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the notion of metric regularity as an essential tool for the analysis of various stabil-
ity and sensitivity issues in modern variational analysis, optimization and control
theory (see detailed historical comments in [12, 18, 25, 32]). As a consequence, the
covering behaviour of single as well as of set-valued mappings has been the main
subject of many investigations (see, among the others, [1, 7, 10, 15, 24, 26, 35]). In
them, depending on possible applications or on specific issues of the related theory
to be investigated, several variations of the concept of covering behaviour itself have
been considered: for instance, a reader will find openness at a linear or at a more
general rate, local covering, global covering, openness restricted to given sets, point
based openness, linear semiopenness, and so on.

In the present paper, a set-oriented variant of the notion of openness at a linear
rate in a metric space setting is considered, which applies only to multivalued map-
pings. Roughly speaking, such a property postulates that the whole enlargement
of images through a given mapping are covered by the image of a single element
near the reference point, instead of by the image of an entire ball around it. Such
a requirement clearly imposes severe restrictions on the covering behaviour of a
set-valued mapping, yet it happens to be fulfilled in various contexts, which are
relevant to variational analysis and optimization. Furthermore, as shown in the
present study, it exhibits nice robustness features in the presence of various types
of perturbations. Other motivations for the interest in this set-covering behaviour
come from set-inclusion problems, namely generalized equations where the inclusion
of a single element into images of a given multifunction is replaced by the inclusion
of an entire set. With respect to such kind of problems, it seems that solvability
and solution stability can be hardly approached as far as working with conventional
covering notions.

The contents of the paper are organized as follows. In the rest of the current
section, basic notations, preliminary notions and related facts, that will be employed
throughout the paper, are recalled. In Section 2 the main set-covering property
under study is introduced. Several contexts in which it emerges are discussed. In
particular, the class of closed convex processes having this behaviour is singled out.
Then, conditions for such a property to hold are established in a metric space setting.
Its stability under under some kinds of perturbation is also considered. Section 3
is devoted to explore some applications to the existence of set-inclusion points,
with related error bound estimates, and to the exact penalization of constrained
optimization problems.

Whenever x is an element of a metric space (X, d) and r is a positive real,
B(x, r) = {z ∈ X : d(z, x) ≤ r} denotes the closed ball with center x and radius
r. By dist (x, S) = infz∈S d(z, x) the distance of x from a subset S ⊆ X is denoted,
with the convention that dist (x,∅) = +∞. The r-enlargement of a set S ⊆ X is
indicated by B(S, r) = {x ∈ X : dist (x, S) ≤ r}. Given sets A, B ⊆ X, the excess
of A over B is indicated by exc (A,B) = supa∈A dist (a,B), while the Hausdorff
distance of A and B by Haus(A,B) = max{exc (A,B) , exc (B,A)}. Recall that a
set-valued mapping Φ : X ⇒ Y between metric spaces is said to be Lipschitz on X
with constant l ≥ 0 provided

exc (Φ(x1),Φ(x2)) ≤ ld(x1, x2), ∀x1, x2 ∈ X.
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If the above inequality is satisfied in a neighbourhood of a given point x̄ ∈ X,
Φ is said to be locally Lipschitz around x̄. A set-valued mapping Ψ : X ⇒ Y
between metric spaces is called Hausdorff upper semicontinuous (henceforth, u.s.c.)
at x0 ∈ X is for every ϵ > 0 there exists δ > 0 such that Ψ(x) ⊆ B(Ψ(x0), ϵ), for
every x ∈ B(x0, δ). The domain and the graph of Ψ : X ⇒ Y are denoted by domΨ
and grph(Ψ), respectively. Throughout the paper, any mapping Ψ : X ⇒ Y will
be assumed to have domΨ = X and to take closed values, unless otherwise stated.
In any vector space, the null element is marked by 0, and the related notations
B = B(0, 1) and S = bdB = B\intB are adopted, where int and bd indicate the
topological interior and boundary of a given set, respectively.

Remark 1.1. In the sequel, the following consequence of the Lipschitz property
of a set-valued mapping on its excess function will be used: if Φ is Lipschitz on X
with constant l, then for any nonempty set S ⊆ Y , the function x 7→ exc (Φ(x), S)
is Lipschitz on X with the same constant l. Indeed, for every x1, x2 ∈ X it is true
that

exc (Φ(x2), S) = sup
y∈Φ(x2)

dist (y, S) ≤ sup
y∈B(Φ(x1),ld(x1,x2))

dist (y, S)

≤ sup
y∈B(Φ(x1),ld(x1,x2))

dist (y,Φ(x1)) + exc (Φ(x1), S)

≤ ld(x1, x2) + exc (Φ(x1), S) .

Another property of the excess function associated with a pair of set-valued map-
pings, that will be used in the sequel, is stated next.

Lemma 1.2. Let Ψ : X ⇒ Y and Φ : X ⇒ Y be given set-valued mappings between
metric spaces. Suppose that:

(i) Ψ is Hausdorff u.s.c. at x0 ∈ X;
(ii) Φ is Lipschitz on X, with constant l ≥ 0.

Then, the function excΦ,Ψ : X −→ [0,+∞] defined as

excΦ,Ψ(x) = exc (Φ(x),Ψ(x)) , x ∈ X,

is lower semicontinuous (for short, l.s.c.) at x0 ∈ X.

Proof. Since excΦ,Ψ acts on a metric space, it suffices to show that for every sequence
(xn)n∈N in X, with xn → x0 as n → ∞, it results in

excΦ,Ψ(x0) ≤ lim inf
n→∞

excΦ,Ψ(xn).(1.1)

It is immediate to observe that

excΦ,Ψ(x0) ≤ exc (Φ(x0),Φ(xn)) + excΦ,Ψ(xn) + exc (Ψ(xn),Ψ(x0))

≤ ld(x0, xn) + excΦ,Ψ(xn) + exc (Ψ(xn),Ψ(x0)) ,

where the second inequality follows from hypothesis (ii). Since Ψ is is Hausdorff
u.s.c. at x0, then lim

n→∞
exc (Ψ(xn),Ψ(x0)) = 0. Thus, one obtains

excΦ,Ψ(x0) ≤ lim inf
n→∞

[ld(x0, xn) + excΦ,Ψ(xn) + exc (Ψ(xn),Ψ(x0))]

≤ lim
n→∞

ld(x0, xn) + lim inf
n→∞

excΦ,Ψ(xn)
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+ lim
n→∞

exc (Ψ(xn),Ψ(x0)) = lim inf
n→∞

excΦ,Ψ(xn).

This completes the proof. □

2. Set-covering mappings

2.1. The main property and examples. By a global covering behaviour of a
multifunction Ψ : X ⇒ Y acting between metric spaces the following property is
usually meant: there exists a constant α > 0 such that

(2.1) Ψ(B(x, r)) ⊇ B(Ψ(x), αr), ∀x ∈ X, ∀r > 0

(see, for instance, [1, 2, 9, 16]).
The main notion here under study comes up as a set-oriented variant of the above

property, as stated below.

Definition 2.1. A set-valued mapping Ψ : X ⇒ Y between metric spaces is said
to be set-covering on X with constant α if there exists a positive real α such that

(2.2) ∀x ∈ X, ∀r > 0 ∃u ∈ B(x, r) such that Ψ(u) ⊇ B(Ψ(x), αr).

From Definition 2.1 it is clear that, if a set-valued mapping is set-covering with
constant α, then it is covering in the sense of (2.1), with the same constant. The
converse is not true, as readily illustrated in the counterexamples below. Other
immediate consequences of Definition 2.1 are the facts that Ψ is onto and that
densely on X it takes values with nonempty interior.

