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ANALYSIS OF CONVEX ISOPERIMETRIC TYPE PROBLEMS

S. S. KUTATELADZE

ABSTRACT. This is a short overview of the present-day status of the functional
analytical approach to isoperimetric-type problems over convex surfaces.

To the loving memory of my friend and coauthor Alex Rubinov

Our first paper [5] with Alex Rubinov appeared in 1969 in a mimeographed pe-
riodical collection Optimal Planning. This Russian collection was edited by Leonid
Kantorovich and published in Akademgorodok near Novosibirsk by the Institute of
Mathematics of the Siberian Division of the USSR. Today it is the Sobolev Institute
named after the founder and first director Sergei Sobolev. This collection was prac-
tically unknown beyond Russia as well as the ideas we were engrossed those years.
Recall that even the term convexr analysis was practically unknown then since the
Rockafellar definitive book [10] was published only in 1970. Only in 1972 the results
of this paper became available to a wide readership because they were included in
the survey [6] in the best mathematical journal of Russia.

The background of the paper was the question that is philosophical by nature:
“Why are some geometrical tricks applied to the problems of isoperimetric type
while analysis has powerful techniques of optimization?” If we can answer this ques-
tion then the new vistas become open—we can deal with the geometrical problems
with however many constraints which are untractable in geometry. For instance, we
still cannot solve the internal isoperimetric problem of finding a surface enclosing
a maximum volume and having a given surface area among those that lie within a
fixed body.

Since convexity was the banner of that epoch in optimization, we consider the
isoperimetric-type problems only over the set Vy of convex figures, compact convex
sets in the Euclidean space RY. Of course, Vy is a cone under Minkowski addition
and positive homotheties. Moreover, Vy is an upper semilattice and a semigroup
with cancellation and so it embeds into a vector lattice. The latter turns out dense
in the space of continuous functions C(Sy_1) on the unit Euclidean sphere Sy_1,
the boundary of the unit ball 3. We were slightly disappointed when we found
out that all these were known to Alexandr Alexandrov [1]. Alexandrov extended
the volume V' (r) of a convex body r to the positive cone of C'(Sy_1) using the en-
velopes of support functions below continuous functions. His ingenious trick settled
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all for the Minkowski problem. This was done in 1938 but still is one of the sum-
mits of convexity. In fact, it was Alexandrov who suggested a functional-analytical
approach to extremal problems for convex surfaces. It should be noted that the
extreme rays of r are dense in Vp, and so to follow it directly in the general setting
is impossible without the description of the polar cone of Vy which was found in [2].

Later research has extended this approach and recently some new vista were open
that combined the ideas of Pareto optimality and convex geometry. This article is
a short overview of these vistas.

CoNVEX BODIES, BALLS, AND DUAL CONES

A conver figure is a compact convex set. A conver body is a solid convex figure.
The Minkowski duality identifies a convex figure ¢ in RY and its support function
t(z) := sup{(z,2) | x € t} for » € RY. Considering the members of R" as singletons,
we assume that RY lies in Vy.

The Minkowski duality, assigning to r the support function r(+) of r makes Vy into
a cone in C'(Sy_1), the boundary of the unit ball 35. The linear span [Vy] of Vy
is dense in C(Sy_1), bears a natural structure of a vector lattice and is usually
referred to as the space of convex sets.

The study of this space stems from the pioneering breakthrough of Alexandrov
and the further insights of Radstrém, Hérmander, and Pinsker (see [5]).

A measure u linearly majorizes or dominates a measure v on Sy_1 provided that
to each decomposition of Sy_1 into finitely many disjoint Borel sets Uq,...,Up,
there are measures p1,..., [y, with sum g such that every difference p — v|y,
annihilates all restrictions to Sy_; of linear functionals over RY. In symbols, we
write p >prv.

Reshetnyak proved in 1954 (see [8]) that

/pduz /pdl/

Sn—1 Sy—1

for each sublinear functional p on RY if y>>pyv. This gave an important trick
for generating positive linear functionals over various classes of convex surfaces
and functions. The converse of the Reshetnyak result appeared in [2]. Note that
majorization is a vast subject [7].

