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where I is either R1 or [T1,∞) or [T1, T2] (here −∞ < T1 < T2 < ∞), n,m are
natural numbers, x : I → Rn is an absolutely continuous (a. c.) function and
the control function u : I → Rm is Lebesgue measurable, and A and B are given
matrices of dimensions n× n and n×m with integrands f : Rn ×Rm → R1.

Note that if I is an unbounded interval, then x : I → Rn is an absolutely
continuous function if and only if it is an absolutely continuous function on any
bounded subinterval of I.

We assume that the linear system (1.1) is controllable and that the integrand f
is a continuous function.

We denote by | · | the Euclidean norm and by ⟨·, ·⟩ the inner product in the k-
dimensional Euclidean space Rk. For every s ∈ R1 set s+ = max{s, 0}. For every
nonempty set X and every function h : X → R1 ∪ {∞} set

inf(h) = inf{h(x) : x ∈ X}.
Let a0 be a positive number and ψ : [0,∞) → [0,∞) be an increasing function

such that

(1.2) lim
t→∞

ψ(t) = ∞.

Suppose that f : Rn × Rm → R1 is a continuous function such that the following
assumption holds:

(A1)
(i) for every point (x, u) ∈ Rn ×Rm,

f(x, u) ≥ max{ψ(|x|), ψ(|u|),

(1.3) ψ([|Ax+Bu| − a0|x|]+)[|Ax+Bu| − a0|x|]+} − a0;

(ii) for every point x ∈ Rn the function f(x, ·) : Rm → R1 is convex;
(iii) for every pair of positive numbersM, ϵ there exist positive numbers Γ, δ such

that

|f(x1, u1)− f(x2, u2)| ≤ ϵmax{f(x1, u1), f(x2, u2)}
for each u1, u2 ∈ Rm and each x1, x2 ∈ Rn which satisfy

|xi| ≤M, |ui| ≥ Γ, i = 1, 2,

max{|x1 − x2|, |u1 − u2|} ≤ δ;

(iv) for every positive number K there exists a positive constant aK and an
increasing function

ψK : [0,∞) → [0,∞)

such that

ψK(t) → ∞ as t→ ∞
and

f(x, u) ≥ ψK(|u|)|u| − aK

for every point u ∈ Rm and every point x ∈ Rn satisfying |x| ≤ K.

Let T1 ∈ R1 and T2 > T1. A pair of an absolutely continuous function x :
[T1, T2] → Rn and a Lebesgue measurable function u : [T1, T2] → Rm is called
an (A,B)-trajectory-control pair if (1.1) holds with I = [T1, T2]. Denote by
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X(A,B, T1, T2) the set of all (A,B)-trajectory-control pairs x : [T1, T2] → Rn,
u : [T1, T2] → Rm.

Let T ∈ R1 and I = [T,∞) be an infinite closed subinterval of R1. Denote by
X(A,B, T,∞) the set of all pairs of a.c. functions x : [T,∞) → Rn and Lebesgue
measurable functions u : [T,∞) → Rm satisfying (1.1).

Note that a function h satisfies (A1) if h ∈ C1(Rn × Rm), (A1)(i), (A1)(ii),

(A1)(iv) hold, and for each K > 0 there exists an increasing function ψ̃ : [0,∞) →
[0,∞) such that for each x ∈ Rn satisfying |x| ≤ K and each u ∈ Rm,

max{|∂h/∂x(x, u)|, |∂h/∂u(x, u)|} ≤ ψ̃(|x|)(1 + ψK(|u|)|u|).
The performance of the above control system is measured on any finite interval

[T1, T2] ⊂ [0,∞) and for any (x, u) ∈ X(A,B, T1, T2) by the integral functional

(1.4) If (T1, T2, x, u) =

∫ T2

T1

f(x(t), u(t))dt.

We consider the following optimal control problems

(P1) If (0, T, x, u) → min,

(x, u) ∈ X(A,B, 0, T ) such that x(0) = y, x(T ) = z,

(P2) If (0, T, x, u) → min,

(x, u) ∈ X(A,B, 0, T ) such that x(0) = y,

(P3) If (0, T, x, u) → min,

(x, u) ∈ X(A,B, 0, T ),

(P4) If (0, T, x, u) + g(x(0), x(T )) → min,

(x, u) ∈ X(A,B, 0, T ),

where y, z ∈ Rn, T > 0 and g : Rn × Rn → R1 is a lower semicontinuous function
which is bounded on bounded sets. The study of these problems is based on the
properties of solutions of the corresponding infinite horizon optimal control problem
associated with the control system (1.1) and the integrand f . Problems (P1)− (P3)
where analyzed in [49] while in this paper we study problems (P4).

We establish the turnpike property for the approximate solutions of problems
(P4) and show that in regions close to the endpoints of the time interval their
approximate solutions are determined only by the pair (f, g) and are essentially
independent of the choice of the interval.

A number

(1.5) µ(f) := inf{lim inf
T→∞

T−1If (0, T, x, u) : (x, u) ∈ X(A,B, 0,∞)}

is called the minimal long-run average cost growth rate of f . In view of (A1)(i), we
have −∞ < µ(f).

We say that a pair (x̃, ũ) ∈ X(A,B, 0,∞) is (f,A,B)-overtaking optimal [43,48]
if for every pair (x, u) ∈ X(A,B, 0,∞) such that x(0) = x̃(0) the inequality

lim sup
T→∞

[If (0, T, x̃, ũ)− If (0, T, x, u)] ≤ 0
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holds.
We say that a pair (x, u) ∈ X(A,B, 0,∞) is (f,A,B)-minimal [43,48] if for every

positive number T ,

If (0, T, x, u) ≤ If (0, T, y, v)

for every pair (y, v) ∈ X(A,B, 0, T ) such that y(0) = x(0), y(T ) = x(T ).
Let (xf , uf ) ∈ Rn ×Rm satisfy

(1.6) Axf +Buf = 0.

It is clear that µ(f) ≤ f(xf , uf ). It is not difficult to see that the following result
holds.

Proposition 1.1 (Proposition 3.1 of [49]). Assume that µ(f) = f(xf , uf ) and let
x(t) = xf , u(t) = uf for all t ∈ [0,∞). Then the pair (x, u) ∈ X(A,B, 0,∞) is
(f,A,B)-minimal.

We suppose that the following assumption holds.
(A2) µ(f) = f(xf , uf ) and if (x, u) ∈ Rn ×Rm satisfies

Ax+Bu = 0, µ(f) = f(x, u),

then x = xf .
In [49] we proved the following result.

Proposition 1.2 (Proposition 3.4 of [49]). For every trajectory-control pair (x, u) ∈
X(A,B, 0,∞) either

If (0, T, x, u)− Tµ(f) → ∞ as T → ∞

or sup{|If (0, T, x, u)− Tµ(f)| : T > 0} <∞.

A trajectory-control pair (x, u) ∈ X(A,B, 0,∞) is called (f,A,B)-good [43,48] if

sup{|If (0, T, x, u)− Tµ(f)| : T > 0} <∞.

We have the following result.

Proposition 1.3 (Proposition 3.5 of [49]). For any (f,A,B)-good pair

(x, u) ∈ X(A,B, 0,∞)

the inequality

sup{|x(t)| : t ∈ [0,∞)} <∞
holds.

We suppose that the following assumption holds.
(A3) For every (f,A,B)-good trajectory-control pair

(x, u) ∈ X(A,B, 0,∞)

the equality limt→∞ x(t) = xf holds.
Several examples of integrands satisfying assumptions (A1)-(A3) are considered

in Section 3.1 of [49].
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2. Turnpike results for problems (P1), (P2) and (P3)

We use the notation, definitions and assumptions introduced in Section 1.
Let T > 0 and y, z ∈ Rn. Set

σ(f, y, z, T ) = inf{If (0, T, x, u) :

(2.1) (x, u) ∈ X(A,B, 0, T ) and x(0) = y, x(T ) = z},

(2.2) σ(f, y, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(A,B, 0, T ) and x(0) = y},

(2.3) σ̂(f, z, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(A,B, 0, T ) and x(T ) = z},

(2.4) σ(f, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(A,B, 0, T )}.

The results of this section were obtained in [49]. The following theorem establishes
the turnpike property of approximate solutions of problems (P1), (P2) and (P3).

