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12 G. COHEN AND M. LIN

result of [23] was extended to irreducible Markov operators on C(K) of a compact
Hausdorff space K by Kornfeld and Lin [31].

Unaware of Browder’s result, Robinson [41] proved (1.1) when X is a Hilbert
space and T is unitary (using the spectral theorem). Leonov [34] gave a proof of
(1.1) for contractions in a Hilbert space (although his statement is for isometries)
satisfying a ”mixing condition”. It was later noted by Aaronson and Weiss [1] that
Leonov’s proof yields (1.1) when X = Lp(µ), 1 < p < ∞, and T is induced by a
transformation preserving the probability µ; it is also indicated in [1] how to modify
Leonov’s proof to obtain the result when p = 1. Kozma and Lev [32, Theorem 4.1]
noticed that Robinson’s proof yields that for T unitary on a Hilbert space H, the
condition supN

1
N

∑N
n=1 ∥

∑n−1
k=0 T

kx∥2 < ∞ is sufficient (and obviously necessary)
for x ∈ (I − T )H, and gave an even weaker sufficient condition. Conditions for
solving the equation f = h−h◦θ when θ is a probability preserving transformation
and f is a given measurable function were given in [2], [42] and [43]; Anosov [3]
proved that if f is integrable, then

∫
f = 0 (even if h is not integrable). As an

example, Anosov proved that for θ an irrational rotation of the circle there exists a
continuous function f = h− h ◦ θ with h not integrable; see also [29]. On the other
hand, it follows from the work of Quas [40, Theorem 1] that if f is continuous and
f = h− h ◦ θ with h ∈ L∞, then there exists g continuous such that f = g − g ◦ θ.
For some additional results on coboundaries of rotations see [44], [24], [6].

Elements of the linear manifold (I − T )X are called coboundaries. The equation
(I − T )y = x with x given is called the cohomology equation in ergodic theory, and
the (discrete) Poisson equation in the theory of discrete time Markov processes.

For a bounded representation T (s) of a semi-group S by linear operators on a
Banach space X, we call a function x(s) from S to X a coboundary if there exists
y ∈ X such that x(s) = (I − T (s))y for every s ∈ S. If x(s) is a coboundary, then

x(s1s2) = (I − T (s1s2))y = y − T (s1)T (s2)y =

y − T (s1)y + T (s1)(y − T (s2)y = x(s1) + T (s1)x(s2).

A function x(s) satisfying x(s1s2) = x(s1) + T (s1)x(s2) is called a cocycle. The
above shows that a coboundary is a bounded cocycle. For the representation {Tn}
of N by a power-bounded operator T , x(n) is a cocycle if and only if it is of the

form x(n) =
∑n−1

k=0 T
kx; when x = (I − T )y, then this cocycle equals (I − Tn)y.

Moulin-Ollagnier and Pinchon [38] extended the theorem of Gottschalk and Hed-
lund to group actions by homeomorphisms of a compact Hausdorff space, proving
that a bounded cocycle of a minimal group action is a coboundary. Browder’s
theorem was extended by Parry and Schmidt [39] to bounded representations of a
LCA group G by linear operators in a reflexive Banach space: a bounded cocycle is a
coboundary. Unaware of [38], Kornfeld and Lin [31] proved the result of [38] for min-
imal actions of semi-groups, and extended it to irreducible Markov representations
in C(K) of certain semi-groups.

In this paper we deal with two commuting contractions T and S on a Banach
space X. The partial double sums

∑m−1
ℓ=0

∑n−1
j=0 S

jT ℓx are not a cocycle (of the N2

representation), but are uniformly bounded if x = (I − T )(I − S)y for some y ∈ X.
We call such an x a double coboundary (for T and S). Similarly, for d commuting
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contractions T1, . . . , Td we call x ∈ X a d-tuple coboundary if x = [Πd
j=1(I − Tj)]y

for some y ∈ X. The problem of when x is a d-tuple coboundary of duals in Lp

(1 ≤ p < ∞) of d commuting probability preserving transformations was studied
by Bradley [5] and Gordin [22]; El Machkouri and Giraudo [18] gave conditions for
representing a function as a sum of a martingale and sums of multiple coboundaries
of subsets of {T1, . . . , Td} (with the goal of obtaining some central limit theorems,
by martingale approximation). In Section 2 we characterize uniform ergodicity of
d commuting contractions with equal sets of fixed points (e.g. commuting ergodic
Markov operators) by the set of d-tuple coboundaries being closed. Fonf, Lin and
Rubinov [20, Theorem 1.1] observed that a contraction T is uniformly ergodic if and
only if the set of vectors x with bounded partial sums (i.e. supn ∥

∑n
k=0 T

kx∥ <∞)
is closed. For d commuting contractions with equal sets of fixed points we obtain a
d-dimensional extension of the above result of [20] when X is reflexive, and in the
general case we prove it under an additional mild ”ergodicity” assumption (which is
automatically satisfied by a single contraction). In Section 3 we consider the problem
of when boundedness of the partial double sums (with respect to two commuting
contractions S and T ) of a vector x implies that x is a double coboundary. This
is an extension in a different direction of the results of Gottschalk-Hedlund and
Browder. Bradley [5, Corollary 2.2] proved (using a different terminology) that for
d commuting probability preserving invertible transformations, boundedness in Lp

(1 ≤ p ≤ ∞) of the partial d-multiple sums of f ∈ Lp is equivalent to f being
a d-tuple coboundary. His proof cannot be used in the general context of power-
bounded operators on reflexive Banach spaces.

2. Multiple coboundaries and uniform ergodicity

It is well-known (e.g. [33, p. 73]) that if T is a power-bounded operator on a
Banach space X (not necessarily reflexive), then ∥ 1

n

∑n
k=0 T

kx∥ → 0 if and only

if x ∈ (I − T )X. The set of x ∈ X such that 1
n

∑n
k=0 T

kx converges is a closed

subspace which equals F (T )⊕ (I − T )X, where F (T ) is the set of fixed points of T ;

when X is reflexive we have the ergodic decomposition X = F (T )⊕(I − T )X. When
the ergodic decomposition holds for T power-bounded (in a not necessarily reflexive
space), T is called mean ergodic. If the convergence of 1

n

∑n
k=0 T

k is uniform on the
unit ball of X, we call T uniformly ergodic.

In this section we obtain an ergodic decomposition for d commuting mean ergodic
power-bounded operators, using d-tuple coboundaries. The decomposition is used
to characterize the d-tuple coboundaries of commuting uniformly ergodic power-
bounded operators with common fixed points.

Proposition 2.1. Let T1, . . . , Td be commuting mean ergodic power-bounded oper-
ators on a Banach space X. Then the linear manifold

Y := {x ∈ X : x =

d∑
j=1

zj + [Πd
j=1(I − Tj)]y y ∈ X, Tjzj = zj}

is dense in X.
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Proof. For d = 1 this follows from the decomposition X = F (T )⊕ (I − T )X.
We now prove for d = 2. By commutativity, T1z1 = z1 implies that T1(T2z1) =

T2z1. The ergodic decomposition yields that F (T2) + (I − T2)X is dense, and
for z2 + (I − T2)y2 we approximate y2 by z + (I − T1)y with z ∈ F (T1). Then
z2 + (I − T2)(z + (I − T1)y) = z2 + (z − T2z) + (I − T2)(I − T1)y yields the result
with z1 = z − T2z.

For d > 2 we proceed by induction, using similarly the ergodic decomposition of
Td. □
Lemma 2.2. Let T1, . . . , Td be commuting mean ergodic power-bounded operators
on a Banach space X. Then

(2.1) X =
[ d∩
j=1

F (Tj)
]
⊕

d∑
j=1

(I − Tj)X.

Proof. Denote An(T ) = 1
n

∑n−1
k=0 T

k and Mn := Πd
j=1An(Tj). Since An(Tj) con-

verges strongly as n→ ∞ to a projection Pj on F (Tj) which annihilates (I − Tj)X,

by commutativity Mnx converges strongly to Πd
j=1Pj , which is a projection on∩d

j=1 F (Tj) which annihilates all the images (I − Tj)X, and we get the decomposi-
tion as in the case of a single operator. □
Remark 2.3. The lemma follows also from the general Koliha-Nagel-Sato decom-
position (see [33, p. 79]), but for that we first show that the sum of the ranges of

the (I − Tj) contains all the ranges (I −Πd
j=1T

kj
j )X. This proof is not shorter.

