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Proposition 1. Let X be a Banach space and H ⊂ SX∗ be a Hamel basis of X∗.
Then H is a norming set.

Proof. Any f ∈ BX∗ can be represented in exactly one way as

f =
∑

i∈σf , |σf |<∞, fi∈H

ai(f)fi.

For n = 1, 2, ... put

Bn = {f ∈ BX∗ : f =
∑

ai(f)fi,
∑

|ai(f)| < n}.

Clearly, any Bn is convex and symmetric, the sequence {Bn} is increasing and
BX∗ = ∪∞

n=1Bn. By the Baire category an index m and δ > 0 exist such that

w∗ − clBm ⊃ δBX∗ .

It follows that

w∗ − cl co(±H) ⊃ 1

m
w∗ − clBm ⊃ δ

m
BX∗

so H turns out to be δ/m−norming. The proof is complete. □

Clearly not any norming set contains a Hamel basis.
It is natural to ask whether any boundary of X contains a Hamel basis of X∗. The
answer is in the negative (think of separable polyhedral spaces, e.g. c0). However,
as the following two examples show, the answer is in the negative even for reflexive
spaces.

Example A. In [6] an example of an incomplete normed space L is given such
that every functional f ∈ L∗ attains its norm on BL. By the James theorem the
completion L̃ of L is reflexive. If we consider L as a subspace of L∗∗, then the set
B = BL is a boundary for L∗. Clearly, spanB = L ̸= L̃ = L∗∗.

Notice that R.C. James constructed his example as an attempt to answer the follow-
ing question by F. Deutsch (see [6]): ”Is it true that a normed space X is complete
if, for each convex closed subset K ⊂ X, each point x ∈ X has a closest point
x0 in K ?” Since (for x /∈ K) any such point x0 must be a support point of K
(Hahn-Banach separation theorem), the answer (for separable X) follows from the
following Theorem.

Theorem 2 ([4]). A separable normed space X is complete if and only if any convex
closed bounded subset of X has a support point.

Example B. We use some ideas from [7]. For any subset A of a linear space and
any positive integer k, denote by spankA the set {

∑
i∈σ |σ|=k aixi : ai ∈ R, xi ∈ A}.

Let {En} be a sequence of finite-dimensional spaces such that dimEn = n and BEn

is a polytope for any n = 1, 2, .... The space X = ⊕l2

∑∞
n=1En is reflexive and

extBX∗ = {{fi}∞i=1 :
∑

∥fi∥2 = 1, fi/∥fi∥ ∈ extBE∗
i
, i = 1, 2, ...}.

We claim that
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span extBX∗ ̸= X∗.

In fact two complementary cases can be considered.

(a) There exists an integer k such that, for every n > k and every f ∈ E∗
n, it happens

that f ∈ spankextBE∗
n
.

(b) For every integer k there exists an index nk > k such that, for some hnk
∈ E∗

nk
, it

happens that hnk
̸∈ spankextBE∗

nk
, where without loss of generality we can assume

∥hnk
∥ < 1

n2
k
.

We investigate both cases.

Case (a). Consider the space E∗
k+1 and put

A = {{gi}ki=1 : gi ∈ extBE∗
k+1

, i = 1, ..., k}.
Since Ek+1 is polyhedral, it follows that A is a finite set. We are in case (a), so we
have

∪{gi}k1∈A
span{gi}k1 = E∗

k+1

that contradicts the Baire category theorem.

Case (b). Put f = (fj)
∞
j=1 where

fnk
= hnk

, fj = 0 j ̸= nk, k = 1, 2, ... .

It is not difficult to see that f ∈ X∗, however f ̸∈ span extBX∗ .

We are done. □

The following property of boundaries was established in [3]. It has many appli-
cations in the Geometry of Banach spaces as well as in the Function Theory (see
e.g. [3, 5]).

Theorem 3. Assume that X is a Banach space which does not contain an isomor-
phic copy of co. Let B be a boundary of X, B = ∪∞

n=1Bn with {Bn}∞n=1 an increasing
sequence. Then there is an index m such that the set Bm is norming.

The main purpose of this paper is to show that, if a Banach space X does not
contain an isomorphic copy of c0, then any boundary of X has a sort of “algebraic
- linear - topological” massiveness property. That will be done with the aid of
Theorem 3.