Theorem 2.1 (Theorem 3.7 of [49]). Let ϵ, M0,M1 > 0. Then there exist L > 0,
δ ∈ (0, ϵ) such that for each T > 2L and each (x, u) ∈ X(A,B, 0, T ) which satisfies
for each S ∈ [0, T − L],

If (S, S + L, x, u) ≤ σ(f, x(S), x(S + L), L) + δ

and satisfies at least one of the following conditions below

(a) |x(0)|, |x(T )| ≤M0, I
f (0, T, x, u) ≤ σ(f, x(0), x(T ), T ) +M1;

(b) |x(0)| ≤M0, I
f (0, T, x, u) ≤ σ(f, x(0), T ) +M1;

(c) If (0, T, x, u) ≤ σ(f, T ) +M1

there exist p1 ∈ [0, L], p2 ∈ [T − L, T ] such that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .

It should be mentioned that turnpike properties are well known in mathematical
economics. The term was first coined by Samuelson in 1948 (see [41]) where he
showed that an efficient expanding economy would spend most of the time in the
vicinity of a balanced equilibrium path (also called a von Neumann path and a
turnpike). This property was further investigated for optimal trajectories of models
of economic dynamics. See, for example, Makarov and Rubinov [29], McKenzie [33],
Rubinov [39,40] and the references mentioned there.

Theorem 2.2 (Theorem 3.8 of [49]). Let x0 ∈ Rn. Then there exists an (f,A,B)-
overtaking optimal trajectory-control pair (x, u) ∈ X(A,B, 0,∞) satisfying x(0) =
x0.

Proposition 2.3 (Proposition 3.36 of [49]). Any (f,A,B)-overtaking optimal
trajectory-control pair (x, u) ∈ X(A,B, 0,∞) is (f,A,B)-good.

The next result describes the limit behavior of overtaking optimal trajectories.
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Theorem 2.4 (Theorem 3.9 of [49]). Let M, ϵ > 0. Then there exists L >
0 such that for any (f,A,B)-overtaking optimal trajectory-control pair (x, u) ∈
X(A,B, 0,∞) which satisfies |x(0)| ≤M the inequality

|x(t)− xf | ≤ ϵ

holds for all numbers t ≥ L. Moreover, there exists δ > 0 such that for any (f,A,B)-
overtaking optimal trajectory-control pair (x, u) ∈ X(A,B, 0,∞) satisfying |x(0) −
xf | ≤ δ, the inequality

|x(t)− xf | ≤ ϵ

holds for all numbers t ≥ 0.

The next result shows the equivalence of the optimality criterions introduced
above.

Theorem 2.5 (Theorem 3.10 of [49]). Assume that (x, u) ∈ X(A,B, 0,∞). Then
the following conditions are equivalent:

(i) (x, u) is (f,A,B)-overtaking optimal; (ii) (x, u) is (f,A,B)-minimal and
(f,A,B)-good;

(iii) (x, u) is (f,A,B)-minimal and

lim
t→∞

x(t) = xf ;

(iv) (x, u) is (f,A,B)-minimal and lim inft→∞ |x(t)| <∞.

3. Structure of solutions in the regions close to the end points

We use the notation, definitions and assumptions introduced in Sections 1 and 2.
For every point z ∈ Rn denote by Λ(z) the collection of all (f,A,B)-overtaking

optimal pairs (x, u) ∈ X(A,B, 0,∞) such that x(0) = z, which is nonempty in view
of Theorem 2.2.

Let z ∈ Rn. Define

(3.1) πf (z) = lim inf
T→∞

[If (0, T, x, u)− Tµ(f)],

where (x, u) ∈ Λ(z). By Propositions 1.2 and 2.3, πf (z) is finite, well defined and
does not depend on the choice of (x, u) ∈ Λ(z). The following results were obtained
in Section 3.3 of [49].

Proposition 3.1 (Proposition 3.11 of [49]). 1. Let (x, u) ∈ X(A,B, 0,∞) be
(f,A,B)-good. Then

πf (x(0)) ≤ lim inf
T→∞

[If (0, T, x, u)− Tµ(f)]

and for each pair of numbers S > T ≥ 0,

(3.2) πf (x(T )) ≤ If (T, S, x, u)− (S − T )µ(f) + πf (x(S)).

2. Let S > T ≥ 0 and (x, u) ∈ X(A,B, T, S). Then (3.2) holds.

Proposition 3.2 (Proposition 3.12 of [49]). Let (x, u) ∈ X(A,B, 0,∞) be an
(f,A,B)-overtaking optimal pair. Then for each pair of numbers S > T ≥ 0,

πf (x(T )) = If (T, S, x, u)− (S − T )µ(f) + πf (x(S)).
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Proposition 3.3 (Propositions 3.13, 3.14, 3.16 and 3.17 of [49]). πf (xf ) = 0, the

function πf is continuous at xf , the function πf is lower semicontinuous and for

each M > 0 the set {x ∈ Rn : πf (x) ≤M} is bounded.

Proposition 3.4 (Proposition 3.15 of [49] ). Let (x, u) ∈ X(A,B, 0,∞) be (f,A,B)-
overtaking optimal. Then

πf (x(0)) = lim
T→∞

[If (0, T, x, u)− Tµ(f)].

Proposition 3.5 (Proposition 3.18 of [49]). Let (x, u) ∈ X(A,B, 0,∞) be (f,A,B)-
good pair such that for all T > 0,

If (0, T, x, u)− Tµ(f) = πf (x(0))− πf (x(T )).

Then (x, u) ∈ X(A,B, 0,∞) is (f,A,B)-overtaking optimal.

Consider a linear control system

(3.3) x′(t) = −Ax(t)−Bu(t),

x(0) = x0

which is also controllable. For the triplet (f,−A,−B) we use all the notation
and definitions introduced for the triplet (f,A,B). It is not difficult to see that
assumption (A1) holds for the triplet (f,−A,−B).

Let T1 ∈ R1, T2 > T1. A pair of an absolutely continuous function x : [T1, T2] →
Rn and a Lebesgue measurable function u : [T1, T2] → Rm is called an (−A,−B)-
trajectory-control pair if (3.3) holds for a. e. t ∈ [T1, T2]. Denote by
X(−A,−B, T1, T2) the set of all (−A−, B)-trajectory-control pairs x : [T1, T2] →
Rn, u : [T1, T2] → Rm.

Let T ∈ R1. Denote by X(−A,−B, T,∞) the set of all pairs of a. c. functions
x : [T,∞) → Rn and Lebesgue measurable functions u : [T,∞) → Rm satisfying
(3.3) for a. e. t ≥ T , which are called (−A,−B)-trajectory-control pairs.

Assume that S1 ∈ R1, S2 > S1 and that (x, u) ∈ X(A,B, S1, S2). For all t ∈
[S1, S2] set

(3.4) x̄(t) = x(S2 − t+ S1), ū(t) = u(S2 − t+ S1).

By (1.1) and (3.4) for a. e. t ∈ [S1, S2],

(3.5)

x̄′(t) = −x′(S2 − t+ S1)

= −Ax(S2 − t+ S1)−Bu(S2 − t+ S1)

= −Ax̄(t)−Bū(t),

(x̄, ū) ∈ X(−A,−B,S1, S2).

In view of (3.4),

(3.6)

∫ S2

S1

f(x̄(t), ū(t))dt =

∫ S2

S1

f(x(S2 − t+ S1), u(S2 − t+ S1))dt

=

∫ S2

S1

f(x(t), u(t))dt.
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For every pair of numbers T2 > T1 and every trajectory-control pair (x, u) ∈
X(−A,−B, T1, T2) define

(3.7) If (T1, T2, x, u) =

∫ T2

T1

f(x(t), u(t))dt.

For every pair of points y, z ∈ Rn and every positive number T define

σ−(f, y, z, T ) = inf{If (0, T, x, u) :

(3.8) (x, u) ∈ X(−A,−B, 0, T ) and x(0) = y, x(T ) = z},
σ−(f, y, T ) = inf{If (0, T, x, u) :

(3.9) (x, u) ∈ X(−A,−B, 0, T ) and x(0) = y},
σ̂−(f, z, T ) = inf{If (0, T, x, u) :

(3.10) (x, u) ∈ X(−A,−B, 0, T ) and x(T ) = z},

(3.11) σ−(f, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(−A,−B, 0, T )}.
The following auxiliary results were proved in Section 3.3 of [49].

Proposition 3.6. Let S2 > S1 be real numbers, M ≥ 0 and that (xi, ui) ∈
X(A,B, S1, S2), i = 1, 2. Then

If (S1, S2, x1, u1) ≥ If (S1, S2, x2, u2)−M

if and only if If (S1, S2, x̄1, ū1) ≥ If (S1, S2, x̄2, ū2)−M.

Proposition 3.7. Let S2 > S1 be real numbers and

(x, u) ∈ X(A,B, S1, S2).

