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a byproduct, a formula of the conjugate function of a multi-composed function is
provided under a closedness type regularity condition that is weaker than the one
given in [20]. Different results involving composed functions from the literature can
be recovered as special cases of the statements we provide in this paper. In all the
new formulae we deliver, the functions involved in the original chain of composi-
tions appear alone, allowing thus a separate processing. This might prove to be
of advantage when concretely solving such problems by means of numerical algo-
rithms, for instance by employing primal-dual splitting type methods. However,
such investigations remain subject to future research.

In the following we present the framework we work in and some preliminary
notions and results needed later in our investigations.

Let X be a Hausdorff locally convex space and X∗ its topological dual space
endowed with the weak* topology w(X∗, X). For x ∈ X and x∗ ∈ X∗, let ⟨x∗, x⟩ :=
x∗(x) be the value of the linear continuous functional x∗ at x. A set D ⊆ X is
said to be closed regarding the subspace T ⊆ X if D ∩ T = clD ∩ T , where clD
denotes the closure of D. Consider a convex cone K ⊆ X, which induces on X a
partial ordering relation “≦K”, defined by ≦K := {(x, y) ∈ X × X : y − x ∈ K},
i.e. for x, y ∈ X it holds x ≦K y ⇔ y − x ∈ K. Note that we assume that all
cones we consider contain the origin. Further, we attach to X a greatest element
with respect to “≦K”, denoted by +∞K , which does not belong to X and denote
X = X ∪ {+∞K}. Then it holds x ≦K +∞K for all x ∈ X. We write x ≤K y if
and only if x ≦K y and x ̸= y. Further, we write ≦R+=:≤ and ≤R+=:<.

On X we consider the following operations and conventions: x + (+∞K) =
(+∞K) + x := +∞K ∀x ∈ X ∪ {+∞K} and λ · (+∞K) := +∞K ∀λ ∈ [0,+∞].
Further, K∗ := {x∗ ∈ X∗ : ⟨x∗, x⟩ ≥ 0, ∀x ∈ K} is the dual cone of K and
we take by convention ⟨x∗,+∞K⟩ := +∞ for all x∗ ∈ K∗. By a slight abuse of
notation we denote the extended real space R = R ∪ {±∞} and consider on it
the following operations and conventions: λ + (+∞) = (+∞) + λ := +∞ ∀λ ∈
[−∞,+∞], λ+(−∞) = (−∞)+λ := −∞ ∀λ ∈ [−∞,+∞), λ · (+∞) := +∞ ∀λ ∈
[0,+∞], λ·(+∞) := −∞ ∀λ ∈ [−∞, 0), λ·(−∞) := −∞ ∀λ ∈ (0,+∞], λ·(−∞) :=
+∞ ∀λ ∈ [−∞, 0), and 0(−∞) := 0. For a subset A ⊆ X, its indicator function
δA : X → R is

δA(x) :=

{
0, if x ∈ A,
+∞, otherwise.

For a given function f : X → R we consider its effective domain dom f := {x ∈
X : f(x) < +∞} as well as its graph gra f := {(x, f(x)) : x ∈ dom f}, and
call it f proper if dom f ̸= ∅ and f(x) > −∞ for all x ∈ X. The epigraph of
f is epi f = {(x, r) ∈ X × R : f(x) ≤ r}. The conjugate function of f with
respect to the non-empty subset S ⊆ X is defined by f∗

S : X∗ → R, f∗
S(x

∗) =
supx∈S{⟨x∗, x⟩ − f(x)}. In the case S = X, f∗

S turns into the classical Fenchel-

Moreau conjugate function of f denoted by f∗. Recall that a function f : X → R
is called convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all x, y ∈ X and
all λ ∈ [0, 1]. A function f : X → R is called lower semicontinuous at x ∈ X if
lim infx→x f(x) ≥ f(x) and when this function is lower semicontinuous at all x ∈ X,



DUALITY FOR MULTI-COMPOSED OPTIMIZATION PROBLEMS 45

then we call it lower semicontinuous (l.s.c. for short). Let W ⊆ X be a non-empty
set, then a function f : X → R is called K-increasing on W , if from x ≦K y
follows f(x) ≤ f(y) for all x, y ∈ W . When W = X, then we call the function f
K-increasing.

Remark 1.1. Note that for a proper function f it holds epi f = {(x, r) ∈ X × R :
k ≥ 0, r = f(x) + k} = gra f + {0X} × R+.

If we take for a proper function f : X → R an arbitrary x ∈ X such that f(x) ∈ R,
then we call the set ∂εf(x) := {x∗ ∈ X∗ : f(y)−f(x) ≥ ⟨x∗, y−x⟩− ε, ∀y ∈ X} for
ε ≥ 0 the ε-subdifferential of f at x. Moreover, for ε = 0 we write ∂f(x) = ∂0f(x)
and we say that f is subdifferentiable at x if ∂f(x) ̸= ∅. Additionally, we make the
convention that ∂εf(x) := ∅ if f(x) /∈ R. It is well-known that (see [10])

f(x) + f∗(x∗) ≤ ⟨x∗, x⟩+ ε ⇔ x∗ ∈ ∂εf(x).(1.1)

Let Z be another Hausdorff locally convex space partially ordered by the convex
cone Q ⊆ Z and Z∗ its topological dual space endowed with the weak* topology
w(Z∗, Z). The domain of a vector function F : X → Z = Z ∪ {+∞Q} is domF :=
{x ∈ X : F (x) ̸= +∞Q}. F is called proper if domF ̸= ∅. When F (λx+(1−λ)y) ≦Q

λF (x)+(1−λ)F (y) holds for all x, y ∈ X and all λ ∈ [0, 1] the function F is said to
be Q-convex. The Q-epigraph of a vector function F is epiQ F = {(x, z) ∈ X × Z :
F (x) ≦Q z} and when Q is closed we say that F is Q-epi closed if epiQ F is a closed

set. For a z∗ ∈ Q∗ we define the function (z∗F ) : X → R by (z∗F )(x) := ⟨z∗, F (x)⟩.
Then dom(z∗F ) = domF . Moreover, it is easy to see that if F is Q-convex, then
(z∗F ) is convex for all z∗ ∈ Q∗. The vector function F is called positively Q-
lower semicontinuous at x ∈ X if (z∗F ) is lower semicontinuous at x for all z∗ ∈ Q∗.
The function F is called positively Q-lower semicontinuous if it is positively Q-lower
semicontinuous at every x ∈ X. Note that if F is positively Q-lower semicontinuous,
then it is also Q-epi closed, while the inverse statement is not true in general (see: [4,
Proposition 2.2.19]). Let us mention that in the case Z = R and Q = R+, the
notion of Q-epi closedness falls into the classical notion of lower semicontinuity.
F : X → Z is called (K,Q)-increasing on W , if from x ≦K y follows F (x) ≦Q F (y)
for all x, y ∈ W . When W = X, we call this function (K,Q)-increasing.

Given an optimization problem (P ), we denote its optimal objective value by
v(P ).

We give now some statements that will be useful later in our presentation, be-
ginning with one whose proof is straightforward.

Lemma 1.2. Let V be a Hausdorff locally convex space partially ordered by the
convex cone U , F : X → Z be a proper and Q-convex function and G : Z → V
be an U -convex and (Q,U)-increasing function on F (domF ) ⊆ domG with the
convention G(+∞Q) = +∞U . Then the function (G ◦ F ) : X → V is U -convex.

Lemma 1.3. Let Y be a Hausdorff locally convex space, Q also closed, h : X×Y →
Z and F : X → Z proper vector functions and G : Y → Z a continuous vector
functions, where h is defined by h(x, y) := F (x) +G(y). Then F is Q-epi closed if
and only if h is Q-epi closed.



46 S.-M. GRAD, G. WANKA, AND O. WILFER

Proof. “⇒”: Let (xα, yα, zα)α ⊆ epiQ h such that (xα, yα, zα) → (x, y, z). Then
F (xα) + G(yα) ≤ zα for any α, followed by (xα, zα − G(yα))α ⊆ epiQ F and
(yα, G(yα))α ⊆ epiQG. Because G is continuous and yα → y, it follows that
G(yα) → G(y). Then (xα, zα − G(yα)) → (x, z − G(y)) ∈ epiQ F , because this
set is closed. One has then F (x) ≦Q z − G(y), i.e. (x, y, z) ∈ epiQ h. As the con-
vergent nets (xα)α, (yα)α and (zα)α were arbitrarily chosen, it follows that epiQ h
is closed, i.e. h is Q-epi closed.