Theorem 2.4. Let T1, . . . , Td be commuting mean ergodic power-bounded operators
on a Banach space X. Then

(2.2) X =
d∑

j=1

F (Tj)⊕ [
d∏

j=1

(I − Tj)]X.

Proof. We use the notations of the previous lemma. Ej := I− limnAn(Tj) = I−Pj

is well-defined in the strong operator topology, and is a projection on (I − Tj)X

with null space F (Tj). Then F (Ej) = (I − Tj)X and (I − Ej)X = PjX = F (Tj).
Applying the previous lemma to E1, . . . , Ed we obtain

X =
[ d∩
j=1

(I − Tj)X
]
⊕

d∑
j=1

F (Tj).

Now the set of d-tuple coboundaries
[
Πd

j=1(I−Tj)
]
X is a subset of the left summand

above, and by the density given in Proposition 2.1 we get the assertion. □

Remark 2.5. It is clear that [
∏d

j=1(I − Tj)]X ⊂
∑d

j=1(I − Tj)X. When the com-

muting mean ergodic operators have the same set of fixed points (e.g. induced
by commuting ergodic measure preseving transformations on a probability space
(S,Σ, µ)), the decompositions (2.1) and (2.2) yield that the two closed subspaces
above are equal. Moreover, for each j the ergodic decomposition for Tj then shows

that these subspaces equal (I − Tj)X.
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Definition 2.6. A vector x ∈ X is called a mixed coboundary for the (commuting)

transformations T1, . . . , Td if x ∈
∑d

j=1(I − Tj)X. Mixed coboundaries were used

in [11]; a characterization of mixed coboundaries of commuting unitary operators
with countable Lebesgue spectrum was given (for d = 2) in [12, p. 13].

Theorem 2.7. Let T1, . . . , Td be commuting mean ergodic power-bounded operators
on a Banach space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then the following are
equivalent:

(i) All the Tj are uniformly ergodic.
(ii) Every mixed coboundary is a d-tuple coboundary.

(iii) [
∏d

j=1(I − Tj)]X = (I − Tk)X for every 1 ≤ k ≤ d.

Proof. (i) =⇒ (ii): By the previous remark, for every k we have

[

d∏
j=1

(I − Tj)]X =

d∑
j=1

(I − Tj)X = (I − Tk)X.

By uniform ergodicity, (I − Tk)X is closed, and (I − Tk) is invertible on it. Since
these subspaces are the same, denoted by X0, all the I − Tk are invertible on

X0, so
∏d

j=1(I − Tj) is invertible on X0. Thus, if x =
∑d

k=1(I − Tk)yk, then

(I − Tk)yk = [
∏d

j=1(I − Tj)]zk, so x is a d-tuple coboundary.

(ii) =⇒ (iii): Fix k and let x = (I − Tk)y. Then x is a mixed coboundary, and

by (ii) x = [
∏d

j=1(I − Tj)]z, so

(I − Tk)X ⊂ [

d∏
j=1

(I − Tj)]X ⊂ (I − Tk)X,

so equality holds and (iii) follows.
(iii) =⇒ (i): Fix k and assume that Tk is not uniformly ergodic. Then (I−Tk)X is

not closed, and we take y ∈ (I − Tk)X which is not in (I−Tk)X. Put x = (I−Tk)y.
By (iii) there is a z such that x = [

∏d
j=1(I − Tj)]z, so

(2.3) (I − Tk)
(
y − [

∏
j ̸=k

(I − Tj)]z
)
= 0.

By (iii) (I − Tj)X = (I − Tk)X for j ̸= k, hence y ∈ (I − Tj)X, so

y − [
∏

ℓ̸=k(I − Tℓ)]z is in (I − Tj)X = (I − Tk)X; since it is in F (Tk) by (2.3), it is

zero. Hence y ∈ (I − Tj)X for j ̸= k, so by (iii) y ∈ (I − Tk)X – a contradiction.
Hence (I − Tk)X is closed, so Tk is uniformly ergodic [35]. □

Remark 2.8. 1. Without the assumption that F (Tj) = F (Tk) for j ̸= k, (i) need
not imply (ii). Let X ̸= {0} be a finite dimensional Hilbert space, let 0 ̸= T1 ̸= I
be an orthogonal projection, and define T2 = I − T1. Then the mixed coboundaries
are all of X, but 0 is the only double coboundary.

2. Under the assumptions on T1, . . . , Td, the equality (I − Tj)X = (I − T1)X for
every j is not sufficient for uniform ergodicity – take T1 not uniformly ergodic and
Tj = T1 for j > 1.
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3. A non-trivial example can be obtained using Proposition 2.2 of [14]: Let T
be the unitary operator induced on L2 by an invertible ergodic measure preserving

transformation on a non-atomic probability space, and define Tj =
∑∞

n=−∞ p
(j)
n Tn,

where

p(j)n > 0,

∞∑
n=−∞

p(j)n = 1,

∞∑
n=−∞

|n|p(j)n <∞,

∞∑
n=−∞

np(j)n ̸= 0.

Then F (Tj) = F (T ) by uniform convexity of L2, and by [14] (I−Tj)L2 = (I−T )L2

for every j. Since the spectrum of T is the whole unit circle, 1 is not isolated in the
spectrum of Tj , so Tj is not uniformly ergodic.

4. On the other hand, if T and S are induced on L2 by commuting ergodic
invertible probability preserving transformations as above and (I − T )L2 = (I −
S)L2, then by the result of Kornfeld [30], T = S±1.

Lemma 2.9. Let T1, . . . , Td be commuting power-bounded operators on a Banach
space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then

(2.4) {x ∈ X : [
d∏

j=1

(I − Tj)]x = 0} = F (T1)

Proof. The inclusion of the right-hand side of (2.4) in its left-hand side is trivial.
The proof of equality is by induction on the number of operators. For d = 1 this is
the definition of F (T1). Assume the assertion is true for d− 1 operators, d > 1.

Let [
∏d

j=1(I − Tj)]x = 0. Then [
∏d−1

j=1(I − Tj)]x ∈ F (Td) = F (T1); but it is

obviously also in (I − T1)X, so [
∏d−1

j=1(I−Tj)]x = 0, and by the induction hypothesis

x ∈ F (T1). □
Theorem 2.10. Let T1, . . . , Td be commuting power-bounded operators on a Banach
space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then the set of d-tuple coboundaries

[
∏d

j=1(I − Tj)]X is closed if and only if all the Tj are uniformly ergodic.

Proof. We denote Y := [
∏d

j=1(I − Tj)]X. The case d = 1 is proved in [35], so we
assume d > 1.

Assume that Y is closed. We use the ideas of [35] to prove uniform ergodicity of

all Tj . The operator M =
∏d

j=1(I − Tj) maps X onto the closed subspace Y , so by

the open mapping theorem (e.g. [17, p. 487]) there is K > 0 such that for y ∈ Y

there exists x ∈ X with ∥x∥ ≤ K∥y∥ and Mx = y. Denote by T̂j the restriction of
Tj to the invariant subspace Y . Then for y ∈ Y we have

∥An(T1)y∥ ≤ ∥I − Tn
1 ∥

n

∥∥ d∏
j=2

(I − Tj)
∥∥∥x∥ ≤ ∥I − Tn

1 ∥
n

∥∥ d∏
j=2

(I − Tj)
∥∥K∥y∥.