Then the following assertions hold:

If (S1, S2, x, u) ≤ σ(f, S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ−(f, S2 − S1) +M ;

If (S1, S2, x, u) ≤ σ(f, x(S1), x(S2), S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ−(f, x̄(S1), x̄(S2), S2 − S1) +M ;

If (S1, S2, x, u) ≤ σ(f, x(S1), S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ̂−(f, x̄(S2), S2 − S1) +M ;

If (S1, S2, x, u) ≤ σ̂(f, x(S2), S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ−(f, x̄(S1), S2 − S1) +M.

Define

(3.12) µ−(f) = inf{lim inf
T→∞

T−1If (0, T, x, u) : (x, u) ∈ X(−A,−B, 0,∞)}.

Proposition 3.8. µ−(f) = µ(f) = f(xf , uf ).

Proposition 3.9. For any (f,−A,−B)-good trajectory-control pair (x, u) ∈
X(−A,−B, 0,∞),

lim
t→∞

x(t) = xf .
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Therefore (f,−A,−B) satisfies all the assumptions posed for the triplet (f,A,B)
and all the results stated above for the triplet (f,A,B) are also true for (f,−A,−B).

For every point z ∈ Rn, define

πf−(z) = lim inf
T→∞

[If (0, T, x, u)− Tµ(f)],

where (x, u) ∈ X(−A,−B, 0,∞) is an (f,−A,−B)-overtaking optimal pair such
that x(0) = z.

In Chapter 3 of [49] we prove the following two theorems which describe the
structure of solutions of problems (P2) and (P3) in the regions closed to the end
points.

Theorem 3.10. Let L0 > 0, ϵ ∈ (0, 1), M > 0. Then there exist δ > 0 and
L1 > L0 such that for each T ≥ L1 and each (x, u) ∈ X(A,B, 0, T ) which satisfies

|x(0)| ≤M, If (0, T, x, u) ≤ σ(f, x(0), T ) + δ

there exists an (f,−A,−B)-overtaking optimal pair

(x̄∗, ū∗) ∈ X(−A,−B, 0,∞)

such that
πf−(x̄∗(0)) = inf(πf−),

|x(T − t)− x̄∗(t)| ≤ ϵ for all t ∈ [0, L0].

Theorem 3.11. Let L0 > 0 and ϵ > 0. Then there exist δ > 0 and L1 > L0 such
that for each T ≥ L1 and each (x, u) ∈ X(A,B, 0, T ) which satisfies

If (0, T, x, u) ≤ σ(f, 0, T ) + δ

there exist an (f,A,B)-overtaking optimal pair (x∗, u∗) ∈ X(A,B, 0,∞) and an
(f,−A,−B)-overtaking optimal pair (x̄∗, ū∗) ∈ X(−A,−B, 0,∞) such that

πf (x∗(0)) = inf(πf ),

πf−(x̄∗(0)) = inf(πf−)

and for all t ∈ [0, L0],

|x(t)− x∗(t)| ≤ ϵ, |x(T − t)− x̄∗(t)| ≤ ϵ.

4. Spaces of integrands

We use the notation, definitions and assumptions introduced in Sections 1-3.
Recall that a0 > 0 and ψ : [0,∞) → [0,∞) is an increasing function such that

lim
t→∞

ψ(t) = ∞.

We continue to study the structure of optimal trajectories of the controllable linear
control system

x′ = Ax+Bu,

where A and B are given matrices of dimensions n×n and n×m, with the continuous
integrand f : Rn ×Rm → R1 which satisfies assumptions (A1)-(A3) and (1.6).

Denote by M the set of all borelian functions g : Rn+m+1 → R1 which satisfy

g(t, x, u) ≥ max{ψ(|x|), ψ(|u|),
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(4.1) ψ([|Ax+Bu| − a0|x|]+)[|Ax+Bu| − a0|x|]+} − a0

for each (t, x, u) ∈ Rn+m+1.
We equip the set M with the uniformity which is determined by the following

base:

E(N, ϵ, λ) = {(f, g) ∈ M×M : |f(t, x, u)− g(t, x, u)| ≤ ϵ

for each (t, x, u) ∈ Rn+m+1 satisfying |x|, |u| ≤ N}
∩{(f, g) ∈ M×M : (|f(t, x, u)|+ 1)(|g(t, x, u)|+ 1)−1 ∈ [λ−1, λ]

(4.2) for each (t, x, u) ∈ Rn+m+1 satisfying |x| ≤ N},
where N > 0, ϵ > 0 and λ > 1.

It is clear that the uniform space M is Hausdorff and has a countable base.
Therefore M is metrizable. It is not difficult to show that the uniform space M is
complete.

Denote by Mb the set of all functions g ∈ M which are bounded on bounded
subsets of Rn+m+1. Clearly, Mb is a closed subset of M. We consider the topological
subspace Mb ⊂ M equipped with the relative topology.

For each a pair of numbers T1 ∈ R1, T2 > T1, each (x, u) ∈ X(A,B, T1, T2) and
each borelian bounded from below function g : [T1, T2]×Rn ×Rm → R1 set

Ig(T1, T2, x, u) =

∫ T2

T1

g(t, x(t), u(t))dt.

We consider the following optimal control problems

Ig(T1, T2, x, u) → min,

(x, u) ∈ X(A,B, T1, T2) such that x(T1) = y, x(T2) = z,

Ig(T1, T2, x, u) → min,

(x, u) ∈ X(A,B, T1, T2) such that x(T1) = y,

Ig(T1, T2, x, u) → min,

(x, u) ∈ X(A,B, T1, T2),

where y, z ∈ Rn, ∞ > T2 > T1 > −∞ and g ∈ M.
Let y, z ∈ Rn, T1 ∈ R1, T2 > T1 and g : [T1, T2] × Rn × Rm → R1 be a borelian

bounded from below function. Set

σ(g, y, z, T1, T2) = inf{Ig(T1, T2, x, u) :

(4.3) (x, u) ∈ X(A,B, T1, T2) and x(T1) = y, x(T2) = z},

σ(g, y, T1, T2) = inf{Ig(T1, T2, x, u) :

(4.4) (x, u) ∈ X(A,B, T1, T2) and x(T1) = y},

σ̂(g, z, T1, T2) = inf{Ig(T1, T2, x, u) :

(4.5) (x, u) ∈ X(A,B, T1, T2) and x(T2) = z},

(4.6) σ(g, T1, T2) = inf{Ig(T1, T2, x, u) : (x, u) ∈ X(A,B, T1, T2)}.
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Recall that f : Rn ×Rm → R1 is a continuous function which satisfies (1.6) and
assumptions (A1), (A2) and (A3). For each (t, x, u) ∈ Rn+m+1 set

(4.7) F (t, x, u) = f(x, u).

The following stability results were obtained in Chapter 4 of [49]. They show that
the turnpike phenomenon, for approximate solutions on large intervals, is stable
under small perturbations of the objective function (integrand) f .

Theorem 4.1. Let ϵ,M > 0. Then there exist L0 ≥ 1 and δ0 > 0 such that for each
L1 ≥ L0 there exists a neighborhood U of F in Mb such that the following assertion
holds.

Assume that T > 2L1, g ∈ U , (x, u) ∈ X(A,B, 0, T ) and that a finite sequence of
numbers {Si}qi=0 satisfies

S0 = 0, Si+1 − Si ∈ [L0, L1], i = 0, . . . , q − 1, Sq ∈ (T − L1, T ],

Ig(Si, Si+1, x, u) ≤ (Si+1 − Si)µ(f) +M

for each integer i ∈ [0, q − 1],

Ig(Si, Si+2, x, u) ≤ σ(g, x(Si), x(Si+2), Si, Si+2) + δ0

for each nonnegative integer i ≤ q − 2 and

Ig(Sq−2, T, x, u) ≤ σ(g, x(Sq−2), x(T ), Sq−2, T ) + δ0.

Then there exist p1, p2 ∈ [0, T ] such that p1 ≤ p2, p1 ≤ 2L0, p2 > T − 2L1 and that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .

Theorem 4.2. Let ϵ ∈ (0, 1), M0,M1 > 0. Then there exist L > 0, δ ∈ (0, ϵ) and
a neighborhood U of F in Mb such that for each T > 2L, each g ∈ U and each
(x, u) ∈ X(A,B, 0, T ) which satisfies for each S ∈ [0, T − L],

Ig(S, S + L, x, u) ≤ σ(g, x(S), x(S + L), S, S + L) + δ

and satisfies at least one of the following conditions below

(a) |x(0)|, |x(T )| ≤M0,

Ig(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) +M1;

(b) |x(0)| ≤M0,

Ig(0, T, x, u) ≤ σ(g, x(0), 0, T ) +M1;

(c) Ig(0, T, x, u) ≤ σ(g, 0, T ) +M1

there exist p1 ∈ [0, L], p2 ∈ [T − L, T ] such that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .

Theorem 4.3. Let ϵ ∈ (0, 1), M0,M1 > 0. Then there exist l > 0, an integer
Q ≥ 1 and a neighborhood U of F in Mb such that for each T > lQ, each g ∈ U and
each (x, u) ∈ X(A,B, 0, T ) which satisfies at least one of the following conditions
below
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(a) |x(0)|, |x(T )| ≤M0,

Ig(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) +M1;

(b) |x(0)| ≤M0,

Ig(0, T, x, u) ≤ σ(g, x(0), 0, T ) +M1;

(c) Ig(0, T, x, u) ≤ σ(g, 0, T ) +M1

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}
q
i=1 ⊂ [0, T ]

such that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

In Chapter 4 of [49] we also prove the following two stability results. They show
that the convergence of approximate solutions on large intervals, in the regions
close to the end points, is stable under small perturbations of the objective function
(integrand) f .

Theorem 4.4. Let L0 > 0, ϵ ∈ (0, 1), M > 0. Then there exist δ > 0, a neighbor-
hood U of F in Mb and L1 > L0 such that for each T ≥ L1, each g ∈ U and each
(x, u) ∈ X(A,B, 0, T ) which satisfies

|x(0)| ≤M, Ig(0, T, x, u) ≤ σ(g, x(0), 0, T ) + δ

there exists an (f,−A,−B)-overtaking optimal pair

(x∗, u∗) ∈ X(−A,−B, 0,∞)

such that

πf−(x∗(0)) = inf(πf−),

|x(T − t)− x∗(t)| ≤ ϵ for all t ∈ [0, L0].

Theorem 4.5. Let L0 > 0, ϵ ∈ (0, 1). Then there exist δ > 0, a neighborhood
U of F in Mb and L1 > L0 such that for each T ≥ L1, each g ∈ U and each
(x, u) ∈ X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) ≤ σ(g, 0, T ) + δ

there exist an (f,A,B)-overtaking optimal pair (x∗, u∗) ∈ X(A,B, 0,∞) and an
(f,−A,−B)-overtaking optimal pair (x̄∗, ū∗) ∈ X(−A,−B, 0,∞) such that

πf (x∗(0)) = inf(πf ),

πf−(x̄∗(0)) = inf(πf−)

and for all t ∈ [0, L0],

|x(t)− x∗(t)| ≤ ϵ, |x(T − t)− x̄∗(t)| ≤ ϵ.
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5. Bolza optimal control problems

We use the notation, definitions and assumptions introduced in Sections 1-4.
Recall that f : Rn ×Rm → R1 is a continuous function which satisfies assumptions
(A1)-(A3) and (1.6).

Let a1 > 0. Denote by A the set of all lower semicontinuous functions h :
Rn ×Rn → R1 which are bounded on bounded subsets of Rn ×Rn and satisfy

(5.1) h(z1, z2) ≥ −a1 for all z1, z2 ∈ Rn.

We equip the set A with the uniformity which is determined by the following base:

E(N, ϵ) = {(h1, h2) ∈ A× A : |h1(z)− h2(z)| ≤ ϵ

(5.2) for each z ∈ Rn ×Rn satisfying |z| ≤ N},
where N > 0, ϵ > 0. Clearly, the uniform space A is metrizable and complete.

We consider the following optimal control problem

Ig(T1, T2, x, u) + h(x(T1), x(T2)) → min,

(x, u) ∈ X(A,B, T1, T2),

where ∞ > T2 > T1 > −∞, g ∈ M and h ∈ A.
Let T1 ∈ R1, T2 > T1, g : [T1, T2]× Rn × Rm → R1 be a borelian bounded from

below function and h ∈ A. Set

σ(g, h, T1, T2) = inf{Ig(T1, T2, x, u) + h(x(T1), x(T2)) :

(x, u) ∈ X(A,B, T1, T2)}.
In view of Proposition 3.3, there exists M∗ > 0 such that

{x ∈ Rn : πf (x) = inf(πf )} ∪ {x ∈ Rn : πf−(x) = inf(πf−)}

(5.3) ⊂ {x ∈ Rn : |x| ≤M∗}.
We prove the following turnpike results for the Bolza optimal control problems
which show that the turnpike phenomenon is stable under small perturbations of
the objective functions.

Theorem 5.1. Let ϵ > 0, M1,M2 > 0. Then there exist l > 0, an integer Q ≥ 1
and a neighborhood U of F in Mb such that for each T > lQ, each g ∈ U , each
h ∈ A which satisfies

|h(z1, z2)| ≤M1

for all z1, z2 ∈ Rn satisfying |z1|, |z2| ≤M∗ + 1 and each

(x, u) ∈ X(A,B, 0, T )

which satisfies

Ig(0, T, x, u) + h(x(0), x(T )) ≤ σ(g, h, 0, T ) +M2

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}qi=1 ⊂ [0, T ] such
that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,
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bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

Theorem 5.2. Let ϵ ∈ (0, 1), M1,M2 > 0. Then there exist L > 0, δ ∈ (0, ϵ) and
a neighborhood U of F in Mb such that for each T > 2L, each g ∈ U , each h ∈ A
which satisfies

|h(z1, z2)| ≤M1

for all z1, z2 ∈ Rn satisfying

|z1|, |z2| ≤M∗ + 1

and each (x, u) ∈ X(A,B, 0, T ) which satisfies for each S ∈ [0, T − L],

Ig(S, S + L, x, u) ≤ σ(g, x(S), x(S + L), S, S + L) + δ

and satisfies

Ig(0, T, x, u) + h(x(0), x(T )) ≤ σ(g, h, 0, T ) +M2

there exist p1 ∈ [0, L], p2 ∈ [T − L, T ] such that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .

In this paper we also prove the following stability result for our Bolza optimal
control problems. This result shows that the convergence of approximate solutions
on large intervals, in the regions close to the end points, is stable under small
perturbations of the objective functions.

Theorem 5.3. Let L0 > 0, ϵ ∈ (0, 1) and h ∈ A. Then there exist δ > 0, a
neighborhood U of F in Mb, a neighborhood V of h in A and L1 > L0 such that for
each T ≥ L1, each g ∈ U , each ξ ∈ V and each (x, u) ∈ X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) + ξ(x(0), x(T )) ≤ σ(g, ξ, 0, T ) + δ

there exist an (f,A,B)-overtaking optimal pair (x∗1, u
∗
1) ∈ X(A,B, 0,∞) and an

(f,−A,−B)-overtaking optimal pair (x∗2, u
∗
2) ∈ X(−A,−B, 0,∞) such that

πf (x∗1(0)) + πf−(x
∗
2(0)) + h(x∗1(0), x

∗
2(0))

≤ πf (y1) + πf−(y2) + h(y1, y2)

for all y1, y2 ∈ Rn and that for all t ∈ [0, L0],

|x(t)− x∗1(t)| ≤ ϵ, |x(T − t)− x∗2(t)| ≤ ϵ.

6. Auxiliary results

In the sequel we use the following auxiliary results.

Proposition 6.1 (Proposition 3.27 of [49]). Let T > 0 and y, z ∈ Rn. Then there
exists (x, u) ∈ X(A,B, 0, T ) such that

x(0) = y, x(T ) = z,

If (0, T, x, u) = σ(f, y, z, T ).
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Proposition 6.2 (Proposition 4.5 of [47], Proposition 3.28 of [49]). Let M, τ > 0.
Then

sup{|σ(f, y, z, τ)| : y, z ∈ Rn, |y|, |z| ≤M} <∞.

Proposition 6.3 (Proposition 2.9 of [47]). Let g ∈ M, 0 < c1 < c2 and D, ϵ > 0.
Then there exists a neighborhood U of g in M such that for each h ∈ U , each T1 ∈ R1,
each T2 ∈ [T1 + c1, T1 + c2] and each trajectory-control pair (x, u) ∈ X(A,B, T1, T2)
which satisfies

min{Ig(T1, T2, x, u), Ih(T1, T2, x, u)} ≤ D

the inequality
|Ig(T1, T2, x, u)− Ih(T1, T2, x, u)| ≤ ϵ

holds.

Proposition 6.4 (Proposition 4.2 of [47]). Let T2 > T1 be real numbers,
{(xj , uj)}∞j=1 ⊂ X(A,B, T1, T2) and let the sequence {If (T1, T2, xj , uj)}∞j=1 be

bounded. Then there exist a subsequence {(xjk , ujk)}∞k=1 and (x, u) ∈ X(A,B, T1, T2)
such that

xjk(t) → x(t) as k → ∞ uniformly in [T1, T2],

ujk → u as k → ∞ weakly in L1(Rm; (T1, T2)),

If (T1, T2, x, u) ≤ lim inf
k→∞

If (T1, T2, xjk , ujk).