“⇐”: Let (xα, zα)α ⊆ epiQ F such that (xα, zα) → (x, z). Take also (yα)α ⊆
Y such that yα → y. Because G is continuous, one has G(yα) → G(y). Then
(xα, yα, zα + G(yα))α ⊆ epiQ h, which is closed, consequently (x, y, z + G(y)) ∈
epiQ h, i.e. F (x)+G(y) ≦Q z+G(y). Therefore F (x) ≦Q z, i.e. (x, z) ∈ epiQ F . As
the convergent nets (xα)α and (zα)α were arbitrarily chosen, it follows that epiQ F
is closed, i.e. F is Q-epi closed. □
Remark 1.4. Note that a continuous proper vector function G : Y → Z, where Y
is a Hausdorff locally convex space, has a full domain, thus one can directly take
G : Y → Z in this situation. The question whether the equivalence in Lemma
1.3 remains valid if one considers a proper vector function G : Y → Z that is not
necessarily continuous is still open.

Remark 1.5. If we set Y = Z and G(y) = −y, ∀y ∈ Y , then Lemma 1.3 says that F
is Q-epi closed if and only if the vector function defined by (x, y) ∈ X×Y 7→ F (x)−y
is Q-epi closed. For this special case a similar statement can be found in [20, Lemma
2.1], but under the additional hypothesis intQ ̸= ∅.

Let X0, . . . , Xn be Hausdorff locally convex spaces and consider the functions
fi : Xi → R, i = 0, . . . , n and ϕ : X0 × · · · × Xn → R defined by ϕ(y0, . . . , yn) =∑n

i=0 fi(y
i). It can easily be verified that domϕ =

∏n
i=0 dom fi. Furthermore,

letting T n
Xi

: Xi × R → {0X0} × · · · × {0Xi−1} × Xi × {0Xi+1} × · · · × {0Xn} × R
be defined by T n

Xi
(xi, r) := (0X0 , . . . , 0Xi−1 , x

i, 0Xi+1 , . . . , 0Xn , r) for all xi ∈ Xi,
i = 0, . . . , n, (with the usual conventions, i.e. when i = 0 there is no Xi−1) and
r ∈ R, one gets the following statement.

Lemma 1.6. Let fi : Xi → R be a proper function, i = 0, . . . , n, then it holds

epiϕ =

n∑
i=0

T n
Xi

(epi fi) .

Proof. Using Remark 1.1, one gets

epiϕ = {(y0, . . . , yn, r) : ϕ(y0, . . . , yn) ≤ r}
= {(y0, . . . , yn, ϕ(y0, . . . , yn)) : (y0, . . . , yn) ∈ domϕ}
+ {0X0} × · · · × {0Xn} × R+

= {(y0, . . . , yn, f0(y0) + · · ·+ fn(y
n)) : yi ∈ dom fi, i = 0, . . . , n}

+ {0X0} × · · · × {0Xn} × R+

=

n∑
i=0

({(0X0 , . . . , 0Xi−1 , y
i, 0Xi+1 , . . . , 0Xn , fi(y

i)) : yi ∈ dom fi}
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+ {0X0} × · · · × {0Xn} × R+)

=

n∑
i=0

{(0X0 , . . . , 0Xi−1 , y
i, 0Xi+1 , . . . , 0Xn , ri) : fi(yi) ≤ ri}

=

n∑
i=0

T n
Xi

(epi(fi)) .

□
We also consider the operator T̃ n

Xi
: Xi × R × Xi−1 → {0X0} × · · · × {0Xi−2}×

Xi−1 × Xi × {0Xi+1} × · · · × {0Xn} × R defined by T̃ n
Xi
(xi, r, xi−1) :=

(0X0 , . . . , 0Xi−2 , x
i−1, xi, 0Xi+1 , . . . , 0Xn , r) for all xi ∈ Xi, i = 1, . . . , n, and r ∈ R,

where it is easy to see that

T n
Xi
(xi, r) + (0X0 , . . . , 0Xi−2 , x

i−1, 0Xi , . . . , 0Xn , 0)

= (0X0 , . . . , 0Xi−2 , x
i−1, xi, 0Xi+1 , . . . , 0Xn , r) = T̃ n

Xi
(xi, r, xi−1)(1.2)

for all xi ∈ Xi, i = 1, . . . , n, and r ∈ R.

Remark 1.7. Note that the operators T n
Xi
, i = 1, . . . , n, are homeomorphisms.

This means that for a non-empty subset Pi ⊆ Xi × R the set T n
Xi
(Pi) is compact

if and only if the subset Pi is compact. The same holds also for the function T̃ n
Xi
,

i = 1, . . . , n.

2. Lagrange duality for multi-composed optimization problems

The starting point of our research is for a fixed x∗ ∈ X∗
n the following multi-

composed problem

(PC
x∗) inf

x∈A
{(f ◦ F 1 ◦ · · · ◦ Fn)(x)− ⟨x∗, x⟩},

A = {x ∈ S : g(x) ∈ −Q},
where Xi, i = 0, . . . , n, are Hausdorff locally convex spaces such that Xj is partially
ordered by the convex cone Kj ⊆ Xj for j = 0, . . . , n − 1. Moreover, S ⊆ Xn is

a non-empty set, f : X0 → R is a proper and K0-increasing function on dom f
and F 1(domF 1) ⊆ dom f , F i : Xi → Xi−1 = Xi−1 ∪ {+∞Ki−1} is a proper

and (Ki,Ki−1)-increasing function on domF i and F i+1(domF i+1) ⊆ domF i for
i = 1, . . . , n− 2, Fn−1 : Xn−1 → Xn−2 ∪ {+∞Kn−2} is a proper and (Kn−1,Kn−2)-

increasing function on domFn−1 and Fn(domFn ∩ A) ⊆ domFn−1, Fn : Xn →
Xn−1 = Xn−1 ∪ {+∞Kn−1} is a proper function and g : Xn → Z is a proper

function fulfilling S ∩ g−1(−Q)∩ ((Fn)−1 ◦ · · · ◦ (F 1)−1)(dom f)∩ domFn ̸= ∅. We
also make the following conventions: f(+∞K0) = +∞ and F i(+∞Ki) = +∞Ki−1 ,

extending thus the involved functions as follows f : X0 → R and F i : Xi → Xi−1,
i = 1, . . . , n− 1.

When x∗ = 0X∗
n
the problem (PC

x∗) collapses to

(PC) inf
x∈A

{(f ◦ F 1 ◦ · · · ◦ Fn)(x)},

A = {x ∈ S : g(x) ∈ −Q},
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that was considered in [20]. One can notice that (PC
x∗) is a linearly perturbed

problem of (PC). In order to approach (PC
x∗), for fixed x∗ ∈ X∗

n, by means of
Lagrange duality consider the following optimization problem

(P̃C
x∗) inf

(y0,...,yn)∈Ã
{f̃(y0, . . . , yn)− ⟨x∗, yn⟩}

Ã = {(y0, . . . , yn−1, yn) ∈ X0 × · · · ×Xn−1 × S :

g(yn) ∈ −Q, hi(yi, yi−1) ∈ −Ki−1, i = 1, . . . , n},

where f̃ : X0 × · · · ×Xn → R and hi : Xi ×Xi−1 → Xi−1 are defined as

f̃(y0, . . . , yn) = f(y0) and hi(yi, yi−1) = F i(yi)− yi−1 for i = 1, . . . , n.

Its Lagrange dual problem is

(D̃CL
x∗ ) sup

zn∗∈Q∗, zi∗∈K∗
i

i=0,...,n−1

inf
yn∈S, yi∈Xi
i=0,...,n−1

{
f̃(y0, . . . , yn)− ⟨x∗, yn⟩

+
n∑

i=1
⟨z(i−1)∗, hi(yi, yi−1)⟩+ ⟨zn∗, g(yn)⟩

}
.