Example 2.2. Let X = R and Y = R2 be endowed with their usual (Euclidean)
metric structure. Consider the set-valued mapping Ψ : R ⇒ R2 given by Ψ(x) =
|x|S. It is not difficult to see that Ψ is covering on R with constant α = 1, whereas
it fails to fulfil Definition 2.1 for any α > 0, as it is intΨ(x) = ∅ for every x ∈ R.
Again, the mapping Ψ : R ⇒ R2 given by Ψ(x) = B(x, 1) is covering with constant
1, but is not set-covering, even if it takes images with nonempty interior. This
second mapping shows that, while Definition 2.1 forces a mapping to have images
with nonempty interior in a dense subset of X, this topological requirement is only
necessary.

Example 2.3. Let δ : X −→ [0,+∞) be a function defined on a metric space (X, d)
and satisfying the condition

α̂ := inf
x∈X

inf
r>0

sup
u∈bdB(x,r)

δ(u)− δ(x)

d(u, x)
> 0,(2.3)

and let (Y, d) be a metric space. For any fixed y0 ∈ Y , the set-valued mapping
Ψ : X ⇒ Y , defined by

Ψ(x) = B(y0, δ(x)),

is set-covering on X with any constant α ∈ (0, α̂). Indeed, fixed such an α, let
x ∈ X and r > 0. Take ϵ > 0 in such a way that α + 2ϵ < α̂. By condition (2.3),
corresponding to ϵ, there exists u ∈ bdB(x, r) such that δ(u) ≥ δ(x) + (α̂ − ϵ)r.
Thus, if y ∈ B(Ψ(x), αr), that is dist (y,B(y0, δ(x))) ≤ αr, it results in

d(y, y0) < δ(x) + (α+ ϵ)r < δ(x) + (α̂− ϵ)r ≤ δ(u).
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This means that y ∈ B(y0, δ(u)) = Ψ(u). Since u ∈ B(x, r), the requirement
(2.2) is fulfilled. Notice that, whenever X is, in particular, a normed space, taking
δ(·) = ∥ · ∥, one finds α̂ = 1, so condition (2.3) is valid.

Remark 2.4. It is worth mentioning that, whereas the covering behaviour for
multifunctions defined by (2.1) can be regarded as a direct generalization to the
set-valued context of a similar behaviour for single-valued mappings, this can not
be said for the notion of set-covering. In fact, single-valued mappings, considered as
a multivalued one, even though covering can never fulfil such an inclusion as (2.2).
This should stress the difference between set-covering and the standard notion of
covering.

Below some natural circumstances, in which the covering behaviour formalized
in Definition 2.1 appear, are presented.

Example 2.5. (Solution mappings to systems of sublinear inequalities) LetX = Rn

be metrized with the norm ∥ · ∥∞ and let Y = Rm be endowed with its usual
(Euclidean) metric structure. Suppose that n functions pi : Rm −→ R, with i =
1, . . . , n, are given, which are sublinear on Rm, i.e. such that

pi(0) = 0, pi(ty) = tpi(y), ∀t > 0, ∀y ∈ Rm, and pi convex on Rm.

Set

∥pi∥∗ = max{∥y∗∥ : y∗ ∈ ∂pi(0)}, i = 1, . . . , n,

where ∂pi(0) denotes the subdifferential of pi at 0 in the sense of convex analysis,
and

∥p∥∗ = max
i=1,...,n

∥pi∥∗.

Notice that ∥pi∥∗ and ∥p∥∗ are well defined and finite, as each ∂pi(0) is a nonempty
compact subset of Rm. In what follows, it is assumed that ∥p∥∗ > 0, as the case
∥p∥∗ = 0 leads to pi ≡ 0 for every i = 1, . . . , n, which is of minor interest here.
Consider the solution mapping Ψ : Rn ⇒ Rm associated with a parameterized
inequality system involving functions pi as follows

Ψ(x) = {y ∈ Rm : pi(y) ≤ |xi|, ∀i = 1, . . . , n}.
Ψ clearly takes nonempty closed and convex values. Let us show that Ψ is set-
covering, with constant α = 1/∥p∥∗. To do so, fixed x ∈ Rn and r > 0, take y ∈
B(Ψ(x), r/∥p∥∗). This implies the existence of v ∈ Ψ(x) such that ∥y−v∥ ≤ r/∥p∥∗.
Thus, it must be

pi(v) ≤ |xi|, ∀i = 1, . . . , n.

By the sublinearity of each pi, one has

pi(y) ≤ pi(y − v) + pi(v) ≤ ∥p∥∗∥y − v∥+ |xi| ≤ r + |xi|, ∀i = 1, . . . , n.

Consequently, by defining u ∈ Rn as

ui =

{
r + xi, if xi ≥ 0,
−r + xi, if xi < 0,

it results in

pi(y) ≤ |ui|, ∀i = 1, . . . , n,
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and hence

Ψ(u) ⊇ B

(
Ψ(x),

r

∥p∥∗

)
,

with ∥u− x∥∞ ≤ r. If Rn is remetrized through another (equivalent) norm, Ψ still
remains set-covering, but with a different constant.

Example 2.6. (Epigraphical mappings in partially ordered normed spaces) Let
(X, ∥ · ∥) and (Y, ∥ · ∥) be real normed spaces. Suppose that on Y a partial order
relation ≤Y is induced by a closed, convex, pointed cone Y+ ⊆ Y, in the sense that
y1 ≤Y y2 iff y2−y1 ∈ Y+. Let us introduce the following assumption on the interplay
bewteen the partial order and the metric structure on Y:

∃γ ∈ [1,+∞) : ∀r > 0 ∃y̌ ∈ Y : y̌ ≤Y y, ∀y ∈ rB and ∥y̌∥ = γr.(2.4)

Of course, because of the linearity of the partial order, assumption (2.4) applies
also to balls with center at each point of Y. Such an assumption is verified, for
instance, if Y = Rm, Y+ = Rm

+ , and ∥ · ∥p is a p-norm, with p ∈ [1,+∞), by the

constant γ = m1/p. Otherwise, if Y = Rm is normed by ∥ · ∥∞, one has γ = 1. If
Y = C([0, 1]), Y+ = {x ∈ C([0, 1]) : x(t) ≥ 0, ∀t ∈ [0, 1]} and the metric structure
on Y is induced by the norm ∥ · ∥∞, then again assumption (2.4) is true with γ = 1.
Instead, if the space (ℓp(N), ∥ · ∥p), with p ∈ [1,+∞) is partially ordered by the
componentwise order relation, assumption (2.4) fails to be verified. If (ℓ∞(N), ∥·∥∞)
is partially ordered by the same order relation, the above assumption is verified with
γ = 1.

Now, let f : X −→ Y be a mapping covering on X with constant α > 0, i.e. such
that

f(B(x, r)) ⊇ B(f(x), αr), ∀x ∈ X, ∀r > 0.(2.5)

It is possible to show that its epigraphical set-valued mapping epif : X ⇒ Y, which
is defined as

epif (x) = f(x) + Y+

or, equivalently, by the condition

grph(epif ) = epi(f),

where epi(f) = {(x, y) ∈ X × Y : f(x) ≤Y y}, is set-covering in the sense of
Definition 2.1, with constant α/γ. To see this, fix x ∈ X and r > 0, and consider
an element y̌ ∈ Y as in (2.4), namely such that

y̌ ≤Y y, ∀y ∈ B(f(x), αr) and ∥y̌ − f(x)∥ = γαr.

This implies that

B(f(x), αr) ⊆ y̌ + Y+.

