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Definition 1.1. Let λ = (λ1, . . . , λn) ∈ Rn be given. Then the function
fλ : Rn −→ R is called an ordered median function if for every x ∈ Rn holds
fλ(x) = ⟨λ, sortn(x)⟩, where ⟨·, ·⟩ denotes the inner product in Rn.

Obviously every ordered median function is a continuous piecewise linear function on
Rn and therefore a DCH-function (see [7]) , i.e. a function which can be represented
as a difference of two continuous sublinear functions.

Throughout this paper we will mainly use the notation x(1) ≤ x(2) ≤ · · · ≤ x(n)
instead of xπ(1) ≤ xπ(2) · · · ≤ xπ(n) for the ordered components of a vector x =
(x1, . . . , xn) ∈ Rn.

In [3] a simple explicit representation of an ordered median function as a difference
of two continuous sublinear functions is given as follows:

Consider the following sublinear functions θ1, θ2, . . . , θn : Rn −→ R given by:

θ1(x) = x1 + x2 + · · ·+ xn,

θ2(x) = max

{
xi1 + xi2 + · · ·+ xin−1 :

i1,i2,...,in−1∈{1,2,..,n}
i1 < i2 < · · · < in−1

}
,

...

θr(x) = max

{
xi1 + xi2 + · · ·+ xin+1−r :

i1,i2,...,in+1−r∈{1,2,..,n}
i1 < i2 < · · · < in+1−r

}
,

...

θn−1(x) = max

{
xi1 + xi2 :

i1,i2∈{1,2,..,n}
i1 < i2

}
,

θn(x) = max {x1, . . . , xn} .

Let us remark that the sublinear functions θ1, θ2, . . . , θn are also ordered median
functions, known as centrum functions (see [6]) , where θr and generated by the
vector λ =

(
0, . . . , 0︸ ︷︷ ︸

r−1 elements

, 1, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
n−r+1 elements

)
∈ Rn.

In [3], Remark 1 the following statement was proved:

Proposition 1.2. Every ordered median function fλ : Rn −→ R given by fλ(x) =
⟨λ, sortn(x)⟩ with λ = (λ1, . . . , λn) ∈ Rn has the following DCH-representation:

fλ(x) = ⟨λ, sortn(x)⟩ =
∑n

j=1 ρjθj
with ρ1 = λ1 and ρi = λi − λi−1 for i ∈ {2, . . . , n}.

Although the following Corollary is an immediate consequence of Proposition 1.2,
we will give a direct proof of it.
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Corollary 1.3. For a binary vector λ =
(
0, . . . , 0︸ ︷︷ ︸

l1 elements

, 1, . . . , 1︸ ︷︷ ︸
k elements

, 0, . . . , 0︸ ︷︷ ︸
l2 elements

)
∈ Rn with

block size k, left margin l1 and right margin l2 holds

fλ(x) = ⟨λ, sortn(x)⟩ = θl1+1 − θl1+k+1.

Proof. For x = (x1, . . . , xn) ∈ Rn let x≤ =
(
x(1), . . . , x(n)

)
be the rearrangement

of the components of x, sorted by value, i.e. x(1) ≤ x(2) ≤ · · · ≤ x(n). Then

fλ(x) =
∑l1+k

i=l1+1 x(i) =
∑n

i=l1+1 x(i) −
∑n

i=l1+k+1 x(i) = θl1+1(x)− θl1+k+1(x), which
finishes the proof. □

2. The ordered location problem

Ordered median functions have been used for the formulation of objectives for
optimization problems in location theory (see [4] and [2] ). Here we assume through-
out the paper that the metric space (X, d) is given by X = Rm endowed with the
Euclidean distance

d(x, y) = ∥x− y∥ =
√

(⟨x− y, x− y⟩),

and request that the ordered median functions belong to the binary vector of the
form λ =

(
0, . . . , 0︸ ︷︷ ︸

l1 elements

, 1, . . . , 1︸ ︷︷ ︸
k elements

, 0, . . . , 0︸ ︷︷ ︸
l2 elements

)
∈ Rn with block size k > 0, left margin

l1 > 0 and right margin l2 > 0. Moreover let V = {v1, v2, . . . , vn} ⊂ Rm a finite
subset of pairwise disjoint points and for the Euclidean metric d on Rm define

D(x) = (d1(x), . . . , dn(x)) ∈ Rn by di(x) = d(x, vi), x ∈ Rm and i ∈ {1, 2, . . . , n}.

Then the optimization problem

(OLP) min fλ(D(x)) under x ∈ Rn

is called the ordered location problem. Note, that the ordered location problem is a
quasi-differentiable optimization problem.