As v(PC
x∗) = v(P̃C

x∗) (cf. [20, Theorem 2]), we use (D̃CL
x∗ ) to assign the following

Lagrange dual problem to (PC
x∗)

(DCL
x∗ ) sup

zn∗∈Q∗, zi∗∈K∗
i

i=0,...,n−1

inf
yn∈S, yi∈Xi
i=0,...,n−1

{
f(y0)− ⟨x∗, yn⟩+ ⟨z(n−1)∗, Fn(yn)

−yn−1⟩+ ⟨zn∗, g(yn)⟩+
n−1∑
i=1

⟨z(i−1)∗, F i(yi)− yi−1⟩

}
,

that can be equivalently written as

(DCL
x∗ ) sup

zn∗∈Q∗, zi∗∈K∗
i
,

i=0,...,n−1

{
− sup

yn∈S
{⟨x∗, yn⟩ − ⟨z(n−1)∗, Fn(yn)⟩ − ⟨zn∗, g(yn)⟩}

− sup
y0∈X0

{⟨z0∗, y0⟩ − f(y0)} −
n−1∑
i=1

sup
yi∈Xi,

i=1,...,n−1

{⟨zi∗, yi⟩ − ⟨z(i−1)∗, F i(yi)⟩}

}

and even simplified to

(DCL
x∗ ) sup

zn∗∈Q∗, zi∗∈K∗
i

i=0,...,n−1

{
− f∗(z0∗)−

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

−((z(n−1)∗Fn) + (zn∗g))∗S(x
∗)

}
.

Remark 2.1. For x∗ = 0 (DCL
x∗ ) turns out to be the Lagrange dual problem to (PC)

which was introduced in [20] and will be denoted further by (DCL). Additionally,

note that the weak duality for (P̃C
x∗) and (D̃CL

x∗ ) is always fulfilled, i.e. v(P̃C
x∗) ≥
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v(D̃CL
x∗ ). Thus one has v(PC

x∗) = v(P̃C
x∗) ≥ v(D̃CL

x∗ ) = v(DCL
x∗ ) and, hence, for any

x∗ ∈ X∗
n, it holds

sup
x∈Xn

{⟨x∗, x⟩ − (f ◦ F 1 ◦ · · · ◦ Fn)(x)− δA(x)} ≤

inf
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

{
f∗(z0∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗) + ((z(n−1)∗Fn) + (zn∗g))∗S(x
∗)

}
,

i.e. for all zn∗ ∈ Q∗ and zi∗ ∈ K∗
i , i = 0, . . . , n− 1, one has the inequality

(f ◦ F 1 ◦ · · · ◦ Fn)∗A(·) ≤ f∗(z0∗) +
n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

+((z(n−1)∗Fn) + (zn∗g))∗S(·).(2.1)

In order to achieve strong duality for the primal-dual pair (PC
x∗)-(D

CL
x∗ ), that is

actually stable strong duality for (PC)-(DCL) and also corresponds to the equality
case in (2.1), one needs additional hypotheses. To this end we employ the follow-
ing regularity condition, considered in [16] for guaranteeing stable strong Lagrange
duality,

(RC ′
L) M ′ :=

∪
z̃∗∈K̃∗

epi((f̃ + (z̃∗h̃) + δ
S̃
)∗) is closed regarding U ,

where U := {0X∗
0
}×· · ·×{0X∗

n−1
}×X∗

n×R, ỹ := (y0, . . . , yn) ∈ X̃ := X0×· · ·×Xn,

K̃ := K0 × · · · ×Kn−1 ×Q, S̃ := X0 × · · · ×Xn−1 × S, Z̃ := X0 × · · · ×Xn−1 × Z,

X̃∗ := X∗
0 × · · · ×X∗

n, z̃
∗ := (z0∗, . . . , z(n−1)∗, zn∗) ∈ K̃∗ := K∗

0 × · · · ×K∗
n−1 × Q∗

and h̃ : X̃ → Z̃ = Z̃ ∪ {+∞
K̃
} defined as

h̃(ỹ) :=

 (h1(y1, y0), . . . , hn(yn, yn−1), g(yn)), if (yi, yi−1) ∈ domhi,
i = 1, . . . , n, yn ∈ dom g,

+∞
K̃
, otherwise.

In order to formulate the regularity condition only by means of the originally con-
sidered functions and sets we have the following statement.

Lemma 2.2. The set M ′ can equivalently be expressed as

M = T n
X∗

0
(epi(f∗)) +

∪
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

(
n−1∑
i=1

T̃ n
X∗

i

(
epi((z(i−1)∗F i)∗)

×{−z(i−1)∗}
)
+ T̃ n

X∗
n

(
epi(((z(n−1)∗Fn) + (zn∗g))∗S)× {−z(n−1)∗}

))
.

Proof. For fixed zn∗ ∈ Q∗, zi∗ ∈ K∗
i , i = 0, . . . , n− 1, and ỹ∗ = (y0∗, . . . , yn∗) ∈

X∗
0 × · · · ×X∗

n, we have

(f̃ + (z̃∗h̃) + δ
S̃
)∗(ỹ∗) = sup

ỹ∈S̃
{⟨ỹ∗, ỹ⟩ − f̃(ỹ)− ⟨z̃∗, h̃(ỹ)⟩} = sup

yi∈Xi, i=0,...,n−1
yn∈S
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n∑

i=0

⟨yi∗, yi⟩ − f(y0)−
n∑

i=1

⟨z(i−1)∗, F i(yi)− yi−1⟩ − ⟨zn∗, g(yn)⟩

}
= sup

y0∈X0

{⟨y0∗ + z0∗, y0⟩ − f(y0)}+ sup
yn∈S

{⟨yn∗, yn⟩ − ⟨z(n−1)∗, Fn(yn)⟩ − ⟨zn∗,

g(yn)⟩}+
n−1∑
i=1

sup
yi∈Xi, i=1,...,n−1

{
⟨yi∗ + zi∗, yi⟩ − ⟨z(i−1)∗, F i(yi)⟩

}
= f∗(y0∗

+z0∗) + ((z(n−1)∗Fn) + (zn∗g))∗S(y
n∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(yi∗ + zi∗).

Moreover, one has

(ỹ∗, r) ∈
∪

z̃∗∈K̃∗

epi(f̃ + (z̃∗h̃) + δ
S̃
)∗ ⇔ ∃(z0∗, . . . , z(n−1)∗, zn∗) ∈ K∗

0 ×K∗
1 × . . .

×K∗
n−1 ×Q∗ : f∗(y0∗ + z0∗) + ((z(n−1)∗Fn) + (zn∗g))∗S(y

n∗)

+

n−1∑
i=1

(z(i−1)∗F i)∗(yi∗ + zi∗) ≤ r.

Employing Lemma 1.6 and (1.2), this is further equivalent to

∃(z0∗, . . . , z(n−1)∗, zn∗) ∈ K∗
0 ×K∗

1 × · · · ×K∗
n−1 ×Q∗ : (y0∗, . . . , yn∗, r) ∈

T n
X∗

0
(epi(f∗)) +

n−1∑
i=1

T̃ n
X∗

i

(
epi((z(i−1)∗F i)∗)× {−z(i−1)∗}

)

+T̃ n
X∗

n

(
epi(((z(n−1)∗Fn) + (zn∗g))∗S)× {−z(n−1)∗}

)
,

which actually means that

(y0∗, . . . , yn∗, r) ∈ T n
X∗

0
(epi(f∗)) +

∪
zn∗∈Q, zi∗∈K∗

i
,

i=0,...,n−1

(
n−1∑
i=1

T̃ n
X∗

i

(
epi((z(i−1)∗F i)∗)

×{−z(i−1)∗}
)
+ T̃ n

X∗
n

(
epi(((z(n−1)∗Fn) + (zn∗g))∗S)× {−z(n−1)∗}

))
. □

The regularity condition (RC ′
L) introduced above can be thus reformulated as

(RCL) M is closed regarding the subspace U .
In order to show the stable strong duality statement for (PC) and (DCL), we also

need to impose some convexity and topological hypotheses on the sets and functions.
We assume for the rest of this paper that S ⊆ Xn is a closed and convex set, f
is a convex and lower semicontinuous function, F i is a Ki−1-convex and Ki−1-epi
closed vector function for i = 1, . . . , n and g is a Q-convex and Q-epi closed vector
function.
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Theorem 2.3. The regularity condition (RCL) is fulfilled if and only if there is
stable strong duality for (PC) and (DCL), i.e. for all x∗ ∈ X∗

n one has

(f ◦ F 1 ◦ · · · ◦ Fn)∗A(x
∗) =

min
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

{
f∗(z0∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗) + ((z(n−1)∗Fn) + (zn∗g))∗S(x
∗)

}
.

