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all for the Minkowski problem. This was done in 1938 but still is one of the sum-
mits of convexity. In fact, it was Alexandrov who suggested a functional-analytical
approach to extremal problems for convex surfaces. It should be noted that the
extreme rays of x are dense in VN , and so to follow it directly in the general setting
is impossible without the description of the polar cone of VN which was found in [2].

Later research has extended this approach and recently some new vista were open
that combined the ideas of Pareto optimality and convex geometry. This article is
a short overview of these vistas.

Convex Bodies, Balls, and Dual Cones

A convex figure is a compact convex set. A convex body is a solid convex figure.
The Minkowski duality identifies a convex figure x in RN and its support function
x(z) := sup{(x, z) | x ∈ x} for z ∈ RN . Considering the members of RN as singletons,
we assume that RN lies in VN .

The Minkowski duality, assigning to x the support function x(·) of x makes VN into
a cone in C(SN−1), the boundary of the unit ball zN . The linear span [VN ] of VN

is dense in C(SN−1), bears a natural structure of a vector lattice and is usually
referred to as the space of convex sets.

The study of this space stems from the pioneering breakthrough of Alexandrov
and the further insights of Radström, Hörmander, and Pinsker (see [5]).

A measure µ linearly majorizes or dominates a measure ν on SN−1 provided that
to each decomposition of SN−1 into finitely many disjoint Borel sets U1, . . . , Um

there are measures µ1, . . . , µm with sum µ such that every difference µk − ν|Uk

annihilates all restrictions to SN−1 of linear functionals over RN . In symbols, we
write µ≫RN ν.

Reshetnyak proved in 1954 (see [8]) that∫
SN−1

pdµ ≥
∫

SN−1

pdν

for each sublinear functional p on RN if µ≫RN ν. This gave an important trick
for generating positive linear functionals over various classes of convex surfaces
and functions. The converse of the Reshetnyak result appeared in [2]. Note that
majorization is a vast subject [7].

Alexandrov proved the unique existence of a translate of a convex body given its
surface area function, thus completing the solution of the Minkowski problem. Each
surface area function is an Alexandrov measure. So we call a positive measure on
the unit sphere which is supported by no great hypersphere and which annihilates
singletons.

Each Alexandrov measure is a translation-invariant additive functional over the
cone VN . The cone of positive translation-invariant measures in the dual C ′(SN−1)
of C(SN−1) is denoted by AN .

Given x, y ∈ VN , the record x=RN y means that x and y are equal up to translation
or, in other words, are translates of one another. So, =RN is the associate equivalence
of the preorder ≥RN on VN of the possibility of inserting one figure into the other
by translation.
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The sum of the surface area measures of x and y generates the unique class x#y
of translates which is referred to as the Blaschke sum of x and y. There is no need
in discriminating between a convex figure, the coset of its translates in VN/RN , and
the corresponding measure in AN .

Let C(SN−1)/RN stand for the factor space of C(SN−1) by the subspace of all
restrictions of linear functionals on RN to SN−1. Let [AN ] be the space AN −AN

of translation-invariant measures, in fact, the linear span of the set of Alexandrov
measures.

C(SN−1)/RN and [AN ] are made dual by the canonical bilinear form

⟨f, µ⟩ = 1

N

∫
SN−1

fdµ

(f ∈ C(SN−1)/RN , µ ∈ [AN ]).

For x ∈ VN/RN and y ∈ AN , the quantity ⟨x, y⟩ coincides with the mixed volume
V1(y, x).

Consider the set SymVN of centrally symmetric cosets of convex compact sets.
Clearly, a translation-invariant linear functional f is positive over SymVN if and
only if the symmetrization Sym(f) is positive over VN . Here Sym(f) is the dual of
the descent of the even part operator on the factor-space, since the symmetrization
of a measure is the dual of the even part operator over C(SN−1). We will denote
the even part operator, its descent and dual by the same symbol Sym(·).

Given a cone K in a vector space X in duality with another vector space Y , the
dual of K is

K∗ := {y ∈ Y | (∀x ∈ K) ⟨x, y⟩ ≥ 0}.
To a convex subset U of X and x̄ ∈ U there corresponds

Ux̄ := Fd(U, x̄) := {h ∈ X | (∃α ≥ 0) x̄+ αh ∈ U},

the cone of feasible directions of U at x̄.
Let x̄ ∈ AN . Then the dual A∗

N,̄x of the cone of feasible directions of AN at x̄ may
be represented as follows

A∗
N,̄x = {f ∈ A∗

N | ⟨x̄, f⟩ = 0}.

The description of the dual of the feasible cones are well known:
Let x and y be convex figures. Then
(1) µ(x)− µ(y) ∈ V∗

N ↔ µ(x)≫RNµ(y);
(2) If x ≥ RN y then µ(x)≫RNµ(y);
(3) x ≥ R2y ↔ µ(x)≫R2µ(y);
(4) If µ(y)− µ(x̄) ∈ V∗

N,̄x then y =RN x̄ for x̄ ∈ VN .
From this the dual cones are available in the case of Minkowski balls.

Let x and y be convex figures. Then
(1) µ(x)− µ(y) ∈ SymV∗

N ↔ Sym(µ(x))≫RN Sym(µ(y));
(2) If x ≥ RN y then Sym(µ(x))≫RN Sym(µ(y));
(3) Sym(x) ≥ R2 Sym(y) ↔ Sym(µ(x))≫R2 Sym(µ(y));
(4) If µ(y)− µ(x̄) ∈ SymV∗

N,̄x then Sym(y) =RN x̄ for x̄ ∈ SymVN .
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Alexandrov extended the volume to the positive cone of C(SN−1) by the formula
V (f) := ⟨f, µ(co(f))⟩ with co(f) the envelope of support functions below f . He
observed that V (f) = V (co(f)) and showed that the gradient of V (·) at x is propor-
tional to µ(x) and so minimizing ⟨·, µ⟩ over {V = 1} will yield the equality µ = µ(x)
by the Lagrange multiplier rule. But this idea fails since the interior of VN is empty.
The fact that DC-functions are dense in C(SN−1) is not helpful at all.

