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AN ALGEBRAIC PROPERTY OF THE BOUNDARIES OF
BANACH SPACES

VLADIMIR P. FONF* AND CLEMENTE ZANCOf

ABSTRACT. Some connections between the concepts of boundary and of norming
set of a Banach space and the linear structure are investigated. In particular we
prove that, if X is a Banach space which does not contain an isomorphic copy of
co, B C Sx~ is a boundary of X and H is a maximal linearly independent subset
of B, then H is norming.

Let (X, ||-||) be a Banach space. A subset B C Sx~ of the unit sphere Sx+ of X is
called a boundary of X if for any x € X there exists f € B with f(x) = ||z||. From
the Krein-Milman theorem it follows that the set ext Bx+ of all the extreme points
of the unit ball Bx+ of X* is a boundary. Easy examples show that a boundary
may be a proper subset of extBx+. The separation theorem shows that, for any
boundary B, we have w* — cl coB = Bx+. In particular it follows that, when X is
infinite-dimensional, any of its boundaries must be infinite, so at least countable.
This is the case of separable polyhedral spaces (see [1, 2]). Therefore, if X is not
polyhedral, then any of its boundaries is uncountable, i.e. is massive in the sense
of cardinality.

Recall that, for » > 0, a subset C' C Bx+ is called r—norming if

sup | f(2)| = r|l]]
feC

for every x € X. C' is called norming if it is r—norming for some r > 0. It easily
follows from the separation theorem that a set C' is r—norming if and only if

w* — cl co(£C) D rBx+.

Our first result results provides a connection between Hamel bases and norming
sets in the dual space.
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Proposition 1. Let X be a Banach space and H C Sx+ be a Hamel basis of X*.
Then H is a norming set.

Proof. Any f € Bx+ can be represented in exactly one way as

f= > ai(f)fi-

i€oy, |of|<oo, ficH

Forn=1,2,... put
By ={f€Bx-:f=Y a(f)fi, Y lai(f)| <n}.

Clearly, any B, is convex and symmetric, the sequence {B,} is increasing and
Bx+ = U2 By,. By the Baire category an index m and ¢ > 0 exist such that

w* — clBy, D dBx+.
It follows that ) 5
w* —clco(£H) D —w* —clB,, D —Bx-~
m m

so H turns out to be §/m—norming. The proof is complete. O

Clearly not any norming set contains a Hamel basis.

It is natural to ask whether any boundary of X contains a Hamel basis of X*. The
answer is in the negative (think of separable polyhedral spaces, e.g. ¢y). However,
as the following two examples show, the answer is in the negative even for reflexive
spaces.

Example A. In [6] an example of an incomplete normed space L is given such
that every functional f € L* attains its norm on By. By the James theorem the
completion L of L is reflexive. If we consider L as a subspace of L**, then the set
B = By, is a boundary for L*. Clearly, span B = L # L = L**.

Notice that R.C. James constructed his example as an attempt to answer the follow-
ing question by F. Deutsch (see [6]): ”Is it true that a normed space X is complete
if, for each convex closed subset K C X, each point z € X has a closest point
xo in K 77 Since (for x ¢ K) any such point xg must be a support point of K
(Hahn-Banach separation theorem), the answer (for separable X) follows from the
following Theorem.

Theorem 2 ([4]). A separable normed space X is complete if and only if any convex
closed bounded subset of X has a support point.

Example B. We use some ideas from [7]. For any subset A of a linear space and
any positive integer k, denote by span; A the set {3 ¢ ;1= i%i 1 a; € R, z; € A}.
Let {E,} be a sequence of finite-dimensional spaces such that dimE,, = n and Bg,
is a polytope for any n = 1,2, .... The space X = @, > .- | Ey is reflexive and

extBy- = {{fi}321 : Y _Ifill> =1 fi/ Il fill € extBp=,i=1,2,..}.
We claim that



ALGEBRAIC PROPERTY OF THE BOUNDARIES 39

span extBx« # X ™.
In fact two complementary cases can be considered.

(a) There exists an integer k such that, for every n > k and every f € E* . it happens
that f € spangextBp:.

(b) For every integer k there exists an index ny > k such that, for some h,,, € E}, , it
happens that h,, & span,extB B where without loss of generality we can assume

1
gl < &
We investigate both cases.

Case (a). Consider the space £} | and put

A= {{gi}le 10; € eXtBEZH’i =1, ,k‘}
Since Fjy1 is polyhedral, it follows that A is a finite set. We are in case (a), so we
have
k
Uigithea span{gi}1 = Ej i,
that contradicts the Baire category theorem.

Case (b). Put f = (f;)72; where

fnk :hnka fj :Oj#nka k:1727 .
It is not difficult to see that f € X*, however f ¢ span extBx-x.

