we use dist(x,Z) and PZ(x) to denote the Euclidean
distance of x from Z and the classical metric projection of x onto Z, respectively,
i.e.,

dist(x,Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

A function h : Rn → R is said to be quasiconvex if

h((1− α)x+ αy) ≤ max{h(x), h(y)} for any x, y ∈ Rn and α ∈ [0, 1];
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h is said to be quasiconcave if −h is quasiconvex, that is,

h((1− α)x+ αy) ≥ min{h(x), h(y)} for any x, y ∈ Rn and α ∈ [0, 1].

For any α ∈ R, we denote the level sets of h by

lev<αh := {x ∈ Rn : h(x) < α}, lev≤αh := {x ∈ Rn : h(x) ≤ α},
lev>αh := {x ∈ Rn : h(x) > α}, lev≥αh := {x ∈ Rn : h(x) ≥ α}.

It is well-known that h is quasiconvex if and only if lev<αh (and/or lev≤αh) is convex
for any α ∈ R, and that h is quasiconcave if and only if lev>αh (and/or lev≥αh) is
convex for any α ∈ R.

The subdifferential of quasiconvex functions is an important issue of quasiconvex
optimization, and several types of subdifferentials of quasiconvex functions have
been introduced in the literature; see, e.g., [2, 12, 17, 20]. In particular, Kiwiel [20]
and Hu et al. [17] introduced a quasi-subdifferential, which is a normal cone to a
strict sublevel set of the quasiconvex function, and utilized such a subgradient in
their proposed subgradient methods. We recall the definition of quasi-subdifferential
as follows.

Definition 2.1. Let h : Rn → R and x ∈ Rn.

(a) Assume that h is quasiconvex. The quasi-subdifferential of h at x is defined by

∂h(x) = {g : ⟨g, y − x⟩ ≤ 0, ∀y ∈ lev<h(x)h}.
(b) Assume that h is quasiconcave. The quasi-subdifferential of h at x is defined by

∂h(x) = {g : ⟨g, y − x⟩ ≥ 0, ∀y ∈ lev>h(x)h}.
Any vector g ∈ ∂h(x) is called a quasi-subgradient of h at x.

Allowing a random noise, the following noisy quasi-subgradient was introduced
and employed in the stochastic subgradient method in [18].

Definition 2.2. Let h : Rn → R and x ∈ Rn, and let g̃(x) ∈ Rn be a random
vector.

(a) Assume that h is quasiconvex. g̃(x) is called a noisy (unbiased) quasi-subgradient
of h at x if Eg̃(x) ∈ ∂h(x), that is,

E⟨g̃(x), y − x⟩ ≤ 0 for any y ∈ lev<h(x)h,

where E(·) denotes the expectation of a random variable, and E⟨g̃(x), y − x⟩ =
⟨Eg̃(x), y − x⟩.

(b) Assume that h is quasiconcave. g̃(x) is called a noisy quasi-subgradient of h at
x if

E⟨g̃(x), y − x⟩ ≥ 0 for any y ∈ lev>h(x)h.

(c) g̃(x) is called a unit noisy quasi-subgradient of h at x if it is a noisy quasi-
subgradient of f at x and satisfies ∥Eg̃(x)∥ = 1.

The Hölder condition is a critical assumption for the convergence study of nu-
merical algorithms in quasiconvex optimization. The Hölder condition of order p is
used to describe some properties of the quasi-subgradient in [22, 23], and assumed
in [17, 18] to investigate convergence properties of the inexact quasi-subgradient
method and the stochastic subgradient method.
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Definition 2.3. Let p > 0, L > 0 and x̄ ∈ Rn. h : Rn → R is said to satisfy the
Hölder condition of order p with modulus L at x̄ if

(2.1) |h(x)− h(x̄)| ≤ L∥x− x̄∥p for any x ∈ Rn.

h is said to satisfy the Hölder condition of order p with modulus L on X if (2.1)
holds for any x̄ ∈ X.

A bounded subgradient assumption is usually assumed in the literature of subgra-
dient methods for convex optimization; see, e.g., [21, 26, 27, 28]. This assumption
can be guaranteed when the function h is globally Lipschitz, that is,

|h(x)− h(x̄)| ≤ L∥x− x̄∥ for any x ∈ Rn.