The obvious limitations of the Lagrange multiplier rule are immaterial in the case
of convex programs. It should be emphasized that the classical isoperimetric prob-
lem is not a Minkowski convex program in dimensions greater than 2. The convex
counterpart is the Urysohn problem of maximizing volume given integral breadth
[11]. The constraints of inclusion type are convex in the Minkowski structure, which
opens way to complete solution of new classes of Urysohn-type problems.

External Urysohn Problem: Among the convex figures, circumscribing x0 and
having integral breadth fixed, find a convex body of greatest volume.

A feasible convex body x̄ is a solution to the external Urysohn problem if and
only if there are a positive measure µ and a positive real ᾱ ∈ R+ satisfying

(1) ᾱµ(zN )≫RNµ(x̄) + µ;
(2) V (x̄) + 1

N

∫
SN−1

x̄dµ = ᾱV1(zN , x̄);

(3) x̄(z) = x0(z) for all z in the support of µ, i.e. z ∈ spt(µ).
If x0 = zN−1 then x̄ is a spherical lens and µ is the restriction of the surface area

function of the ball of radius ᾱ1/(N−1) to the complement of the support of the lens
to SN−1.

Pareto Optimization over Minkowski Balls

Consider a bunch of economic agents each of which intends to maximize his own
income. The Pareto efficiency principle asserts that as an effective agreement of
the conflicting goals it is reasonable to take any state in which nobody can increase
his income in any way other than diminishing the income of at least one of the other
fellow members. Formally speaking, this implies the search of the maximal elements
of the set comprising the tuples of incomes of the agents at every state; i.e., some
vectors of a finite-dimensional arithmetic space endowed with the coordinatewise
order. Clearly, the concept of Pareto optimality was already abstracted to arbitrary
ordered vector spaces.

By way of example, consider a few multiple criteria problems of isoperimetric
type.

Vector Isoperimetric Problem over Minkowski Balls: Given are some convex
bodies y1, . . . , yM . Find a symmetric convex body x encompassing a given volume
and minimizing each of the mixed volumes V1(x, y1), . . . , V1(x, yM ). In symbols,

x ∈ Sym(AN ); p̂(x) ≥ p̂(x̄); (⟨y1, x⟩, . . . , ⟨yM , x⟩) → inf.

Clearly, this is a Slater regular convex program in the Blaschke structure.
Each Pareto-optimal solution x̄ of the vector isoperimetric problem has the form

x̄ = α1 Sym(y1) + · · ·+ αm Sym(ym), where α1, . . . , αm are positive reals.
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Internal Urysohn Problem with Flattening over Minkowski Balls: Given
are some convex body x0 ∈ SymVN and some flattening direction z̄ ∈ SN−1.
Considering x ⊂ x0 of fixed integral breadth, maximize the volume of x and min-
imize the breadth of x in the flattening direction: x ∈ SymVN ; x ⊂ x0; ⟨x, zN ⟩ ≥
⟨x̄, zN ⟩; (−p(x), bz̄(x)) → inf.

For a feasible symmetric convex body x̄ to be Pareto-optimal in the internal
Urysohn problem with the flattening direction z̄ over Minkowski balls it is necessary
and sufficient that there be positive reals α and β together with a convex figure x
satisfying

µ(x̄) = Sym(µ(x)) + αµ(zN ) + β(εz̄ + ε−z̄);

x̄(z) = x0(z) (z ∈ spt(µ(x)).

Rotational Symmetry: Assume that a plane convex figure x0 ∈ V2 has the sym-
metry axis Az̄ with generator z̄. Assume further that x00 is the result of rotating x0
around the symmetry axis Az̄ in R3. Consider the problem:

x ∈ V3;

x is a convex body of rotation around Az̄;

x ⊃ x00; ⟨zN , x⟩ ≥ ⟨zN , x̄⟩;
(−p(x), bz̄(x)) → inf.

Each Pareto-optimal solution is the result of rotating around the symmetry axis
a Pareto-optimal solution of the plane internal Urysohn problem with flattening in
the direction of the axis.

Little is known about similar problems in arbitrary dimensions. The planar case
is rediscovered in recent years (see, for instance, [9]).

External Urysohn Problem with Flattening over Minkowski Balls: Given
are some convex body x0 ∈ VN and flattening direction z̄ ∈ SN−1. Consid-
ering Minkowski balls x ⊃ x0 of fixed integral breadth, maximize volume and
minimize breadth in the flattening direction: x ∈ SymVN ; x ⊃ x0; ⟨x, zN ⟩ ≥
⟨x̄, zN ⟩; (−p(x), bz̄(x)) → inf.

For a feasible convex body x̄ to be a Pareto-optimal solution of the external
Urysohn problem with flattening over Minkowski balls it is necessary and sufficient
that there be positive reals α and β together with a convex figure x satisfying

µ(x̄) + Sym(µ(x)) ≫ RNαµ(zN ) + β(εz̄ + ε−z̄);

V (x̄) + V1(Sym(x), x̄) = αV1(zN , x̄) + 2Nβbz̄(x̄);

x̄(z) = x0(z) (z ∈ spt(µ(x)).

For more details see [3] and [4].
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