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∥f̂c∥L1(R+) ≲ ∥f ′∥H1
o (R+);

while for the sine Fourier transform an asymptotic formula holds: for x > 0,

f̂s(x) =
1

x
f
( π

2x

)
+ F (x),

where

∥F∥L1(R+) ≲ ∥f ′∥H1
o (R+).

Here and in what follows we use the notations ”≲ ” and ”≳ ” as abbreviations
for ”≤ C ” and ”≥ C ”, with C being an absolute positive constant. Also, Ho and
He denote the Hilbert transform applied to an odd and even function, respectively.
Note that, correspondingly, H1

o (R+) and H1
e (R+) stand for the Hardy type spaces

for odd and even functions, respectively, to be specified later.
There are various arguments to justify our interest in this piece, see, e.g., recent

works [12] and [13], where much is said on these. Let us mention that the spaces
of functions that guarantee the integrability of the Fourier transform considered
till recently are of interest by themselves and have applications in other areas of
analysis (see, e.g., [3], [20]).

Mention also a recent result in [15], a counterpart of the above Theorem 1.1.

Theorem 1.2. Let f ∈ BV0[0,∞) ∩ LAC(0,∞) and f ′ ∈ H1
e (R+). Then the sine

Fourier transform of f is integrable, with

∥f̂s∥L1(R+) ≲ ∥f ′∥H1
e (R+);

while for the cosine Fourier transform an asymptotic formula holds: for x > 0,

f̂c(x) =
A

x
f
( π

2x

)
+

2

πx

∫ π
2x

0
f ′(t) ln

2tx

π
dt+ F (x),

where

A =
2

π

(∫ π
2

0

1− cos t

t
dt−

∫ ∞

π
2

cos t

t
dt

)
and

∥F∥L1(R+) ≲ ∥f ′∥H1
e (R+).

Of course, F here does not mean exactly the same function as above but just
stand for something integrable. The reasons why the latter theorem appeared so
much later than the former is not the subject of this paper. We mention only that
it was not possible until a new proof of Theorem 1.1 appeared (see [14]).

Most of the earlier obtained results have been generalized to the multivariate
case, various results of that kind can be found in the survey paper [17]. It is also
summarized in [8] or in [13]. All these generalizations fail in sharpness, since too
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many terms come as the remainder terms. To obtain better extensions is the main
goal of this work. We shall deal with

f̂η(x) =

∫
Rn
+

f(u)
∏

i:ηi=1

cosxiui
∏

i:ηi=0

sinxiui du,(1.1)

where f is a locally absolutely continuous function with bounded Hardy’s variation.
Discussion on why among a variety of the notions of multidimensional variation
the one due to Hardy (and Krause) is the most natural in the considered problems
can be found in [13]. Here and in the sequel η = (η1, ..., ηn) is an n-dimensional
vector with the entries either 0 or 1 only. Correspondingly, |η| = η1 + ... + ηn.
Such is the vector χ as well. If the only 1 entry is on the j-th place, while the rest
are zeros, such a vector will be denoted by ej . The inequality of vectors is meant
coordinate wise. If η = 1 in (1.1) we have the purely cosine transform, while if
η = 0 we have the purely sine transform, otherwise we have a mixed transform with
both cosines and sines. But even in the case where the Fourier transform is the
sine in each variable, the only case where a sort of a multidimensional asymptotic
formula has been known till recently, the remainder terms are rough in a sense. It is
plain to realize that in order to get more advanced multivariate generalizations, the
asymptotic relations in Theorems 1.1 and 1.2 should be rewritten in a more precise
form. For this, an operator balancing all the terms in these asymptotic relations is
introduced in [16]. It is defined by means of a generating function φ and takes on
an appropriate function g the value

Bφg(x) =
1

x2

∫ ∞

0
g(

t

x
)φ(t) dt.

It seems to be very convenient in many situations. For example, for φ(t) = sin t,
we have ĝs(x) = xBsg(x) and, similarly, xBcg(x) is the cosine Fourier transform of
g. The only (obvious) property of it we will need is that for g ∈ L1(R+), we have
Bφ ∈ L1(R+) provided ∫ ∞

0

|φ(t)|
t

dt < ∞.(1.2)

One more peculiarity that makes new one-dimensional and multi-dimensional results
different from the preceding ones is that, in fact, we do not assume the belonging of
f ′ to some Hardy space. This can be done in applications, say, in order to simplify
calculations but general relations do not claim for this. What is assumed instead,
much less restrictive, is that the inverse formula for the Hilbert transform of f ′ holds
true almost everywhere. In particular, this is the case if the derivative belongs to
the corresponding Hardy space, as in Theorems 1.1 and 1.2.