General Assumption:
The metric space (X, d) is given by X = Rm endowed with the Euclidean distance
d(x, y) and for every point x0 ∈ Rm in which the goal function (fλ ◦D) has a local
minimum the condition x0 /∈ V = {v1, . . . , vn} holds. V = {v1, v2, . . . , vn} ⊂ Rm a
finite subset of pairwise disjoint points

Proposition 2.1. For an arbitrary vector λ = (λ1, . . . , λn) ∈ Rn let fλ : Rn −→ R
be the corresponding ordered median function. Moreover let V = {v1, v2, . . . , vn} ⊂
Rm a finite subset of pairwise disjoint points and assume that x0 /∈ V = {v1, . . . , vn}.
If additionally D(x0) = (d1(x0), . . . , dn(x0)) ∈ Rn with di(x0) = d(x0, vi) consists of
pairwise different components, then the function

fλ ◦D : Rm −→ R with x 7→ fλ (D(x))

is continuously differentiable in a suitable neighborhood of x0 ∈ Rm \ V.
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Proof. Let us choose a different representation of fλ : Rn −→ R given by
fλ(x) = ⟨λ, sortn(x)⟩ =

∑n
i=1 λiφi(x) where the order by value is given by the ar-

rangement functions φ1, φ2, . . . , φn : Rn −→ R with:

φ1(x) = min {x1, . . . , xn}
φ2(x) = min {max {xi, xj} | i < j and i, j ∈ {1, 2, . . . , n}}
φ3(x) = min {max {xi, xj , xl} | i < j < l and i, j, l ∈ {1, 2, .., n}}

.

φr(x) = min {max {xi1 , xi2 , . . . , xir}| i1< i2< · · ·< ir and i1, i2,· · ·r∈{1, 2, . . . , n}}
.

φn(x) = max {x1, . . . , xn} .
Since x0 /∈ V the function x 7→ di(x) is smooth on Rn \ {vi} for the Euclidean
metric. Since the vector D(x0) = (d1(x0), . . . , dn(x0)) ∈ Rn consists of pairwise
different components the sequence (φ1(D(x0)), φ2(D(x0)), . . . , φn(D(x0))) is strictly
monotone. This holds also for (φ1(D(x)), φ2(D(x)), . . . , φn(D(x))) for every x /∈
V which is close to x0. So every summand in this representation is continuously
differentiable around x0 which proves the assertion. □

Necessary Optimality Conditions:

Now we will turn our attention to necessary optimality conditions for the ordered
location problem (OLP)

min fλ(D(x)) under x ∈ Rm

fλ ◦D : Rm −→ R is given by fλ (D(x)) = θl1+1 (D(x))− θl1+k+1 (D(x)) .

Since fλ is a DCH-function and the Euclidean distance is convex the composed
function fλ ◦ D is quasi-differentiable in the sense of V.F. Demyanov and A.M.
Rubinov (see [1]). By quasi-differential calculus (see [1]) we get for the quasi-
differential at x0 ∈ Rn the following pair of compact convex sets

(QD) D (fλ ◦D)
∣∣
x0

=
(
∂ (θl1+1 ◦D)

∣∣
x0
, ∂ (θl1+k+1 ◦D)

∣∣
x0

)
where “∂” denotes the convex subdifferential in Rm (see [8]). A necessary optimality
condition for a local minimum in x0 ∈ Rm (see [1] Theorem 16.4) is:

(NOC) ∂ (θl1+k+1 ◦D)
∣∣
x0

⊆ ∂ (θl1+1 ◦D)
∣∣
x0
.

Similarly a sufficient optimality condition for x0 ∈ Rm (see [1] Theorem 16.7) to be
a strict local minimum is

(SOC) ∂ (θl1+k+1 ◦D)
∣∣
x0

⊆ int ∂ (θl1+1 ◦D)
∣∣
x0
,

where ′′int (A)′′ denotes the interior of a set A.

Note furthermore that a point x ∈ Rm is in the interior of a convex set A ⊂ Rm
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of dimension k ≤ m if an only if it is a convex combination with strict positive
coefficients of (k + 1) affine independent elements of A.

Let us finally remark that the subdifferential of a finite maxima of convex functions
is the convex hull of the gradients of the active functions in this point, i.e. for
r ∈ {2, .., n} one has:

∂ (θr ◦D)
∣∣
x0

= conv
{
∇
∣∣
x0

(
di1 + di2 + · · ·+ din+1−r

) ∣∣∣ (θr ◦D) (x0) =

(SD)(
di1 + di2 + · · ·+ din+1−r

)
(x0) and

i1,i2,...,in+1−r∈{1,2,..,n}
i1 < i2 < . . . . < in+1−r

}
⊂ Rn.

Proposition 2.2. In the notation of an ordered location problem (OLP) let V =
{v1, v2, . . . , vn} ⊂ Rm be a finite set of pairwise disjoint points and λ =(
0, . . . , 0︸ ︷︷ ︸

l1 elements

, 1, . . . , 1︸ ︷︷ ︸
k elements

, 0, . . . , 0︸ ︷︷ ︸
l2 elements

)
∈ Rn be given. Assume that fλ ◦ D has a local min-

imum in in x0 ∈ Rm and x0 /∈ V. Let us write for the vector D(x) in the ordered
form

sortn(D(x0)) = D(x0)≤ =
(
d(1)(x0), d(2)(x0), . . . , d(n)(x0)

)
and assume that d(l1+k)(x0) ̸= d(l1+k+1)(x0) holds. If fλ ◦ D is not Gâteaux-
differentiable in x0 ∈ Rm then

d(l1)(x0) = d(l1+1)(x0).

Proof. First note that fλ(D(x)) : Rm −→ R with fλ (D(x)) = θl1+1 (D(x))−
θl1+k+1 (D(x)) is quasi-differentiable at x0 ∈ Rm and hence directional differen-
tiable with quasi-differential

D (fλ ◦D)
∣∣
x0
=

(
∂ ( θl1+1 ◦D)

∣∣
x0
, ∂ (θl1+k+1 ◦D)

∣∣∣∣
x0

)
.