More precisely, the Hölder condition of order 1 is equivalent to the bounded sub-
gradient assumption whenever h is convex (see [17]). Moreover, we provide some
examples of quasiconvex-quasiconcave functions that satisfy the Hölder condition.

Example 2.4. (i) f(x, y) :=
√

|x| −
√

|y| satisfies the Hölder condition of 1
2 with

modulus 1.
(ii) f(x, y) := ∥x∥p − ∥y∥p with p ∈ (0, 1) satisfies the Hölder condition of p with
modulus 1.
(iii) f(x, y) := ∥x∥pp − ∥y∥pp, where p ∈ (0, 1) and ∥x∥pp :=

∑n
i=1 |xi|p, satisfies the

Hölder condition of p with modulus 1.

The following lemma describes an important property of a quasiconvex func-
tion that satisfies the Hölder condition. This property locally relates the quasi-
subgradient with objective function values, which is a key tool to establish the basic
inequality in convergence analysis. Items (i) and (ii) are taken from [23, Proposition
2.1] and [18, Lemma 2.4], respectively.

Lemma 2.5. Let h be a quasiconvex function, X be a closed and convex set, and
let X∗ be set of minima of h on X. Let p > 0, L > 0 and x ∈ X \X∗. Suppose that
h satisfies the Hölder condition of order p with modulus L at some x∗ ∈ X∗. Then
it holds that

(i) Let g ∈ ∂h(x) ∩ S. Then

⟨g, x− x∗⟩ ≥
(
h(x)− h(x∗)

L

) 1
p

.

(ii) Let g̃(x) be a unit noisy quasi-subgradient of h at x. Then

E⟨g̃(x), x− x∗⟩ ≥
(
h(x)− h(x∗)

L

) 1
p

.

3. Subgradient method for saddle point problem

The aims of this section are to introduce a subgradient method to solve problem
(1.2), and to investigate its convergence properties. The subgradient method for
solving (1.2) is formally presented as follows.
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Algorithm 3.1. Select initial points x0 ∈ X and y0 ∈ Y , and a sequence of stepsizes
{vk} ⊆ (0,+∞). Having xk and yk, we calculate the unit quasi-subgradients of F
at (xk, yk) with respect to x and y, that is, compute

Fx(xk, yk) ∈ ∂xF(xk, yk) ∩ S and Fy(xk, yk) ∈ ∂yF(xk, yk) ∩ S,

and update xk+1 and yk+1, respectively, by

xk+1 = PX(xk − vkFx(xk, yk)),(3.1)

yk+1 = PY (yk + vkFy(xk, yk)).(3.2)

The stepsize rule has a critical effect on the convergence behavior and computa-
tional performance of subgradient methods. In this paper, we consider the following
two typical stepsize rules.

(a) Constant stepsize rule.

vk ≡ v(> 0).

(b) Diminishing stepsize rule.

(3.3) vk > 0, lim
k→∞

vk = 0,
∞∑
k=0

vk = +∞.

To study the convergence properties of our methods, we make the following as-
sumption1:

• Let (x∗, y∗) be a saddle point of (1.2). Assume that F satisfies the Hölder
condition of order p > 0 with modulus L > 0 on X × Y .

We start the convergence analysis of Algorithm 3.1 by providing the following
basic inequalities, which show the behaviour of the subgradient iterations. Item (i)
is for the primal subgradient approach, and item (ii) is for the dual subgradient
approach.

Lemma 3.1. Let {xk} and {yk} be sequences generated by Algorithm 3.1. Then
the following two assertions hold for any k ≥ 0:

(i) If F(xk, yk) > F(x∗, yk), we have

(3.4) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
F(xk, yk)−F(x∗, yk)

L

) 1
p

+ v2k.

(ii) If F(xk, yk) < F(xk, y
∗), we have

(3.5) ∥yk+1 − y∗∥2 ≤ ∥yk − y∗∥2 − 2vk

(
F(xk, y

∗)−F(xk, yk)

L

) 1
p

+ v2k.