To present our main results, Theorems 3.3 and 4.3, too many prerequisites are
needed to do this immediately. For all that, it is of the form

f̂η(x) = many leading terms+ integrable remainder terms.
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Some of the leading terms as well as the remainder terms will be combinations of
balancing operators with various special functions φ.

The paper is organized as follows. In the next section we present the needed
preliminaries. In Sections 3 and 4 we study in detail asymptotic behavior of the
sine and cosine Fourier transforms of a function of bounded variation and extend
these to the multivariate case. In Section 5 we present certain concluding remarks,
in particular, an asymptotic formula is discussed for the most general case.

2. Prerequisites

In this section we give needed notions, definitions and auxiliary results.

2.1. Hilbert transforms and Hardy spaces. The Hilbert transform of an inte-
grable function g is defined by

Hg(x) =
1

π

∫
R

g(t)

x− t
dt,(2.1)

where the integral is also understood in the improper (principal value) sense, now
as lim

δ→0+

∫
|t−x|>δ . It is not necessarily integrable, and when it is, we say that g is in

the (real) Hardy space H1 := H1(R). If g ∈ H1(R), then

∫
R
g(t) dt = 0.(2.2)

It was apparently first mentioned in [9].
An odd function always satisfies (2.2). However, not every odd integrable function

belongs to H1(R), for counterexamples, see [18] and [11]. When in the definition of
the Hilbert transform (2.1) the function g is odd, we will denote this transform by
Ho, and it is equal to

Hog(x) =
2

π

∫ ∞

0

tg(t)

x2 − t2
dt.

If it is integrable, we shall denote the corresponding Hardy space by H1
o (R+), or

sometimes simply H1
o . Correspondingly, when in the definition of the Hilbert trans-

form (2.1) the function g is even, we will denote this transform by He, and it is
equal to

Heg(x) =
2

π

∫ ∞

0

xg(t)

x2 − t2
dt.

Symmetrically, we shall denote the corresponding Hardy space by H1
e (R+), or some-

times simply H1
e . Clearly, to have (2.2) for this class,

∫∞
0 g(t) dt = 0 should be valid.

There exist clear relations between the even and odd Hilbert transforms (see,
e.g., [12]).
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Proposition 2.1. Let g ∈ L1(R+). Then

Heg(x) = Hog(x) +
2

πx

∫ x

0
g(t) dt+G(x),(2.3)

where ∫ ∞

0
|G(x)| dx ≲

∫ ∞

0
|g(t) dt.

.

2.2. Hardy variation. One of the simplest and direct generalization of the one-
dimensional variation, the Vitali variation, is defined as follows (cf., e.g., [1,4]). Let
f be a complex-valued function and

∆uf(x) =

( n∏
j=1

∆uj

)
f(x),

with

∆ujf(x) = f(x+ ujej)− f(x),

be a ”mixed” difference with respect to the parallelepiped [x, x+u] = [x1, x1+u1]×
... × [xn, xn + un]. We will need the following notations. Denote by ∆uηf(x) the
partial difference

∆uηf(x) =

( ∏
j:ηj=1

∆uj

)
f(x).

Let us take an arbitrary number of non-overlapping parallelepipeds, and form a
mixed difference with respect to each of them. Then the Vitali variation is

V V (f) = sup
∑

|∆uf(x)|,

where the sum and then the least upper bound are taken over all the sets of such
nonoverlapping parallelepipeds. For smooth enough functions f, the Vitali variation
is expressed as

V V (f) =

∫
Rn

∣∣∣∣ ∂nf(x)

∂x1...∂xn

∣∣∣∣ dx =

∫
Rn

|D1f(x)| dx.

Here and in what follows Dηf for η = 0 = (0, 0, ..., 0) or η = 1 = (1, 1, ..., 1) mean
the function itself and the partial derivative repeatedly in each variable, respectively,
where

Dηf(x) =

 ∏
j: ηj=1

∂

∂xj

 f(x).