Next observe that by formula (SD) and the assumption d(l1+k)(x0) ̸= d(l1+k+1)(x0)

the set ∂ (θl1+k+1 ◦D)
∣∣
x0

is a singleton. Since fλ◦D is not Gâteaux-differentiable in

x0 ∈ Rm the set ∂ (θl1+1 ◦D)
∣∣
x0
has at least two extremal points ([1], 10.1). Hence

the ordered sequence sortn(D(x0)) = D(x0)≤ =
(
d(1)(x0), d(2)(x0), . . . , d(n)(x0)

)
must be of the form:

d(1)(x0) ≤ · · · ≤ d(l1)(x0) = d(l1+1)(x0) ≤ d(l1+2)(x0) ≤ · · · ≤ d(n)(x0)︸ ︷︷ ︸
(n−l1) elements

with the equality d(l1+1)(x0) = d(l1)(x0). Now we show that ∇
∣∣
x0
d(l1+1) ̸= ∇

∣∣
x0
d(l1),

because otherwise
x0 − v(l1+1)

d(l1+1)(x0)
= ∇

∣∣
x0
d(l1+1) = ∇

∣∣
x0
d(l1) =

x0 − v(l1)

d(l1)(x0)

which implies v(l1) = v(l1+1) in contradiction to the definition of V. □
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Proposition 2.3. In the notation of an ordered location problem (OLP) let V =
{v1, v2, . . . , vn} ⊂ Rm be a finite set of pairwise disjoint points and λ =(
0, . . . , 0︸ ︷︷ ︸

l1 elements

, 1, . . . , 1︸ ︷︷ ︸
k elements

, 0, . . . , 0︸ ︷︷ ︸
l2 elements

)
∈ Rn be given. If for an x0 ∈ Rm\V in the ordered se-

quence of distances holds that d(l1)(x0) ̸= d(l1+1)(x0) and d(l1+k)(x0) = d(l1+k+1)(x0)
then x0 ∈ Rm \ V is no solution of the ordered location problem

min fλ(D(x)) under x ∈ Rm.

Proof. As seen in the above proof the set ∂ ( θl1+1 ◦D)
∣∣
x0

consists only of one

element, whereas ∂ (θl1+k+1 ◦D)
∣∣
x0

contains the line segment between two distinct

elements. Hence the necessary optimality condition (NOC) is not satisfied for x0 ∈
Rm and therefore x0 is no local minimum point of fλ ◦D which implies that x0 is
no solution of the ordered location problem. □

3. Types of local minima

By the necessary optimality condition (NOC) we have to consider for the opti-
mization problem:

min fλ(D(x)) under x ∈ Rm

fλ ◦D : Rm −→ R given by

fλ (D(x)) = ⟨λ, sortn(D(x))⟩ = θl1+1 (D(x))− θl1+k+1 (D(x)) .

the two subdifferentials ∂ (θl1+1 ◦D)
∣∣
x0

and ∂ (θl1+k+1 ◦D)
∣∣
x0
, where we assume that

fλ ◦D has in x0 ∈ Rm a local minimum. If we assume that the ordered sequence
sortn(D(x0)) = D(x0)≤ =

(
d(1)(x0), d(2)(x0), . . . , d(n)(x0)

)
is of the form:

d(1)(x0) ≤ · · · ≤ d(l1)(x0) = d(l1+1)(x0) ≤ d(l1+2)(x0) ≤ · · · ≤ d(n)(x0)︸ ︷︷ ︸
(n−l1) elements

then it follows from formula (SD) that in the case d(l1)(x0) ̸= d(l1+1)(x0) the

subdifferential ∂ (θl1+1 ◦D)
∣∣
x0

consists only of one element, whereas in the case

d(l1)(x0) = d(l1+1)(x0) it has at least two different extremal points as shown in the
proof of Proposition 2.2.

Hence the structure of the subdifferential depends only on the condition whether
d(l1)(x0) = d(l1+1)(x0) or d(l1)(x0) ̸= d(l1+1)(x0) holds, which we take as a basis for
classifying local minima. To get a better overview about all this cases we first give
the following list of all formal logical combinations:
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The cases 3) and 7) are not possible, because the sequence of distances is ordered
by value and the last condition contradicts the two previous ones. The cases 1)
and 2) are treated in Proposition 2.3, where we proved that the first two conditions(
d(l1)(x0)≠d(l1+1)(x0)

)
and

(
d(l1+k)(x0)=d(l1+k+1)(x0)

)
already imply that x0 ∈

Rm \ V is no solution of the ordered location problem. Weiszfeld conditions for the
remaining cases will be given in the next section: for case 4) in Theorem 4.1 a), for
case 5) in Theorem 4.2 b), for case 6) in Theorem 4.2 a), and finally for the case 8)
in Theorem 4.1 b).

