

AN ALGEBRAIC PROPERTY OF THE BOUNDARIES OF BANACH SPACES

VLADIMIR P. FONF^{*} AND CLEMENTE ZANCO[†]

ABSTRACT. Some connections between the concepts of boundary and of norming set of a Banach space and the linear structure are investigated. In particular we prove that, if X is a Banach space which does not contain an isomorphic copy of $c_0, B \subset S_{X^*}$ is a boundary of X and H is a maximal linearly independent subset of B, then H is norming.

Let $(X, \|\cdot\|)$ be a Banach space. A subset $B \subset S_{X^*}$ of the unit sphere S_{X^*} of X is called a boundary of X if for any $x \in X$ there exists $f \in B$ with $f(x) = \|x\|$. From the Krein-Milman theorem it follows that the set $\exp B_{X^*}$ of all the extreme points of the unit ball B_{X^*} of X^* is a boundary. Easy examples show that a boundary may be a proper subset of $\exp B_{X^*}$. The separation theorem shows that, for any boundary B, we have $w^* - \operatorname{cl} \operatorname{co} B = B_{X^*}$. In particular it follows that, when X is infinite-dimensional, any of its boundaries must be infinite, so at least countable. This is the case of separable polyhedral spaces (see [1, 2]). Therefore, if X is not polyhedral, then any of its boundaries is uncountable, i.e. is massive in the sense of cardinality.

Recall that, for r > 0, a subset $C \subset B_{X^*}$ is called *r*-norming if

$$\sup_{f \in C} |f(x)| \ge r \|x\|$$

for every $x \in X$. C is called norming if it is r-norming for some r > 0. It easily follows from the separation theorem that a set C is r-norming if and only if

$$w^* - \operatorname{cl} \operatorname{co}(\pm C) \supset rB_{X^*}.$$

Our first result results provides a connection between Hamel bases and norming sets in the dual space.

²⁰¹⁰ Mathematics Subject Classification. 46B20.

Key words and phrases. Boundary, norming set, Hamel basis.

^{*}Research of V.P. Fonf was supported in part by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) of Italy.

[†]Research of C. Zanco was supported in part by a grant of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) of Italy and in part by the Center for Advanced Studies in Mathematics at the Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Proposition 1. Let X be a Banach space and $H \subset S_{X^*}$ be a Hamel basis of X^* . Then H is a norming set.

Proof. Any $f \in B_{X^*}$ can be represented in exactly one way as

$$f = \sum_{i \in \sigma_f, \ |\sigma_f| < \infty, \ f_i \in H} a_i(f) f_i$$

For n = 1, 2, ... put

$$B_n = \{ f \in B_{X^*} : f = \sum a_i(f) f_i, \ \sum |a_i(f)| < n \}.$$

Clearly, any B_n is convex and symmetric, the sequence $\{B_n\}$ is increasing and $B_{X^*} = \bigcup_{n=1}^{\infty} B_n$. By the Baire category an index m and $\delta > 0$ exist such that

$$w^* - \mathrm{cl}B_m \supset \delta B_{X^*}.$$

It follows that

$$w^* - \operatorname{cl}\operatorname{co}(\pm H) \supset \frac{1}{m}w^* - \operatorname{cl}B_m \supset \frac{\delta}{m}B_{X^*}$$

so H turns out to be δ/m -norming. The proof is complete.

Clearly not any norming set contains a Hamel basis.

It is natural to ask whether any boundary of X contains a Hamel basis of X^* . The answer is in the negative (think of separable polyhedral spaces, e.g. c_0). However, as the following two examples show, the answer is in the negative even for reflexive spaces.

Example A. In [6] an example of an incomplete normed space L is given such that every functional $f \in L^*$ attains its norm on B_L . By the James theorem the completion \tilde{L} of L is reflexive. If we consider L as a subspace of L^{**} , then the set $B = B_L$ is a boundary for L^* . Clearly, span $B = L \neq \tilde{L} = L^{**}$.

Notice that R.C. James constructed his example as an attempt to answer the following question by F. Deutsch (see [6]): "Is it true that a normed space X is complete if, for each convex closed subset $K \subset X$, each point $x \in X$ has a closest point x_0 in K?" Since (for $x \notin K$) any such point x_0 must be a support point of K (Hahn-Banach separation theorem), the answer (for separable X) follows from the following Theorem.

Theorem 2 ([4]). A separable normed space X is complete if and only if any convex closed bounded subset of X has a support point.

Example B. We use some ideas from [7]. For any subset A of a linear space and any positive integer k, denote by $\operatorname{span}_k A$ the set $\{\sum_{i \in \sigma} |\sigma| = k a_i x_i : a_i \in \mathbb{R}, x_i \in A\}$. Let $\{E_n\}$ be a sequence of finite-dimensional spaces such that $\dim E_n = n$ and B_{E_n} is a polytope for any $n = 1, 2, \ldots$ The space $X = \bigoplus_{l_2} \sum_{n=1}^{\infty} E_n$ is reflexive and

$$\operatorname{ext} B_{X^*} = \{\{f_i\}_{i=1}^{\infty} : \sum \|f_i\|^2 = 1, f_i/\|f_i\| \in \operatorname{ext} B_{E_i^*}, i = 1, 2, \dots\}$$

We claim that

span
$$\operatorname{ext} B_{X^*} \neq X^*$$
.