Since it is y̌ ∈ B(f(x), αγr), then by virtue of (2.5) there must exist u ∈ B(x, γr)
such that y̌ = f(u). Thus, letting ρ = γr, one obtains

B

(
epif (x),

α

γ
ρ

)
= B(f(x) + Y+, αr) ⊆ B(f(x), αr) + Y+

⊆ y̌ + Y+ = f(u) + Y+ = epif (u),
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with u ∈ B(x, ρ). Whenever (X, ∥ · ∥) and (Y, ∥ · ∥) are, in particular, Banach
spaces and f : X −→ Y is a bounded linear operator, then according to the Banach-
Schauder open mapping theorem f is known to be covering on X iff it is onto. In
such an event, the quantity

∥f−1∥− = sup
y∈B

inf{∥x∥ : f(x) = y} = sup
y∈B

dist
(
0, f−1(y)

)
,

where f−1 : Y ⇒ X is the (generally) set-valued inverse mapping of f , is a positive
element of R and, as a covering constant, one can take α = 1/∥f−1∥−. Thus the
epigraphical mapping of a bounded linear operator, which is onto, is set-covering
with constant 1/γ∥f−1∥−.

To the aim of providing further examples of classes of set-covering mappings,
let us focus now on convex processes. The idea of a convex process is due to
R.T. Rockafellar (see [31]) and emerges when dealing with derivatives of set-valued
mappings or with certain constraint systems arising in optimization problems. After
him, a set-valued mapping Θ : X ⇒ Y between normed spaces is said to be a convex
process if grph(Θ) is a convex cone of X × Y with apex at the null vector, or,
equivalently, iff Θ satisfies all the following three requirements:

(i) 0 ∈ Θ(0);
(ii) Θ(λx) = λΘ(x), ∀λ > 0, ∀x ∈ X;
(iii) Θ(x1) + Θ(x2) ⊆ Θ(x1 + x2), ∀x1, x2 ∈ X.

Clearly Θ is a convex process iff Θ−1 is so. Further, a convex process is said to be
closed provided that so is its graph. A way to approach the study of the covering
behaviour of convex processes is through the notion of openness at 0. According
to [29], a convex process Θ is said to be open at 0 if there exists α > 0 such that

Θ(intB) ⊇ intαB.(2.6)

Such a condition has been characterized in terms of finiteness of the inner norm of
the inverse mapping. More precisely, defined the inner norm of a mapping Θ : X ⇒
Y as

∥Θ∥− = sup
x∈domΘ∩B

inf{∥y∥ : y ∈ Θ(x)},

it has been established that Θ is open at 0 iff ∥Θ−1∥− < +∞ and, as a constant
appearing in (2.6), it is possible to take any value α ∈ (0, 1/∥Θ−1∥−1

− ) (see [29]).
Whenever (X, ∥ · ∥) and (Y, ∥ · ∥) are, in particular, Banach spaces, a sufficient
condition for a closed, convex process Θ : X ⇒ Y to be open at 0 is that Θ is onto
(open mapping theorem for convex processes, see [3, 12,29]).

The next result and the subsequent related remark show that a proper subclass
of onto and closed convex processes can be found, whose elements are set-covering
mappings.

Proposition 2.7. Let Θ : X ⇒ Y be a closed, convex process between Banach
spaces. If the following condition holds

∃α > 0, ∃u ∈ B such that Θ(u) ⊇ intαB,(2.7)

then Θ is set-covering with any constant α̃ ∈ (0, α). Vice versa, if Θ is set-covering
with a constant α > 0, then condition (2.7) holds.
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Proof. Assume first that condition (2.7) holds true. Fix arbitrary x ∈ X, r > 0 and
α̃ ∈ (0, α), take y ∈ B(Θ(x), α̃r) and pick ϵ > 0 in such a way that α̃(1 + ϵ) < α.
This implies that there exists of v ∈ Θ(x) such that

∥y − v∥ < α̃(1 + ϵ)r,

that is y−v ∈ int α̃(1+ϵ)rB. Since, as a convex process, Θ is positively homogeneous,
condition (2.7) entails the existence of u ∈ rB such that

Θ(u) ⊇ intαrB ⊇ int α̃(1 + ϵ)rB.

Consequently, one has

y = (y − v) + v ∈ intαrB+Θ(x) ⊆ Θ(u) + Θ(x) ⊆ Θ(u+ x),

where u + x ∈ B(x, r). It should be noticed that, according to the inclusion (2.7),
the element u in rB does not depend neither on y nor on v.

Vice versa, if choosing x = 0 and r = 1 in Definition 2.1, since it is 0 ∈ Θ(0),
one finds

intαB ⊆ B(Θ(0), α) ⊆ Θ(u)

for some u ∈ B and hence condition (2.7) is verified at once. □

Remark 2.8. Condition (2.7) is a quantitative requirement about the surjective
behaviour of Θ that can be expressed in merely topological terms as

intΘ(0) ̸= ∅.(2.8)

Indeed, such a condition obviously implies (2.7). Vice versa, if u and α are as in
(2.7), one has

Θ(0) = Θ(u) + Θ(−u) ⊇ intαB+Θ(−u),

wherefrom the interior noneptiness condition in (2.8) follows. It is worth noting
that condition (2.7) is essentially stronger than openness at 0. In other words, the
latter is sufficient for a closed, convex process to be covering, whereas it does not
in the case of the set-covering property, even in the case of convex processes. This
occurence is illustrated in the next example.

Example 2.9. Consider the Banach space X = Y = (ℓp(N), ∥·∥p), with p ∈ [1,+∞)
and define Θ : ℓp(N) ⇒ ℓp(N) as

Θ(x) = x+ X+,

where X+ = {x = (ξn)n∈N : ξn ≥ 0, ∀n ∈ N}. It is not difficult to check that Θ
is a closed, convex process and it is clear that Θ is also onto. Therefore Θ is open
at 0 and hence covering. Nevertheless, in the light of Proposition 2.7 Θ fails to be
set-covering. Indeed, it is Θ(0) = X+ and such a cone is well known to have empty
topological interior (see, for instance, [20]).
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2.2. Related properties. In the current subsection, the context is again that of
set-valued mappings between metric spaces. Given a set-valued mapping Ψ : X ⇒ Y
and a nonempty set S ⊆ Y , there are two natural notions of inverse image of S
through Ψ, which are known in set-valued analysis as upper (or strong) and lower
(or weak) inverse, respectively. Here yet another notion is considered, which is
defined as follows

Ψ−♯(S) = {x ∈ X : S ⊆ Ψ(x)}.
Letting S to vary in 2Y , one obtains from Ψ a set-valued mapping Ψ−♯ : 2Y ⇒ X.
Such a mapping can be viewed as solution mapping of a set-inclusion, where the
set S plays the role of a parameter. As one expects, a reformulation of the set-
covering property can be expressed in terms of error bound for the solution mapping
associated with such a parameterized set-inclusion problem.

Proposition 2.10. Let Ψ : X ⇒ Y be a set-valued mapping between metric spaces.

(i) If Ψ is set-covering with constant α > 0, then

dist
(
x,Ψ−♯(S)

)
≤ 1

α
exc (S,Ψ(x)) , ∀x ∈ X, ∀S ∈ 2Y .(2.9)

(ii) If inequality (2.9) holds, then Ψ is set-covering with any constant α̃ ∈ (0, α).