However, in many problems Vitali’s variation is helpless, because ”bad” marginal
functions of a smaller number of variables may be added to a function of bounded
Vitali’s variation. The next notion is free of this disadvantage.
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A function f is said to be of bounded Hardy variation, written f ∈ V H(f), if
it is of bounded Vitali variation and is of bounded Vitali variation with respect
to any smaller number of variables (see, e.g., [7], [4]; sometimes this notion is also
attributed to Krause). The latter will be denoted by V Vη(f) < ∞, with η ̸= 1,0.
Correspondingly, V V (f) := V V1(f). In other words, V H(f) < ∞ if and only
if V Vη(f) < ∞ for all η, except η = 0 which is meaningless. However, just for
convenience, we can understand V V0(f) := f .

If f is of bounded Vitali variation on Rn and lim
|x|→∞

f(x) = 0, then functions

depending on a smaller number of variables than n are excluded. Such a function
is of bounded Hardy variation.

2.3. Absolute continuity. In order to present a multidimensional version of The-
orems 1.1 and 1.2, we should discuss a multidimensional notion of absolute continu-
ity; see, e.g., [2]. There are several equivalent definitions. It suffices to define such
functions to be those representable as

f(x) =

∫ x1

−∞
...

∫ xn

−∞
h(u) du+

∑
η ̸=1

hη(xη),(2.4)

where marginal functions hη depending on a smaller number of variables than n,

in fact, |η| < n, since |η| = n only if η = 1, are absolutely continuous on R|η|.
This inductive definition is correct since reduces to the usual absolute continuity
on R for marginal functions of one variable. Locally absolute continuity means
absolute continuity on every finite rectangle [a, b] = [a1, b1] × ... × [an, bn]. In this
case, a1,...,an, respectively, should replace −∞ in (2.4).

2.4. Additional notation. Certain additional notation is in order. By xη we
denote the |η|-tuple consisting only of xj such that ηj = 1. We denote by 1

x the

vector ( 1
x1
, ..., 1

xn
). Similarly to the above notation, by ( 1x)η we denote the |η|-tuple

consisting only of 1
xj

for j such that ηj = 1. If in the multivariate setting one of

the operators Ho, Bs, BC and the like is applied to the j-th variable, it will be

denoted by Hj
o, B

j
s , B

j
C , etc. Like the partial derivative above, the other operators

applied to the j-th variables for j such that ηj = 1 will be denoted by means of the
superscript η, like

Hη
o =

∏
j:ηj=1

Hj
o, Bη

s =
∏

j:ηj=1

Bj
s , Bη

C =
∏

j:ηj=1

Bj
C .

3. Generalizations of Theorem 1.1

It turns out that the theorem in question can be expressed in a much more precise
form.

Theorem 3.1. Let f ∈ BV0[0,∞) ∩ LAC(0,∞). Let almost everywhere

−Ho(Hef
′)(t) = f ′(t).
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Then for the cosine Fourier transform of f , we have

f̂c(x) =

∫ ∞

0
f(t) cosxt dt = −Bsf

′(x),(3.1)

while for the sine Fourier transform an asymptotic formula holds: for x > 0,

f̂s(x) =
1

x
f
( π

2x

)
+Bs(Hof

′)(x) +BSf
′(x),(3.2)

where BS is generated by the function

S(t) =
2

π


−t
∫∞
0

sin s
s(s+t) ds, 0 < t < π

2 ,∫∞
0

sin s
s+t ds, t ≥ π

2 .

Remark 3.2. This theorem becomes more meaningful if one observes that

∥Bsf
′∥L1(R+) ≲ ∥f ′∥H1

o (R+),

∥Bs(Hof
′)∥L1(R+) ≲ ∥f ′∥H1

o (R+),

both by the well-known extension of Hardy’s inequality (see, e.g., [6, (7.24)])

∫
R

|ĝ(x)|
|x|

dx ≲ ∥g∥H1(R)(3.3)

provided f ′ ∈ H1
o (R+), and

∥BSf
′∥L1(R+) ≲ ∥f ′∥L1(R+).

Proof. One should accurately keep all the bounds that give F (x) in [14] unestimated.
For this, let us recall the main steps of the proof for the sine transform, since for the
cosine transform the result follows immediately after integrating by parts. A heavy
duty is over (3.3). To make use of it, or, more precisely, to separate Bs(Hof

′)(x)
as an isolated summand, the inverse formula for the Hilbert transform is applied
to the derivative of f after integrating by parts in the sine Fourier transform. This
leads to

1

x

∫ ∞

0
(Hef

′)(t) sinxt dt.