In fact two complementary cases can be considered.

(a) There exists an integer k such that, for every n > k and every $f \in E_n^*$, it happens that $f \in \operatorname{span}_k \operatorname{ext} B_{E_n^*}$.

(b) For every integer k there exists an index $n_k > k$ such that, for some $h_{n_k} \in E_{n_k}^*$, it happens that $h_{n_k} \notin \operatorname{span}_k \operatorname{ext} B_{E_{n_k}^*}$, where without loss of generality we can assume $\|h_{n_k}\| < \frac{1}{n_k^2}$.

We investigate both cases.

Case (a). Consider the space E_{k+1}^* and put

$$\mathcal{A} = \{\{g_i\}_{i=1}^k : g_i \in \text{ext}B_{E_{k+1}^*}, i = 1, ..., k\}.$$

Since E_{k+1} is polyhedral, it follows that \mathcal{A} is a finite set. We are in case (a), so we have

$$\bigcup_{\{g_i\}_{1}^{k}\in\mathcal{A}}\operatorname{span}\{g_i\}_{1}^{k}=E_{k+1}^{*}$$

that contradicts the Baire category theorem.

Case (b). Put $f = (f_j)_{j=1}^{\infty}$ where

 $f_{n_k} = h_{n_k}, \ f_j = 0 \ j \neq n_k, \ k = 1, 2, \dots$

It is not difficult to see that $f \in X^*$, however $f \notin \operatorname{span} \operatorname{ext} B_{X^*}$.

We are done.

The following property of boundaries was established in [3]. It has many applications in the Geometry of Banach spaces as well as in the Function Theory (see e.g. [3, 5]).

Theorem 3. Assume that X is a Banach space which does not contain an isomorphic copy of c_0 . Let B be a boundary of X, $B = \bigcup_{n=1}^{\infty} B_n$ with $\{B_n\}_{n=1}^{\infty}$ an increasing sequence. Then there is an index m such that the set B_m is norming.

The main purpose of this paper is to show that, if a Banach space X does not contain an isomorphic copy of c_0 , then any boundary of X has a sort of "algebraic - linear - topological" massiveness property. That will be done with the aid of Theorem 3.

Theorem 4. Let X be a Banach space which does not contain an isomorphic copy of c_0 , and B be a boundary of X. Assume that $K \subset B_{X^*}$ is a w^* -compact set such that

(M) for any $f \in B$ there is a finite Borel positive measure $\mu = \mu_f$ on K representing f, i.e.

$$f(x) = \int_{K} t(x) d\mu(t) \quad \forall x \in X.$$

Then the set K is norming. Conversely, if X is separable and contains an isomorphic copy of c_0 , then there are an equivalent norm $||| \cdot |||$ on X and a w^* -compact non-norming subset $K \subset B_{(X,|||\cdot|||)^*}$ such that for any $f \in B = \text{ext}B_{(X,|||\cdot|||)^*}$ there is a Borel positive measure on K representing f.

Proof. We start with the proof of the first implication in the statement. Here the proof runs along the lines of the proof of Proposition 1 but, instead of using the Baire category theorem, we use Theorem 3.

Put $B_n = \{f \in B : \mu_f(K) \leq n\}, n = 1, 2, \dots$. Clearly, $\{B_n\}$ is increasing and $B = \bigcup_{n=1}^{\infty} B_n$. By Theorem 3 there is an index m such that B_m is r-norming for some r > 0. Take $x \in S_X$ and find $f \in B_m$ with $|f(x)| \geq r$. We have

$$r \le |f(x)| = |\int_{K} t(x)d\mu_{f}(t)| \le \int_{K} |t(x)|d\mu(t) \le \sup_{t \in K} |t(x)|\mu_{f}(K) \le m \sup_{t \in K} |t(x)|,$$

hence $\sup_{t \in K} |t(x)| \ge r/m$. Therefore the set K is r/m-norming.