Theorem 4. Let X be a Banach space which does not contain an isomorphic copy
of c0, and B be a boundary of X. Assume that K ⊂ BX∗ is a w∗−compact set such
that
(M) for any f ∈ B there is a finite Borel positive measure µ = µf on K

representing f, i.e.

f(x) =

∫
K
t(x)dµ(t) ∀x ∈ X.
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Then the set K is norming. Conversely, if X is separable and contains an isomor-
phic copy of c0, then there are an equivalent norm ||| · ||| on X and a w∗−compact
non-norming subset K ⊂ B(X,|||·|||)∗ such that for any f ∈ B = extB(X,|||·|||)∗ there
is a Borel positive measure on K representing f.

Proof. We start with the proof of the first implication in the statement. Here the
proof runs along the lines of the proof of Proposition 1 but, instead of using the
Baire category theorem, we use Theorem 3.
Put Bn = {f ∈ B : µf (K) ≤ n}, n = 1, 2, ... . Clearly, {Bn} is increasing and
B = ∪∞

n=1Bn. By Theorem 3 there is an index m such that Bm is r−norming for
some r > 0. Take x ∈ SX and find f ∈ Bm with |f(x)| ≥ r.. We have

r ≤ |f(x)| = |
∫
K
t(x)dµf (t)| ≤

∫
K
|t(x)|dµ(t) ≤ sup

t∈K
|t(x)|µf (K) ≤ m sup

t∈K
|t(x)|,

hence supt∈K |t(x)| ≥ r/m. Therefore the set K is r/m−norming.

Now assume that X is separable and contains a subspace Y isomorphic to c0. By
the Sobchyk theorem Y is complemented in X, i.e. X = Y ⊕ Z. For any n ∈ N de-
note by Mn the 2-dimensional Euclidean space, i.e. Mn = R2. Consider the Banach
space L = ⊕c0

∑∞
n=1Mn. It is not difficult to see that L is isomorphic to c0. More-

over, L∗ = ⊕l1

∑∞
n=1M

∗
n and extBL∗ = ∪∞

n=1SM∗
n
. Put X1 = L ⊕∞ Z. Clearly X1

is isomorphic to X, hence we can consider X1 as X in that equivalent norm ||| · |||.
Clearly, X∗

1 = L∗ ⊕l1 Z∗ and extBX∗
1
= extBL∗ ∪ extBZ∗ = ∪∞

n=1SM∗
n
∪ extBZ∗ .

Next we choose in each Mn a basis {un, vn} such that the associated linear func-
tionals {u∗n, v∗n} ⊂ M∗

n have the following properties: |||u∗n||| = |||v∗n||| = 1, |||u∗n −
v∗n||| < 1/n. Note that subspaces [u∗n]

∞
n=1 and [v∗n]

∞
n=1 (the ||| · |||−closed linear

spans of {u∗n}∞n=1 and {v∗n}∞n=1) are w∗−closed. In fact both sequences {u∗n}∞n=1

and {v∗n}∞n=1 are just l1-bases and w∗−convergence in subspaces they generate is
just a “coordinate−wise” convergence (note that the sequences of the functionals
associated to these bases are respectively {un} ⊂ X and {vn} ⊂ X). Moreover,
since |||u∗n − v∗n||| < 1/n, it follows that the direct sum [u∗n]

∞
n=1 + [v∗n]

∞
n=1 is not

||| · |||−closed.
Put K = w∗ − cl{±{u∗n, v∗n}∞n=1 ∪ extBZ∗}: an easy consideration shows that K

satisfies condition (M) with B = extBX∗
1
. However, K is not norming.

The proof is complete. □

Remark. Let X be a Banach space such that X∗ is strictly convex. Put B =
extBX∗ = SX∗ . If K ⊂ BX∗ satisfies condition (M), then a category argument
shows that K is norming. This explains why referring to an equivalent norm in the
second part of the statement of Theorem 4 is necessary.

One, in our opinion significant, application of Theorem 4 is the next Theorem.

Theorem 5. Let X be a Banach space which does not contain an isomorphic copy
of c0. Assume that B ⊂ SX∗ is a boundary and H is a maximal linearly independent
subset of B. Then H is norming. Hence w∗ − cl coH ⊃ rBX∗ for some r > 0.
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Proof. First note that H is norming if and only if w∗ − clH is norming. So without
loss of generality we can assume that H is w ∗ − compact. Clearly, each f ∈ B is
a (finite) linear combination of elements from H. Hence H satisfies condition (M)
(with K = H), and Theorem 4 finishes the proof. □

Remark. Theorem 5 can obviously be stated, keeping the same proof, in a more
general form, just asking that H ⊂ B has the property that any f ∈ B can be
represented as

f =
∞∑
i=1

aihi, hi ∈ H, i = 1, 2, ...,
∞∑
i=1

|ai| < ∞.
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