We are done. O

The following property of boundaries was established in [3]. It has many appli-
cations in the Geometry of Banach spaces as well as in the Function Theory (see

e.g. [3, 5]).

Theorem 3. Assume that X is a Banach space which does not contain an isomor-
phic copy of ¢o. Let B be a boundary of X, B = U2 | B, with {B,}°2, an increasing
sequence. Then there is an index m such that the set B,, is norming.

The main purpose of this paper is to show that, if a Banach space X does not
contain an isomorphic copy of ¢y, then any boundary of X has a sort of “algebraic
- linear - topological” massiveness property. That will be done with the aid of
Theorem 3.

Theorem 4. Let X be a Banach space which does not contain an isomorphic copy

of co, and B be a boundary of X. Assume that K C Bx+ is a w*—compact set such

that

(M) for any f € B there is a finite Borel positive measure p = puy on K
representing f, i.e.

flx) = /Kt(a;)d,u(t) Vo e X.
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Then the set K is norming. Conversely, if X is separable and contains an isomor-
phic copy of co, then there are an equivalent norm ||| - ||| on X and a w*—compact
non-norming subset K C Bx |||+ such that for any f € B = extBx .+ there
is a Borel positive measure on K representing f.

Proof. We start with the proof of the first implication in the statement. Here the
proof runs along the lines of the proof of Proposition 1 but, instead of using the
Baire category theorem, we use Theorem 3.

Put B, = {f € B : ps(K) < n}, n=1,2,... . Clearly, {B,} is increasing and
B = U2 B,,. By Theorem 3 there is an 1ndex m such that B,, is r—norming for
some 7 > 0. Take z € Sx and find f € B, with |f(z)| > r.. We have

< |f( —r/ )yt \</\t () < sup 1) sy (K) < i sup (e,

hence sup,cg [t(z)| > r/m. Therefore the set K is r/m—norming.

Now assume that X is separable and contains a subspace Y isomorphic to ¢g. By
the Sobchyk theorem Y is complemented in X, i.e. X =Y & Z. For any n € N de-
note by M,, the 2-dimensional Euclidean space, i.e. M,, = R2. Consider the Banach
space L = @¢, > ooy M,,. It is not difficult to see that L is isomorphic to ¢y. More-
over, L* = @, Z L My and extBrs = UpZ 1 Syx. Put Xy = L oo Z. Clearly X,
is isomorphic to X, hence we can consider X 1 as X in that equivalent norm ||| - |||.
Clearly, X{ = L* @;, Z* and extBXf = extBp UextBz« = U1 Snx UextBys.
Next we choose in each M,, a basis {u,,v,} such that the associated linear func-

tionals {w, v’} C M, have the following properties: |||u’||| = |||vi]|]| = 1, |||uf —
vrll] < 1/n. Note that subspaces [uy|0°; and [v]02; (the ||| - ||\—closed hnear
spans of {uy}>°, and {v}}5° ) are w*—closed. In fact both sequences {u}}>°,

and {vn}i’le are just [;-bases and w*—convergence in subspaces they generate is
just a “coordinate—wise” convergence (note that the sequences of the functionals
associated to these bases are respectively {u,} C X and {v,} C X). Moreover,
since |||u; — vi||| < 1/n, it follows that the direct sum [u}]o%; + [v}]5; is not
Il l|—closed.

Put K = w* — cl{£{u},v}}>°, UextByz}: an easy consideration shows that K
satisfies condition (M) with B = extBx;. However, K is not norming.

The proof is complete. O

Remark. Let X be a Banach space such that X* is strictly convex. Put B =
extBx+ = Sx«. If K C Bx~ satisfies condition (M), then a category argument
shows that K is norming. This explains why referring to an equivalent norm in the
second part of the statement of Theorem 4 is necessary.

One, in our opinion significant, application of Theorem 4 is the next Theorem.

Theorem 5. Let X be a Banach space which does not contain an isomorphic copy
of co. Assume that B C Sx= is a boundary and H is a maximal linearly independent
subset of B. Then H is norming. Hence w* — cl coH D rBx« for some r > 0.
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Proof. First note that H is norming if and only if w* — clH is norming. So without
loss of generality we can assume that H is w * — compact. Clearly, each f € B is
a (finite) linear combination of elements from H. Hence H satisfies condition (M)
(with K = H), and Theorem 4 finishes the proof. O

Remark. Theorem 5 can obviously be stated, keeping the same proof, in a more
general form, just asking that H C B has the property that any f € B can be
represented as

o o0
f=3 ah, hi € H, i=1,2,.., Y |ai| <oc.
=1

i=1
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