Proof. (i) Assume that x ∈ X and S ⊆ Y are arbitrary. If exc (S,Ψ(x)) = +∞,
then (2.9) trivially holds. In this case, it may happen that Ψ−♯(S) = ∅. Thus, let
us pass to consider the case r = exc (S,Ψ(x)) < +∞. Since Ψ takes closed values,
if r = 0 one has S ⊆ Ψ(x) and hence x ∈ Ψ−♯(S). If r > 0, since S ⊆ B(Ψ(x), r),
according to Definition 2.1, there exists u ∈ B(x, r/α) such that S ⊆ Ψ(u). It
follows

dist
(
x,Ψ−♯(S)

)
≤ d(x, u) ≤ 1

α
exc (S,Ψ(x)) .

(ii) Fix any α̃ ∈ (0, α). To see that in this case Definition 2.1 is satisfied, it suffices
to take S = B(Ψ(x), α̃r) and to observe that, with this choice, it is exc (S,Ψ(x)) ≤
α̃r < +∞. Therefore, from inequality (2.9) one gets

dist
(
x,Ψ−♯(S)

)
≤ 1

α
α̃r < r,

which means that there exists u ∈ B(x, r) such that Ψ(u) ⊇ B(Ψ(x), α̃r). □

Remark 2.11. It is proper to warn the reader that, in general, it may happen that
domΨ−♯ ̸= 2Y . From inequality (2.9) it follows that, whenever Ψ is set-covering
and S ⊆ Y is such that exc (S,Ψ(x)) < +∞, then it must be Ψ−♯(S) ̸= ∅. In
particular, domΨ−♯ includes all bounded subsets of Y . Let us denote by B(Y ) the
collection of all such subsets of Y .

The next step consists in linking the set-covering property with the Lipschitzian
behaviour of the mapping Ψ−♯. To this aim, the set B(Y ) is equipped with the
Hausdorff distance.

Proposition 2.12. Let Ψ : X ⇒ Y be a set-valued mapping between metric spaces.
If Ψ is set-covering with constant α > 0, then Ψ−♯ : B(Y ) ⇒ X is Lipschitz with
constant 1/α. Vice versa, given Ψ : X −→ B(Y ), if Ψ−♯ : B(Y ) ⇒ X is Lipschitz



138 AMOS UDERZO

with constant 0 < l < +∞, then Ψ is set-covering on X with any constant α ∈
(0, 1/l).

Proof. Consider a pair of elements A, B ∈ B(Y ). From assertion (i) in Proposition
2.10, one has

dist
(
x,Ψ−♯(B)

)
≤ α−1exc (B,Ψ(x)) , ∀x ∈ X.

Thus, for all those x ∈ Ψ−♯(A), i.e. such that A ⊆ Ψ(x), one finds

dist
(
x,Ψ−♯(B)

)
≤ α−1exc (B,A) ,

whence

exc
(
Ψ−♯(A),Ψ−♯(B)

)
= sup

x∈Ψ−♯(A)

dist
(
x,Ψ−♯(B)

)
≤ α−1exc (B,A) .

To achieve the inequality

Haus(Ψ−♯(A),Ψ−♯(B)) ≤ α−1Haus(A,B),

it suffices to interchange the role of A and B.
To prove the second assertion in the thesis, let x ∈ X and r > 0 be arbitrary. Since

now Ψ(x) ∈ B(Y ), the same is true for B(Ψ(x), αr). By the Lipschitz continuity of
Ψ−♯ with constant l, if taking any α ∈ (0, 1/l) one finds

Haus(Ψ−♯(Ψ(x)),Ψ−♯(B(Ψ(x), αr))) ≤ lHaus(Ψ(x),B(Ψ(x), αr))

= lexc (B(Ψ(x), αr),Ψ(x)) < r.

On the other hand, observe that it is

Ψ−♯(Ψ(x)) = {u ∈ X : Ψ(x) ⊆ Ψ(u)} ⊇ Ψ−♯(B(Ψ(x), αr))

= {u ∈ X : B(Ψ(x), αr) ⊆ Φ(u)}.

Thus, the last inequality amounts to say that

exc
(
Ψ−♯(Ψ(x)),Ψ−♯(B(Ψ(x), αr))

)
< r,

wherefrom, as in particular it is x ∈ Ψ−♯(Ψ(x)), one obtains

dist (x, {u ∈ X : B(Ψ(x), αr) ⊆ Φ(u)}) < r.

The last inequality implies the existence of u ∈ B(x, r) with the property that
Ψ(u) ⊇ B(Ψ(x), αr), thereby showing that Ψ is set-covering with constant α. □

2.3. Stability of set-covering. The present subsection is devoted to illustrating
some robustness features of the set-covering property in the presence of various
kinds of perturbation.

Proposition 2.13. Let Ψ : X ⇒ Y be set-covering on X with constant α and let
g : Y −→ Z be covering on Y with constant β. Then, their composition g ◦Ψ : X ⇒
Z is set-covering with any constant γ ∈ (0, αβ).
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Proof. By the set-covering property of Ψ, corresponding to x ∈ X and r > 0, there
exists u ∈ B(x, r) such that Ψ(u) ⊇ B(Ψ(x), αr), whence it follows

(g ◦Ψ)(u) ⊇ g(B(Ψ(x), αr)).(2.10)

By the covering property on Y of g, one has

g(B(y, αr)) ⊇ B(g(y), αβr), ∀y ∈ Y, ∀r > 0.(2.11)

Notice that, since for any z ∈ Z it is

dist (z, (g ◦Ψ)(x)) = inf
y∈Ψ(x)

d(z, g(y)),

it holds

B((g ◦Ψ)(x), γr) ⊆
∪

y∈Ψ(x)

B(g(y), αβr).

Thus, in the light of inclusion (2.11), one obtains

B((g ◦Ψ)(x), γr) ⊆
∪

y∈Ψ(x)

g(B(y, αr)) ⊆ g

 ∪
y∈Ψ(x)

B(y, αr)


⊆ g(B(Ψ(x), αr)).

By recalling inclusion (2.10), one deduces that

(g ◦Ψ)(u) ⊇ B((g ◦Ψ)(x), γr).

This completes the proof. □

The next proposition relates to a stability phenomenon regarding set-covering,
which can be observed to take place in the presence of additive perturbations by
multivalued Lipschitz mappings. In doing so, along with the previous one, it pro-
vides as well a tool for building further examples of classes of set-covering mappings.

Proposition 2.14. Let X be a metric space and let Y be a vector space, equipped
with a shift invariant metric. Suppose that Ψ : X ⇒ Y is set-covering on X with
constant α > 0, whereas Φ : X ⇒ Y is Lipschitz on X with constant β ∈ [0, α).
Then, for every ϵ ∈ (0, α−β), the mapping Ψ+Φ is set-covering on X with constant
α− β − ϵ.

Proof. Fixed ϵ ∈ (0, α − β), x ∈ X and r > 0, according to Definition 2.1 one has
to show that there exists x′ ∈ B(x, r) such that

Ψ(x′) + Φ(x′) ⊇ B(Ψ(x) + Φ(x), (α− β − ϵ)r).(2.12)

Since Ψ is covering on X with constant α, there exists x′ ∈ B(x, r) such that
Ψ(x′) ⊇ B(Ψ(x), αr), and hence

Ψ(x′) + Φ(x′) ⊇ B(Ψ(x), αr) + Φ(x′).(2.13)

Since Φ is Lipschitz on X with constant β ∈ [0, α), one has

exc
(
Φ(x),Φ(x′)

)
≤ βd(x, x′) ≤ βr.
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Furthermore, as the metric defined on Y is shift invariant, it holds

exc
(
Ψ(x) + Φ(x),Ψ(x) + Φ(x′)

)
= sup

u1∈Ψ(x)
w1∈Φ(x)

dist
(
u1 + w1,Ψ(x) + Φ(x′)

)
= sup

u1∈Ψ(x)
w1∈Φ(x)

inf
u2∈Ψ(x)

w2∈Φ(x′)

d(u1 + w1, u2 + w2)

≤ sup
u1∈Ψ(x)
w1∈Φ(x)

inf
w2∈Φ(x′)

d(u1 + w1, u1 + w2)

= sup
w1∈Φ(x)

inf
w2∈Φ(x′)

d(w1, w2)

= exc
(
Φ(x),Φ(x′)

)
.