Proof. According to the previous considerations, it holds

v(PC
x∗) = v(P̃C

x∗) ≥ v(D̃CL
x∗ ) = v(DCL

x∗ ).

The convexity and topological hypotheses imposed above guarantee, via Lemma 1.2

and Lemma 1.3, that f̃ is convex and lower semicontinuous and hi, i = 1, . . . , n, are
Ki−1-convex and Ki−1-epi closed. Then, by [16, Theorem 2.7 and Corollary 2.3] one
obtains for any x∗ ∈ X∗

n the existence of zn∗ ∈ Q∗ and zi∗ ∈ K∗
i , i = 0, . . . , n − 1

such that

v(P̃C
x∗) = inf

(y0,...,yn)∈A
{f̃(y0, . . . , yn)− ⟨x∗, yn⟩}

= sup
zn∗∈Q∗, zi∗∈K∗

i
i=0,...,n−1

inf
yn∈S, yi∈Xi
i=0,...,n−1

{
f̃(y0, . . . , yn)− ⟨x∗, yn⟩

+

n∑
i=1

⟨z(i−1)∗, hi(yi, yi−1)⟩+ ⟨zn∗, g(yn)⟩

}

= inf
yn∈S, yi∈Xi
i=0,...,n−1

{
f̃(y0, . . . , yn)− ⟨x∗, yn⟩

+
n∑

i=1

⟨z(i−1)∗, hi(yi, yi−1)⟩+ ⟨zn∗, g(yn)⟩

}
= v(D̃CL

x∗ ).

Consequently, v(PC
x∗) = v(DCL

x∗ ). □

Remark 2.4. Since one has via [4, Theorem 3.5.9] stable strong duality for (P̃C)

and its Lagrange dual problem if and only ifM ′ is closed in the topology w(X̃∗, X̃)×
R, the regularity condition

(RCT
L ) M is closed in the topology w(X̃∗, X̃)× R

is a sufficient condition to have stable strong duality for (PC) and (DCL).

Remark 2.5. Alternatively to the Lagrange duality approach, one can consider
the Fenchel-Lagrange type dual problem for (PC), by employing the following per-
turbation function

Φ(x, y0, . . . , yn+1) :=

 f(F 1(. . . Fn−1(Fn(x+ yn) + yn−1) . . . ) + y0), if
g(x) ∈ yn+1 −Q,

+∞, otherwise,
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where (y0, . . . , yn, yn+1) ∈ X0×· · ·×Xn×Z are the dual variables. By simple calcu-

lations one derives the following conjugate function of Φ, Φ∗(x∗, y0∗, . . . , y(n+1)∗) =

f∗(y0∗) +
∑n−1

i=0 (y
i∗F i+1)∗(y(i+1)∗) + (−y(n+1)∗g)∗S(x

∗ − yn∗) + δQ∗(−y(n+1)∗), and

hence, the following Fenchel-Lagrange type dual problem is assigned to (PC),

(DCFL) sup
(y0∗,...,yn∗,y(n+1)∗)∈X∗

0×···×X∗
n×Z∗

{
−Φ∗

(
0X∗

n
, y0∗, . . . , yn∗, y(n+1)∗

)}

= sup
yi∗∈X∗

i
,i=0,...,n,

y(n+1)∗∈Q∗

{
−f∗(y0∗)−

n−1∑
i=0

(yi∗F i+1)∗(y(i+1)∗)− (y(n+1)∗g)∗S(−yn∗)

}
.

Notice that different to (DCL), in (DCFL) all the involved functions appear sepa-
rately. This might be useful for computational reasons, for instance when employing
splitting type methods. Moreover, we can formulate an associated closedness type
condition ensuring strong duality between (PC) and (DCFL). For this purpose,
we have to ensure that PrX∗

n×R(epi Φ
∗) is closed in the topology w(X∗

n, Xn) × R
(see [2, 4]). It is an easy exercise to observe that

PrX∗
n×R(epi Φ

∗) =
∪

y(n+1)∗∈Q∗
epi(y(n+1)∗g)∗S+

∪
yi∗∈X∗

i
,

i=0,...,n−1

(
epi(y(n−1)∗Fn)∗ +

(
0X∗

n
, f∗(y0∗) +

n−2∑
i=0

(yi∗F i+1)∗(y(i+1)∗)

))
.

Recall that when PrX∗
n×R(epi Φ

∗) is closed, there is actually strong duality for (PC
x∗)

and its corresponding Fenchel-Lgrange type dual problem for all x∗ ∈ X∗
n, i.e. stable

strong duality for (PC) and (DCFL).

From Theorem 2.3 one can also derive a formula for the conjugate function of a
multi-composed function and a characterization via epigraph inclusions for it.

Corollary 2.6. It holds

(2.2) (f ◦ F 1 ◦ · · · ◦ Fn)∗(x∗)

= min
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

{
f∗(z0∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗) + (z(n−1)∗Fn)∗(x∗)

}

for all x∗ ∈ X∗
n if and only if

M0 = T n
X∗

0
(epi(f∗)) +

∪
zn∗∈Q∗, zi∗∈K∗

i
,

i=0,...,n−1

(
n−1∑
i=1

T̃ n
X∗

i

(
epi((z(i−1)∗F i)∗)

×{−z(i−1)∗}
)
+ T̃ n

X∗
n

(
epi((z(n−1)∗Fn)∗)× {−z(n−1)∗}

))
is closed regarding U .
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Remark 2.7. The regularity condition M0 closed regarding U is equivalent to the
formula (2.2), thus a natural sufficient condition in order to guarantee (2.2) is to ask
M0 to be closed. The formula (2.2) can be found also in [20], but under a regularity
condition of interiority type that is stronger than the ones just mentioned.

3. ε-subdifferential formulae and ε-optimality conditions

In this section we give a formula for the ε-subdifferential of the function
f ◦ F 1 ◦ · · · ◦ Fn + δA, to the best of our knowledge the first one in the litera-
ture for such a multi-composed function, that is subsequently employed for deriving
necessary and sufficient ε-optimality conditions for characterizing the ε-optimal so-
lutions to the problem (PC), where ε ≥ 0. As a special case, a formula for the
ε-subdifferential of the multi-composed function f ◦ F 1 ◦ · · · ◦ Fn is derived, too.
Moreover, we briefly discuss how can one obtain different duality and optimality
statements concerning composed optimization problems from the literature (see for
example [2–4,10]) as special cases of our approach.

Theorem 3.1. The regularity condition (RCL) is fulfilled if and only if for all
x ∈ Xn and for all ε ≥ 0 it holds

∂ε((f ◦ F 1 ◦ · · · ◦ Fn) + δA)(x)

=
∪

n+1∑
i=0

εi=ε, εi≥0,

i=0,...,n+1

{
∂εn((z

(n−1)∗Fn) + (zn∗g) + δS)(x) : z
0∗ ∈ K∗

0

∩ ∂ε0f((F
1(. . . Fn(x)))), zi∗ ∈ K∗

i ∩ ∂εi(z
(i−1)∗F i)(F i+1(. . . Fn(x))),

i = 1, . . . , n− 1, zn∗ ∈ Q∗ and 0 ≤ ⟨zn∗, g(x)⟩+ εn+1

}
.

Proof. “⇒”: If x /∈ S∩g−1(−Q)∩ ((Fn)−1(. . . (F 1)−1))(dom f)∩domFn then both
sides of the equality we have to prove are empty sets, so we take further an arbitrary
x ∈ S ∩ g−1(Q) ∩ ((Fn)−1(. . . (F 1)−1)(dom f)) ∩ domFn and an ε ≥ 0.