Proposition 6.5 (Proposition 4.6 of [47]). Let M, τ, ϵ > 0. Then there exists a
number δ > 0 such that for each y1, y2, z1, z2 ∈ Rn satisfying

|yi|, |zi| ≤M, i = 1, 2, |y1 − y2|, |z1 − z2| ≤ δ

the following relation holds:

|σ(f, y1, z1, τ)− σ(f, y2, z2, τ)| ≤ ϵ.

Proposition 6.6 (Proposition 2.7 of [47]). LetM1 > 0 and 0 < τ0 < τ1. Then there
exists a positive number M2 such that for each T1 ∈ R1, each T2 ∈ [T1 + τ0, T1 + τ1]
and each (x, u) ∈ X(A,B, T1, T2) satisfying

If (T1, T2, x, u) ≤M1

the inequality |x(t)| ≤M2 holds for all t ∈ [T1, T2].

7. Proof of Theorem 5.1

By Theorem 4.5, there exist δ ∈ (0, 1), L1 > 1 and a neighborhood U1 of F in
Mb, such that the following property holds:

(P1) for each T ≥ L1, each g ∈ U1 and each (x, u) ∈ X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) ≤ σ(g, 0, T ) + δ

there exist an (f,A,B)-overtaking optimal pair (x∗, u∗) ∈ X(A,B, 0,∞) and an
(f,−A,−B)-overtaking optimal pair (x̄∗, ū∗) ∈ X(−A,−B, 0,∞) such that

πf (x∗(0)) = inf(πf ), πf−(x̄∗(0)) = inf(πf−)

and that for all t ∈ [0, 1],

|x(t)− x∗(t)| ≤ 1, |x(T − t)− x̄∗(t)| ≤ 1.
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By Theorem 4.3, there exist l > L1, an integer Q ≥ 1 and a neighborhood U ⊂ U1

of F in Mb such that the following property holds:
(P2) for each T > lQ, each g ∈ U and each (x, u) ∈ X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) ≤ σ(g, 0, T ) +M1 +M2 + a1 + 1

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}
q
i=1 ⊂ [0, T ] such

that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

Assume that

(7.1) T > lQ, g ∈ U , h ∈ A,

(7.2) |h(z1, z2)| ≤M1 for all z1, z2 ∈ Rn satisfying |z1|, |z2| ≤M∗ + 1,

and (x, u) ∈ X(A,B, 0, T ) satisfies

(7.3) Ig(0, T, x, u) + h(x(0), x(T )) ≤ σ(g, h, 0, T ) +M2.

By (4.1), there exists (y, v) ∈ X(A,B, 0, T ) such that

(7.4) Ig(0, T, y, v) ≤ σ(g, 0, T ) + δ.

Property (P1), (7.1) and (7.4) imply that there exist z1, z2 ∈ Rn such that

(7.5) πf (z1) = inf(πf ), πf−(z2) = inf(πf−),

(7.6) |z1 − y(0)|, |z2 − y(T )| ≤ 1.

In view of (5.3), (7.5) and (7.6),

(7.7) |y(0)|, |y(T )| ≤M∗ + 1.

It follows from (7.2) and (7.7) that

(7.8) h(y(0), y(T )) ≤M1.

It follows from (5.1), (7.3), (7.4) and (7.8)

Ig(0, T, x, u)− a1 ≤ Ig(0, T, x, u) + h(x(0), x(T ))

≤ Ig(0, T, y, v) + h(y(0), y(T )) +M2

≤ Ig(0, T, y, v) +M1 +M2

≤ σ(g, 0, T ) + 1 +M1 +M2,

(7.9) Ig(0, T, x, u) ≤ σ(g, 0, T ) + 1 +M1 +M2 + a1.

In view of (7.1), (7.9) and property (P2), there exist strictly increasing sequences
of numbers {ai}qi=1, {bi}

q
i=1 ⊂ [0, T ] such that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].
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This completes the proof of Theorem 5.1.

8. Proof of Theorem 5.2

By Theorem 4.2, there exist L1 > 0, δ ∈ (0, ϵ) and a neighborhood U1 of F in
Mb such that the following property holds:

(P3) For each T > 2L1, each g ∈ U1 and each (x, u) ∈ X(A,B, 0, T ) which
satisfies for each S ∈ [0, T − L1],

Ig(S, S + L1, x, u) ≤ σ(g, x(S), x(S + L1), S, S + L1) + δ

and satisfies
Ig(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) +M2,

|x(0)− xf | ≤ δ, |x(T )− xf | ≤ δ

we have
|x(t)− xf | ≤ ϵ for all t ∈ [0, T ].

By Theorem 5.1, there exist l > 0, an integer Q ≥ 1 and a neighborhood U ⊂ U1

of F in Mb such that the following property holds:
(P4) for each T > lQ, each g ∈ U , each h ∈ A which satisfies

|h(z1, z2)| ≤M1 for all z1, z2 ∈ Rn satisfying |z1|, |z2| ≤M∗ + 1

and each (x, u) ∈ X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) + h(x(0), x(T )) ≤ σ(g, h, 0, T ) +M2

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}
q
i=1 ⊂ [0, T ] such

that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ δ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

Fix

(8.1) L > 2L1 + 4lQ.

Assume that

(8.2) T > 2L, g ∈ U , h ∈ A

satisfy

(8.3) |h(z1, z2)| ≤M1 for all z1, z2 ∈ Rn satisfying |z1|, |z2| ≤M∗ + 1

and (x, u) ∈ X(A,B, 0, T ) satisfy for each S ∈ [0, T − L],

(8.4) Ig(S, S + L, x, u) ≤ σ(g, x(S), x(S + L), S, S + L) + δ

and

(8.5) Ig(0, T, x, u) + h(x(0), x(T )) ≤ σ(g, h, 0, T ) +M2.

By (8.1), (8.2), (8.3), (8.5) and property (P4), there exist τ1, τ2 ∈ [0, T ] such that

(8.6) τ1 ∈ [0, Ql], τ2 ∈ [T −Ql, T ],

(8.7) |x(τi)− xf | ≤ δ, i = 1, 2.



170 ALEXANDER J. ZASLAVSKI

If |x(0) − xf | ≤ δ, we may assume that τ1 = 0 and if |x(T ) − xf | ≤ δ, we may
assume that τ2 = T . It follows from (8.1), (8.2), (8.4)-(8.7) and property (P3) that

|x(t)− xf | ≤ ϵ, t ∈ [τ1, τ2].

Theorem 5.2 is proved.

9. Auxiliary results for Theorem 5.3

The following result easily follows from Proposition 3.3.

Lemma 9.1. Let h ∈ A. Then the function

πf (z1) + πf−(z2) + h(z1, z2), (z1, z2) ∈ Rn ×Rn

is lower semicontinuous and bounded from below, for every number M the set

{(z1, z2) ∈ Rn ×Rn : πf (z1) + πf−(z2) + h(z1, z2) ≤M}
is bounded and there exist z∗1 , z

∗
2 ∈ Rn such that

πf (z∗1) + πf−(z
∗
2) + h(z∗1 , z

∗
2) ≤ πf (z1) + πf−(z2) + h(z1, z2)

for all (z1, z2) ∈ Rn ×Rn.

For each h ∈ A define

(9.1) ϕh(z1, z2) = πf (z1) + πf−(z2) + h(z1, z2) for all (z1, z2) ∈ Rn ×Rn.

Lemma 9.2. Let h ∈ A, S0 > 0, ϵ ∈ (0, 1). Then there exists δ ∈ (0, ϵ) such
that for each (x1, u1) ∈ X(A,B, 0, S0) and each (x2, u2) ∈ X(−A,−B, 0, S0) which
satisfy

(9.2) ϕh(x1(0), x2(0)) ≤ inf(ϕh) + δ,

(9.3) If (0, S0, x1, u1)− S0µ(f)− πf (x1(0)) + πf (x1(S0)) ≤ δ,

(9.4) If (0, S0, x2, u2)− S0µ(f)− πf−(x2(0)) + πf−(x2(S0)) ≤ δ

there exist an (f,A,B)-overtaking optimal pair (x∗1, u
∗
1) ∈ X(A,B, 0,∞) and an

(f,−A,−B)-overtaking optimal pair (x∗2, u
∗
2) ∈ X(−A,−B, 0,∞) such that

(9.5) ϕh(x
∗
1(0), x

∗
2(0)) = inf(ϕh)

and that for all t ∈ [0, S0],

|x1(t)− x∗1(t)| ≤ ϵ, |x2(t)− x∗2(t)| ≤ ϵ.