Hence
∥∥An(T̂1)

∥∥ → 0 (on Y ). Since I − An(T̂1) = I−T̂1
n

∑n−1
k=1

∑k−1
ℓ=0 T̂

ℓ
1 , when

∥An(T̂1)∥ < 1 we have that I − T̂1 is invertible on Y . Similarly, all I − T̂j are

invertible on Y , so Y = [
∏d

j=1(I − T̂j)]Y . Thus for x ∈ X there is a z ∈ Y with

Mx = Mz, so M(x − z) = 0, and by the previous lemma x − z ∈ F (T1). We
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therefore obtain the ergodic decomposition X = F (T1) ⊕ Y ⊂ F (T1) ⊕ (I − T1)X
(note that the decompositions (2.1) and (2.2) require mean ergodicity, which was
not assumed). Hence

(I − T1)X ⊂ (I − T1)X = Y ⊂ (I − T1)X,

which shows that (I − T1)X = Y is closed, so T1 is uniformly ergodic by [35].
Similarly all Tj are uniformly ergodic.

Assume now that each Tj is uniformly ergodic. As remarked above, the mean
ergodicity and the fact that all the operators have the same fixed points imply that
Y = (I − Tj)X for every j. By uniform ergodicity (I − Tj)X is closed and (I − Tj)

is invertible on (I − Tj)X = Y [35]. This yields that
∏d

j=1(I − Tj) is invertible on

Y , so Y = [
∏d

j=1(I − Tj)]Y ⊂ Y , which shows that Y is closed. □

Example. Commuting uniformly ergodic contractions with common fixed points.
Let µ be a probability measure on the Borel sets of the unit circle T. Fix 1 ≤ p <

∞, and on Lp(T, λ) (where λ is the normalized Haar measure) define Tf = µ ∗ f .
Then T is a Markov operator with invariant probability λ, and ∥Tf −

∫
f dλ∥p ≤

∥µ−λ∥ ·∥f∥p (where the norm of a measure is its total variation). Let µ1, . . . , µd be
probabilities on T with corresponding operators T1, . . . , Td. Then TjTk corresponds
to convolution by µj ∗µk, which commute since the unit circle is an Abelian group.
If the µj are all absolutely continuous, then F (Tj) consists precisely of the constant
functions, and by Theorem 3 of Bhattacharya [4] we have ∥µ∗nj − λ∥ → 0, which

yields that ∥Tn
j − E∥p → 0 (where Ef =

∫
f dλ).

Note that Tf = µ ∗ f in L2(T, λ) is uniformly ergodic if and only if the Fourier-
Stieltjes coefficients of µ satisfy infn ̸=0 |1− µ̂(n)| > 0 (e.g. [15]).

Theorem 2.11. Let T1, . . . , Td be commuting uniformly ergodic power-bounded op-
erators on a Banach space X with F (Tj) = F (T1) for 1 ≤ j ≤ d. Then the following
are equivalent for x ∈ X:

(i) x ∈ [
∏d

j=1(I − Tj)]X.

(ii) supn1,n2,...,nd>0

∥∥[∏d
j=1(

∑nj−1
k=0 T k

j )]x
∥∥ <∞.

(iii) supn>0

∥∥[∏d
j=1(

∑n−1
k=0 T

k
j )]x

∥∥ <∞.

Proof. Clearly (i) implies (ii) and (ii) implies (iii).
Assume (iii), and let Y be as in the previous proof. By Theorem 2.10 Y is closed.

Since the operators are uniformly ergodic with the same sets of fixed points, they
have the same ergodic decomposition with (I − Tj)X = Y . Hence limn→∞An(Tj)x
is independent of j, and we denote it by y, which is Tj-invariant. Then

∥∥[ d∏
j=1

An(Tj)]x− y
∥∥ =

∥∥[ d∏
j=2

An(Tj)](An(T1)x− y)
∥∥ → 0.

But by (iii)
∥∥[∏d

j=1An(Tj)]x
∥∥ → 0, so y = 0. Thus An(T1)x → 0, and the ergodic

decomposition X = F (T1)⊕ Y yields that x ∈ Y . □
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Remark 2.12. For any T1, . . . , Td commuting power-bounded operators on X,

(2.5) [

d∏
j=1

(I − Tj)]X ⊂ {x : sup
n>0

∥∥[ d∏
j=1

(

n−1∑
k=0

T k
j )]x

∥∥ <∞}.

When all the Tj are uniformly ergodic with F (Tj) = F (T1) for 1 ≤ j ≤ d, Theorems
2.11 and 2.10 yield equality in (2.5), and this linear manifold is closed. Conversely,
when F (Tj) = F (T1) for 1 ≤ j ≤ d and the left hand side of (2.5) is closed, Theorem
2.10 yields that all the Tj are uniformly ergodic, so we have equality in (2.5) by
Theorem 2.11.

A natural question is whether commuting T1, . . . , Td with F (Tj) = F (T1) must

be uniformly ergodic when {x : supn>0

∥∥[∏d
j=1(

∑n−1
k=0 T

k
j )]x

∥∥ < ∞} is closed. The
answer is positive when X is reflexive, since by Theorem 3.1 in the next section we
have equality in (2.5), and then Theorem 2.10 applies. A partial (positive) answer
is given in the next theorem.

Theorem 2.13. Let T1, . . . , Td be commuting power-bounded operators on a Banach
space X with F (Tj) = F (T1) for 1 ≤ j ≤ d, and assume that for x ∈ (I − T1)X we
have

(*) 1
n

∑n
k=0R

kx → 0 for every R ̸= I of the form R =
∏d

j=1 T
ϵj
j with ϵj zero or

one.
If {x : supn>0

∥∥[∏d
j=1(

∑n−1
k=0 T

k
j )]x

∥∥ < ∞} is closed, then all the Tj are uniformly
ergodic.

Proof. Denote Y := [
∏d

j=1(I − Tj)]X. Then Y is invariant for all the Tj , and we

denote by T̂j the restriction of Tj to Y . Put Sn :=
∏d

j=1

(∑n−1
k=0 T

k
j

)
and similarly

define Ŝn.
If y =

∏
j(I − Tj)x, then for each k we have ∥An(Tk)y∥ → 0 as n → ∞, which

shows that T̂k is mean ergodic (on Y ). Hence (I − T̂k)Y = Y , and by the remark

following Theorem 2.4 applied to Y , also Y =
[∏d

j=1(I − T̂j)
]
Y .

By (2.5) and the assumption, Y ⊂ {x ∈ X : supn ∥Snx∥ <∞}, so supn ∥Ŝn∥ <∞
by the Banach-Steinhaus theorem.

If y =
∏

j(I − Tj)x with x ∈ Y , then Ŝiy = Siy =
∏d

j=1(I − T i
j )x. Then

(2.6)
1

n

n∑
i=1

Ŝiy = x+
∑
ℓ

± 1

n

n∑
i=1

Ri
ℓx→n→∞ x

by assumption (*), where ℓ goes over all non-zero (ϵ1, . . . , ϵd) ∈ {0, 1}d. Since

supn ∥Ŝn∥ <∞, we obtain that S̃ny := 1
n

∑n
i=1 Ŝiy converges strongly on Y .

Now let y ∈ Y and let xk ∈ Y with limk[
∏d

j=1(I − T̂j)]xk = y. Put z = limn S̃ny.

Since S̃nxk → xk as n→ ∞, we have

∥z − xk∥ = lim
n

∥S̃ny − xk∥

≤ lim sup
n

∥S̃ny − S̃n
∏
j

(I − T̂j)xk∥+ lim
n

∥xk − S̃n
∏
j

(I − T̂j)xk∥
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≤ K∥y −
∏
j

(I − T̂j)xk∥,

which shows that xk → z, hence y = [
∏d

j=1(I − T̂j)]z. We have obtained that

Y = [
d∏

j=1

(I − T̂j)]Y ⊂ [
d∏

j=1

(I − Tj)]X ⊂ Y

so [
∏d

j=1(I −Tj)]X is closed, and Theorem 2.10 yields that all the Tj are uniformly
ergodic. □
Remark 2.14. 1. When d = 1, condition (*) is automatically satisfied, and we
obtain that if T is power-bounded with {x ∈ X : supn ∥

∑n
k=0 T

kx∥ < ∞} closed,
then T is uniformly ergodic. This was observed by Fonf, Lin and Rubinov in [20,
Theorem 1.1].

2. For commuting Tj as in the theorem, condition (*) is satisfied when Tn
j (I−Tj)

converges strongly to zero for each j.