“⊆”: For x∗ ∈ ∂ε(f ◦ F 1 ◦ · · · ◦ Fn + δA)(x) by (1.1) it holds

(3.1) ((f ◦ F 1 ◦ · · · ◦ Fn) + δA)
∗(x∗) + (f ◦ F 1 ◦ · · · ◦ Fn)(x) + δA(x) ≤ ⟨x∗, x⟩+ ε.

Following Theorem 2.3, (RCL) implies the existence of zn∗ ∈ Q∗ and zi∗ ∈ K∗
i , i =

0, . . . , n− 1, such that

f∗(z0∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗) + ((z(n−1)∗Fn) + (zn∗g))∗S(x
∗)

+(f ◦ F 1 ◦ · · · ◦ Fn)(x) + ⟨zn∗, g(x)⟩(x)− ⟨zn∗, g(x)⟩ ≤ ⟨x∗, x⟩+ ε.(3.2)
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Further, the inequality in (3.2) can be written as

(3.3)

[f∗(z0∗) + f((F 1 ◦ · · · ◦ Fn)(x))− ⟨z0∗, (F 1 ◦ · · · ◦ Fn)(x)⟩]

+
n−1∑
i=1

[(z(i−1)∗F i)∗(zi∗) + (z(i−1)∗F i)((F i+1 ◦ · · · ◦ Fn)(x))

− ⟨zi∗, (F i+1 ◦ · · · ◦ Fn)(x)⟩]

+ [((z(n−1)∗Fn) + (zn∗g))∗S(x
∗) + (z(n−1)∗Fn)(x) + (zn∗g)(x)− ⟨x∗, x⟩]

− ⟨zn∗, g(x)⟩ ≤ ε.

Now, we define ε̃0 := f∗(z0∗)+f((F 1◦· · ·◦Fn)(x))−⟨z0∗, (F 1◦· · ·◦Fn)(x)⟩, εi :=
(z(i−1)∗F i)∗(zi∗) + (z(i−1)∗F i)((F i+1 ◦ · · · ◦Fn)(x))− ⟨zi∗, (F i+1 ◦ · · · ◦Fn)(x)⟩, i =
1, . . . , n−1, εn := ((z(n−1)∗Fn)+(zn∗g))∗S(x

∗)+(z(n−1)∗Fn)(x)+(zn∗g)(x)−⟨x∗, x⟩
and εn+1 := −⟨zn∗, g(x)⟩. By the Young-Fenchel inequality it is clear that ε̃0 ≥ 0
and εi ≥ 0, i = 1, . . . , n and as zn∗ ∈ Q∗ and g(x) ∈ −Q it follows that εn+1 ≥ 0.

Moreover, (3.3) yields ε̃0 +
∑n+1

i=1 εi ≤ ε. Setting ε0 := ε −
∑n+1

i=1 εi > ε̃0, it holds

z0∗ ∈ ∂ε0f(F
1(. . . Fn(x))), zi∗ ∈ ∂εi(z

(i−1)∗F i)(F i+1(. . . Fn(x))), i = 1, . . . , n − 1

and x∗ ∈ ∂εn((z
(n−1)∗Fn) + (zn∗g) + δS)(x). Therefore, we have

x∗ ∈ ∂εn((z
(n−1)∗Fn) + (zn∗g) + δS)(x)

⊆
∪

∑n+1
i=0

εi=ε, εi≥0,

i=0,...,n+1

{
∂εn((z

(n−1)∗Fn) + (zn∗g) + δS)(x) :

z0∗ ∈ K∗
0 ∩ ∂ε0f(F

1(. . . Fn(x))), zi∗ ∈ K∗
i

∩ ∂εi(z
(i−1)∗F i)(F i+1(F i+2(. . . Fn(x)))), i = 1, . . . , n− 1, zn∗ ∈ Q∗,

0 ≤ ⟨zn∗, g(x)⟩+ εn+1

}
.

“⊇”: Let us take an arbitrary

x∗ ∈
∪

∑n+1
i=0

εi=ε, εi≥0,

i=0,...,n+1

{
∂εn((z

(n−1)∗Fn) + (zn∗g) + δS)(x) : z
0∗ ∈ K∗

0

∩∂ε0f(F 1(. . . Fn(x))), zi∗ ∈ K∗
i ∩ ∂εi(z

(i−1)∗F i)(F i+1(F i+2(. . . Fn(x)))),

i = 1, . . . , n− 1, zn∗ ∈ Q∗ and 0 ≤ ⟨zn∗, g(x)⟩+ εn+1

}
.

Therefore, there exist εi ≥ 0, i = 0, . . . , n+1, x∗ ∈ ∂εn((z
(n−1)∗Fn)+(zn∗g)+δS)(x),

z0∗ ∈ K∗
0 ∩∂ε0(f(F

1 ◦ · · · ◦Fn)(x)), zi∗ ∈ K∗
i ∩∂εi(z

(i−1)∗F i)(F i+1(. . . Fn(x))), i =

1, . . . , n− 1, and zn∗ ∈ Q∗ such that
∑n+1

i=0 εi = ε, f∗(z0∗) + f((F 1 ◦ · · · ◦Fn)(x)) ≤
⟨z0∗, (F 1 ◦ · · · ◦ Fn)(x)⟩+ ε0, (z

(i−1)∗F i)∗(zi∗) + (z(i−1)∗F i)((F i+1 ◦ · · · ◦ Fn)(x)) ≤
⟨zi∗, (F i+1 ◦ · · · ◦ Fn)(x)⟩ + εi, i = 1, . . . , n − 1, ((z(n−1)∗Fn) + (zn∗g))∗S(x

∗) +

(z(n−1)∗Fn)(x)+ (zn∗g)(x) ≤ ⟨x∗, x⟩+ εn and 0 ≤ ⟨zn∗, g(x)⟩+ εn+1. By taking the
sum we obtain

f∗(z0∗) + f((F 1 ◦ · · · ◦ Fn)(x))
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+
n−1∑
i=1

[(z(i−1)∗F i)∗(zi∗) + (z(i−1)∗F i)((F i+1 ◦ · · · ◦ Fn)(x))]

+ ((z(n−1)∗Fn) + (zn∗g))∗S(x
∗) + (z(n−1)∗Fn)(x) + (zn∗g)(x)

− ⟨zn∗, g(x)⟩ ≤ ⟨z0∗, (F 1 ◦ · · · ◦ Fn)(x)⟩+ ε0

+

n−1∑
i=1

[⟨zi∗, (F i+1 ◦ · · · ◦ Fn)(x)⟩+ εi]

+ ⟨x∗, x⟩+ εn + εn+1

=
n−1∑
i=0

⟨zi∗, (F i+1 ◦ · · · ◦ Fn)(x)⟩+
n+1∑
i=0

εi + ⟨x∗, x⟩,

which is equivalent to

f∗(z0∗) + f((F 1 ◦ · · · ◦ Fn)(x)) +
n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

+((z(n−1)∗Fn) + (zn∗g))∗S(x
∗) ≤ ⟨x∗, x⟩+ ε.

By using (2.1) we get

(f ◦ F 1 ◦ · · · ◦ Fn)(x) + ((f ◦ F 1 ◦ · · · ◦ Fn) + δA)
∗(x∗) ≤ ⟨x∗, x⟩+ ε

i.e. x∗ ∈ ∂ε((f ◦ F 1 ◦ · · · ◦ Fn) + δA)(x).
“⇐”: For the trivial case (f ◦ F 1 ◦ ... ◦ Fn)∗A = +∞ the statement is obviously
fulfilled. Let us now assume that x ∈ A ∩ dom f and denote

(3.4) ε := (f ◦ F 1 ◦ ... ◦ Fn)∗A(x
∗) + (f ◦ F 1 ◦ ... ◦ Fn)(x)− ⟨x∗, x⟩ ≥ 0,

which in turn implies that x∗ ∈ ∂ε(f ◦ F 1 ◦ ... ◦ Fn + δA)(x) and so, there exist
εi ≥ 0, i = 0, ..., n+ 1, zi∗ ∈ K∗

i , i = 0, ..., n− 1, and zn∗ ∈ Q∗ such that

((z(n−1)∗Fn) + (zn∗g) + δS)
∗(x∗) + ((z(n−1)∗Fn) + (zn∗g))(x) ≤ ⟨x∗, x⟩+ εn,

(z(i−1)∗F i)∗(zi∗) + (z(i−1)∗F i)(F i+1(...(Fn(x)))) ≤ ⟨zi∗, F i+1(...(Fn(x)))⟩
+εi, i = 1, ..., n− 1, 0 ≤ (zn∗g)(x) + εn+1,

f(F 1(...(Fn(x)))) + f∗(z0∗) ≤ ⟨z0∗, F 1(F 2(...(Fn(x))))⟩+ ε0.