Proof. (i) In view of Algorithm 3.1 (cf. (3.1)), for any k ≥ 0, it follows from the
nonexpansive property of projection operator that

(3.6)
∥xk+1 − x∗∥2 ≤ ∥xk − vkFx(xk, yk)− x∗∥2

= ∥xk − x∗∥2 − 2vk⟨Fx(xk, yk), xk − x∗⟩+ v2k.

1Due to the structure of saddle point problem (1.2), this assumption can be weakened to be
that F(·, y) and F(x, ·) satisfy the Hölder condition of order p > 0 with modulus L > 0 on X for
any y ∈ Y and on Y for any x ∈ X, respectively.
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Since F(xk, yk) > F(x∗, yk), Lemma 2.5(i) is applicable (to F(·, yk), xk,
Fx(xk, yk) in place of h, x, g) to concluding that

⟨Fx(xk, yk), xk − x∗⟩ ≥
(
F(xk, yk)−F(x∗, yk)

L

) 1
p

.

Hence, (3.6) is reduced to (3.4), and this completes the proof of (i).
(ii) Similarly, by (3.2) and the nonexpansive property of projection operator, for

any k ≥ 0, we obtain that

(3.7)
∥yk+1 − y∗∥2 ≤ ∥yk + vkFy(xk, yk)− y∗∥2

= ∥yk − y∗∥2 + 2vk⟨Fy(xk, yk), yk − y∗⟩+ v2k.

By the assumption that F(xk, yk) < F(xk, y
∗), Lemma 2.5(i) is applicable (to

−F(xk, ·), yk, −Fy(xk, yk) in place of h, x, g); hence it follows that

⟨−Fy(xk, yk), yk − y∗⟩ ≥
(
F(xk, y

∗)−F(xk, yk)

L

) 1
p

.

Therefore, (3.7) is reduced to (3.5), and the proof of (ii) is complete.
□

By virtue of Lemma 3.1, we will provide the convergence results of Algorithm 3.1
when using the constant and diminishing stepsize rules in Theorems 3.2 and 3.3,
respectively.

Theorem 3.2. Let {xk} and {yk} be sequences generated by Algorithm 3.1 with the
constant stepsize rule. Then

lim inf
k→∞

F(xk, yk)− L
(v
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk) + L

(v
2

)p
.

Proof. It is clear that the proofs of the above two inequalities follow a similar anal-
ysis, we only show the proof of the first inequality and omit that of the second one.
To do this, we prove by contradiction, assuming to the contrary that

lim inf
k→∞

F(xk, yk) > F(x∗, y∗) + L
(v
2

)p
.

Then there exist some δ > 0 and k0 ∈ N such that, for any k ≥ k0,

F(xk, yk) > F(x∗, y∗) + L
(v
2
+ δ

)p
≥ F(x∗, yk) + L

(v
2
+ δ

)p
.

Then Lemma 3.1(i) is applicable; hence, for any k ≥ k0, it follows from (3.4) that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2v
(
F(xk,yk)−F(x∗,yk)

L

) 1
p
+ v2

≤ ∥xk − x∗∥2 − 2v
(
v
2 + δ

)
+ v2

= ∥xk − x∗∥2 − 2vδ.

Summing the above inequality over k = k0, . . . , n, we have that

∥xn+1 − x∗∥2 ≤ ∥xk0 − x∗∥2 − 2(n+ 1− k0)vδ,

which yields a contradiction for sufficiently large n. Then we obtain the first in-
equality, and thus, the proof is complete. □
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Using the diminishing stepsize rule, the tolerance in Theorem 3.2 vanishes and
the following theorem is obtained.

Theorem 3.3. Let {xk} and {yk} be sequences generated by Algorithm 3.1 with the
diminishing stepsize rule. Then

(3.8) lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk).

Proof. We only show the proof of the first inequality of (3.8) and omit that of the
second one. To do this, we prove by contradiction, assuming to the contrary that

lim inf
k→∞

F(xk, yk) > F(x∗, y∗).

Then there exist some δ > 0 and k0 ∈ N such that, for any k ≥ k0,

F(xk, yk) > F(x∗, y∗) + Lδp ≥ F(x∗, yk) + Lδp.