Consequently, one has

B(Ψ(x) + Φ(x′), (α− ϵ)r) ⊇ B(Ψ(x) + Φ(x), (α− β − ϵ)r).(2.14)

Indeed, from the last inequalities one gets

dist
(
v,Ψ(x) + Φ(x′)

)
≤ dist (v,Ψ(x) + Φ(x))

+ exc
(
Ψ(x) + Φ(x),Ψ(x) + Φ(x′)

)
≤ (α− β − ϵ)r + βr = (α− ϵ)r.

Let us show now that

B(Ψ(x), αr) + Φ(x′) ⊇ B(Ψ(x) + Φ(x′), (α− ϵ)r).(2.15)

Taken an arbitrary v ∈ B(Ψ(x) + Φ(x′), (α − ϵ)r), there exist uϵ ∈ Ψ(x) and wϵ ∈
Φ(x′) such that d(v, uϵ + wϵ) < αr. Thus, it results in

v = v − wϵ + wϵ,

where, again by virtue of the shift invariance of the metric on Y , it is

dist (v − wϵ,Ψ(x)) = dist (v,Ψ(x) + wϵ) ≤ d(v, uϵ + wϵ) < αr,

so v ∈ B(Ψ(x), αr) + Φ(x′). In order to achieve the required condition (2.12),
it suffices to combine inclusions (2.13), (2.14), and (2.15). This completes the
proof. □

Remark 2.15. (i) The phenomenon described by Proposition 2.14 can be inserted
in the framework of the stability analysis for covering behaviours started with the
well-known Milyutin theorem (see, for instance, [1, 2, 9, 10]). Note that, in contrast
to the latter, which refers to a traditional covering behaviour, no completeness
assumption is needed in the case of set-covering, because no iteration process is
needed. In fact, in the case of standard covering, the unperturbed mapping covers
the required ball by the image of a whole ball, while the perturbation shifts separately
each point of this image. As a consequence, the perturbed image may have “holes”
so, to cover the required ball, one needs to use an iteration process. In the case
of set-covering, while the image of a single point under the unperturbed mapping
covers the required ball, the perturbation just slightly shifts this image as the whole,
so it still covers a ball with a properly reduced radius.
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(ii) As a comment to the assumptions of Proposition 2.14, it is to be pointed out
that the shift invariance requirement on the metric of Y is not really restrictive.
Indeed, according to a result due to S. Kakutani, any linear metric space can be
equivalently remetrized by a shift invariant distance (see [33], Theorem 2.2.11).

Example 2.16. Let (X, d) be a metric space and let (Y, d) be a vector space
endowed with a shift-invariant metric. Then, as a consequence of Proposition 2.14
and Example 2.3, if δ : X −→ [0,+∞) fulfils condition (2.3) and g : X −→ Y is a
Lipschitz mapping with constant β < αδ, then the set-valued mapping Ψ : X ⇒ Y
given by

Ψ(x) = B(g(x), δ(x)) = B(0, δ(x)) + g(x)

turns out to be set-covering with any constant α ∈ (0, αδ − β).

3. Set-inclusion points of pairs of mappings and applications

3.1. Set-inclusion points. The next definition introduces a very general problem,
which can be posed whenever any pair of multivalued mappings is given.

Definition 3.1. Given two set-valued mappings Ψ : X ⇒ Y and Φ : X ⇒ Y , an
element x ∈ X is called a set-inclusion point of the (ordered) pair (Φ,Ψ) if

Φ(x) ⊆ Ψ(x).

Denote

Inc(Φ,Ψ) = {x ∈ X : Φ(x) ⊆ Ψ(x)}.

A set-inclusion point problem is an abstract formalism able to subsume in its
extreme generality several specific problems, having or not a variational nature.
For instance, it enables one to embed equilibrium conditions, fixed or coincidence
point problems, generalized equations, by proper choices of Φ and Ψ. Nonetheless,
it is when Φ (and hence Ψ) is actually a multivalued mapping that its peculiarity
appears. Besides, it is interesting to note that Inc(Φ,Ψ) can be regarded as the set
of all fixed points of the mapping Ψ−♯ ◦ Φ : X ⇒ X. A question related to the
set-inclusion problem was considered in [16], where conditions for the existence of
a set K ⊆ X such that Ψ(K) = Φ(K) (called coincidence set) were established.

Remark 3.2. It is worth noting that, as a straightforward consequence of Lemma
1.2, the set Inc(Φ,Ψ) is closed whenever Ψ is Hausdorff u.s.c. on X and Φ is
Lipschitz on X. Indeed, if Inc(Φ,Ψ) ̸= ∅ and (xn)n∈N is a sequence in Inc(Φ,Ψ)
converging to x0 as n → ∞, one finds

0 = lim inf
n→∞

excΦ,Ψ(xn) ≥ excΦ,Ψ(x0) ≥ 0,

wherefrom, by closedness of Ψ(x0), it follows that x0 ∈ Inc(Φ,Ψ).

In what follows, pursuing a similar line of reasearch as in [1, 2], the question
of the solution existence of set-inclusion points is analyzed in the general setting
of multifunctions between metric spaces. In particular, the next result provides
a sufficient condition for a set-inclusion problem, involving a set-covering and a
Lipschitz mappings, to admit a solution, as well as an error bound for its solution
set.
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Theorem 3.3. Let Ψ : X ⇒ Y and Φ : X −→ B(Y ) be given set-valued mappings
between metric spaces. Suppose that:

(i) (X, d) is metrically complete;
(ii) Ψ is Hausdorff u.s.c. and set-covering on X, with constant α > 0;
(iii) Φ is Lipschitz on X with constant β ∈ [0, α).

Then, Inc(Φ,Ψ) ̸= ∅ and the following estimate holds

dist (x, Inc(Φ,Ψ)) ≤ exc (Φ(x),Ψ(x))

α− β
, ∀x ∈ X.(3.1)

Proof. The proof is based on a variational technique. Notice indeed that, in order
to prove the existence of a set-inclusion point x̄ ∈ X for the pair Ψ and Φ, it
suffices to show that the function excΦ,Ψ : X −→ [0,+∞) attains the value 0 at
some point x̄. This, because the validity of dist (y,Ψ(x̄)) = 0 for every y ∈ Φ(x̄),
as Ψ(x̄) is a closed set, implies Φ(x̄) ⊆ Ψ(x̄). The nonemptiness of the values taken
by Ψ, along with the boundedness of the values of Φ, make the function excΦ,Ψ

real valued all over X. So, take an arbitrary x0 ∈ X. In the case excΦ,Ψ(x0) = 0,
one has immediately x0 ∈ Inc(Φ,Ψ) ̸= ∅ and the estimate in (3.1). So, assume
henceforth that excΦ,Ψ(x0) > 0. Observe that, under the current hypotheses, the
function excΦ,Ψ turns out to be l.s.c. on X, by virtue of Lemma 1.2. As it is
obviously bounded from below and X is complete, then the Ekeland variational
principle applies. Accordingly, for every λ > 0 there exists xλ ∈ X such that

excΦ,Ψ(xλ) ≤ excΦ,Ψ(x0),

d(xλ, x0) ≤ λ,(3.2)

excΦ,Ψ(xλ) < excΦ,Ψ(x) +
excΦ,Ψ(x0)

λ
d(x, xλ), ∀x ∈ X\{xλ}.(3.3)

Take λ = excΦ,Ψ(x0)/(α − β). The claim to be proved is that excΦ,Ψ(xλ) = 0.
Ab absurdo, assume that rλ = excΦ,Ψ(xλ) > 0. Since Φ(xλ) ⊆ B(Ψ(xλ), rλ), the
set-covering property of Ψ enables one to state the existence of u ∈ B(xλ, rλ/α)
such that

Ψ(u) ⊇ B(Ψ(xλ), rλ) ⊇ Φ(xλ).