Proof. Assume that the lemma does not hold. Then there exist a sequence {δk}∞k=1 ⊂
(0, 1] and sequences

{(xk,1, uk,1)}∞k=1 ⊂ X(A,B, 0, S0), {(xk,2, uk,2)}∞k=1 ⊂ X(−A,−B, 0, S0)
such that

(9.6) lim
k→∞

δk = 0,

for all integer k ≥ 1,

(9.7) ϕh(xk,1(0), xk,2(0)) ≤ inf(ϕh) + δk,
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(9.8) If (0, S0, xk,1, uk,1)− S0µ(f)− πf (xk,1(0)) + πf (xk,1(S0)) ≤ δk,

(9.9) If (0, S0, xk,2, uk,2)− S0µ(f)− πf−(xk,2(0)) + πf−(xk,2(S0)) ≤ δk

and that for each integer k ≥ 1, each (f,A,B)-overtaking optimal pair (ξ1, η1) ∈
X(A,B, 0,∞) and each (f,−A,−B)-overtaking optimal pair

(ξ2, η2) ∈ X(−A,−B, 0,∞)

satisfying

(9.10) ϕh(ξ1(0), ξ2(0)) = inf(ϕh)

we have

(9.11) sup{|ξ1(t)− xk,1(t)|, |ξ2(t)− xk,2(t)| : t ∈ [0, S0]} > ϵ.

In view of (5.1), (9.1), (9.7), Proposition 3.3 and Lemma 9.1, the sequences

{πf (xk,1(0))}∞k=1,

{πf−(xk,2(0))}∞k=1

and
{h(xk,1(0), xk,2(0))}∞k=1

are bounded. Together with Proposition 3.3 this implies that the sequences
{xk,1(0)}∞k=1, {xk,2(0)}∞k=1 are bounded. Proposition 3.3, (4.1), (9.6), (9.8) and
(9.9) imply that the sequences

{If (0, S0, xk,1, uk,1)}∞k=1, {If (0, S0, xk,2, uk,2)}∞k=1

are bounded. By Proposition 6.4, extracting a subsequence and re-indexing if
necessary, we may assume without loss of generality that there exist (x1, u1) ∈
X(A,B, 0, S0) and (x2, u2) ∈ X(−A,−B, 0, S0) such that for i = 1, 2,

(9.12) xk,i(t) → xi(t) as k → ∞ uniformly on [0, S0],

(9.13) If (0, S0, xi, ui) ≤ lim inf
k→∞

If (0, S0, xk,i, uk,i).

It follows from (9.7), (9.12) and the lower semicontinuity of πf , πf−, h, ϕh that

πf (x1(0)) ≤ lim inf
k→∞

πf (xk,1(0)),

(9.14) πf−(x2(0)) ≤ lim inf
k→∞

πf−(xk,2(0)),

(9.15) h(x1(0), x2(0)) ≤ lim inf
k→∞

h(xk,1(0), xk,2(0)),

(9.16) ϕh(x1(0), x2(0)) ≤ lim inf
k→∞

ϕh(xk,1(0), xk,2(0)) = inf(ϕh).

In view of (9.14)-(9.16),

πf (x1(0)) = lim
k→∞

πf (xk,1(0)),

πf−(x2(0)) = lim
k→∞

πf−(xk,2(0)),
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(9.17) h(x1(0), x2(0)) = lim
k→∞

h(xk,1(0), (xk,2(0)).

By (9.12) and the lower semicontinuity of the functions πf , πf−,

πf (x1(S0)) ≤ lim inf
k→∞

πf (xk,1(S0)),

(9.18) πf−(x2(S0)) ≤ lim inf
k→∞

πf−(xk,2(S0)).

It follows from (9.6), (9.8), (9.13), (9.17) and (9.18) that

(9.19)

If (0, S0, x1, u1)− S0µ(f)− πf (x1(0)) + πf (x1(S0))

≤ lim inf
k→∞

[If (0, S0, xk,1, uk,1)− S0µ(f)]

− lim
k→∞

πf (xk,1(0)) + lim inf
k→∞

πf (xk,1(S0))

≤ lim inf
k→∞

[If (0, S0, xk,1, uk,1)− S0µ(f)− πf (xk,1(0)) + πf (xk,1(S0))]

≤ lim
k→∞

δk = 0.

It follows from (9.6), (9.9), (9.13), (9.17) and (9.18) that

(9.20)

If (0, S0, x2, u2)− S0µ(f)− πf−(x2(0)) + πf−(x2(S0))

≤ lim inf
k→∞

[If (0, S0, xk,2, uk,2)− S0µ(f)]

− lim
k→∞

πf−(xk,2(0)) + lim inf
k→∞

πf−(xk,2(S0))

≤ lim inf
k→∞

[If (0, S0, xk,2, uk,2)− S0µ(f)

− πf−(xk,2(0)) + πf−(xk,2(S0))]

≤ lim
k→∞

δk = 0.

In view of (9.19), (9.20) and Proposition 3.1,

(9.21) If (0, S0, x1, u1)− S0µ(f)− πf (x1(0)) + πf (x1(S0)) = 0,

(9.22) If (0, S0, x2, u2)− S0µ(f)− πf−(x2(0)) + πf−(x2(S0)) = 0,

Theorem 2.2 implies that there exists an (f,A,B)-overtaking optimal pair (x̃1, ũ1) ∈
X(A,B, 0,∞) such that

(9.23) x̃1(0) = x1(S0)

and an (f,−A,−B)-overtaking optimal pair (x̃2, ũ2) ∈ X(−A,−B, 0,∞) such that

(9.24) x̃2(0) = x2(S0)

For all t > S0 and i = 1, 2 set

(9.25) xi(t) = x̃i(t− S0), ui(t) = ũi(t− S0).

It is not difficult to see that the pair (x1, u1) ∈ X(A,B, 0,∞) is an (f,A,B)-good
pair and that the pair (x2, u2) ∈ X(−A,−B, 0,∞) is an (f,−A,−B)-good pair. By
(9.21)-(9.25) and Propositions 3.1 and 3.2, for all S > 0,

If (0, S, x1, u1)− Sµ(f)− πf (x1(0)) + πf (x1(S)) = 0,
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If (0, S, x2, u2)− Sµ(f)− πf−(x2(0)) + πf−(x2(S)) = 0.

Combined with Proposition 3.5 and (9.16) this implies that

(x1, u1) ∈ X(A,B, 0,∞)

is an (f,A,B)-overtaking optimal pair and that

(x2, u2) ∈ X(−A,−B, 0,∞)

is an (f,−A,−B)-overtaking optimal pair such that

ϕh(x1(0), x2(0)) = inf(ϕh).

By (9.12), for all sufficiently large natural numbers k and i = 1, 2,

|xk,i(t)− xi(t)| ≤ ϵ/2 for all t ∈ [0, S0].

This contradicts (9.11). The contradiction we have reached proves Lemma 9.2. □

10. Proof of Theorem 5.3

By Lemma 9.2, there exists δ0 ∈ (0, ϵ) such that the following property holds:
(P5) for each (x1, u1) ∈ X(A,B, 0, L0) and each (x2, u2) ∈ X(A,B, 0, L0) which

satisfy
ϕh(x1(0), x2(0)) ≤ inf(ϕh) + 4δ0,

If (0, L0, x1, u1)− L0µ(f)− πf (x1(0)) + πf (x1(L0)) ≤ 4δ0,

If (0, L0, x2, u2)− L0µ(f)− πf−(x2(0)) + πf−(x2(L0)) ≤ 4δ0

there exist an (f,A,B)-overtaking optimal pair (x∗1, u
∗
1) ∈ X(A,B, 0,∞) and an

(f,−A,−B)-overtaking optimal pair (x∗2, u
∗
2) ∈ X(−A,−B, 0,∞) such that

ϕh(x
∗
1(0), x

∗
2(0)) = inf(ϕh)

and that for all t ∈ [0, L0], i = 1, 2,

|xi(t)− x∗i (t)| ≤ ϵ.

In view of Propositions 3.3 and 6.5, there exists δ1 ∈ (0, δ0/4) such that:
for each z ∈ Rn satisfying |z − xf | ≤ 2δ1,

(10.1) |πf−(z)| = |πf−(z)− πf−(xf )| ≤ δ0/8,

(10.2) |πf (z)| = |πf (z)− πf (xf )| ≤ δ0/8;

for each y, z ∈ Rn satisfying

|y − xf | ≤ 2δ1, |z − xf | ≤ 2δ1

we have

(10.3) |σ(f, y, z, 1)− µ(f)| ≤ δ0/8.