Alexandrov proved the unique existence of a translate of a convex body given its
surface area function, thus completing the solution of the Minkowski problem. Each
surface area function is an Alexandrov measure. So we call a positive measure on
the unit sphere which is supported by no great hypersphere and which annihilates
singletons.

Each Alexandrov measure is a translation-invariant additive functional over the
cone Vy. The cone of positive translation-invariant measures in the dual C’(Sy_1)
of C(Sy—1) is denoted by Ap.

Given r, 1 € Vy, the record r =g~y means that ¢ and y are equal up to translation
or, in other words, are translates of one another. So, =p~ is the associate equivalence
of the preorder >g~ on Vi of the possibility of inserting one figure into the other
by translation.
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The sum of the surface area measures of ¢r and ) generates the unique class r#+
of translates which is referred to as the Blaschke sum of r and . There is no need
in discriminating between a convex figure, the coset of its translates in V /R, and
the corresponding measure in Ay .

Let C(Sn_1)/RY stand for the factor space of C(Sy_1) by the subspace of all
restrictions of linear functionals on RY to Sy_1. Let [An] be the space Ay — Ay
of translation-invariant measures, in fact, the linear span of the set of Alexandrov
measures.

C(Sy—1)/RY and [Ay] are made dual by the canonical bilinear form

[ fau

Sn-1
(f € C(Sn—1)/RY, p € [AN]).

For r € V/RY and y € Ay, the quantity (r,) coincides with the mized volume
Vi(n,x).

Consider the set Sym Vp of centrally symmetric cosets of convex compact sets.
Clearly, a translation-invariant linear functional f is positive over Sym Vy if and
only if the symmetrization Sym(f) is positive over Vy. Here Sym(f) is the dual of
the descent of the even part operator on the factor-space, since the symmetrization
of a measure is the dual of the even part operator over C(Sy_1). We will denote
the even part operator, its descent and dual by the same symbol Sym(-).

Given a cone K in a vector space X in duality with another vector space Y, the
dual of K is

K" :={yeY | (VzeK) (x,y) > 0}.
To a convex subset U of X and & € U there corresponds
Uz =Fd(U,z) :={he X | (Ba>0)z+ahecU},

the cone of feasible directions of U at T.
Let r € Ay. Then the dual .A of the cone of feasible directions of Ay at ¥ may
be represented as follows

Anvg=1{f € Ay | (&, f) = 0}.

The description of the dual of the feasible cones are well known:
Let ¢ and vy be convex figures. Then
(1) pu(x) — p(n) € Vi <> u(x) >pap(n);
(2) If ¥ = gy then p(x) >pap(n);
(3) r = g > p(x) >p2p(n);
(4) If u(y) — p(F) € Vi then y =g F for E € V.
From this the dual cones are available in the case of Minkowski balls.
Let ¢ and vy be convex figures. Then
(1) p(x) — p(n) € SymVy <> Sym(u(r)) >g~ Sym(u(y));
(2) (¥ > vty then Sym(u(r)) >av Sym(u(n));
(3) Sym(x) > g Sym(n) < Sym(u(x)) g2 Sym(u(y));
(4) If u(y) — p(x) € Sym Vi ¢ then Sym(y) =g~ T for ¥ € Sym V.
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Alexandrov extended the volume to the positive cone of C'(Sy—_1) by the formula
V(f) == (f,u(co(f))) with co(f) the envelope of support functions below f. He
observed that V(f) = V(co(f)) and showed that the gradient of V'(-) at r is propor-
tional to p(r) and so minimizing (-, ) over {V = 1} will yield the equality p© = u(x)
by the Lagrange multiplier rule. But this idea fails since the interior of Vy is empty.
The fact that DC-functions are dense in C'(Sy—_1) is not helpful at all.

The obvious limitations of the Lagrange multiplier rule are immaterial in the case
of convex programs. It should be emphasized that the classical isoperimetric prob-
lem is not a Minkowski convex program in dimensions greater than 2. The convex
counterpart is the Urysohn problem of maximizing volume given integral breadth
[11]. The constraints of inclusion type are convex in the Minkowski structure, which
opens way to complete solution of new classes of Urysohn-type problems.