Summing up these inequalities leads to

((z(n−1)∗Fn) + (zn∗g) + δS)
∗(x∗) + ((z(n−1)∗Fn) + (zn∗g))(x) +

n−1∑
i=1

(z(i−1)∗F i)∗

(zi∗) +

n−1∑
i=1

(z(i−1)∗F i)(F i+1(...(Fn(x)))) + f(F 1(...(Fn)))(x) + f∗(z0∗)

≤ ⟨x∗, x⟩+
n+1∑
i=0

εi +

n∑
i=1

(z(i−1)∗F i)(F i+1(...(Fn(x)))) + (zn∗g)(x),
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and by using ε =
∑n+1

i=0 εi and (3.4) this is equivalent to

((z(n−1)∗Fn) + (zn∗g) + δS)
∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗) + f(F 1(...(Fn)))(x)

+f∗(z0∗) ≤ ⟨x∗, x⟩+ (f ◦ F 1 ◦ ... ◦ Fn)∗A(x
∗) + (f ◦ F 1 ◦ ... ◦ Fn)(x)− ⟨x∗, x⟩

and further to

((z(n−1)∗Fn) + (zn∗g) + δS)
∗(x∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

+f∗(z0∗) ≤ (f ◦ F 1 ◦ ... ◦ Fn)∗A(x
∗).

Finally, Theorem 2.3 provides the desired statement. □
Remark 3.2. Note that no regularity condition is needed for proving the inclusion
“⊇” in the Theorem 3.1.

When ε = 0, S = Xn and g is identical zero, the previous statement delivers the
formula for the subdifferential of a multi-composed function.

Corollary 3.3. Let M0 be closed regarding U . Then for all x ∈ Xn it holds

∂(f ◦ F 1 ◦ · · · ◦ Fn)(x) =
∪

z0∗∈K∗
0∩∂f((F 1(...Fn(x)))),

zi∗∈K∗
i ∩∂(z(i−1)∗F i)(F i+1(...Fn(x))),

i=1,...,n−1

∂(z(n−1)∗Fn)(x).

We employ now the result of Theorem 3.1 for giving necessary and sufficient
ε-optimality conditions for (PC). Recall that x ∈ A is an ε-optimal solution of
problem (PC) if

(f ◦ F 1 ◦ · · · ◦ Fn)(x) ≤ inf
x∈A

{(f ◦ F 1 ◦ · · · ◦ Fn)(x)}+ ε,

which happens if and only if 0X∗
n
∈ ∂ε(f ◦ F 1 ◦ · · · ◦ Fn + δA)(x).

Theorem 3.4. (a) Assume that the regularity condition (RCL) is fulfilled and let
ε ≥ 0. If x ∈ A is an ε-optimal solution to (PC), then there exist εi ≥ 0, i =
0, . . . , n+ 1, zi∗ ∈ K∗

i , i = 0, . . . , n− 1, and zn∗ ∈ Q∗ such that (z0∗, . . . , zn∗) is an
ε-optimal solution to (DCL) fulfilling

(i) 0 ≤ f(F 1(. . . Fn(x))) + f∗(z0∗)− ⟨z0∗, F 1(. . . Fn(x))⟩ ≤ ε0,

(ii) 0 ≤ (z(i−1)∗F i)(F i+1(. . . Fn(x)))+(z(i−1)∗F i)∗(zi∗)−⟨zi∗, F i+1(. . . Fn(x))⟩ ≤
εi
∀ i = 1, . . . , n− 1,

(iii) 0 ≤ (z(n−1)∗Fn)(x) + (zn∗g)(x) + ((z(n−1)∗Fn) + (zn∗g))∗S(0X∗
n
) ≤ εn,

(iv) 0 ≤ −⟨zn∗, g(x)⟩ ≤ εn+1,

(v)
n+1∑
i=0

εi = ε.

(b) If there exist εi ≥ 0, i = 0, . . . , n + 1, zi∗ ∈ K∗
i , i = 0, . . . , n − 1 and zn∗ ∈ Q∗

such that (i)-(v) are fulfilled for some x ∈ A, then x is an ε-optimal solution to
(PC), (z0∗, . . . , zn∗) an ε-optimal solution to (DCL) and v(PC) ≤ v(DCL) + ε.
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Proof. Since x is an ε-optimal solution of the problem (PC), it holds 0X∗
n
∈ ∂ε(f ◦

F 1 ◦ · · · ◦ Fn + δA)(x) and by Theorem 3.1 that there exist εi ≥ 0, i = 0, . . . , n+ 1,
zi∗ ∈ K∗

i , i = 0, . . . , n − 1 and zn∗ ∈ Q∗ such that z0∗ ∈ K∗
i ∩ ∂ε0f(F

1 . . . Fn(x)),

zi∗ ∈ K∗
i ∩ ∂εi(z

(i−1)∗F i)(F i+1 . . . Fn(x)), i = 1, . . . , n− 1, 0X∗
n
∈ ∂εn((z

(n−1)∗Fn)+

(zn∗g) + δS)(x), 0 ≤ ⟨zn∗, g(x)⟩ + εn+1 and
∑n+1

i=0 εi = ε. Using (1.1) one obtains
(i)-(iii).
(b) The sum of relations (i)-(iv) yields

(f ◦ F 1 ◦ · · · ◦ Fn)(x) + f∗(z0∗)− ⟨z0∗, (F 1 ◦ · · · ◦ Fn)(x)⟩+
n−1∑
i=1

[(z(i−1)∗F i)

((F i+1 ◦ · · · ◦ Fn)(x)) + (z(i−1)∗F i)∗(zi∗)− ⟨zi∗, (F i+1 ◦ · · · ◦ Fn)(x)⟩] + (z(n−1)∗Fn)

(x) + (zn∗g)(x) + ((z(n−1)∗Fn) + (zn∗g))∗S(0X∗
n
)− ⟨zn∗, g(x)⟩ ≤

n+1∑
i=0

εi ⇔

(f ◦ F 1 ◦ · · · ◦ Fn)(x) + f∗(z0∗) +

n−1∑
i=1

(z(i−1)∗F i)∗(zi∗)

+((z(n−1)∗Fn) + (zn∗g))∗S(0X∗
n
) ≤

n+1∑
i=0

εi.

Employing relation (v), the last inequality yields the conclusion. □

When ε = 0, the previous statement delivers the following necessary and sufficient
optimality conditions for characterizing the optimal solution to (PC), providing thus
weaker hypotheses for the similar statement [20, Theorem 4.2].

Corollary 3.5. (a) Assume that the regularity condition (RCL) is fulfilled. If x ∈ A
is an optimal solution to (PC), then there exist zi∗ ∈ K∗

i , i = 0, . . . , n − 1 and
zn∗ ∈ Q∗ such that (z0∗, . . . , zn∗) is an optimal solution to (DCL) fulfilling

(i) f(F 1(. . . Fn(x))) + f∗(z0∗) = ⟨z0∗, F 1(. . . Fn(x)),

(ii) (z(i−1)∗F i)(F i+1(. . . Fn(x))) + (z(i−1)∗F i)∗(zi∗)− ⟨zi∗, F i+1(. . . Fn

(x))⟩ = 0 ∀i = 1, . . . , n− 1,

(iii) (z(n−1)∗Fn)(x) + (zn∗g)(x) + ((z(n−1)∗Fn) + (zn∗g))∗S(0X∗
n
) = 0,

(iv) ⟨zn∗, g(x)⟩ = 0.