3. Double coboundaries of dual power-bounded operators in dual
spaces

Let T and S be commuting power-bounded operators on a Banach space X.
Then ∥|x∥| := supj,k≥0 ∥SjT kx∥ is an equivalent norm on X for which T and S are
contractions. For brevity, we therefore state our results below for contractions, but
they apply to power-bounded operators as well.

Theorem 3.1. Let T and S be commuting contractions on a reflexive Banach space
X. Then the following are equivalent for x ∈ X:

(i) sup
n,m≥1

∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓx∥ <∞.

(ii) There exists z ∈ X such that x = (I − S)(I − T )z.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓx∥ <∞.

Proof. Clearly (ii) implies (i). Obviously (i) implies (iii).

Assume (iii). Define Rn =
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓ = (
∑n−1

j=0 S
j)(

∑n−1
ℓ=0 T

ℓ). Then

Rn+1 − TSRn = (I +
n∑

j=1

Sj)(I +
n∑

ℓ=1

T ℓ)− (
n∑

j=1

Sj)(
n∑

ℓ=1

T ℓ)

= I +
n∑

j=1

Sj +
n∑

ℓ=1

T ℓ.

Hence (iii) yields supn ∥
∑n

j=1 S
jx+

∑n
ℓ=1 T

ℓx∥ ≤ ∥x∥+2 supn ∥Rnx∥ <∞, which
yields

(3.1) ∥ 1
n

n∑
j=1

Sjx+
1

n

n∑
ℓ=1

T ℓx∥ → 0.

Put yn = 1
n

∑n
k=1

∑
0≤j,ℓ≤k−1

SjT ℓx and
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(3.2) xn = (I − S)(I − T )yn = (I − S)(I − T )
[ 1
n

n∑
k=1

∑
0≤j,ℓ≤k−1

SjT ℓx
]
.

Since (yn) is assumed bounded, by weak sequential compactness there is a subse-
quence (ynj ) which converges weakly, say to y, and then xnj → (I − S)(I − T )y
weakly. But

xn =
1

n

n∑
k=1

(I − Sk)(I − T k)x = x− 1

n

n∑
k=1

Skx− 1

n

n∑
k=1

T kx+
1

n

n∑
k=1

(ST )kx.

Put v = limn→∞
1
n

∑n
k=1(TS)

kx. Using (3.1) we obtain xn → x+ v, so (I − S)(I −
T )y = x+ v. Put u = limn

1
n

∑n
k=1(TS)

ky. Since (TS)v = v, we obtain

2v = lim
n→∞

1

n

n∑
k=1

(TS)k(x+ v)

= lim
n→∞

(I − S)(I − T )
1

n

n∑
k=1

(TS)ky

= (I − S)(I − T ) lim
n→∞

1

n

n∑
k=1

(TS)ky

= (I − S)(I − T )u.

Hence x = (I−S)(I−T )y−v = (I−S)(I−T )(y− 1
2u), so (ii) holds with z = y− 1

2u.
□

Remark 3.2. 1. Given a power-bounded operator T on X reflexive, if x ∈ X
satisfies supn>0 ∥

∑n
k=1 T

kx∥ < ∞, then x is a coboundary: by Browder’s the-
orem Tx = (I − T )z for some z, and then x = (I − T )(x + z). For two op-
erators, if in (i) of the theorem we start the summation from 1 instead of 0,
the condition need not imply that x is a double coboundary. For example, let
X = R3, T (a, b, c) = (a, 0, 0), and S(a, b, c) = (0, b, 0). It is easily checked that
(I − T )(I − S)(a, b, c) = (0, 0, c), so the double cobundaries are the set {(0, 0, c) :
c ∈ R}. However,

∑m
j=1

∑n
ℓ=1 S

jT ℓ(a, b, c) = (0, 0, 0) for every (a, b, c) ∈ X, since
TS = 0.

2. Note that once (ii) is proved, we see that the whole sequence {yn} defined in
the above proof actually converges in norm.

Example. Fourier characterization of double coboundaries for the “shifts” on
L2(T2).
Let X = L2(T2) with the normalized Lebesgue measure. We identify the unit circle
T with the interval [0, 2π), and define on X the operators Tf(s, t) = eitf(s, t) and
Sf(s, t) = eisf(s, t). Let

f̂(k, j) =

∫ ∫
e−ikte−ijsf(s, t)dt ds
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be the two-dimensional Fourier coefficients of f(s, t). Then

T̂ f(k, j) = f̂(k − 1, j) and Ŝf(k, j) = f̂(k, j − 1),

so T and S shift the Fourier coefficients. Computing the double sums we obtain∣∣ n−1∑
j=0

n−1∑
ℓ=0

SjT ℓf
∣∣2 = ∑

0≤j,j′,ℓ,ℓ′<n

ei(j−j′)sei(ℓ−ℓ′)t|f(t, s)|2.

Put g = |f |2, and let ĝ(k, j) be its two-dimensional Fourier coefficients. Then∥∥ n−1∑
j=0

n−1∑
ℓ=0

SjT ℓf
∥∥2 = ∑

0≤j,j′,ℓ,ℓ′<n

ĝ(ℓ′ − ℓ, j′ − j).

Thus, by Theorem 3.1, f ∈ X is a double coboundary if and only if

(3.3) sup
n

∑
0≤j,j′,ℓ,ℓ′<n

|̂f |2(ℓ− ℓ′, j − j′) <∞.

The above example yields the following application to two-dimensional Fejér
means. Let 0 ≤ g ∈ L1(T2) and denote by σn,m(g) and σn(g) = σn,n(g) the
Fejér means of g along rectangles and squares, respectively (see Zygmund [46, Ch.
XVII]).

Corollary 3.3. Let 0 ≤ g ∈ L1(T2). Then for every (s, t) ∈ T2,

sup
n
n2σn(g)(s, t) <∞ if and only if sup

n,m
nmσn,m(g)(s, t) <∞.

Proof. First we prove the case s = t = 0. Put f =
√
g. For the operators S and T

in the example, Theorem 3.1 yields that condition (3.3) is equivalent to

(3.4) sup
n,m

∑
0≤j,j′<n

∑
0≤ℓ,ℓ′<m

|̂f |2(ℓ− ℓ′, j − j′) <∞.

Putting Sn(g)(s, t) =
∑

0≤|k|,|j|<n

ĝ(k, j)ei(jt+ks), we see that (3.3) is equivalent to

sup
n

∣∣ n∑
ℓ=0

Sℓ(g)(0, 0)
∣∣ <∞.

By the definition of Fejér means, (3.3) and (3.4) are equivalent to
supn n

2σn(g)(0, 0) <∞ and supn,m nmσn,m(g)(0, 0) <∞, respectively. The equiv-
alence (3.3)⇔(3.4) yields the case (0, 0).

The general case then follows by a suitable translations of the arguments of g. □
Remark 3.4. 1. It is known that for a bounded and continuous function g with
g(0, 0) = 0 we have σn,m(g)(0, 0) →n,m 0, [46, Ch. XVII, Th. 1.20]. Without any
additional conditions, this convergence does not hold with a rate. However, for a
coboundary we obtain a rate.

2. For an L1 function g, the means along squares σn(g) converge a.e. [46, Ch.
XVII, Th. 3.1] while the means along unrestricted rectangles σn,m(g) may diverge
(e.g., see [27]). The above corollary yields that we have a convergence to zero with
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a rate 1/n2 along squares if and only if we have a convergence with rate 1/nm along
rectangles.

Lemma 3.5. Let T and S be commuting contractions on a Banach space X with Tn

and Sm converging in the weak operator topology. If there exist infinite increasing
sequences {mi} and {ni} such that

(3.5) sup
i

∥
ni−1∑
j=0

mi−1∑
ℓ=0

SjT ℓx∥ = K <∞,

then x ∈ (I − T )(I − S)X.