4. Necessary optimality conditions in Weiszfeld terms

In this section we derive Weiszfeld formulations for the ordered location problem.
For a finite subset V = {v1, v2, . . . , vn} ⊂ Rm of pairwise disjoint points and a
binary vector λ =

(
0, . . . , 0︸ ︷︷ ︸

l1 elements

, 1, . . . , 1︸ ︷︷ ︸
k elements

, 0, . . . , 0︸ ︷︷ ︸
l2 elements

)
∈ Rn with block size k, left margin

l1 and right margin l2 we consider the optimization problem:

min fλ(D(x)) under x ∈ Rm

fλ ◦D : Rm −→ R given by

fλ (D(x)) = ⟨λ, sortn(D(x))⟩ = θl1+1 (D(x))− θl1+k+1 (D(x)) .
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First we will fix some notation: For x0 ∈ Rm and l ∈ {l1 + 1, l1 + k + 1} we call:

I(x0, l) = {i ∈ {1, . . . , n} | d(x0, vi) = φl (D(x0)) }
=
{
j ∈ {1, . . . , n} | dj(x0) = d(l)(x0)

}
the set of “active indexes for x0 ∈ Rm at the order-position l.′′

If we assume, that

sortn(D(x0) = D(x0)≤ =
(
d(1)(x0), d(2)(x0), . . . , d(n)(x0)

)
then one has for the ordered sequence (for instance at l = l1 + 1) :

d(1)(x0) ≤ d(2)(x0) ≤ · · · ≤ d(l1−r−1)(x0) < d(l1−r)(x0) = d(l1−r+1)(x0)

= d(l1)(x0) = d(l1+1)(x0) = · · · = d(l1+s)(x0)

< d(l1+s+1)(x0) ≤ · · · ≤ d(n)(x0)

(r + s) permuted indexes for equal distances in the positions l1 − r + 1,
l1 − r + 2, . . . , l1 − 1, l1 left of index l1 + 1 and l1 + 2, l1 + 3, . . . ., l1 + s
on the right hand side. So, on the left hand side of l1 + 1 are r positions for
equal distances and on the right hand side of l1 + 1 are (s − 1) positions for
equal distances. Including l1 + 1 to the right hand side index set, we will call
the number s the degree of summation for ∂ (θl1+1 ◦D)

∣∣
x0
. Hence I(x0, l1 + 1) =

{(l1 − r + 1) . . . , (l1 − 1), (l1), (l1 + 1), . . . , (l1 + s)} in the notation of the permuted
indexes of the ordered sequence of distances.

Theorem 4.1. Let λ =
(
0, . . . , 0︸ ︷︷ ︸

l1 elements

, 1, . . . , 1︸ ︷︷ ︸
k elements

, 0, . . . , 0︸ ︷︷ ︸
l2 elements

)
∈ Rn be a binary vector

with block size k, left margin l1 and right margin l2 and fλ the corresponding or-
dered median function. Moreover let V = {v1, v2, . . . , vn} ⊂ Rm be a finite subset
of pairwise disjoint points and for the Euclidean metric d on Rm, put D(x) =
(d1(x), . . . , dn(x)) ∈ Rn by di(x) = d(x, vi) for x ∈ X and i ∈ {1, 2, . . . , n}. Assume
that x0 /∈ V and that fλ◦D has in x0 ∈ Rm a local minimum and that sortn(D(x0)) =
D(x0)≤ =

(
d(1)(x0), d(2)(x0), . . . , d(n)(x0)

)
and d(l1+k)(x0) ̸= d(l1+k+1)(x0) hold.

a) If d(l1)(x0) ̸= d(l1+1)(x0) then

x0 =

∑l1+k
i=l1+1

v(i)
d(i)(x0)∑l1+k

i=l1+1
1

d(i)(x0)

.

b) If d(l1)(x0) = d(l1+1)(x0) and (in the notation of the permuted indexes of the
ordered sequence of distances) the active index set at x0 ∈ Rm on level l1+1
with degree of summation s for ∂ (θl1+1 ◦D)

∣∣
x0

is

I(x0, l1 + 1) = {(l1 − r + 1), . . . , (l1 − 1), (l1), (l1 + 1), . . . , (l1 + s)}

then there exists a point

p ∈ conv
{
v(l1−r+1), v(l1−r+2), . . . , v(l1), v(l1+1), . . . , v(l1+s)

}
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such that

x0 =
s ·
( p
d∗
)
+
∑l1+k

i=l1+s+1

v(i)
d(i)(x0)

s
d∗ +

∑l1+k
i=l1+s+1

1
d(i)(x0)

holds with d∗ = d(l1+1)(x0).

Proof. a) Since by assumption d(l1)(x0) ̸= d(l1+1)(x0) and d(l1+k)(x0) ̸= d(l1+k+1)(x0)
we have

∂ (θl1+1 ◦D)
∣∣
x0

=
{
∇
∣∣
x0

(
d(l1+1) + d(l1+2) + · · ·+ d(n)

)}
and

∂ (θl1+k+1 ◦D)
∣∣
x0

=
{
∇
∣∣
x0

(
d(l1+k+1) + d(l1+k+2) + · · ·+ d(n)

)}
and by the necessary optimality condition (NOC) ∂ (θl1+k+1 ◦D)

∣∣
x0
⊆∂ (θl1+1 ◦D)

∣∣
x0

we get

∇
∣∣
x0

(
d(l1+1) + d(l1−1+2) + · · ·+ d(l1+k)

)
= 0.