Therefore, recalling that the function x 7→ exc (Φ(x),Ψ(u)) is Lipschitz on X, with
constant β, as a consequence of the assumption on Φ and Remark 1.1, one obtains

excΦ,Ψ(u) ≤ exc (Φ(xλ),Ψ(u)) + βd(u, xλ) = βd(u, xλ).(3.4)

Notice that it must be u ∈ X\{xλ}, otherwise it would be excΦ,Ψ(xλ) = 0. By
choosing x = u in inequality (3.3) and taking into account inequality (3.4), one
finds

excΦ,Ψ(xλ) < excΦ,Ψ(u) + (α− β)d(u, xλ) ≤ αd(u, xλ) ≤ rλ,

which leads to an evident contradiction. This allows one to conclude that excΦ,Ψ(xλ) =
0, and hence xλ ∈ Inc(Φ,Ψ) ̸= ∅. From inequality (3.2), it readily follows

dist (x0, Inc(Φ,Ψ)) ≤ d(x0, xλ) ≤
exc (Φ(x0),Ψ(x0))

α− β
.

By arbitrariness of x0, this completes the proof. □
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When Φ is a single-valued mapping, Theorem 3.3 allows one to obtain, as a
special case, a well-known result about the existence and error bound estimates
for coincidence points of the inclusion Φ(x) ∈ Ψ(x). Nevertheless, in order to
achieve such a result, the conventional notion of covering is actually enough (see [1]).
In contrast to this, as far as set-inclusion points are concerned, the set-covering
property plays an essential role. The following counterexample shows that such a
property can not be replaced with the usual covering notion for set-valued mappings.

Example 3.4. Consider the set-valued mapping Ψ : R ⇒ R2, introduced in Exam-
ple 2.2, that is covering with constant α = 1. It is easy to check that this mapping
is also Hausdorff u.s.c. on R. Define a further mapping Φ : R ⇒ R2 as follows

Φ(x) =

(
|x|
2

+ 1

)
B.

Since it is

exc (Φ(x1),Φ(x2)) ≤
1

2
|x1 − x2|, ∀x1, x2 ∈ R,

Φ turns out to be Lipschitz on R with constant β = 1/2 < 1 = α and bounded value.
Nonetheless, in this case it happens that Inc(Φ,Ψ) = ∅, as one readily observes,
being intΨ(x) = ∅ for every x ∈ R.

A related application of the notion of set-covering concerns the fixed point theory
for multivalued mappings.

Definition 3.5. An element x of a metric space X is said to be a strongly fixed
point of a set-valued mapping Ψ : X ⇒ X if for some r > 0 it is

B(x, r) ⊆ Ψ(x).

The set of all strongly fixed point of Ψ is denoted henceforth by SFix(Ψ).

In the following proposition, strongly fixed points are shown to arise in connec-
tion with set-covering mappings with constant greater than 1 (a sort of expanding
mappings).

Proposition 3.6. Let Ψ : X ⇒ X be a set-valued mapping defined on a vector
space, endowed with a complete and shift invariant metric. If Ψ is u.s.c. and
set-covering on X, with constant α > 1, then SFix(Ψ) ̸= ∅ and it holds

dist (x,SFix(Ψ)) ≤ dist (x,Ψ(x))

α− 1
, ∀x ∈ X.

Moreover, SFix(Ψ) is a dense subset of the set of all fixed points of Ψ.

Proof. Fix arbitrary x0 ∈ X and r > 0 and consider the set-valued mapping Φr :
X ⇒ X given by

Φr(x) = B(x, r).

Let us show that, under the current hypotheses, Φr is Lipschitz with constant
β = 1. Notice indeed that, by the shift invariance of the metric on X, one has
B(x, r) = x + B(0, r). Thus, taken x1, x2 ∈ X, if y1 ∈ Φr(x1) = x1 + B(0, r), for
some u ∈ B(0, r) it results in

dist (y1,Φr(x2)) = dist (y1, x2 +B(0, r)) = dist (y1 − x2,B(0, r))
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= dist (x1 + u− x2,B(0, r))

≤ d(x1, x2) + dist (u,B(0, r)) = d(x1, x2),

whence

exc (Φr(x1),Φr(x2)) ≤ d(x1, x2).

Since α > 1, then it is possible to apply Theorem 3.3, according to which Inc(Φr,Ψ) ̸=
∅ and

dist (x0, Inc(Φr,Ψ)) ≤ exc (Φr(x0),Ψ(x0))

α− 1
.

Now, observe that SFix(Ψ) = ∪r>0Inc(Φr,Ψ) ̸= ∅. By using again the shift invari-
ance of the metric, one obtains

dist (x0, SFix(Ψ)) ≤ inf
r>0

exc (Φr(x0),Ψ(x0))

α− 1

= inf
r>0

sup
u∈B(0,r)

dist (x0 + u,Ψ(x0))

α− 1

≤ inf
r>0

sup
u∈B(0,r)

d(x0 + u, x0) + dist (x0,Ψ(x0))

α− 1

=
dist (x0,Ψ(x0))

α− 1
.

This proves the first assertion in thesis. The second one is a straightforward conse-
quence of the first. □

3.2. Applications to exact penalization. Of course, in force of its versatility,
a set-inclusion problem associated with a given pair of multivalued mappings may
appear among the constraints of optimization problems. In the remaining part of
this section, it is shown how the error bound estimate provided in Theorem 3.3
can be exploited in deriving exact penalization results specific for problems with a
constraint of this type. After [13, 36], exact penalization is a well-known approach
for the treatment of variously constrained optimization problems, whose effective-
ness is recognized from the theoretical as well as from the algorithmic viewpoint.
Essentially, it consists in reducing a given constrained extremum problem to an
unconstrained one, by replacing its objective functional with a so-called penalty
functional, which is obtained by adding to the original objective functional a term
properly quantifying the constraint violation. Relying on this idea, a comprehensive
theory has been developed during the last decades. The reader is referred to [11]
for a recent presentation, which unifies many results on exact penalization existing
in the related literature (see also [37]). For convergence rate estimates for power
penalty methods see [4]. Let us focus here on constrained optimization problems of
the form

(P) minφ(x) subject to x ∈ R = Inc(Φ,Ψ),

where the objective functional φ : X −→ R∪ {±∞} and the multivalued mappings
Ψ : X ⇒ Y and Φ : X −→ B(Y ) are given problem data. The penalty functional

φl(x) = φ(x) + l · excΦ,Ψ(x)
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enables one to associate with problem (P) the unconstrained problem

(Pl) min
x∈X

φl(x).

Conditions ensuring that a local solution to (P) is also a local solution to (Pl),
provided that l is large enough, namely ensuring the existence of an exact penalty
functional, turns out to be useful for formulating necessary optimality conditions
for problem (P). In the next result, a condition of this type is recalled. Results on
the existence of exact penalty functions can be found also in [5], where sufficient
conditions are derived in the absence of standard regularity conditions.