Proof. By the assumption T and S are mean ergodic, with weak-lim
Sm = P1 := limAm(S) and weak-lim Tn = P2 := limAn(T ). Since TS = ST ,
also P1 and P2 commute, and they also commute with T and S. By Theorem 2.4
X = F (S) + F (T )⊕ (I − S)(I − T )X. Then P := P1 +P2 −P1P2 is the projection

on F (S) + F (T ) corresponding to the above decomposition of X, and P commutes
with T and S. Let x satisfy (3.5). Then P1P2x = 0. Since P1S

j = P1, appli-

cation of P1 to (3.5) yields ∥ni
∑mi−1

k=0 T kP1x∥ ≤ K. Applying I − T we obtain
∥(I−Tmi)P1x∥ ≤ K∥I−T∥/ni. But Tmi converges weakly to P2, so letting i→ ∞
we obtain P1x = P1x−P2P1x = 0. Similarly also P2x = 0, and thus Px = 0, which
proves the assertion. □

Theorem 3.6. Let T and S be commuting contractions on a reflexive Banach
space, with Tn converging weakly and Sm converging strongly. If there exist infinite
increasing sequences {mi} and {ni} such that

sup
i

∥
ni−1∑
j=0

mi−1∑
ℓ=0

SjT ℓx∥ <∞,

then x ∈ (I − T )(I − S)X.

Proof. By Lemma 3.5, x ∈ (I − T )(I − S)X. By reflexivity, there is a subse-

quence {ir} such that {
∑nir−1

j=0

∑mir−1
ℓ=0 SjT ℓx} converges weakly, and we replace

{ni} and {mi} by the corresponding subsequences, so we may assume now that

{
∑ni−1

j=0

∑mi−1
ℓ=0 SjT ℓx} converges weakly, say to y. Since x ∈ (I − T )(I − S)X, also

y is in that subspace. Let P1 and P2 be the ergodic projections corresponding to S
and T , as defined in Lemma 3.5. Then

(I − T )(I − S)y = weak- lim
i
(I − Tni)(I − Smi)x =

x− weak- lim
i
(Tnix+ Smix) + weak- lim

i
TniSmix = x− P2x− P1x+ P2P1x.

Since x ∈ (I − T )(I − S)X, we have P1x = P2x = 0, so (I − T )(I − S)y = x. □

Remark 3.7. Putting S = 0 we get an improvement of part (c) of the result of
Browder and Petryshyn [8] (which holds also for weak convergence).

It is well-known (e.g. [33, p. 65]) that if P is a Markov operator with invariant
measure m, then P induces a contraction on each Lp(m), 1 ≤ p ≤ ∞.
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Proposition 3.8. Let P and Q be commuting ergodic Markov operators on a prob-
ability space (S,Σ, µ) with µ invariant for both. For 1 < p ≤ ∞, the following are
equivalent for f ∈ Lp(S,Σ, µ):

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 P jQℓf∥p <∞.

(ii) There exists g ∈ Lp with
∫
g dm = 0 satisfying f = (I − P )(I −Q)g.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 P

jQℓf∥p <∞.

Proof. Since
∫
P jf dµ =

∫
Qℓf dµ =

∫
P jQℓf dµ =

∫
f dµ by invariance of µ, each

of the three conditions implies that
∫
f dµ = 0. For 1 < p <∞, take in the previous

corollary X = L0
p := {f ∈ Lp :

∫
f dm = 0}.

For p = ∞ we have to prove only that (iii) implies (ii). For simplicity we shall
assume that L1(µ) is separable, so the unit ball of L∞(µ) with the weak-* topology
is compact metrizable [17, Theorem V.5.1]. As in the proof of Theorem 3.1, we
put gn := 1

n

∑n
k=1

∑
0≤j,ℓ≤k−1

SjT ℓf and fn := (I − P )(I − Q)gn. The assumption

(iii) yields that (gn) is bounded in L∞, so there exists a subsequence (gnj ) which
converges weak-* to some g ∈ L∞(µ). Since µ is a probability, we obtain that
gnj → g weakly in L2(µ), and similarly L2 − limn

1
n

∑n
k=1(PQ)kf is a bounded

function. Now the proof of Theorem 3.1 for L2 yields that f = (I −P )(I −Q)h for
some h ∈ L∞. □

Remark. Proposition 3.8 applies when P and Q are induced by commuting
probability preserving ergodic transformations θ and τ on (S,Σ, µ).

For example, let θ and τ be irrational rotations on the unit circle.
Another example is obtained when θx = rx mod 1 and τx = sx mod 1 on

([0, 1),B, dx) for any pair of positive integers r and s (since rx mod 1 is isomorphic,
via expansion by basis r, to the one-sided Bernoulli shift of i.i.d. random variables
with equi-probable r outcomes, it is ergodic).

Theorem 3.9. Let X = Y ∗ be a dual Banach space, and let T and S be commut-
ing power-bounded operators on X which are duals of operators on Y . Then the
following are equivalent for x ∈ X:

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓx∥ <∞.

(ii) x is a double coboundary, i.e. there exists y ∈ X such that x = (I−S)(I−T )y.
(iii) supn≥1 ∥

∑n−1
j=0

∑n−1
ℓ=0 S

jT ℓx∥ <∞.

Proof. Since (ii) clearly implies (i) and (i) obviously implies (iii), we need to prove
only that (iii) implies (ii).

By the proof of (3.1) in Theorem 3.1, (iii) implies that

(3.6) ∥ 1
n

n∑
j=1

Sjx+
1

n

n∑
ℓ=1

T ℓx∥ → 0.

In order to avoid difficulties with the weak-* topology when Y is not separable, we
use the following approach. Let LIM be a fixed Banach limit (defined on ℓ∞) which
extends Cesàro convergence [19, pp. 33-34] (see also [33, p. 135]). By (iii), we can
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define

⟨y, v⟩ := LIM{⟨
∑

0≤j,ℓ≤n−1

SjT ℓx, v⟩} v ∈ Y.

Then y is a bounded linear functional on Y , i.e. y ∈ X.
Let T̂ and Ŝ be the preduals on Y of T and S. Using the definition, commuta-

tivity, (3.6) and the property of LIM preserving Cesàro convergence, for each v ∈ Y
we have

⟨(I − T )(I − S)y, v⟩ = ⟨y, (I − T̂ )(I − Ŝ)v⟩ =

LIM{⟨
∑

0≤j,ℓ≤n−1

SjT ℓx, (I − T̂ )(I − Ŝ)v⟩} = LIM{⟨(I − Tn)(I − Sn)x, v⟩} =

LIM{⟨(x− (Tn + Sn)x+ (TS)nx, v⟩} = ⟨x, v⟩+ LIM{⟨(TS)nx, v⟩}.
Defining z ∈ X by ⟨z, v⟩ := LIM{⟨(TS)nx, v⟩} we obtain (I − T )(I − S)y = x +
z. By shift-invariance of Banach limits, (TS)z = z. We now define ⟨u, v⟩ :=
LIM{⟨(TS)ny, v⟩}. Then

⟨(I − T )(I − S)u, v⟩ = LIM{⟨(TS)n(I − T )(I − S)y, v⟩} =

LIM{⟨(TS)n(x+ z, v⟩ = LIM{(TS)nx, v⟩}+ ⟨z, v⟩ = 2⟨z, v⟩.
Hence 2z = (I − T )(I − S)u, so x = (I − T )(I − S)(y − 1

2u). □

Remark 3.10. Theorem 3.1 is a corollary of Theorem 3.9. The proof of Theorem
3.1 is closer in spirit to Browder’s, and adapts directly to prove Theorem 3.9 when
Y is separable.

Corollary 3.11. Let X = Y ∗ be a dual Banach space, and let T be a power-
bounded operator on X which is the dual of an operator on Y . Then the following
are equivalent for x ∈ X:

(i) supn≥1 ∥(
∑n−1

j=0 T
j)2x∥ <∞.

(ii) There exists y ∈ X such that x = (I − T )2y.

Example. Bounded double cobundaries of commuting Markov operators on L∞.
Let P and Q be commuting Markov operators on (S,Σ), and let µ be a finite
measure such that the measures µP and µQ, defined by (µP )(A) :=

∫
P (s,A)dµ(s)

and (µQ)(A) :=
∫
Q(s,A)dµ(s), are absolutely continuous with respect to µ. Then

the operators T̂ and Ŝ, defined on the space M(S,Σ, µ) of finite signed measures

absolutely continuous with respect to µ by T̂ ν(A) =
∫
P (s,A)dν(s) and Ŝν(A) =∫

Q(s,A)dν(s), satisfy T̂ ∗ = P and Ŝ∗ = Q onM(S,Σ, µ)∗ = L∞(S,Σ, µ). Theorem
3.9 yields that the following are equivalent for f ∈ L∞(S,Σ, µ):

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 P jQℓf∥∞ <∞.