Now ∇
∣∣
x0
di =

x0−vi
di(x0)

, which gives:

l1+k∑
i=l1+1

x0 − v(i)

d(i)(x0)
= 0,

and finally

x0 =

∑l1+k
i=l1+1

v(i)
d(i)(x0)∑l1+k

i=l1+1
1

d(i)(x0)

.

b) Now we consider the case where d(l1)(x0) = d(l1+1)(x0) and assume that
d(l1+k)(x0) ̸= d(l1+k+1)(x0). Then the ordered sequence of distances looks like:

d(1)(x0) ≤ d(2)(x0) · · · ≤ d(l1−r)(x0) < d(l1−r+1)(x0) = d(l1−r+2)(x0) = · · ·
= d(l1)(x0) = d(l1+1)(x0), · · · = d(l1+s)(x0) < d(l1+s+1)(x0) ≤ · · · ≤ d(n)(x0)

By subdifferential calculus (see [8]) one has:

∂ (θl1+1 ◦D)
∣∣
x0

= conv

{
∇
∣∣
x0

(di1 + di2 + · · ·+ dis)
∣∣∣ i1,i2,...,is∈I(x0,l1+1)

i1 < i2 < · · · < is

}
+∇

∣∣
x0

(
d(l1+s+1) + d(l1+s+2) + · · ·+ d(n)

)
and

∂ (θl1+k+1 ◦D)
∣∣
x0

=
{
∇
∣∣
x0

(
d(l1+k+1) + d(l1+k+2) + · · ·+ d(n)

)}
By the necessary optimality condition (NOC) ∂ (θl1+k+1 ◦D)

∣∣
x0

⊆ ∂ (θl1+1 ◦D)
∣∣
x0

we get

{0} ∈ conv

{
∇
∣∣
x0

(di1 + di2 + · · ·+ dis)
∣∣∣ i1,i2,...,is∈I(x0,l1+1)

i1 < i2 < · · · < is

}

(NOC′) +∇
∣∣
x0

(
d(l1+s+1) + d(l1+s+2) + · · ·+ d(l1+k)

)
.
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Hence there exist real numbers ti1i2<···<is ≥ 0 with
∑

i1,i2,...,is∈I(x0,l1+1)
i1<i2<···<is

ti1i2···s = 1

such that∑
i1,i2,...,is∈I(x0,l1+1)

i1<i2<···<is

ti1i2···s

[
∇
∣∣
x0

(di1 + di2 + · · ·+ dis)
]
+∇

∣∣
x0

(
d(l1+s+1) + · · ·+ d(l1+k)

)
= 0.

Since ∇
∣∣
x0

(di) =
x0−vi
di(x0)

, this gives:∑
i1,i2,...,is∈I(x0,l1+1)

i1<i2<···<is

ti1i2···s

[
s · x0 − (vi1 + vi2 + · · ·+ vis)

d∗

]
+

(
x0

d(l1+s+1)
+ · · ·+ x0

d(l1+k)

)

−
(
v(l1+s+1)

d(l1+s+1)
+ · · ·+

v(l1+k)

d(l1+k)

)
= 0

and finally:∑
i1,i2,...,is∈I(x0,l1+1)

i1<i2<···<is

−ti1i2···s

[
(vi1 + vi2 + · · ·+ vis)

d∗

]
+ x0 ·

(
s

d∗
+

1

d(l1+s+1)
+ · · ·+ 1

d(l1+k)

)

−
(
v(l1+s+1)

d(l1+s+1)
+ · · ·+

v(l1+k)

d(l1+k)

)
= 0

and ∑
i1,i2,...,is∈I(x0,l1+1)

i1<i2<···<is

ti1i2···s

[
(vi1 + vi2 + · · ·+ vis)

d∗

]
+

(
v(l1+s+1)

d(l1+s+1)
+ · · ·+

v(l1+k)

d(l1+k)

)

= x0 ·
(

s

d∗
+

1

d(l1+s+1)
+ · · ·+ 1

d(l1+k)

)
.

Put for i ∈ {(l1 − r), (l1 − r + 1), . . . , (l1), (l1 + 1), . . . , (l1 + s) } = I(x0, l1 + 1),

τi =
1

s

 ∑
i1,i2,...,is∈I(x0,l1+1)

i∈{i1,..,is}

ti1i2···s

 and p =
∑

i∈I(x0,l1)+1

τivi

then ∑
i1,i2,...,is∈I(x0,l1)

i1<i2<···<is

ti1i2···s

[
(vi1 + vi2 + · · ·+ vis)

d∗

]
=

s

d∗
·

 ∑
i∈I(x0,l1)

τivi

 =
s

d∗
· p,

which gives(
s · p

d∗
+

v(l1+s+1)

d(l1+s+1)
+ · · ·+

v(l1+k)

d(l1+k)

)
= x0 ·

(
s

d∗
+

1

d(l1+s+1)
+ · · ·+ 1

d(l1+k)