By Theorem 5.2, there exist l0 > 0, δ2 ∈ (0, δ1/8), a neighborhood U1 of F in Mb

and a neighborhood V1 of h in A such that the following property holds:
(P6) for each T > 2l0, each g ∈ U1, each ξ ∈ V1 and each

(x, u) ∈ X(A,B, 0, T )

such that
Ig(0, T, x, u) + ξ(x(0), x(T )) ≤ σ(g, ξ, 0, T ) + δ2
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we have
|x(t)− xf | ≤ δ1 for all t ∈ [l0, T − l0].

By Theorem 2.2 and Lemma 9.1, there exist an (f,A,B)-overtaking optimal pair

(x∗, u∗) ∈ X(A,B, 0,∞)

and an (f,−A,−B)-overtaking optimal pair

(x̄∗, ū∗) ∈ X(−A,−B, 0,∞)

such that

(10.4) ϕh(x∗(0), x̄∗(0)) = inf(ϕh).

Assumption (A3) implies that there exists l1 > 0 such that for all t ≥ l1,

(10.5) |x̄∗(t)− xf | ≤ δ1, |x∗(t)− xf | ≤ δ1.

By Proposition 6.3, there exists a neighborhood U ⊂ U1 of F in Mb such that
the following property holds:

(P7) for each g ∈ U , each T1 ∈ R1, each T2 ∈ [T1 + 1, T1 + 2L0 + 2l0 + 2l1 + 4]
and each trajectory-control pair (x, u) ∈ X(A,B, T1, T2) which satisfies

min{If (T1, T2, x, u), Ig(T1, T2, x, u)}
≤ (|µ(f)|+ 2)(2L0 + 2l0 + 2l1 + 6) + 8

+ |πf−(x̄∗(0))|+ |πf (x∗(0))|+ |h(x∗(0), x̄∗(0))|
+ a1 + a0(L0 + l0 + l1 + 3)

the inequality

|If (T1, T2, x, u)− Ig(T1, T2, x, u)| ≤ δ2/8

holds.
By Proposition 6.6, there exists ∆0 > 0 such that the following property holds:
(P8) for each T1 ∈ R1, each T2 ∈ [T1 + 1, T1 + 2L0 + 2l0 + 2l1 + 8] and each

(x, u) ∈ X(A,B, T1, T2) satisfying

If (T1, T2, x, u) ≤ (|µ(f)|+ 2)(2L0 + 2l0 + 2l1 + 6)

+ 2|πf−(x̄∗(0))|+ 2|πf (x∗(0))|
+ |h(x∗(0), x̄∗(0))|+ a1 + a0(L0 + l0 + l1 + 3) + 46

we have |x(t)| ≤ ∆0 for all t ∈ [T1, T2].
Let

V = {ξ ∈ V1 : |ξ(z1, z2)− h(z1, z2)| ≤ δ1/16

(10.6) for all z1, z2 ∈ Rn satisfying |zi| ≤ 2 + ∆0 + |x∗(0)|+ |x̄∗(0)|, i = 1, 2}.
Choose δ > 0 and L1 > 0 such that

(10.7) δ ≤ 4−1δ2(L0 + l0 + l1 + 8)−1,

(10.8) L1 > 4L0 + 4l0 + 4l1 + 8.

Assume that

(10.9) T ≥ L1, g ∈ U , ξ ∈ V, (x, u) ∈ X(A,B, 0, T ),
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(10.10) Ig(0, T, x, u) + ξ(x(0), x(T )) ≤ σ(g, ξ, 0, T ) + δ.

It follows from property (P6) and (10.7)-(10.10) that

(10.11) |x(t)− xf | ≤ δ1 for all t ∈ [l0, T − l0].

By Proposition 6.1, there exists a trajectory-control pair

(x̃, ũ) ∈ X(A,B, 0, T )

such that
x̃(t) = x∗(t), ũ(t) = u∗(t), t ∈ [0, L0 + l0 + l1 + 3],

x̃(t) = x(t), ũ(t) = u(t), t ∈ [L0 + l0 + l1 + 4, T − l0 − l1 − L0 − 4],

x̃(t) = x̄∗(T − t), ũ(t) = ū∗(T − t), t ∈ [T − l0 − l1 − L0 − 3, T ],

If (l0 + l1 + L0 + 3, l0 + l1 + L0 + 4, x̃, ũ)

= σ(f, x∗(l0 + l1 + L0 + 3), x(l0 + l1 + L0 + 4), 1),

If (T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x̃, ũ)

(10.12) = σ(f, x(T − l0 − l1 − L0 − 4), x̄∗(l0 + l1 + L0 + 3), 1).

By (10.5), (10.8), (10.9), (10.11) and (10.12),

(10.13) |x̃(L0 + l0 + l1 + 3)− xf | = |x∗(L0 + l0 + l1 + 3)− xf | ≤ δ1,

(10.14) |x̃(L0 + l0 + l1 + 4)− xf | = |x(L0 + l0 + l1 + 4)− xf | ≤ δ1,

(10.15) |x̃(T − L0 − l0 − l1 − 4)− xf | = |x(T − L0 − l0 − l1 − 4)− xf | ≤ δ1,

(10.16) |x̃(T − L0 − l0 − l1 − 3)− xf | = |x̄∗(L0 + l0 + l1 + 3)− xf | ≤ δ1.

In view of (10.3) and (10.12)-(10.16),

(10.17) |If (L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x̃, ũ)− µ(f)| ≤ δ0/8,

(10.18) |If (T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x̃, ũ)− µ(f)| ≤ δ0/8.

Property (P7), (10.9), (10.17) and (10.18) imply that

(10.19)

|Ig(L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x̃, ũ)− µ(f)|
≤ |Ig(L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x̃, ũ)

− If (L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x̃, ũ)|

+ |If (L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x̃, ũ)− µ(f)|
≤ δ2/8 + δ0/8

and

(10.20)

|Ig(T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x̃, ũ)− µ(f)|
≤ |Ig(T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x̃, ũ)

− If (T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x̃, ũ)|

+ |If (T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x̃, ũ)− µ(f)|
≤ δ2/8 + δ0/8.
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By (10.3), (10.8), (10.9) and (10.11),

(10.21)

If (L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x, u)

≥ σ(f, x(L0 + l0 + l1 + 3), x(L0 + l0 + l1 + 4), 1)

≥ µ(f)− δ0/8

and

If (T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x, u)

(10.22) ≥ σ(f, x(T − L0 − l0 − l1 − 4), x(T − L0 − l0 − l1 − 3), 1) ≥ µ(f)− δ0/8.

We show that

(10.23) Ig(L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x, u) ≥ µ(f)− δ0/2.

Assume the contrary. Then

(10.24) Ig(L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x, u) < µ(f)− δ0/2.

Property (P7), (10.9) and (10.24) imply that

If (L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x, u)

≤ Ig(L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x, u) + δ2/8

< µ(f)− δ0/2 + δ2/8 < µ(f)− δ0/2 + δ0/16.

This contradicts (10.21). The contradiction we have reached proves (10.23).
We show that

(10.25) Ig(T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x, u) ≥ µ(f)− δ0/2.

Assume the contrary. Then

(10.26) Ig(T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x, u) < µ(f)− δ0/2.

Property (P7), (10.9) and (10.26) imply that

If (T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x, u)

≤ Ig(T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x, u) + δ2/8

< µ(f)− δ0/2 + δ2/8 < µ(f)− δ0/2 + δ0/16.

This contradicts (10.22). The contradiction we have reached proves (10.25).
Since (x∗, u∗) is an (f,A,B)-overtaking optimal pair, (10.12) and Proposition 3.2

imply

(10.27)

If (0, l0 + l1 + L0 + 3, T, x̃, ũ) = If (0, l0 + l1 + L0 + 3, x∗, u∗)

= µ(f)(l0 + l1 + L0 + 3)

+ πf (x∗(0))− πf (x∗(l0 + l1 + L0 + 3)).
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Since (x̄∗, ū∗) is an (f̄ ,−A,−B)-overtaking optimal pair it follows from (3.6), (10.12)
and Proposition 3.2 that

(10.28)

If (T − l0 − l1 − L0 − 3, T, x̃, ũ)

= If (0, l0 + l1 + L0 + 3, x̄∗, ū∗)

= µ(f)(l0 + l1 + L0 + 3)

+ πf−(x̄∗(0))− πf−(x̄∗(l0 + l1 + L0 + 3)).

In view of the choice of δ1 (see (10.1), (10.2)) and (10.5),

|πf (x∗(L0 + l0 + l1 + 3))| ≤ δ0/8,

(10.29) |πf−(x̄∗(L0 + l0 + l1 + 3))| ≤ δ0/8.