(ii) f is a double coboundary for P and Q.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 P

jQℓf∥∞ <∞.

Remark 3.12. 1. The separability of L1(S,Σ, µ) (identified with M(S,Σ, µ) via
the Radon-Nikodým theorem), used in the proof of Proposition 3.8, is not needed.

2. The previous example applies to the characterization of bounded double
coboundaries of commuting non-singular transformations.
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Corollary 3.13. Let T and S be commuting power-bounded operators on a Banach
space X. If supn≥1 ∥

∑n−1
j=0

∑n−1
ℓ=0 S

jT ℓx∥ <∞, then there exists ϕ ∈ X∗∗ such that

x = (I − T ∗∗)(I − S∗∗)ϕ,

and then supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓx∥ <∞.

Proof. We identify X with its canonical embedding in X∗∗, and then T and S are
the restrictions to X of T ∗∗ and S∗∗. Now apply Theorem 3.9 to T ∗∗ and S∗∗. □

Remark 3.14. By corollary (3.13), if supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓx∥ < ∞, then

∥ 1
n

∑n
ℓ=1 T

ℓx∥ → 0 and ∥ 1
n

∑n
j=1 S

jx∥ → 0, which is a strengthening of (3.1).

As an application, we look at commuting irreducible Markov operators on com-
pact spaces. Let K be a compact Hausdorff space. A Markov operator on C(K)
is a positive linear operator P on C(K) with P1 = 1; it is given by the transition
probability P (s,A) = P ∗δs(A). A Markov operator is called irreducible if the only
absorbing closed set is K, and uniquely ergodic if it has only one invariant probabil-
ity µ (a probability µ is called invariant if µP := P ∗µ = µ; an invariant probability
always exists [33, p. 178]). A uniquely ergodic Markov operator is irreducible if
and only if the support of the (unique) invariant probability is K (see [31], [33, pp.
177-179] for more details).

If µ is an invariant probability for P , then P defines a Markov operator on L∞(µ);
when P on L∞(µ) is ergodic (Pf = f ∈ L∞(µ) holds only if f is constant a.e.), µ is
called ergodic. Since the set of P -invariant probabilities on K is non-empty, convex
and weak-* compact, by the Krein-Milman theorem [17, p. 440] it has extreme
points, which are precisely the ergodic probabilities for P .

Lemma 3.15. Let K be a compact Hausdorff space and P an irreducible Markov
operator on C(K). Let f ∈ C(K) and assume that for some P -invariant probability
µ there is ψ ∈ L∞(µ) such that f = (I −P )ψ a.e. Then there exists g ∈ C(K) with
f = (I − P )g.

Proof. By assumption, |
∑n

k=0 P
kf(s)| = |(I −Pn+1)ψ(s)| ≤ 2∥ψ∥L∞(µ) a.e. Define

A := {s ∈ K : supn |
∑n

k=0 P
kf(s)| > 3∥ψ∥L∞(µ)}. Then A is open, and by

assumption µ(A) = 0. Since the support of µ is K, by irreducibility, A = ∅.
Hence supn ∥

∑n
k=0 P

kf∥C(K) < ∞, and by [31] there exists g ∈ C(K) with f =
(I − P )g. □

Remark 3.16. 1. Without irreducibility the result of [31] may fail. Example 3
in [37] exhibits P (induced by a continuous map) uniquely ergodic but not
irreducible on C(K) of a compact metric space, and f /∈ (I − P )C(K) with
supn ∥

∑n
k=0 P

kf∥C(K) <∞.
2. For P induced by a minimal continuous map of K, Lemma 3.15 is a special

case of Theorem 1 of Quas [40].
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Theorem 3.17. Let P and Q be commuting irreducible Markov operators on C(K)
of a compact Hausdorff space K, and assume they have a common invariant prob-
ability µ which is ergodic for P . If f ∈ C(K) satisfies

sup
n≥1

∥
n−1∑
j=0

n−1∑
ℓ=0

P jQℓf∥L∞(µ) <∞,

then there exists a function g ∈ C(K) such that f = (I − P )(I −Q)g.

Proof. By invariance of µ, P and Q are contractions also of L∞(µ), and are the
duals of the contractions induced on L1(µ), via the Radon-Nikodým theorem, by
P ∗ and Q∗ which preserve absolute continuity with respect to µ. Hence by Theorem
3.9 there exists ψ ∈ L∞(µ) such that f = (I−P )(I−Q)ψ a.e.-µ. We apply Lemma
3.15 to P and obtain a function h ∈ C(K) with f = (I − P )h. Since µ is ergodic,
when we normalize h to have

∫
h dµ = 0 we obtain that h = (I − Q)ψ a.e.-µ. We

now apply Lemma 3.15 to Q, and obtain a function g ∈ C(K) with h = (I −Q)g.
Hence f = (I − P )h = (I − P )(I −Q)g. □

Remark 3.18. The set of probabilities on K is convex and weak-* compact; since
it is invariant under P ∗ and Q∗, by the Markov-Kakutani fixed point theorem [17, p.
456] it contains a common invariant probability. What the proof of Theorem 3.17
needs is a common invariant probability which is ergodic for at least one of the
operators.

Corollary 3.19. let P be an irreducible Markov operator on C(K) of a compact
Hausdorff space K. Then f ∈ (I − P )2C(K) if and only if

sup
n≥1

∥(
n−1∑
j=0

P j)2f∥C(K) <∞,

Corollary 3.20. Let P and Q be commuting irreducible uniquely ergodic Markov
operators on C(K) of a compact Hausdorff space K. Then the following are equiv-
alent for f ∈ C(K):

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 P jQℓf∥C(K) <∞.

(ii) f is a double coboundary for P and Q.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 P

jQℓf∥C(K) <∞.

Proof. We have only to show that (iii) implies (ii). First note that P and Q have
the same invariant probability: if µ is the unique invariant probability of P , then
(µQ)P = (µP )Q = µQ, and by uniqueness µQ = µ. The invariant probability µ is
ergodic by unique ergodicity, and is supported by K by irreducibility of P and Q.
We can now apply the previous theorem and obtain (ii). □

Example. Continuous double coboundaries of convolutions on the circle.
Let ν and η be two probabilities on the unit circle, whose supports contain an
”irrational” point. Hence they are uniquely ergodic and commute, so the corollary
can be applied. A particular case is when ν and η are irrational rotations.
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4. Double coboundaries of commuting contractions in L1

Although L1 is not reflexive and contractions need not be duals, Browder’s the-
orem was extended to contractions of L1 in [37]. The following theorem, based on
this result, yields as corollary the case p = 1 of Proposition 3.8.

Theorem 4.1. Let (S,Σ, µ) be a σ-finite measure space, let T and S be be com-
muting contractions on L1(S,Σ, µ), and assume that T is mean ergodic. Then the
following are equivalent for f ∈ L1(µ):

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓf∥ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓf∥ <∞.

Proof. We have only to prove that (iii) implies (ii).
By Corollary 3.13 also (i) holds, which implies that

sup
n

∥
n−1∑
ℓ=0

T ℓf∥ = sup
n

∥
n−1∑
ℓ=0

T ∗∗ℓf∥ <∞.

Hence, by [37], there exists h ∈ L1(µ) with (I − T )h = f . Since T is assumed mean
ergodic, we may assume that lim ∥ 1

n

∑n
ℓ=1 T

ℓh∥ → 0, and then

(4.1)
1

N

N∑
n=1

n−1∑
ℓ=0

T ℓf =
1

N

N∑
n=1

n−1∑
ℓ=0

T ℓ(I − T )h =
1

N

N∑
n=1

(I − Tn)h →
N→∞

h,

with convergence in norm. Let M be the supremum in (i). Then

(4.2) sup
N,m≥1

∥ 1

N

N∑
n=1

n−1∑
ℓ=0

T ℓ
m−1∑
j=0

Sjf∥ ≤M.