Theorem 3.7. Let x̄ ∈ R be a local solution to (P). Suppose that

(i) φ is locally Lipschitz near x̄, with constant lφ > 0;
(ii) (X, d) is metrically complete;
(iii) Ψ is Hausdorff u.s.c. and set-covering on X, with constant α > 0;
(iv) Φ is Lipschitz on X with constant β ∈ [0, α).

Then, the penalty functional φl is exact at x̄ (i.e. x̄ is an unconstrained local

minimizer of φl), for every l ≥ lφ
α−β .

Proof. The thesis can be readily achieved from Theorem 3.3, by applying the follow-
ing well-known fact, often referred as to the exact penalization principle for Lipschitz
functions: let φ : X −→ R ∪ {±∞} be a function defined on a metric space, which
is locally Lipschitz near x̄ with constant lφ ≥ 0, and let γ : X −→ [0,+∞) be a
function fulfilling for some κ > 0 the error bound

dist
(
x, γ−1(0)

)
≤ κγ(x),

for every x in a neighbourhood of x̄. Then, if x̄ is a local minimizer of φ subject to
γ(x) = 0, it is also a unconstrained minimizer of the function

φs(x) = φ(x) + sγ(x),

provided that s ≥ lφκ (see, for instance, [14]). Indeed in the current case, as a
residual function γ, it suffices to take γ(x) = excΦ,Ψ(x). □

By exploiting again the above error bound estimate for set-inclusion points, it is
possible to establish a sort of converse of the last result, which is valid for global
solutions.

Proposition 3.8. Let problem (P) admit global solutions. Suppose that:

(i) φ is Lipschitz on X with constant lφ > 0;
(ii) (X, d) is metrically complete;
(iii) Ψ is Hausdorff u.s.c. and set-covering on X, with constant α > 0;
(iv) Φ is Lipschitz on X with constant β ∈ [0, α).

Fix ϵ > 0 and set lϵ =
(1+ϵ)lφ
α−β . If x̂ is a strict global solution to problem (Plϵ), then

x̂ globally solves also (P).

Proof. By virtue of the error bound estimate (3.1), corresponding to any ϵ > 0 an
element xϵ ∈ R can be found such that

d(xϵ, x̂) ≤
1 + ϵ

α− β
exc (Φ(x̂),Ψ(x̂)) .
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Denote by x̄ ∈ R a global solution of (P). As x̂ solves problem (Plϵ), by the last
inequality and the Lipschitz continuity of φ, one obtains

φ(x̄) = φlϵ(x̄) ≥ φlϵ(x̂) = φ(x̂) + lϵexc (Φ(x̂),Ψ(x̂))

≥ φ(xϵ)− lφd(x̂, xϵ) + lϵexc (Φ(x̂),Ψ(x̂)) ≥ φ(xϵ) ≥ φ(x̄).

The consequent fact that φlϵ(x̂) = φlϵ(xϵ), since x̂ is strict as a global solution to
(Plϵ), entails that x̂ = xϵ, so that also x̂ ∈ R. Thus, on account of the above
inequalities, it is possible to conclude that x̂ is a global solution of (P). □

Another approach to penalization methods in constrained optimization rests upon
the concept of problem calmness, which was introduced by R.T. Rockafellar. This
approach requires to regard a given problem as a particular specialization of a class
of parameterized problems. In the case under study, the following class will be
considered

(Pp) minφ(x) subject to x ∈ R(p) = {x ∈ X : Φ(p, x) ⊆ Ψ(p, x)},

where the data Φ : P ×X −→ B(Y ) and Ψ : P ×X ⇒ Y now depend also on p ∈ P ,
with (P, d) denoting a metric space of parameters. Notice that, unless suitable
assumptions are introduced, one can not expect in general that domR = P . With
respect to this problem parameterization, the penalty functional φl : P × X −→
R ∪ {±∞} becomes

φl(p, x) = φ(x) + l · exc (Φ(p, x),Ψ(p, x)) .

Definition 3.9. Let p̄ ∈ P and let x̄ ∈ R(p̄) be a local minimizer of the problem
(Pp̄). Problem (Pp̄) is called calm at x̄ if there exist positive real constants r and ζ
such that

φ(x) ≥ φ(x̄)− ζd(p, p̄), ∀x ∈ B(x̄, r) ∩R(p), ∀p ∈ B(p̄, r).

Appeared firstly in [8], since then the above property become a fundamental
regularity condition pervading the study of the sensitivity behaviour of variational
problems, in the presence of perturbations (see [32]). In the present context, the
introduction of problem calmness allows one to avoid the assumption of Lipschitz
continuity on the objective functional. The price to be paid for enlarging the class of
problems, to which the penalization technique can be applied, consists in a regularity
requirement on the feasible region of the problem class, formalized as follows.

Definition 3.10. A set-valued mapping Ξ : P ⇒ X between metric spaces is said to
be semiregular at p̄ ∈ P , uniformly over Ξ(p̄), if if there exist positive real constants
r and κ such that

dist
(
p̄,Ξ−1(x)

)
≤ κd(x, x̄), ∀x ∈ B(x̄, r), ∀x̄ ∈ Ξ(p̄).(3.5)

The property formulated in Definition 3.10 is an enhanced version of a regularity
notion that, to the best of the author’s knowledge, was introduced in [21]. The latter
is known to correspond to the well-known Lipschitz lower semicontinuity property
for the inverse mapping of Ξ.
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Remark 3.11. It is readily seen that, whenever Ξ : P ⇒ X is semiregular at p̄,
uniformly over Ξ(p̄), then it holds

dist
(
p̄,Ξ−1(x)

)
≤ κdist (x,Ξ(p̄)) , ∀x ∈ B(Ξ(p̄), r/2).(3.6)

Indeed, taken x ∈ B(Ξ(p̄), r/2)\Ξ(p̄) and any ϵ ∈ (0, 1), there exists x̄ϵ ∈ Ξ(p̄) such
that

d(x, x̄ϵ) < (1 + ϵ)dist (x,Ξ(p̄)) < r.

Then, inequality (3.5) applies, so it results in

dist
(
p̄,Ξ−1(x)

)
≤ κd(x, x̄ϵ) < κ(1 + ϵ)dist (x,Ξ(p̄)) ,

whence inequality (3.6) follows by arbitrariness of ϵ ∈ (0, 1). Actually, the validity
of (3.6) is an equivalent reformulation of the uniform semiregularity of Ξ at p̄, as
one checks immediately.

One is now in a position to establish the next result about exact penalization.

Theorem 3.12. With reference to a parameterized family of problems (Pp), let
x̄ ∈ R(p̄) be a local minimizer of problem (Pp̄). Suppose that:

(i) (X, d) is metrically complete;
(ii) φ is l.s.c. at x̄;
(iii) R : P ⇒ X is semiregular at p̄, uniformly over R(p̄);
(iv) problem (Pp̄) is calm at x̄;

and that there exists δ > 0 such that:

(v) Ψ(p, ·) : X ⇒ Y is Hausdorff u.s.c. and set-covering on X with constant
αp > 0, for each p ∈ B(p̄, δ);

(vi) Φ(p, ·) : X −→ B(Y ) is Lipschitz on X with constant βp ∈ (0, αp), for each
p ∈ B(p̄, δ).

Then, there exists l > 0 such that the penalty functional φl(p̄, ·) is exact at x̄.