Then Lemma 3.1(i) is applicable; hence, for any k ≥ k0, it follows from (3.4) that

(3.9) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
F(xk,yk)−F(x∗,yk)

L

) 1
p
+ v2k

≤ ∥xk − x∗∥2 − 2vkδ + v2k.

Since {vk} diminishes (cf. (3.3)), there exists some kδ ∈ N such that

vk ≤ δ for any k ≥ kδ.

Hence, for any k ≥ k̃ := max{k0, kδ}, (3.9) is reduced to

(3.10) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − vkδ.

Summing the above inequality over k = k̃, . . . , n, we have that

∥xn+1 − x∗∥2 ≤ ∥xk̃ − x∗∥2 − δ
n∑

k=k̃

vk,

which yields a contradiction for sufficiently large n (since
∑∞

k=0 vk = +∞). Thus
we obtain the first inequality of (3.8), and the proof is complete. □

Remark 3.4. Note in Algorithm 3.1 that we adopt the uniform stepsize in the
primal and dual subgradient approaches. More general, we can also utilize the
mixed stepsizes in the subgradient method for solving problem (1.2), that is, (3.1)
and (3.2) in Algorithm 3.1 are replaced by

xk+1 = PX(xk − αkFx(xk, yk)),(3.11)

yk+1 = PY (yk + βkFy(xk, yk)),(3.12)

where αk > 0 and βk > 0 are the primal and dual stepsizes, respectively. Following
the convergence analysis in Theorems 3.2 and 3.3, we can establish the following
convergence results for the subgradient method (3.11)-(3.12):

(i) Assume αk ≡ α > 0 and {βk} is the diminishing stepsize rule. Then it hods
that

lim inf
k→∞

F(xk, yk)− L
(α
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk).
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(ii) Assume {αk} is the diminishing stepsize rule and βk ≡ β > 0 . Then it hods
that

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk) + L

(
β

2

)p

.

4. Stochastic subgradient method

Due to errors in measurements or uncertainty in problem data, the direct ap-
plication of the exact subgradient may not be meaningful. In such situations, an
alternative approach is to use a noisy estimate of the subgradient. Adopting a
random noisy estimate as the true subgradient, the stochastic subgradient method
was pioneered by Ermoliev [8, 9] and further developed by many scholars (e.g.,
[5, 25, 31]). Recently, Hu et al. [18] proposed a stochastic subgradient method to
solve constrained quasiconvex optimization problems. Many convergence results of
the stochastic subgradient method have been established in which the generated
sequence could achieve the same convergence properties as that of the exact sub-
gradient method with probability 1, because the random behavior help “average
out” the statistical noise in subgradient evaluations.

Inspired by the ideas in [18] and references therein, this section aims at the study
of the stochastic subgradient method for solving problem (1.2). The only difference
between the stochastic subgradient method of this section and Algorithm 3.1 is that
the stochastic noisy quasi-subgradients are employed in the subgradient approach in
place of the exact quasi-subgradient. The stochastic subgradient method for solving
(1.2) is formally presented as follows.

Algorithm 4.1. Select initial points x0 ∈ X and y0 ∈ Y , and a sequence of stepsizes
{vk} ⊆ (0,+∞). Having xk and yk, we calculate the unit noisy quasi-subgradients

F̃x(xk, yk) and F̃y(xk, yk) of F at (xk, yk) with respect to x and y, and update xk+1

and yk+1, respectively, by

xk+1 = PX(xk − vkF̃x(xk, yk)),(4.1)

yk+1 = PY (yk + vkF̃y(xk, yk)).(4.2)

We recall the supermartingale convergence theorem (see [5, Proposition 4.2]),
which is useful in the convergence analysis of the stochastic subgradient method.

Lemma 4.1. Let {Yk}, {Zk} and {Wk} be three sequences of nonnegative random
variables, and let {Vk} be a sequence of sets of random variables such that Vk ⊆ Vk+1

for any k ≥ 0. Suppose that the following conditions are satisfied for each k ≥ 0:

(a) Yk, Zk and Wk are functions of the random variables in Vk;
(b) E {Yk+1 | Vk} ≤ Yk − Zk +Wk;
(c)

∑∞
k=0Wk < ∞.