For fixed m this yields

∥
m−1∑
j=0

Sjh∥ = ∥
m−1∑
j=0

Sj( lim
N→∞

1

N

N∑
n=1

n−1∑
ℓ=0

T ℓf)∥

= lim
N

∥
m−1∑
j=0

Sj 1

N

N∑
n=1

n−1∑
ℓ=0

T ℓf∥ ≤M.

We now apply again [37]: there exists g ∈ L1(µ) such that (I − S)g = h. Hence
f = (I − T )h = (I − T )(I − S)g. □
Remark 4.2. We conjecture that the theorem is true without assuming mean
ergodicity of one of the contractions, but we have not been able to prove it. The
mean ergodicity of T was used in obtaining the iterative solution (4.1) of Poisson’s
equation. Without mean ergodicity, the left-hand side of (4.1) need not converge
even weakly to a solution, although there is one (see [37, Example 1]).

Definition 4.3. A contraction T on L1 is said to satisfy the pointwise ergodic
theorem if for every f ∈ L1 the ergodic averages converge a.e. to a (necessarily
integrable, by Fatou’s lemma) T -invariant function.
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Lemma 4.4. Let T be a positive contraction on L1. Let 0 ≤ f ∈ L1 have a.e.
convergent ergodic averages. Then the limit is an integrable invariant function.

Proof. Put g := limn
1
n

∑n
k=1 T

kf . By Fatou’s lemma g is integrable, and

Tg = T (lim
n

1

n

n∑
k=1

T kf) ≤ lim inf T (
1

n

n∑
k=1

T kf) = g,

since lim inf 1
nT

n+1f = 0 a.e. by Fatou’s lemma. Thus Tg ≤ g, and by [33, Lemma
3.10, p. 131] Tg = g on the conservative part C. But by Hopf’s decomposition∑∞

k=1 T
kf < ∞ a.e. on the dissipative part D, so g = 0 on D, and 0 ≤ Tg ≤ g

shows that Tg = g on D. Hence Tg = g. □
A positive mean ergodic contraction of L1 satisfies the pointwise ergodic theorem

[26], but in general, if T is a mean ergodic contraction and its linear modulus is not
mean ergodic, T need not satisfy the pointwise ergodic theorem [13, p. 115].

Theorem 4.5. Let (S,Σ, µ) be a σ-finite measure space,and let T and S be be com-
muting contractions on L1(S,Σ, µ). Assume that T satisfies the pointwise ergodic
theorem, and S preserves almost everywhere convergence of sequences of integrable
functions. Then the following are equivalent for f ∈ L1(µ):

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓf∥ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓf∥ <∞.

Proof. The proof follows the proof of Theorem 4.1, till (4.1), but now in (4.1) the
convergence to the solution h of Poisson’s equation is almost everywhere; Lemma
4.4 is used for the assumption that 1

n

∑n
ℓ=1 T

ℓh→ 0 a.e.

Put hN := 1
N

∑N
n=1

∑n−1
k=0 T

kf . Then hN ∈ L1 and converges a.e. to h. Since
S preserves a.e. convergence of sequences of integrable functions, so do its powers.
For fixed m we use Fatou’s lemma and (4.2) to obtain

∥
m−1∑
j=0

Sjh∥ = ∥
m−1∑
j=0

Sj( lim
N→∞

hN )∥

= ∥ lim
N

m−1∑
j=0

SjhN∥

≤ lim inf
N→∞

∥
m−1∑
j=0

SjhN∥ ≤M.

We now apply again [37]: there exists g ∈ L1(µ) such that (I − S)g = h. Hence
f = (I − T )h = (I − T )(I − S)g. □
Corollary 4.6. Let θ and τ be commuting measure preserving transformations on
a σ-finite measure space (S,Σ, µ), and let T and S be the contractions they induce
on L1(S,Σ, µ). Then the following are equivalent for f ∈ L1(µ):

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓf∥ <∞.

(ii) f is a double coboundary of T and S.
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(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓf∥ <∞.

Example. Contractions to which Theorem 4.5 applies but Theorem 4.1 does not.
Let θ and τ be commuting measure preserving transformations on a σ-finite mea-

sure space (S,Σ, µ), and let T and S be the contractions they induce on L1(S,Σ, µ).
Let T1 :=

∑
j≥0 ajT

j , with aj ≥ 0 and
∑

j≥0 aj = 1. Then T1 is a Markov operator
having µ as invariant measure. By the Hopf-Dunford-Schwartz theorem, T1 satisfies
the pointwise ergodic theorem, and commutes with S since T does. Corollary 4.6
does not apply to T1 and S, but Theorem 4.5 does. When µ is infinite and the
transformations are ergodic, Theorem 4.1 does not apply.

Example. Contractions to which Theorem 4.1 applies but Theorem 4.5 does not.
Let ν and η be continuous probabilities on the unit circle T with all convolution

powers singular, and denote by λ the normalized Lebesgue measure. On L1(λ)
define Tf := ν ∗f and Sf := η ∗f . Then T and S are commuting Markov operators
which preserve λ. Hence they are mean ergodic on L1(λ), so Theorem 4.1 applies.
Theorem 4.5 need not apply. The assumption of singular convolution powers is
since if some power of ν (or η) has an absolutely continuous component, then T (or
S) is uniformly ergodic [4].

Our next result uses Komlós’s theorem [28]. Aaronson and Weiss [1] suggested
to use Komlós’s theorem for solving Poisson’s equation (the cohomology equation)
in L1 for a single probability preserving transformation (a special case of [37]). We
note that Komlós’s theorem, although stated in probabilistic notation, is valid in
σ-finite measure spaces, since we can always change the measure to an equivalent
probability, and obtain an isomorphism of the spaces of integrable functions which
preserves pointwise convergence.

Theorem 4.7. Let (S,Σ, µ) be a σ-finite measure space and let T and S be commut-
ing contractions on L1(S,Σ, µ). Assume that T and S preserve almost everywhere
convergence of sequences of integrable functions. Then the following are equivalent
for f ∈ L1(µ):

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓf∥ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓf∥ <∞.

Proof. The proof follows the proof of Theorem 4.1, till the identity part of (4.1).
Without loss of generality µ is a probability. Since ∥Tn+1h∥/n→ 0, it converges

in probability, hence there is a subsequence with TNk+1h/Nk → 0 a.e. The sequence

{ 1
Nk

∑Nk
n=1 T

nh} is norm bounded in L1, so by Komlós’s theorem there exist h′ ∈ L1

and a subsequence {ki} such that

1

K

K∑
i=1

(
1

Nki

Nki∑
n=1

Tnh) →
K→∞

h′ a.e.

Since T preserves a.e. convergence of sequences of integrable functions,

Th′ = lim
K→∞

1

K

K∑
i=1

(
1

Nki

Nki∑
n=1

Tn+1h) =
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h′ + lim
K→∞

1

K

K∑
i=1

1

Nki

(TNki
+1h− Th) = h′.

We then obtain from (4.1) that

1

K

K∑
i=1

1

Nki

Nki∑
n=1

n−1∑
ℓ=0

T ℓf =
1

K

K∑
i=1

1

Nki

Nki∑
n=1

(I − Tn)h →
K→∞

h− h′ a.e.

Since h′ is T -invariant (zero if T has no fixed points), also (I − T )(h− h′) = f , so
replacing h by h− h′ we may assume h′ = 0, and then

hK :=
1

K

K∑
i=1

1

Nki

Nki∑
n=1

n−1∑
ℓ=0

T ℓf → h a.e.

By averaging in (4.2) we obtain

(4.3) sup
K,m≥1

∥
m−1∑
j=0

SjhK∥ = sup
K,m≥1

∥ 1

K

K∑
i=1

1

Nki

Nki∑
n=1

n−1∑
ℓ=0

T ℓ
m−1∑
j=0

Sjf∥ ≤M.