Now assume that X is separable and contains a subspace Y isomorphic to c_0 . By the Sobchyk theorem Y is complemented in X, i.e. $X = Y \oplus Z$. For any $n \in \mathbb{N}$ denote by M_n the 2-dimensional Euclidean space, i.e. $M_n = \mathbb{R}^2$. Consider the Banach space $L = \bigoplus_{c_0} \sum_{n=1}^{\infty} M_n$. It is not difficult to see that L is isomorphic to c_0 . Moreover, $L^* = \bigoplus_{l_1} \sum_{n=1}^{\infty} M_n^*$ and $\operatorname{ext} B_{L^*} = \bigcup_{n=1}^{\infty} S_{M_n^*}$. Put $X_1 = L \oplus_{\infty} Z$. Clearly X_1 is isomorphic to X, hence we can consider X_1 as X in that equivalent norm $||| \cdot |||$. Clearly, $X_1^* = L^* \oplus_{l_1} Z^*$ and $\operatorname{ext} B_{X_1^*} = \operatorname{ext} B_{L^*} \cup \operatorname{ext} B_{Z^*} = \bigcup_{n=1}^{\infty} S_{M_n^*} \cup \operatorname{ext} B_{Z^*}$. Next we choose in each M_n a basis $\{u_n, v_n\}$ such that the associated linear functionals $\{u_n^*, v_n^*\} \subset M_n^*$ have the following properties: $|||u_n^*||| = |||v_n^*||| = 1$, $|||u_n^* - v_n^*||| < 1/n$. Note that subspaces $[u_n^*]_{n=1}^\infty$ and $[v_n^*]_{n=1}^\infty$ (the $||| \cdot ||| - \text{closed linear}$ spans of $\{u_n^*\}_{n=1}^\infty$ and $\{v_n^*\}_{n=1}^\infty$) are w^* -closed. In fact both sequences $\{u_n^*\}_{n=1}^\infty$ and $\{v_n^*\}_{n=1}^\infty$ are just l_1 -bases and w^* -convergence in subspaces they generate is just a "coordinate-wise" convergence (note that the sequences of the functionals associated to these bases are respectively $\{u_n\} \subset X$ and $\{v_n\} \subset X$). Moreover, since $|||u_n^* - v_n^*||| < 1/n$, it follows that the direct sum $[u_n^*]_{n=1}^\infty + [v_n^*]_{n=1}^\infty$ is not $|||\cdot|||$ -closed.

Put $K = w^* - \operatorname{cl}\{\pm \{u_n^*, v_n^*\}_{n=1}^{\infty} \cup \operatorname{ext} B_{Z^*}\}$: an easy consideration shows that K satisfies condition (M) with $B = \operatorname{ext} B_{X_i^*}$. However, K is not norming.

The proof is complete.

Remark. Let X be a Banach space such that X^* is strictly convex. Put $B = \exp B_{X^*} = S_{X^*}$. If $K \subset B_{X^*}$ satisfies condition (M), then a category argument shows that K is norming. This explains why referring to an equivalent norm in the second part of the statement of Theorem 4 is necessary.

One, in our opinion significant, application of Theorem 4 is the next Theorem.

Theorem 5. Let X be a Banach space which does not contain an isomorphic copy of c_0 . Assume that $B \subset S_{X^*}$ is a boundary and H is a maximal linearly independent subset of B. Then H is norming. Hence $w^* - \operatorname{cl} \operatorname{coH} \supset rB_{X^*}$ for some r > 0.

Proof. First note that H is norming if and only if $w^* - \operatorname{cl} H$ is norming. So without loss of generality we can assume that H is $w * - \operatorname{compact}$. Clearly, each $f \in B$ is a (finite) linear combination of elements from H. Hence H satisfies condition (M) (with K = H), and Theorem 4 finishes the proof.

Remark. Theorem 5 can obviously be stated, keeping the same proof, in a more general form, just asking that $H \subset B$ has the property that any $f \in B$ can be represented as

$$f = \sum_{i=1}^{\infty} a_i h_i, \ h_i \in H, \ i = 1, 2, ..., \ \sum_{i=1}^{\infty} |a_i| < \infty.$$

References

- V. P. Fonf, *Polyhedral Banach spaces*, Mat. Zametki **30** (1981), 627–634, (Enlish translation in Math. Notes Acad. Sci.USSR **30** (1981), 809–813).
- [2] V. P. Fonf, On the boundary of a polyhedral Banach space, Extracta Math. 15 (2000), 145–154.
- [3] V. P. Fonf, Weakly extremal properties of Banach spaces, Mat. Zametki 45 (1989), 83–92 (English transl. in Math. Notes Acad. Sci USSR 45 (1989), 488–494).
- [4] V. P. Fonf, On supportless convex sets in incomplete normed spaces, Proc. Amer. Math. Soc. 120 (1994), 1173–1176.
- [5] V. P. Fonf, R. J. Smith and S. Troyanski, Boundaries and polyhedral Banach spaces, Proc. Amer. Math. Soc. 143 (2015), 4845–4849.
- [6] R. C. James, A counterexample for a sup theorem in normed spaces, Israel J. Math. 9 (1971), 511–512.
- [7] W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337–345.

Manuscript received January 6 2016 revised April 4 2016

V. Fonf

Department of Mathematics, Ben-Gurion University of the Negev 84105 Beer-Sheva, Israel *E-mail address*: fonf@math.bgu.ac.il

C. Zanco

Dipartimento di Matematica, Università degli Studi Via C. Saldini, 50 20133 Milano MI, Italy *E-mail address*: clemente.zanco@unimi.it