Combined with (10.27) and (10.28) these inequalities imply that

If (0, L0 + l0 + l1 + 3, x̃, ũ) ≤ µ(f)(l0 + l1 + L0 + 3) + πf (x∗(0)) + δ0/8,

(10.30) If (T − l0− l1−L0− 3, T, x̃, ũ) ≤ µ(f)(l0+ l1+L0+3)+πf−(x̄∗(0))+ δ0/8.

Property (P7), (10.9) and (10.30) imply that

(10.31)

Ig(0, L0 + l0 + l1 + 3, x̃, ũ)

≤ If (0, L0 + l0 + l1 + 3, x̃, ũ) + δ2/8

≤ µ(f)(l0 + l1 + L0 + 3) + πf (x∗(0)) + δ0/8 + δ2/8

and

(10.32)

Ig(T − l0 − l1 − L0 − 3, T, x̃, ũ)

≤ If (T − l0 − l1 − L0 − 3, T, x̃, ũ) + δ2/8

≤ µ(f)(l0 + l1 + L0 + 3) + πf−(x̄∗(0)) + δ0/8 + δ2/8.

By (10.10), (10.12), (10.19), (10.23), (10.26), (10.31) and (10.32),

δ ≥ Ig(0, T, x, u) + ξ(x(0), x(T ))− (Ig(0, T, x̃, ũ) + ξ(x̃(0), x̃(T )))

= (ξ(x(0), x(T ))− ξ(x∗(0), x̄∗(0)))

+ Ig(0, L0 + l0 + l1 + 3, x, u)

− Ig(0, L0 + l0 + l1 + 3, x̃, ũ)

+ Ig(L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x, u)

− Ig(L0 + l0 + l1 + 3, L0 + l0 + l1 + 4, x̃, ũ)

+ Ig(T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x, u)

− Ig(T − L0 − l0 − l1 − 4, T − L0 − l0 − l1 − 3, x̃, ũ)

+ Ig(T − l0 − l1 − L0 − 3, T, x, u)

− Ig(T − l0 − l1 − L0 − 3, T, x̃, ũ)

≥ ξ(x(0), x(T ))− ξ(x∗(0), x̄∗(0))

+ Ig(0, L0 + l0 + l1 + 3, x, u)(10.33)

− µ(f)(l0 + l1 + L0 + 3)− πf (x∗(0))− δ0/8− δ2/8
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+ (µ(f)− δ0/2− µ(f)− δ0/8− δ2/8)

+ (µ(f)− δ0/2− µ(f)− δ0/8− δ2/8)

+ Ig(T − l0 − l1 − L0 − 3, T, x, u)

− µ(f)(l0 + l1 + L0 + 3)− πf−(x̄∗(0))− δ0/8− δ2/8

≥ ξ(x(0), x(T ))− ξ(x∗(0), x̄∗(0))

+ Ig(0, L0 + l0 + l1 + 3, x, u) + Ig(T − l0 − l1 − L0 − 3, T, x, u)

− 2µ(f)(L0 + l0 + l1 + 3)− πf (x∗(0))− πf−(x̄∗(0))− 3δ0/2− δ2/2.

In view of (10.6) and (10.9),

(10.34) |ξ(x∗(0), x̄∗(0))− h(x∗(0), x̄∗(0))| ≤ δ1/16.

It follows from (4.1), (5.1) (10.33) and (10.34) that

Ig(0, L0 + l0 + l1 + 3, x, u), Ig(T − l0 − l1 − L0 − 3, T, x, u)

≤ δ + δ2/2 + 3δ0/2 + |h(x∗(0), x̄∗(0))|+ δ1/16 + a1

+2µ(f)(L0 + l0 + l1 + 3) + πf (x∗(0)) + πf−(x̄∗(0))

(10.35) +a0(L0 + l0 + l1 + 3).

Property (P7), (10.9) and (10.35) imply that

|Ig(0, L0 + l0 + l1 + 3, x, u)− If (0, L0 + l0 + l1 + 3, x, u)| ≤ δ2/8,

(10.36) |Ig(T − l0 − l1 −L0 − 3, T, x, u)− If (T − l0 − l1 −L0 − 3, T, x, u)| ≤ δ2/8.

Property (P8), (10.35) and (10.36) imply that

If (0, L0 + l0 + l1 + 3, x, u), If (T − l0 − l1 − L0 − 3, T, x, u)

≤ δ + δ2/8 + δ2/2 + 3δ0/2 + |h(x∗(0), x̄∗(0))|+ δ1/16 + a1

+2µ(f)(L0 + l0 + l1 + 3) + πf (x∗(0)) + πf−(x̄∗(0))

+a0(L0 + l0 + l1 + 3).

In view of the inequality above and property (P8),

(10.37) |x(t)| ≤ ∆0, t ∈ [0, L0 + l0 + l1 + 3] ∪ [T − l0 − l1 − L0 − 3, T ].

By (10.6), (10.9) and (10.37),

(10.38) |ξ(x(0), x(T ))− h(x(0), x(T ))| ≤ δ1/16.

It follows from (10.33)-(10.36) and (10.38) that

(10.39)

δ + 3δ0/2 + δ2/2 ≥ h(x(0), x(T ))− h(x∗(0), x̄∗(0))− δ1/8

+ If (0, L0 + l0 + l1 + 3, x, u)− δ2/8

+ If (T − l0 − l1 − L0 − 3, T, x, u)− δ2/8

− 2µ(f)(L0 + l0 + l1 + 3)− πf (x∗(0))− πf−(x̄∗(0)).
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In view of (9.1) and (10.39),

(10.40)

δ + 3δ0/2 + 3δ2/4 + δ1/8 ≥ ϕh(x(0), x(T ))

− ϕh(x∗(0), x̄∗(0))− πf (x(0))− πf−(x(T ))

+ If (0, L0 + l0 + l1 + 3, x, u)

+ If (T − l0 − l1 − L0 − 3, T, x, u)

− 2µ(f)(L0 + l0 + l1 + 3).

Set

(10.41) y(t) = x(T − t), v(t) = u(T − t), t ∈ [0, T ].

In view of (3.6) and (10.41),

(10.42) If (T − l0 − l1 − L0 − 3, T, x, u) = If (0, L0 + l0 + l1 + 3, y, v).

By (10.4), (10.29) and (10.40)-(10.42),

(10.43)

δ + 3δ0/2 + 3δ2/4 + δ1/8

≥ ϕh(x(0), x(T ))− inf(ϕh)

+ If (0, L0 + l0 + l1 + 3, x, u)− µ(f)(L0 + l0 + l1 + 3)

− πf (x(0)) + πf (x(L0 + l0 + l1 + 3))− πf (x(L0 + l0 + l1 + 3))

+ If (0, L0 + l0 + l1 + 3, y, v)

− πf−(y(0)) + πf−(y(L0 + l0 + l1 + 3))

− µ(f)(L0 + l0 + l1 + 3)− πf−(x(T − L0 − l0 − l1 − 3))

≥ ϕh(x(0), x(T ))− inf(ϕh)

+ If (0, L0 + l0 + l1 + 3, x, u)

− µ(f)(L0 + l0 + l1 + 3)− πf (x(0)) + πf (x(L0 + l0 + l1 + 3))

+ If (0, L0 + l0 + l1 + 3, y, v)

− πf−(y(0)) + πf−(y(L0 + l0 + l1 + 3))

− µ(f)(L0 + l0 + l1 + 3)− δ0/4.

Proposition 3.1, (10.41) and (10.43) imply that

(10.44) 4δ0 ≥ ϕh(x(0), x(T ))− inf(ϕh),

(10.45)

4δ0 ≥ If (0, L0 + l0 + l1 + 3, x, u)

− µ(f)(L0 + l0 + l1 + 3)− πf (x(0)) + πf (x(L0 + l0 + l1 + 3))

≥ If (0, L, x, u)− µ(f)L0 − πf (x(0)) + πf (x(L0)),

(10.46)

4δ0 ≥ If (0, L0 + l0 + l1 + 3, y, v)

− πf−(y(0)) + πf−(y(L0 + l0 + l1 + 3))− µ(f)(L0 + l0 + l1 + 3)

≥ If (0, L0, y, v)− πf−(y(0)) + πf−(y(L0))− µ(f)L0.
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By (10.44)-(10.46) and property (P5), there exist an (f,A,B)-overtaking optimal
pair (x∗1, u

∗
1) ∈ X(A,B, 0,∞) and an (f,−A,−B)-overtaking optimal pair (x∗2, u

∗
2) ∈

X(−A,−B, 0,∞) such that

ϕh(x
∗
1(0), x

∗
2(0) = inf(ϕh)

and that for all t ∈ [0, L0],

ϵ ≥ |x(t)− x∗1(t)|, ϵ ≥ |y(t)− x∗2(t)| = |x(T − t)− x∗2(t)|.
Theorem 5.3 is proved.
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