Proof. Let us start with noting that, under the current assumptions, by virtue of
Theorem 3.3 it is domR ⊇ B(p̄, δ) and the following estimate holds

dist (x,R(p)) ≤ exc (Φ(p, x),Ψ(p, x))

αp − βp
, ∀x ∈ X, ∀p ∈ B(p̄, δ).(3.7)

Recall that, according to what has been noticed in Remark 3.2, the mapping R is
closed valued. By hypothesis (iii), in the light of Remark 3.11, there exist r > 0
and κ > 0 such that

dist
(
p̄,R−1(x)

)
≤ κdist (x,R(p̄)) , ∀x ∈ B(R(p̄), r).

From the last inequality, on the account of the estimate (3.7), it follows

dist
(
p̄,R−1(x)

)
≤ κ

αp̄ − βp̄
exc (Φ(p̄, x),Ψ(p̄, x)) ,(3.8)

∀x ∈ B(R(p̄), r).

Assume now, ab absurdo, that for each l > 0 the penalty functional φl(p̄, ·) fails
to be exact at x̄, namely for each l > 0 there exists n ∈ N, with n > l, and
xn ∈ B(x̄, 1/n) such that

φ(xn) + n · exc (Φ(p̄, xn),Ψ(p̄, xn)) < φ(x̄).(3.9)
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Since x̄ is a local solution to problem (Pp̄), for each n ∈ N larger than a proper
natural number it must be xn ̸∈ R(p̄), that is, as multifunctions take closed values,
exc (Φ(p̄, xn),Ψ(p̄, xn)) > 0. Moreover, by virtue of the lower semicontinuity of φ
at x̄ and of the fact that the sequence (xn)n∈N converges to x̄ as n → ∞, from
inequality (3.9) one obtains

lim sup
n→∞

n · exc (Φ(p̄, xn),Ψ(p̄, xn)) ≤ lim sup
n→∞

[φ(x̄)− φ(xn)]

= φ(x̄)− lim inf
n→∞

φ(xn) ≤ 0.

Then one deduces that

lim
n→∞

exc (Φ(p̄, xn),Ψ(p̄, xn)) = 0.(3.10)

Since, as already observed, xn −→ x̄ as n → ∞, it is possible to assume without
loss of generality that xn ∈ B(x̄, r), and hence xn ∈ B(R(p̄), r). This fact enables
one to apply inequality (3.8), from which one obtains

dist
(
p̄,R−1(xn)

)
≤ κ

αp̄ − βp̄
exc (Φ(p̄, xn),Ψ(p̄, xn)) .

This means that, corresponding to a costant κ̃ > κ, a suitable pn ∈ R−1(xn) can
be found, such that the inequality

d(pn, p̄) <
κ̃

αp̄ − βp̄
exc (Φ(p̄, xn),Ψ(p̄, xn))(3.11)

holds for every n ∈ N large enough. Observe that, as xn ∈ R(pn) and xn ̸∈ R(p̄),
then it must be pn ̸= p̄. By combining inequalities (3.11) and (3.9), one finds

κ̃

αp̄ − βp̄
· φ(xn)− φ(x̄)

d(pn, p̄)
≤ φ(xn)− φ(x̄)

exc (Φ(p̄, xn),Ψ(p̄, xn))
< −n,

wherefrom, for xn ∈ B(x̄, r) ∩R(pn) and every n ∈ N large enough, one gets

φ(xn) < φ(x̄)− n(αp̄ − βp̄)

κ̃
d(pn, p̄).(3.12)

Notice that, owing to inequality (3.10), the estimate in (3.11) entails that pn −→ p̄
as n → ∞. Consequently, inequality (3.12) contradicts the hypothesis (iv) about
the calmness at x̄ of problem (Pp̄). Thus, the proof is complete. □
Remark 3.13. Among the hypotheses of Theorem 3.12, (iii) and (iv) are not di-
rectly formulated in terms of problem data. Conditions for mapping R to be uni-
formly regular at p̄ can be derived by working, under proper assumptions on Φ and
Ψ, the general characterization for the semiregularity of a mapping Ξ : P ⇒ X,
which is expressed by the positivity of the constant

ϑ[Ξ](p̄, x̄) = lim inf
x̸∈Ξ(p̄)
x→x̄

dist (x,Ξ(p̄))

dist (p̄,Ξ−1(x))

(see [21]). A sufficient condition for a parameterized problem (Pp̄) to be calm
can be expressed in terms of calmness from below of the related value function
ν : P −→ R ∪ {±∞}, defined as

ν(p) = inf
x∈R(p)

φ(x).
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More precisely, if x̄ ∈ R(p̄) is a global solution to problem (Pp̄), then (Pp̄) is calm
x̄ povided that ν is calm from below at p̄, i.e.

lim inf
p→p̄

ν(p)− ν(p̄)

d(p, p̄)
> −∞

(see, for more details, [34]).

Theorem 3.12 provides a sufficient condition for the exactness of the penalty
functional, where problem calmness plays a crucial role. In order to enlighten the
intriguing connection between these two properties, this subsection is concluded by
a proposition that, in the setting under examination, singles out certain conditions
upon which from exact penalization it is possible to derive problem calmness.

Proposition 3.14. With reference to a parameterized family of problems (Pp), let
x̄ ∈ R(p̄) be a local minimizer of (Pp̄). Suppose that:

(i) mapping Φ : P ×X −→ B(Y ) is locally Lipschitz around (p̄, x̄);
(ii) mapping Ψ is partially Lipschitz u.s.c. at p̄, uniformly in x, i.e. there exist

r > 0 and ζ > 0 such that

Ψ(p, x) ⊆ B(Ψ(p̄, x), ζd(p, p̄)), ∀p ∈ B(p̄, ζ), ∀x ∈ B(x̄, ζ);

(iii) there exists l > 0 such that φl(p̄, ·) is an exact penalty functional.

Then, problem (Pp̄) is calm at x̄.

Proof. The thesis can be proved again by a reductio ad absurdum. So assume (Pp̄)
to be not calm at x̄. This amounts to say that for each n ∈ N it is possible to find
pn ∈ B(p̄, 1/n)\{p̄} and xn ∈ R(pn) ∩ B(x̄, 1/n) such that

φ(xn) < φ(x̄)− nd(pn, p̄).(3.13)

By hypothesis (ii), since pn → p̄ and xn → x̄ as n → ∞, one has

exc (Ψ(pn, xn),Ψ(p̄, xn)) ≤ ζd(pn, p̄),(3.14)

for each n ∈ N large enough. On the other hand, since Φ is locally Lipschitz around
(p̄, x̄), for some τ > 0 it is true that

exc (Φ(p̄, xn),Φ(pn, xn)) ≤ τd(pn, p̄),(3.15)

for every n ∈ N large enough. By recalling that xn ∈ R(pn), so that Φ(pn, xn) ⊆
Ψ(pn, xn), from inequalities (3.15) and (3.14) one obtains

exc (Φ(p̄, xn),Ψ(p̄, xn)) ≤ exc (Φ(p̄, xn),Φ(pn, xn))

+ exc (Φ(pn, xn),Ψ(pn, xn))

+ exc (Ψ(pn, xn),Ψ(p̄, xn))

≤ (τ + ζ)d(pn, p̄).

By combining the above estimate with inequality (3.13), one finds

φ(xn) < φ(x̄)− n

τ + ζ
exc (Φ(p̄, xn),Ψ(p̄, xn)) .

As the last inequality is true for each n ∈ N larger than a proper natural and
for the corresponding xn ∈ B(x̄, 1/n), the hypothesis (iii) about the existence of
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an exact penalty functional turns out to be contradicted. Thus, the argument by
contradiction is complete. □
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