Then
∑∞

k=0 Zk < ∞, and the sequence {Yk} converges to a nonnegative random
variable Y , with probability 1.

Now we provide in the following lemma some basic inequalities, which show a
significant property of a stochastic subgradient iteration.
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Lemma 4.2. Let {xk} and {yk} be sequences generated by Algorithm 4.1. Fix some
n ∈ N, and let Vn := {x0, y0, x1, y1, . . . , xn, yn}. Then the following two assertions
are true:

(i) If F(xn, yn) > F(x∗, yn), we have

E
{
∥xn+1 − x∗∥2 | Vn

}
≤ ∥xn − x∗∥2 − 2vn

(
F(xn, yn)−F(x∗, yn)

L

) 1
p

+ v2n.

(ii) If F(xn, yn) < F(xn, y
∗), we have

E
{
∥yn+1 − y∗∥2 | Vn

}
≤ ∥yn − y∗∥2 − 2vn

(
F(xn, y

∗)−F(xn, yn)

L

) 1
p

+ v2n.

Proof. In view of Algorithm 4.1 (cf. (4.1)) and by the nonexpansive property of
projection operator, we have that

∥xn+1 − x∗∥2 ≤ ∥xn − vnF̃x(xn, yn)− x∗∥2
= ∥xn − x∗∥2 − 2vn⟨F̃x(xn, yn), xn − x∗⟩+ v2n.

By taking the conditional expectation with respect to Vn, it follows that

E{∥xn+1 − x∗∥2 | Vn} ≤ ∥xn − x∗∥2 − 2vnE{⟨F̃x(xn, yn), xn − x∗⟩ | Vn}+ v2n

≤ ∥xn − x∗∥2 − 2vn

(
F(xn, yn)−F(x∗, yn)

L

) 1
p

+ v2n,

where the last inequality follows from Lemma 2.5(ii) (to F(·, yn), xn, F̃x(xn, yn) in
place of h, x, g̃(x)). Thus, we obtained (i) and can prove (ii) by taking the similar
analysis. □

By virtue of Lemma 4.2, we will establish in Theorems 4.3 and 4.4 the convergence
results of Algorithm 4.1 for the constant and diminishing stepsize rules, respectively.

Theorem 4.3. Let {xk} and {yk} be sequences generated by Algorithm 4.1 with the
constant stepsize rule. Then it holds, with probability 1, that

(4.3) lim inf
k→∞

F(xk, yk)− L
(v
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk) + L

(v
2

)p
.

Proof. We only show the proof of the first inequality of (4.3) and omit that of the
second one. To do this, fix δ > 0 and define a feasible level set (X ⊗ Y )δ by

(4.4) (X ⊗ Y )δ :=
{
(x, y) ∈ X × Y : F(x, y) < F(x∗, y∗) + L

(v
2
+ δ

)p}
,

and let (xδ, yδ) ∈ (X ⊗ Y )δ. We construct a new sequence {(x̂k, ŷk)} by (x̂0, ŷ0) :=
(x0, y0), and{

x̂k+1 := PX(x̂k − vkF̃x(x̂k, ŷk))

ŷk+1 := PY (ŷk + vkF̃y(x̂k, ŷk))
if (x̂k, ŷk) /∈ (X ⊗ Y )δ;

otherwise, (x̂k+1, ŷk+1) := (xδ, yδ). Then the sequence {(x̂k, ŷk)} is identical to
{(xk, yk)}, except that once (x̂k, ŷk) enters (X⊗Y )δ and then {(x̂k, ŷk)} terminates



94 Y. H. HU, X. Q. YANG, AND CARISA K. W. YU

with (xδ, yδ) ∈ (X ⊗ Y )δ. Assume that (x̂k, ŷk) /∈ (X ⊗ Y )δ for any k and let

V̂k := {x̂0, ŷ0, x̂1, ŷ1, . . . , x̂k, ŷk}. It follows from (4.4) that

F(x̂k, ŷk) ≥ F(x∗, y∗) + L
(v
2
+ δ

)p
≥ F(x∗, ŷk) + L

(v
2
+ δ

)p
,

and then Lemma 4.2(i) is applicable; hence, for any k, we obtain that

E
{
∥x̂k+1 − x∗∥2 | V̂k

}
≤ ∥x̂k − x∗∥2 − 2v

(
F(x̂k,ŷk)−F(x∗,ŷk)

L

) 1
p
+ v2

≤ ∥x̂k − x∗∥2 − 2vδ.