)
and finishes the proof. □
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Theorem 4.2. Let λ =
(
0, . . . , 0︸ ︷︷ ︸

l1 elements

, 1, . . . , 1︸ ︷︷ ︸
k elements

, 0, . . . , 0︸ ︷︷ ︸
l2 elements

)
∈ Rn be a binary vector

with block size k, left margin l1 and right margin l2 and fλ the corresponding or-
dered median function. Moreover let V = {v1, v2, . . . , vn} ⊂ Rm be a finite subset
of pairwise disjoint points and for the Euclidean metric d on Rm, put D(x) =
(d1(x), . . . , dn(x)) ∈ Rn by di(x) = d(x, vi) for x ∈ X, i ∈ {1, 2, . . . , n}. Assume
that x0 /∈ V and that fλ◦D has in x0 ∈ Rm a local minimum and that sortn(D(x0)) =
D(x0)≤ =

(
d(1)(x0), d(2)(x0), . . . , d(n)(x0)

)
and d(l1)(x0) = d(l1+1)(x0) and

d(l1+k)(x0) = d(l1+k+1)(x0) hold. Furthermore let us write in the notation of the
permuted indexes of the ordered sequence of distances on level l1+1 and level l1+k+1

I(x0, l1 + 1) = {(l1 − r + 1), . . . , (l1 − 1), (l1), (l1 + 1), . . . , (l1 + s)}
and

I(x0, l1 + k + 1) = {(l1 + k − r̄ + 1), . . . , (l1 + k), (l1 + k + 1), . . . , (l1 + k + s̄)}.
Then:

a) If d(l1+1)(x0) ̸= d(l1+k+1)(x0) holds then for every set S = {i1, . . . ., is̄} ⊂
I(x0, l1 + k + 1) of pairwise different indexes with s̄ elements, there exists a point

p ∈ conv
{
v(l1−r+1), v(l1−r+2), . . . , v(l1), v(l1+1), . . . , v(l1+s)

}
such that

x0 =
s ·
( p
d∗
)
+
∑

i∈R\S
vi

di(x0)

s
d∗ +

∑
i∈R\S

1
di(x0)

with R = {(l1 + s+1), .., (l1 + k), (l1 + k+1), . . . , (l1 + k+ s̄)} and d∗ = d(l1+1)(x0)

holds. Here the number s is the degree of summation for ∂ (θl1+1 ◦D)
∣∣
x0
.

b) If d(l1+1)(x0) = d(l1+k+1)(x0) or equivalently I(x0, l1 + 1) = I(x0, l1 + k + 1)
then for every S = {j1, . . . ., js̄} ⊂ I(x0, l1 + k + 1) of pairwise different indexes

with s̄ elements there exists a point

p ∈ conv {I(x0, l1 + k + 1)}
such that such that

x0 =
1

k

 ∑
it∈I(x0,l1+k+1)\S

vit − r · p

 ,

with r taken from I(x0, l1 + 1). Note that r is also the degree of summation at the
instance (l1 + k + 1) for ∂ (θl1+k+1 ◦D)

∣∣
x0
.

Proof. a) This part of the proof is similar to the proof of Theorem 4.1 b). Now
by assumption d(l1)(x0) = d(l1+1)(x0) , d(l1+k)(x0) = d(l1+k+1)(x0) and d(l1+1(x0) ̸=
d(l1+k+1)(x0). Hence we have

∂ (θl1+1 ◦D)

∣∣∣∣
x0

= conv

{
∇
∣∣
x0

(di1 + di2 + · · ·+ dis)
∣∣∣ i1,i2,...,is∈I(x0,l1+1)

i1 < i2 < · · · < is

}
+∇

∣∣
x0

(
d(l1+s+1) + d(l1+s+2) + · · ·+ d(n)

)
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and

∂ (θl1+k+1 ◦D)

∣∣∣∣
x0

= conv

{
∇
∣∣
x0

(di1 + di2 + · · ·+ dis̄)
∣∣∣ i1,i2,...,is̄∈I(x0,l1+k+1)

i1 < i2 < · · · < is̄

}
+∇

∣∣
x0

(
d(l1+s̄+1) + d(l1+s̄+2) + · · ·+ d(n)

)
.

Since d(l1+1)(x0) ̸= d(l1+k+1)(x0) the necessary optimality condition (NOC)

∂ (θl1+k+1 ◦D)
∣∣
x0

⊆ ∂ (θl1+1 ◦D)
∣∣
x0

is equivalent to the condition, that for ev-

ery S = {i1, . . . ., is̄} ⊂ I(x0, l1+k+1) of pairwise different indexes with s̄ elements

∇
∣∣
x0

(di1 + di2 + · · ·+ dis̄) + ∇
∣∣
x0

(
d(l1+s̄+1) + d(l1+s̄+2) + · · ·+ d(n)

)
∈ ∂ (θl1+1 ◦D)

∣∣
x0

which gives that:

0 ∈ conv

{
∇
∣∣
x0

(di1 + di2 + · · ·+ dis)
∣∣∣ i1,i2,...,is∈I(x0,l1+1)

i1 < i2 < · · · < is

}

+∇
∣∣
x0

 ∑
j∈R\S

dj


where R = {(l1+s+1), . . . ., (l1+k), (l1+k+1), . . . , (l1+k+s̄)} is the set of remaining
indexes. Now we can proceed exactly as in the proof of the above Theorem 4.1 after
equation (NOC’) to derive the claimed result.

b) By assumption we have

I(x0, l1 + 1) = I(x0, l1 + k + 1)