To replace He by Ho before applying (3.3), we use (2.3), wherein the above men-
tioned estimates appear. More precisely, these are (2.8) in [14] and calculations
after it. Changing variables xt → t in each of the terms makes this group to be-
come BSf

′(x). That they indeed form an integrable remainder term follows from
(1.2). The proof is complete. □

We are now in a position to formulate and prove our first main result.
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Theorem 3.3. Let f : Rn
+ → C be of bounded Hardy’s variation on Rn

+ and f
vanishes at infinity along with all Dηf except η = 1. Let also f and the same
Dηf be locally absolutely continuous in the above sense. In addition, let for all the
derivatives the inverse formula for the Hilbert transform holds almost everywhere in
each variable. Then

(−1)|η|f̂η(x) =

 ∏
j:ηj=0

1

xj

Bη
sD

ηf

(
xη,
( π

2x

)
1−η

)

+
∑

χ:χi=0 if ηi=1,
χ̸=0,1

 ∏
j:χj=1

1

xj

 ∏
j:(1−η−χ)j=1

(
Bj

sH
j
o

∂

∂xj
+Bj

S

∂

∂xj

)

×Bη
sD

ηf

(
x1−χ,

( π

2x

)
χ

)
(3.4)

+
∏

j:(1−η)j=1

(
Bj

sH
j
o

∂

∂xj
+Bj

S

∂

∂xj

)
Bη

sD
ηf(x).

Proof. In fact, the proof is the application of either (3.1) or (3.2) in each variable.
It is convenient to apply |η| times (3.1) to (1.1) first. By this, we get

f̂η(x) = (−1)|η|
∫
Rn−|η|
+

Bη
SD

ηf(xη, u1−η)
∏

i:ηi=0

sinxiui du1−η.

We then apply (3.2) in each of the variables in the remained purely sine Fourier
transform. Observe that the cases where χ = 0,1 are written separately in (3.4).
The proof is complete. □

One can see that the point is no the proof of Theorem 3.3, it is just superposition
of one-dimensional results. The latter becomes possible because of utilizing the
operator Bφ.

The last term in (3.4) can be made the (integrable) remainder term by assuming
D1f to belong to the product Hardy space (for details, see, e.g., [13]). And in
general it is the only such remainder term. The rest of the terms are various types
of the leading terms. One cannot get rid of them if wishes to stay in the most general
setting of all functions of bounded Hardy variation. They or some of them disappear
(except of the first one, of course), or, more precisely, become of remainder type, if
one restricts oneself to certain subspaces of the space of functions of bounded Hardy
variation, see, e.g., [13].

4. Generalizations of Theorem 1.2

Like in the previous section, the theorem under consideration can also be ex-
pressed in a much more precise form. The details are very similar to those above,
hence we omit them and just formulate the results.

Theorem 4.1. Let f ∈ BV0[0,∞) ∩ LAC(0,∞). Let almost everywhere
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−He(Hof
′)(t) = f ′(t).

Then for the sine Fourier transform of f , we have

f̂s(x) =

∫ ∞

0
f(t) sinxt dt = Bcf

′(x),

while for the cosine Fourier transform an asymptotic formula holds: for x > 0,

f̂c(x) = BLf
′(x) +Bc(Hef

′)(x) +BCf
′(x),

where BL is generated by the function

L(t) =


A+ 2

π ln 2t
π , 0 < t < π

2 ,

0, t ≥ π
2 ,

and BC is generated by the function

C(t) = − 2

π


(cos t− 1)

∫∞
t

cos s
s ds

+sin t
∫∞
t

sin s
s ds+

∫ t
0

cos s−1
s ds, 0 < t < π

2 ,∫∞
0

cos s
s+t ds, t ≥ π

2 .

Remark 4.2. This theorem becomes more meaningful if one observes that

∥Bcf
′∥L1(R+) ≲ ∥f ′∥H1

e (R+),

∥Bc(Hef
′)∥L1(R+) ≲ ∥f ′∥H1

e (R+)

both by (3.3) provided f ′ ∈ H1
e (R+), and

∥BCf
′∥L1(R+) ≲ ∥f ′∥L1(R+).

And one technical detail is worth to be mentioned. In Theorem 1.2 we have two
leading terms. Here, it is convenient to rewrite exactly the same two terms as one
by introducing a special function L. It is possible, since, by absolute continuity and
cancelation property (2.2),

A

x
f
( π

2x

)
=

A

x

∫ π
2x

0
f ′(t) dt.