(b) If there exist zi∗ ∈ K∗
i , i = 0, . . . , n − 1 and zn∗ ∈ Q∗ such that (i)-(iv) are

fulfilled for some x ∈ A, then x is an optimal solution to (PC), (z0∗, . . . , zn∗) one to
(DCL) and there is strong duality for the primal-dual pair of problems (PC)−(DCL).

Remark 3.6. The classical composed optimization problem (cf. [2, 3, 6, 9, 10,15])

(P ) inf
x∈X

{V (x) + (G ◦H)(x)},

where Y is a Hausdorff locally convex space partially ordered by the convex cone
C, V : X → R is a proper and convex function, G : Y → R is a proper, convex
and C-increasing function on domG and H(domH) ⊆ domG and H : X → Y is a
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proper and C-convex function, can be obtained as a special case of (PC) by taking
X0 = R× Y partially ordered by K0 = R+ × C, X1 = X,

f : R× Y → R, f(y01, y
0
2) := y01 +G(y02) with (y01, y

0
2) ∈ R× Y

and

F 1 : X → R× Y , F 1(y11, y
1
2) :=

{
(V (x),H(x)), if x ∈ domV ∩ domH,
+∞R+×C , otherwise.

Moreover, different results on stable strong Lagrange duality, ε-subdifferential and
ε-optimality conditions involving (PC) from [3, 10, 15, 16] can be recovered then as
special cases of our statements. This shows that the introduced concept of multi-
composed optimization problems combines several approaches to give formulae for
the characterization of strong and total Lagrange duality. Moreover, since the
formulae for the conjugate functions of (V + (G ◦H)) can also be received by using
the perturbation theory (see [2, 4]), the introduced concept can also be interpreted
as an umbrella for several perturbations.

4. Applications

In this section we discuss two possible directions where our main results can be
applied, fractional programming and entropy optimization.

4.1. ε-optimality conditions for convex fractional problems. Consider the
following convex fractional optimization problem

(PF ) inf
x∈A

{
Φ

(
c1
[h1(x)]

2

l1(x)
, . . . , cn

[hn(x)]
2

ln(x)

)}
,

A = {x ∈ S : g(x) ∈ −Q},

where ci are positive numbers for i = 1, . . . , n. In order to deal with the problem
(PF ) by means of duality, let us in the following assume that X0 = Rn is partially
ordered by K0 = Rn

+, X1 = Rn × Rn is partially ordered by K1 = Rn
+ × Rn

+,
X2 = X and Z is partially ordered by the convex cone Q, where X and Z are
locally convex Hausdorff spaces. In addition we assume that S is a non-empty,
closed and convex subset of X, g : X → Z is a proper, Q-convex and Q-epi closed
function and Φ : Rn → R is a proper, convex, Rn

+-increasing on Rn
+ and lower

semicontinuous function. Further, let hi : X → R be a proper, convex and lower
semicontinuous function fulfilling hi(x) ≥ 0 for all x ∈ X and li : X → R ∪ {+∞}
be a proper, concave and upper semicontinuous function fulfilling li(x) > 0 for all
x ∈ X, i = 1, . . . , n. As the function Φ is defined in a general way, this fractional
problem covers a broad class of optimization problems, with applications in many
areas such as finance, economics and engineering. Examples for the function Φ are
Φ(y0) = max{y01, . . . , y0n}, Φ(y0) =

∑n
i=1 y

0
i or Φ(y0) = ∥y0 − a∥, where ∥ · ∥ is the

Euclidean norm and a ∈ Rn a suitably chosen point (see, for instance, [18,19]).
To write the problem (PF ) as a special case of the problem (PC) we introduce

the following functions:

• f : Rn → R defined by f(y0) := Φ(y0), y0 = (y01, . . . , y
0
n)

T ∈ Rn,
• F 1 : Rn × Rn → Rn defined by
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F 1(y1, ỹ1) :=

{ (
−c1

[y11 ]
2

ỹ11
, . . . ,−cn

[y1n]
2

ỹ1n

)T
, if y1i ≥ 0, ỹ1i < 0, i = 1, . . . , n,

+∞Rn
+
, otherwise,

and

• F 2 : X → Rn × Rn defined by

F 2(x) =


(h1(x), . . . , hn(x),−l1(x), . . . ,−ln(x)), if x ∈

n∩
i=1

(domhi

∩dom(−li)),
+∞Rn

+×Rn
+
, otherwise.

The problem (PF ) can be rewritten as

(PF ) inf
x∈A

{(f ◦ F 1 ◦ F 2)(x)},

A = {x ∈ S : g(x) ∈ −Q}.

It is worth noting that the functions f , F 1 and F 2 fulfill the conditions considered
in the previous sections, namely f is proper, convex, lower semicontinuous and
Rn
+-increasing on Rn

+, and F 1(domF 1) = Rn
+, F

1 is proper, Rn
+-convex and (Rn

+ ×
Rn
+,Rn

+)-increasing on domF 1 = Rn
+ × int(−Rn

+) = F 2(domF 2) and Rn
+-epi closed.

Note that the convexity of F 1 follows as −[y1i ]
2/ỹ1i is convex for all y1i ≥ 0 and y1i < 0

and moreover, as −[y1i ]
2/ỹ1i is R2

+-increasing for all y1i ≥ 0 and y1i < 0, i = 1, . . . , n,
we can guarantee that F 1 is (Rn

+×Rn
+,Rn

+)-increasing on Rn
+× int(−Rn

+). The Rn
+-

epi closedness of F 1 follows by the continuity of −[y1i ]
2/ỹ1i for all y1i ≥ 0 and y1i < 0,

i = 1, . . . , n. Further, it is not hard to see that F 2 is proper, Rn
+ × Rn

+-convex and
Rn
+ × Rn

+-epi closed.
In the next step we want to determine the conjugate functions of (z0∗F 1) and

(((z1∗, z̃1∗)F 2)+(z2∗g))∗S , where z
0∗ ∈ Rn

+, (z
1∗, z̃1∗) ∈ Rn

+×Rn
+ and z2∗ ∈ Q∗. The

one of (z0∗F 1) is (cf. [11])

(z0∗F 1)∗(z1∗, z̃1∗) =

{
0, if z̃1∗i − [z1∗i ]2

4z0∗i ci
≥ 0, i = 1, . . . , n,

+∞, otherwise.

and for the last one we obtain

(((z1∗, z̃1∗)F 2) + (z2∗g))∗S(x
∗) = sup

x∈S

{
⟨x∗, x⟩ −

n∑
i=1

z1∗i hi(x)

+
n∑

i=1

z̃1∗i li(x)− (z2∗g)(x)

}
=

(
n∑

i=1

(z1∗i hi − z̃1∗i li) + (z2∗g)

)∗

(x∗).

To give a formula for the closedness type regularity condition one also needs the
epigraph of (z0∗F 1)∗ for z0∗ ∈ Rn

+, that can be expressed as epi((z0∗F 1)∗) = N×R+,
where

N :=

{
(z1∗, z̃1∗) ∈ Rn

+ × Rn
+ : z̃1∗i − [z1∗i ]2

4z0∗i ci
≥ 0, i = 1, . . . , n

}
.

The corresponding closedness type regularity condition for the problem (PF ) is
then
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(RCF ) T 2
X∗

0
(epi(Φ∗)) +

∪
z0∗∈Rn+, (z1∗,z̃1∗)T∈Rn×n

+
z2∗∈Q∗

(
T̃ 2
X∗

1

(
N × R+ × {−z0∗}

)

+T̃ 2
X∗

2

(
epi

((
n∑

i=1
(z1∗i hi − z̃1∗i li) + (z2∗g)

)∗)
× {−(z1∗, z̃1∗)}

))
is closed regarding the subspace {0X∗

0
} × {0X∗

1
} ×X∗ × R.

Theorem 2.3 implies the following stable strong duality statement for problem
(PF ).

Theorem 4.1. The regularity condition (RCF ) is fulfilled if and only if

sup
x∈A

{
⟨x∗, x⟩ − Φ

(
c1

[h1(x)]2

l1(x)
, . . . , cn

[hn(x)]2

ln(x)

)}

= min
(z0∗,z1∗,z̃1,z2∗)∈B

{
Φ∗(z0∗) +

(
n∑

i=1
(z1∗i hi − z̃1∗i li) + (z2∗g)

)∗

(x∗)

}
for all x∗ ∈ X∗, where

B :=

{
(z0∗, z1∗, z̃1∗, z2∗) ∈ Rn

+ × Rn
+ × Rn

+ ×Q∗ :

z̃1∗i − [z1∗i ]2

4z0∗i ci
≥ 0, i = 1, . . . , n

}
.