= {(l1 − r + 1), .., (l1), (l1 + 1), .., (l1 + k), (l1 + k + 1), . . . , (l1 + k + s̄)}
with r + s̄+ k elements. Since k + s̄ = s we have

∂ (θl1+1 ◦D)

∣∣∣∣
x0

= conv

{
∇
∣∣
x0

(
di1 + di2 + · · ·+ dik+s̄

) ∣∣∣ i1,i2,...,is∈I(x0,l1+1)

i1 < i2 < · · · < ik+s̄

}
+∇

∣∣
x0

(
d(l1+k+s̄+1) + d(l1+k+s̄+2) + · · ·+ d(n)

)
and

∂ (θl1+k+1 ◦D)

∣∣∣∣
x0

= conv

{
∇
∣∣
x0

(di1 + di2 + · · ·+ dis̄)
∣∣∣ i1,i2,...,ik+s̄∈I(x0,l1+k+1)

i1 < i2 < · · · < is̄

}
+∇

∣∣
x0

(
d(l1+k+s̄+1) + d(l1+k+s̄+2) + · · ·+ d(n)

)
.

Now the necessary optimality condition (NOC) ∂ (θl1+k+1 ◦D)
∣∣
x0

⊆ ∂ (θl1+1 ◦D)
∣∣
x0

is equivalent to the condition, that for every S = {j1, . . . ., js̄} ⊂ I(x0, l1 + k+ 1) of
pairwise different indexes with s̄ elements which gives that:

∇
∣∣
x0

(dj1 + dj2 + · · ·+ djs̄)

∈ conv

{
∇
∣∣
x0

(
di1 + di2 + · · ·+ dik+s̄

) ∣∣∣ i1,i2,...,ik+s̄∈I(x0,l1+1)

i1 < i2 < · · · < ik+s̄

}
.
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Hence there exist real numbers ti1i2···k+s̄
≥ 0 with

∑
i1,i2,...,ik+s̄∈I(x0,l1+k+1)

i1<i2<···<ik+s̄

ti1i2···k+s̄
=1

such that∑
i1,i2,...,ik+s̄∈I(x0,l1+k+1)

i1<i2<···<ik+s̄

ti1i2···k+s̄

[
∇
∣∣
x0

(
di1 + di2 + · · ·+ dik+s̄

)
−∇

∣∣
x0

(dj1 + dj2 + · · ·+ djs̄)
]

= 0.(∗)

Rewriting this formula by ordering with respect to the terms ∇
∣∣
x0
dii gives for the

coefficients cit of ∇
∣∣
x0
dit for the indexes it ∈ I(x0, l1+k+1)\S and for it̄ ∈ S resp.

cit =

∑ i1,i2,...,ik+s̄∈I(x0,l1+k+1)

it∈{i1,i2,...,ik+s̄}
i1<i2<···<ik+s̄

ti1i2···k+s̄

 resp. c̄it̄ =

∑ i1,i2,...,ik+s̄∈I(x0,l1+k+1)

it̄ /∈{i1,i2,...,ik+s̄}
i1<i2<···<ik+s̄

ti1i2···k+s̄

.

Hence formula (∗) can be written as:∑
it∈I(x0,l1+k+1)\S

cit∇
∣∣
x0
dit −

∑
it∈S

c̄it∇
∣∣
x0
dit = 0.

Since
∑

i1,i2,...,ik+s̄∈I(x0,l1+k+1)

i1<i2<···<ik+s̄

ti1i2···k+s̄
= 1 which implies cit = (1 − c̄it) the above

formula can be written as:∑
it∈I(x0,l1+k+1)\S

∇
∣∣
x0
dit −

∑
it∈I(x0,l1+k+1)

c̄it∇
∣∣
x0
dit = 0.

Similar as at the end of the proof of Theorem 4.1 b) one can prove that every
ti1i2···k+s̄

appears in the collection of all sums c̄it exactly r times (which is the degree

of summation for ∂ (θl1+k+1 ◦D)

∣∣∣∣
x0

), which gives finally that formula (∗) can be

written as: ∑
it∈I(x0,l1+k+1)\S

∇
∣∣
x0
dit − r ·

∑
it∈I(x0,l1+k+1)

τ̄it∇
∣∣
x0
dit = 0

with τ̄it =
1
r c̄it and

∑
it∈I(x0,l1+k+1) τ̄it = 1.

Since ∇
∣∣
x0
di =

x0−vi
di(x0)

, and all distances are equal this gives:

(k + r) · x0 −
∑

it∈I(x0,l1+k+1)\S

vit − r · x0 + r ·
∑

it∈I(x0,l1+k+1)

τ̄itvit = 0

which finishes the proof. □
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5. Examples

In this section we will discuss four typical examples of an ordered location problem
for which in the first case the goal function is smooth in the solution point and in
all other cases nonsmooth.

The smooth case

We begin with the case where the goal function is smooth in the solution point
x0 ∈ R2 and recall that a necessary optimality condition for this case is given in
Theorem 4.1 a).

Therefore take n = 6, l1 = 1, k = 3 and l2 = 2, and choose for the points
V = {v1, v2, . . . , v6} ⊂ R2 (see Figure 1)

v1 = (0,−1

2
), v2 = (−

√
3

2
,−1

2
), v3 = (

√
3

2
,−1

2
)

and

v4 = (0, 1), v5 = (
√
2, 1), v6 = (0, 2).