Then Lemma 4.1 is applicable; hence one concludes that
∑∞

k=0 2vδ < ∞ with
probability 1, which is impossible. Therefore, (x̂k, ŷk) /∈ (X ⊗ Y )δ only occurs
finitely many times, and (x̂k, ŷk) ∈ (X ⊗ Y )δ for any k (≥ N). Consequently, for
the original sequence {xk}, it holds, with probability 1, that

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) + L
(v
2
+ δ

)p
.

Since δ > 0 is arbitrary, we arrive at the first inequality of (4.3), and the proof is
complete. □

Theorem 4.3 shows the convergence of Algorithm 4.1 to the optimal value within
some tolerance given in terms of the constant stepsize with probability 1. This
tolerance, L

(
v
2

)p
, is the same as the one obtained in Theorem 3.2, and is smaller

than the one reported in [17, Theorem 3.1] for the inexact subgradient method that
is expressed as L

(
Rd+ v

2 (1 +R)2
)p

+ ϵ. This shows the advantage of adopting the
randomized noise in subgradient methods.

Theorem 4.4. Let {xk} and {yk} be sequences generated by Algorithm 4.1 with the
diminishing stepsize rule. Then

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk) with probability 1.

Proof. The proof of this theorem adopts the property of the diminishing stepsize
rule (cf. (3.3)) and a line of analysis similar to that of Theorem 4.3. Hence we omit
the details. □

Theorem 4.4 describes the exact convergence of the stochastic subgradient method
for solving (1.2) when using the diminishing stepsize rule, which shares the same
convergence property as that of the exact subgradient method (see Theorem 3.3)
with probability 1.

Remark 4.5. Similar to Remark 3.4, we can also adopt the mixed stepsizes in the
stochastic subgradient method, that is, (4.1) and (4.2) in Algorithm 4.1 are replaced
by

xk+1 = PX(xk − αkF̃x(xk, yk)),(4.5)

yk+1 = PY (yk + βkF̃y(xk, yk)).(4.6)

The following convergence results for the subgradient method (4.5)-(4.6) follows
form Theorems 4.3 and 4.4.
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(i) Assume αk ≡ α > 0 and {βk} is the diminishing stepsize rule. Then it hods,
with probability 1, that

lim inf
k→∞

F(xk, yk)− L
(α
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk).

(ii) Assume {αk} is the diminishing stepsize rule and βk ≡ β > 0 . Then it hods,
with probability 1, that

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk) + L

(
β

2

)p

.

5. Conclusion and future work

In this paper, we have proposed a subgradient method to solve a saddle point
problem or a minimax problem of a quasiconvex-quasiconcave function over a closed
convex set. The convergence theory to approach the saddle value has been estab-
lished under the assumption of the Hölder condition of order p and by using the
constant and diminishing stepsize rules. To adjust the uncertain noise in appli-
cations, we have proposed a stochastic subgradient method and provided its con-
vergence analysis showing that the stochastic subgradient method shares the same
convergence behavior as that of the exact subgradient method with probability 1.

Many questions maintain still open in the study of subgradient methods for solv-
ing saddle point problems of quasiconvex optimization. In our convergence study,
only the convergence of objective values is provided, while the convergence of iter-
ates is absent at this moment. Furthermore, in many applications, the computation
error stems from practical considerations, and is inevitable in the computing pro-
cess. The computation error usually gives rise to the calculation of an approximate
subgradient, and the inexact subgradient method meets the requirement of appli-
cations. The convergence study of the inexact subgradient method has a significant
influence in spreading applications of numerical optimization.
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[27] A. Nedić and A. Ozdaglar, Approximate primal solutions and rate analysis for dual subgradient
methods, SIAM J. Optim. 19 (2009), 1757–1780.
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