External Urysohn Problem: Among the convex figures, circumscribing rg and
having integral breadth fixed, find a convex body of greatest volume.

A feasible convex body t is a solution to the external Urysohn problem if and
only if there are a positive measure i and a positive real & € R satisfying

(1) apan) >rvp(@) + p;

(2) V@) + § foy_, Bl = aVi(sn,5);

(3) 1(2) =ro(z) for all z in the support of u, i.e. z € spt(p).

If ro = 3n—1 then T is a spherical lens and p is the restriction of the surface area
function of the ball of radius a@'/(N=1) to the complement of the support of the lens
to Sy_1.

PARETO OPTIMIZATION OVER MINKOWSKI BALLS

Consider a bunch of economic agents each of which intends to maximize his own
income. The Pareto efficiency principle asserts that as an effective agreement of
the conflicting goals it is reasonable to take any state in which nobody can increase
his income in any way other than diminishing the income of at least one of the other
fellow members. Formally speaking, this implies the search of the maximal elements
of the set comprising the tuples of incomes of the agents at every state; i.e., some
vectors of a finite-dimensional arithmetic space endowed with the coordinatewise
order. Clearly, the concept of Pareto optimality was already abstracted to arbitrary
ordered vector spaces.

By way of example, consider a few multiple criteria problems of isoperimetric

type.

Vector Isoperimetric Problem over Minkowski Balls: Given are some convex
bodies 91,...,93. Find a symmetric convex body r encompassing a given volume
and minimizing each of the mixed volumes Vi(r,91),..., Vi(r,var). In symbols,

r € Sym(Ay); p(r) > p(r); ((91,1),---, (v, 1)) — inf.

Clearly, this is a Slater regular convex program in the Blaschke structure.
Each Pareto-optimal solution t of the vector isoperimetric problem has the form
T =a1Sym(n1) + - + @ Sym(y,,), where aq,. .., a,, are positive reals.
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Internal Urysohn Problem with Flattening over Minkowski Balls: Given
are some convex body rg € Sym Vy and some flattening direction z € Sy_1.
Considering ¢ C ro of fixed integral breadth, maximize the volume of ¢ and min-
imize the breadth of r in the flattening direction: ¢ € Sym Vy; t C ro; (r,3n5) >
(®3n); (—p(r), bz(x)) — inf.

For a feasible symmetric convex body t to be Pareto-optimal in the internal
Urysohn problem with the flattening direction z over Minkowski balls it is necessary
and sufficient that there be positive reals a and (8 together with a convex figure ¢
satisfying

() = Sym(u(r)) + anan) + Blez +e-z);
Yo

1(2) =x0(2) (2 €spt(p(r).

Rotational Symmetry: Assume that a plane convex figure rg € Vs has the sym-
metry axis Az with generator Z. Assume further that oo is the result of rotating rg
around the symmetry axis A; in R3. Consider the problem:

L€ Vs;
¢ is a convex body of rotation around As;
£ D roo; (3v,1) > (i, E);
(=p(x), bz(x)) — inf.

Each Pareto-optimal solution is the result of rotating around the symmetry axis
a Pareto-optimal solution of the plane internal Urysohn problem with flattening in
the direction of the axis.

Little is known about similar problems in arbitrary dimensions. The planar case
is rediscovered in recent years (see, for instance, [9]).

External Urysohn Problem with Flattening over Minkowski Balls: Given
are some convex body ro € Vy and flattening direction z € Sy_;. Consid-
ering Minkowski balls ¢ D ro of fixed integral breadth, maximize volume and
minimize breadth in the flattening direction: r € SymVy; tr D ro; (r,3n) >
@ 3n); (=p(x), bz(xr)) — inf.

For a feasible convex body t to be a Pareto-optimal solution of the external
Urysohn problem with flattening over Minkowski balls it is necessary and sufficient
that there be positive reals o and 3 together with a convex figure ¢ satisfying

p(x) + Sym(pu(r)) > pyap(3n) + B(ez +e-z2);
V(%) + Vi(Sym(r), 1) = aVi(3n, &) + 2N Bb=(x);
£(z) =r0(2) (2 € spt(u(r)).

For more details see [3] and [4].
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