Then for λ = (0, 1, 1, 1, 0, 0) ∈ R6 the goal function

fλ(D(x)) = ⟨λ, sortn(D(x))⟩ = θ2(D(x))− θ5(D(x))

has to be minimized for x ∈ R2. Here θ2, θ5 are centrum functions and D(x) =
(d1(x), . . . , d6(x)) is the vector of the Euclidean distances di(x) = d(x, vi).

Figure 1. Ordered location problem for λ = (0, 1, 1, 1, 0, 0)

It follows from [5] Theorem 4.33 that the solution of the above ordered loca-
tion problem is x0 = (0, 0). This is also the solution of the location problem
minimize (d2(x) + d3(x) + d4(x)) for x ∈ R2, i.e. for the minimal distance problem
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of the points V = {v2, v3, v4} ⊂ R2, which is a smooth convex optimization prob-
lem. In this solution point x0 ∈ R2 the goal function is differentiable and for the
vector of distances D(x) = (d1(x), . . . , d6(x)) with di(x) = d(x, vi), in the Euclidean
distances metric holds:

d1(x0) < d2(x0) = d3(x0) = d4(x0) < d5(x0) < d6(x0).

The nonsmooth case

Now we consider an example where the goal function is nonsmooth in the solution
point x0 ∈ R2 and recall that a necessary optimality condition for this case is given
in Theorem 4.1 b).

Therefore take n = 8, l1 = 2, k = 4 and l2 = 2, and choose the points V =
{v1, v2, . . . , v8} ⊂ R2 as follows:

v1 = (0.0, 2.5), v2 = (2.0, 1.5), v3 = (3.0, 0.0), v4 = (2.0,−2.5)

v5 = (0.0,−3.0), v6 = (−3.0,−2.5), v7 = (−3.5, 0.0) v8 = (−2.0, 2.0).

The polytope is depicted in Figure 2. By evaluating condition (NOC’) numerically,

Figure 2. Ordered location problem for λ = (0, 0, 1, 1, 1, 1, 0, 0)

we get for the optimal solution x0 of the corresponding optimization problem with
the goal function

fλ(D(x)) = ⟨λ, sortn(D(x))⟩ = θ3(D(x))− θ7(D(x))

x0 = (0.25,−0.25). In this point the goal function is not differentiable and for the
vector of distances D(x) = (d1(x), . . . , d8(x)) with di(x) = d(x, vi) in the Euclidean
metric holds:

d2(x0) < d1(x0) = d3(x0) = d5(x0) < d4(x0) < d8(x0) < d7(x0) < d6(x0).

It follows from the numerical evaluation of (NOC’) that the artificial point p from
the necessary optimality condition in Theorem 4.1 b) is p = (0.3786,−0.13644) ∈
conv {v1, v3, v5} and the degree of summation is 2.
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The case of equal distances

The next two examples concern both parts of Theorem 4.2. We consider two sub-
cases for the following n = 8 points, namely V = {v1, v2, . . . , v8} ⊂ R2

v1 = (1.0, 1.0), v2 = (1.0,−1.0), v3 = (−1.0, 1.0), v4 = (−1.0,−1.0)

v5 = (
√
2, 0.0), v6 = (0.0,

√
2), v7 = (0.0,−

√
2), v8 = (−

√
2, 0.0)

and take x0 = (0.0, 0.0). All distances d(x0, vi) =
√
2, i = 1, . . . , 8 are equal.

a) Now take n = 8, l1 = 2, k = 4 and l2 = 2, Then λ = (0, 0, 1, 1, 1, 1, 0, 0) ∈ R8

and the goal function

fλ(D(x)) = ⟨λ, sortn(D(x))⟩ = θ3(D(x))− θ7(D(x))

has to be minimized for x ∈ R2. In this case x0 = (0.0, 0.0) is a solution
of the corresponding ordered location problem, we have ∂ (θ3 ◦D)

∣∣
x0

=

∂ (θ7 ◦D)
∣∣
x0

= 1
2

√
2A, where A ⊂ R2 is depicted in Figure 4. The function

x 7→ θ3(D(x))−θ7(D(x)) and the level lines around x0 are depicted in Figure
3.

Figure 3. Plot of x 7→ θ3(D(x))− θ7(D(x)) with level lines around x0

b) Now take n = 8, l1 = 1, k = 5 and l2 = 2, Then λ = (0, 1, 1, 1, 1, 1, 0, 0) ∈
R8. Now the goal function

fλ(D(x)) = ⟨λ, sortn(D(x))⟩ = θ2(D(x))− θ7(D(x))

has to be minimized for x ∈ R2. But it turns out that x0 = (0.0, 0.0) is now
not a local minimum, but even a local maximum of the goal function and
satisfies the sufficient optimality condition (SOC). We have ∂ (θ2 ◦D)

∣∣
x0

=
1
2

√
2B and ∂ (θ7 ◦D)

∣∣
x0

= 1
2

√
2A, where the subsets A,B ⊂ R2 are depicted

in the Figure 4.
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Figure 4. The sets V, A and B

Figure 5. Plot of x 7→ θ2(D(x))− θ7(D(x)) with level lines around x0
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