What is unusual here is that even the leading term is expressed by means of the
balance operator.

We are now in a position to formulate and prove our second main result, a
counterpart of the first one.
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Theorem 4.3. Let f : Rn
+ → C be of bounded Hardy’s variation on Rn

+ and f
vanishes at infinity along with all Dηf except η = 1. Let also f and the same
Dηf be locally absolutely continuous in the above sense. In addition, let for all the
derivatives the inverse formula for the Hilbert transform holds almost everywhere in
each variable. Then

f̂η(x) = Bη
LB

1−η
c D1f(x)

+
∑

χ:χi=0 if ηi=0,
χ̸=0,1

Bχ
L

∏
j:(η−χ)j=1

(
Bj

cH
j
e

∂

∂xj
+Bj

C

∂

∂xj

)
B1−η

c D1−η+χf(x)

+
∏

j:ηj=1

(
Bj

cH
j
e

∂

∂xj
+Bj

C

∂

∂xj

)
B1−η

c D1−ηf(x).

5. The most general situation

If dimension is high enough, n ≥ 4, one can imagine a combination of all the
four opportunities. The general formulation is too superfluous, therefore to feel
the flavor of such a situation, we give a four-dimensional version. Of course, the
assumptions are the same, that is we deal with f : R4

+ → C of bounded Hardy’s
variation on R4

+ and vanishing at infinity along with all Dηf except η = 1. Let also
f and the same Dηf be locally absolutely continuous. In addition, let for all the
derivatives the inverse formula for the Hilbert transform holds almost everywhere in
each variable. We present each of the four steps for the asymptotic representation
of the corresponding Fourier transform separately as follows:

f̂(1,1,0,0)(x) =

∫
R4
+

f(u) cosx1u1 cosx2u2 sinx3u3 sinx4u4 du

= −
∫
R3
+

B1
s

∂

∂x1
f(x1, u2, u3, u4) cosx2u2 sinx3u3 sinx4u4 du2du3du4

= −
∫
R2
+

B1
sB

3
c

∂2

∂x1∂x3
f(x1, u2, x3, u4) cosx2u2 sinx4u4 du2du4

= − 1

x4

∫
R+

B1
sB

3
c

∂2

∂x1∂x3
f

(
x1, u2, x3,

π

2x4

)
cosx2u2 du2

−
∫
R+

B1
sB

3
cB

4
sH4

0

∂3

∂x1∂x3∂x4
f(x1, u2, x3, x4) cosx2u2 du2

−
∫
R+

B1
sB

3
cB

4
S

∂3

∂x1∂x3∂x4
f(x1, u2, x3, x4) cosx2u2 du2,

and finally we get

f̂(1,1,0,0)(x) =

∫
R4
+

f(u) cosx1u1 cosx2u2 sinx3u3 sinx4u4 du
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= − 1

x4
B2

LB
1
sB

3
c

∂3

∂x1∂x2∂x3
f

(
x1, x2, x3,

π

2x4

)
− 1

x4
B2

cH2
eB

1
sB

3
c

∂3

∂x1∂x2∂x3
f

(
x1, x2, x3,

π

2x4

)
− 1

x4
B2

CB
1
sB

3
c

∂3

∂x1∂x2∂x3
f

(
x1, x2, x3,

π

2x4

)
−B2

LB
1
sB

3
cB

4
sH4

oD
1f(x)−B2

cH2
eB

1
sB

3
cB

4
sH4

oD
1f(x)

−B2
CB

1
sB

3
cB

4
sH4

oD
1f(x)−B2

LB
1
sB

3
cB

4
SD

1f(x)

−B2
cH2

eB
1
sB

3
cB

4
SD

1f(x)−B2
CB

1
sB

3
cB

4
SD

1f(x).

The last formula can be made shorter in two ways. First, we know from the
one-dimensional theory that the terms where the Hilbert transform appears are
integrable by assuming that these Hilbert transforms are integrable, or, in other
words, the corresponding derivative belongs to a Hardy space. Under such assump-
tion these terms may be denoted as a function integrable over R4

+. Second, some
other terms may be claimed to be integrable, which is a very special assumption
that makes the asymptotic formula rough to certain extent.

The same concerns the formulas from Theorems 1.1 and 1.2, which, as mentioned,
leads to a notion of product Hardy space, which we are not going to discuss here;
see, e.g., [13].
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