One can also provide necessary and sufficient optimality conditions for the ε-
optimal solutions of the problem (PF ) via Theorem 3.4.

Theorem 4.2. (a) Assume that the regularity condition (RCF ) is fulfilled and let
ε ≥ 0. If x ∈ X is an ε-optimal solution of the problem (PF ), then there exist

εi ≥ 0, i = 0, . . . , 3 and (z0∗, z1∗, z̃
1∗
, z2∗) ∈ B such that

(i) 0 ≤ Φ
(
c1

[h1(x)]2

l1(x)
, . . . , cn

[hn(x)]2

ln(x)

)
+Φ∗(z0∗)−

n∑
i=1

z0∗i ci
[hi(x)]

2

li(x)
≤ ε0,

(ii) 0 ≤
n∑

i=1

(
z0∗i ci

[hi(x)]
2

li(x)
− z1∗i hi(x) + z̃

1∗
i li(x)

)
≤ ε1

(iii) 0 ≤
n∑

i=1
((z1∗i hi)(x)−z̃

1∗
i li(x))+(z2∗g)(x)+

(
n∑

i=1
(z1∗i hi−z̃1∗i li)+(z2∗g)

)∗
(0X∗)

≤ ε2,
(iv) 0 ≤ −⟨zn∗, g(x)⟩ ≤ ε3,
(v) ε0 + ε1 + ε2 + ε3 = ε.

(b) If there exist εi ≥ 0, i = 0, . . . , 3, and (z0∗, z1∗, z̃
1∗
, z2∗) ∈ B such that (i)-(v)

are fulfilled for some x ∈ X, then x is an ε-optimal solution of the problem (PF ).

Remark 4.3. Like in the previous section, we are also able to give in this case
a closedness type regularity condition, which provides a new stable strong duality
statement and ε-optimality conditions where hi, li and g are separated for i =
1, . . . , n. This can be achieved from the main results, for example, by introducing
the following functions
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• f : Rn → R defined by f(y0) := Φ(y0), y0 = (y01, . . . , y
0
n)

T ∈ Rn,
• F 1 : Rn × Rn → Rn defined by

F 1(y1, ỹ1) :=

{ (
−c1

[y11 ]
2

ỹ11
, . . . ,−cn

[y1n]
2

ỹ1n

)T
, if y1i ≥ 0, ỹ1i < 0, i = 1, . . . , n,

+∞Rn
+
, otherwise,

• F 2 : Xn ×Xn → Rn × Rn defined by

F 2(y2, ỹ2) =


(h1(y

2
1), . . . , hn(y

2
n),−l1(ỹ

2
1), . . . ,−ln(ỹ

2
n)), if y

2
i ∈ domhi,

ỹ2i ∈ dom(−li), i = 1, . . . , n,
+∞Rn

+×Rn
+
, otherwise

and

• F 3 : X → Xn ×Xn defined by F 3(x) =

{
(x, . . . , x), if x ∈ A,
+∞Kn×Kn , otherwise.

4.2. Optimization problems with entropy-like objective functions. Other
potential interesting applications of our main results from this paper are in entropy
optimization. Inspired by our contribution [5], where we have presented duality
investigations on optimization problems with entropy-like objective functions that
encompassed as special cases the classical Kullback-Leibler, Shannon and Burg en-
tropy functions, as well as other papers like [1, 13], we consider the following opti-
mization problem

(PE) inf
x∈A

{
n∑

i=1

hi(x)Φi

(
li(x)

hi(x)

)}
,

where A is defined as in the beginning of this section, Φi : R+ → R is a proper,
convex, lower semicontinuous and increasing function fulfilling Φi(t) ≥ 0 for all
t ≥ 0, hi : X → R is a proper, convex and lower semicontinuous function fulfilling
hi(x) > 0 for all x ∈ X and li : X → R is a proper, concave and upper semicon-
tinuous function fulfilling li(x) ≥ 0 for all x ∈ X, i = 1, . . . , n. As Φi is a convex
function, i = 1, . . . , n, we know by [1, Lemma 2.1] that the objective function of
(PE) is convex and hence, (PE) is a convex optimization problem.

To consider it in the framework of the approach in the previous sections, take
X0 = Rn ×Rn be partially ordered by K0 = Rn

+ ×Rn
+, X1 = Xn ×Xn be partially

ordered by K1 = Kn ×Kn and X2 = X be partially ordered by the closed, convex
cone K as well as the following functions

• f : Rn × Rn → R defined by

f(y0, ỹ0) :=


n∑

i=1
y0iΦi

(
− ỹ0i

y0i

)
, if (y0, ỹ0) ∈ Rn

+ ×
(
−Rn

+

)
,

+∞, otherwise,

• F 1 : Xn ×Xn → Rn × Rn defined by

F 1(y1, ỹ1) =


(h1(y

1
1), . . . , hn(y

1
n),−l1(ỹ

1
1), . . . ,−ln(ỹ

1
n)), if (y

1, ỹ1)

∈
n∏

i=1
dom li ×

n∏
i=1

dom(−hi),

+∞Rn
+×Rn

+
, otherwise,

and
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• F 2 : X → Xn ×Xn defined by F 2(x) =

{
(x, . . . , x), if x ∈ A,
+∞Kn×Kn , otherwise.

In order to keep the length of the paper reasonable, we leave the derivation of the
corresponding duality, optimality and subdifferential statements to the interested
reader.

Remark 4.4. Other duality schemes may be employed for approaching the pro-
posed applications, too, however, the separation of the conjugates of the involved
functions in the corresponding dual problems may fail to happen. However, by in-
troducing the function F 2 it is possible to separate the conjugates of the functions
g, li and hi, i = 1, . . . , n, in the objective function of the conjugate dual problem of
(PE). This also underlines the benefit of the concept introduced in this paper.

Remark 4.5. For different hypotheses imposed on the involved functions, that can
be written as multi-composed functions, too, by carefully choosing the correspond-
ing functions and cones, the problem (PE) turns out to encompass as special cases
different important (entropy) optimization problems. In the following we present
some of these situations, noting that as usual in entropy optimization we consider
the convention 0 ln 0 = 0.

(1) When Φi is decreasing, li is concave and hi affine, for all i = 1, . . . , n, one
obtains a problem that, when Φi = − ln, i = 1, . . . , n, collapses to the one
treated in [5].

(2) When Φi is increasing, li is convex and hi affine, for all i = 1, . . . , n, one
obtains a problem that, when Φi is the identity function, hj(x) = 1 for all
x ∈ X and li(x) = ki(x − yi), where ki ∈ R and yi ∈ X, i = 1, . . . , n,
collapses to the Steiner-Fermat problem considered in [14].

(3) When Φi is increasing and nonpositive on the set {li(x)/hi(x) : x ∈ A, i =
1, . . . , n}, li is convex and hi concave, for all i = 1, . . . , n, one obtains a
problem that, when Φi(x) = −1 for all x ∈ R+ and gi(x) = lnxi, where x =
(x1, . . . , xn)

⊤ ∈ Rn collapses, for an adequate choice of the other involved
functions and sets to the Burg entropy optimization problem treated in [12].

(4) When Φi is decreasing and nonnegative on the set {li(x)/hi(x) : x ∈ A, i =
1, . . . , n}, li is concave and hi convex, for all i = 1, . . . , n, one obtains a
problem that, when Φi(x) := ci(1/x) when x > 0 and for ci > 0 i = 1, . . . , n,
turns out to be a special case of (PF ) (see also [11,19]).
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[6] R.I. Boţ, S.-M. Grad and G. Wanka, Generalized Moreau-Rockafellar results for composed
convex functions, Optimization 58 (2009), 917–933.

[7] R. I. Boţ, S.-M. Grad and G. Wanka, New regularity conditions for Lagrange and Fenchel-
Lagrange duality in infinite dimensional spaces, Math. Inequal. Appl. 12 (2009), 171–189.
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