Since S preserves a.e. convergence of sequences of integrable functions, so do its
powers. For fixed m ≥ 1, Fatou’s lemma and (4.3) yield

∥
m−1∑
j=0

Sjh∥ = ∥
m−1∑
j=0

Sj( lim
K→∞

hK)∥

= ∥ lim
K

m−1∑
j=0

SjhK∥

≤ lim inf
K→∞

∥
m−1∑
j=0

SjhK∥ ≤M.

By [37], there exists g ∈ L1(µ) such that (I − S)g = h. Hence f = (I − T )h =
(I − T )(I − S)g. □
Example. Contractions to which Theorem 4.7 applies, Theorems 4.1 and 4.5 do
not.

Let τ be the non-singular invertible transformation on [0, 1] with Lebesgue mea-
sure µ, constructed by Chacon (see [33, pp. 151-153]); its pre-dual operator Tf(x) :=
dµ◦τ−1

dµ (x)f(τ−1x) induced on L1 (with T ∗g = g ◦ τ) does not satisfy the pointwise

ergodic theorem, and since T is positive, it is not mean ergodic [26]. However, its
structure shows that it preserves a.e. convergence of sequences of integrable func-
tions. Looking at τ × τ on the unit square, we obtain two commuting contractions
T1 and T2 which are not mean ergodic and do not satisfy the pointwise ergodic theo-
rem, but each preserves pointwise convergence of sequences of integrable functions.

Remark 4.8. 1. Theorem 4.7 does not apply in the examples following Corollary
4.6, so Theorems 4.1, 4.5 and 4.7 are not comparable.
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2. Corollary 4.6 is also a consequence of Theorem 4.7.

We now present a different proof of Theorem 4.7, which may be of interest. It
uses (3.1), but does not use Corollary 3.13, nor [37]. Instead, the strong Komlós
theorem [28, Theorem 1a] is used.

Proof. We have only to show that (iii) implies (ii). Define

gn :=
1

n

n∑
k=1

∑
0≤j,ℓ≤k−1

SjT ℓf =
1

n

n∑
k=1

(

k−1∑
j=0

Sj)(

k−1∑
ℓ=0

T ℓ)f.

By (iii), supn ∥gn∥1 < ∞. Also the sequences { 1
n

∑n
k=1(T

kf + Skf)}, and

{ 1
n

∑n
k=1(TS)

kf} are norm bounded in L1.
By applying the strong version of Komlós’s theorem [28, Theorem 1a] successively

three times, there exist an increasing subsequence of integers {mr} and functions
g, h1 ∈ L1 such that for every subsequence {nr} ⊂ {mr},

1

n

n∑
r=1

gnr → g a.e.,
1

n

n∑
r=1

1

nr

nr∑
k=1

(TS)kf → h1 a.e.,

and 1
n

∑n
r=1

1
nr

∑nr
k=1(T

k + Sk)f converges a.e. By the proof of (3.1) in Theorem

3.1, (iii) implies that ∥ 1
n

∑n
j=1 S

jf + 1
n

∑n
ℓ=1 T

ℓf∥1 → 0, so
1
n

∑n
r=1

1
nr

∑nr
k=1(T

k + Sk)f converges a.e. to 0, by Fatou’s lemma.
By assumption, T and S, and therefore also TS, preserve almost everywhere

convergence. With the limits in the following equations being pointwise a.e. limits,
we obtain

(I − T )(I − S)g = lim
n

1

n

n∑
r=1

(I − T )(I − S)gmr

= lim
n

1

n

n∑
r=1

1

mr

mr∑
k=1

(I − T )(I − S)(

k−1∑
j=0

Sj)(

k−1∑
ℓ=0

T ℓ)f

= lim
n

1

n

n∑
r=1

1

mr

mr∑
k=1

(I − T k)(I − Sk)f

= lim
n

1

n

n∑
r=1

1

mr

mr∑
k=1

(f − T kf − Skf + (TS)kf).

We thus have (I − T )(I −S)g = f + h1. We now use Komlós’s theorem to obtain a

function h2 ∈ L1 and a subsequence {nr} ⊂ {mr} such that 1
N

∑N
r=1

1
nr

∑nr
k=1(TS)

kg

converges a.e. to h2. Since (TS)h1 = h1, we obtain

(I − T )(I − S)h2 = lim
N

1

N

N∑
r=1

1

nr

nr∑
k=1

(TS)k(I − T )(I − S)g

= lim
N

1

N

N∑
r=1

1

nr

nr∑
k=1

(TS)k(f + h1) = 2h1.
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Hence f = (I − T )(I − S)g − h1 = (I − T )(I − S)(g − 1
2h2). □

Notations. We denote by M(S,Σ, µ) the space of countably additive finite signed
measures absolutely continuous with respect to µ, and by ba(S,Σ, µ) the space
of bounded finitely additive measures (charges) vanishing on the null sets of µ.
It is known that ba(S,Σ, µ) is the second dual of M(S,Σ, µ) [17, p. 296]. By
the Yosida-Hewitt decomposition [45, Theorem 1.24], every ν ∈ ba(S,Σ, µ) can be
uniquely decomposed as ν = ν1 + ν0, with ν1 ∈ M(S,Σ, µ) countably additive and
ν0 ∈ ba(S,Σ, µ) a pure charge (i.e. |ν0| does not bound any countably additive non-
negative measure). S. Horowitz [25] showed that L∞(S,Σ, µ) is isometrically and
order isomorphic to C(K) of a compact Hausdorff space in a way that M(S,Σ, µ) is
isometrically order isomorphic to the finite signed measures absolutely continuous
with respect to a probability µ̂, and pure charges in L∞(µ) correspond to the finite
signed measures on K singular to µ̂.

For our next result we need the following lemma.

Lemma 4.9. Let T be a contraction on M(S,Σ, µ) and let η ∈ ba(S,Σ, µ) satisfy
T ∗∗η = η. Then ηc, the countably additive part of η, satisfies Tηc = ηc.

Proof. Let ηp = η − ηc be the pure charge part of η. Then (as in [37])

∥ηp∥ ≥ ∥T ∗∗ηp∥ = ∥ηc + ηp − Tηc∥ = ∥ηp∥+ ∥ηc − Tηc∥,
since ηc and ηp are ”mutually singular”. Hence Tηc = ηc. □

The authors are grateful to Christophe Cuny for the idea of the proof of the next
theorem.

Theorem 4.10. Let (S,Σ, µ) be a σ-finite measure space, and let T and S be
commuting contractions on L1(S,Σ, µ). If T has no non-zero invariant functions,
or if S is an invertible isometry, then the following are equivalent for f ∈ L1:

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓf∥ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓf∥ <∞.

Proof. We have to prove only that (iii) implies (ii). Via the Radon-Nikodým theo-
rem, we identify L1(S,Σ, µ) withM(S,Σ, µ). Then ν, defined by dν = fdµ, satisfies

supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓν∥ <∞. By Corollary 3.13, ν = (I − T ∗∗)(I − S∗∗)ψ for

some ψ ∈ ba(S,Σ, µ). Put η := (I − S∗∗)ψ. Then supn ∥
∑n−1

k=0 S
∗∗kη∥ = M < ∞.

Decompose η = η1 + η0 with η1 countably additive and η0 a pure charge. Since
(I − T ∗∗)η = ν, the proof of [37] shows that (I − T )η1 = ν and T ∗∗η0 = η0. Since

S∗∗ preserves countable additivity,
∑n−1

k=0 S
∗∗kη1 is countably additive (and equals∑n−1

k=0 S
kη1). To finish the proof we have to show that these sums are norm-bounded.

Case 1: T has no non-zero fixed points in M(S,Σ, µ).
Since T and S commute, T ∗∗(S∗∗kη0) = S∗∗kη0. Hence by Lemma 4.9 and the

assumption,
∑n−1

k=0 S
∗∗kη0 is a pure charge for every n. Hence

(4.4) ∥
n−1∑
k=0

Skη1∥ ≤ ∥
n−1∑
k=0

S∗∗kη1∥+ ∥
n−1∑
k=0

S∗∗kη0∥ = ∥
n−1∑
k=0

S∗∗kη∥ ≤M.
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Case 2: S is an invertible isometry.
By [10, Lemma 4.2], S∗∗kη0 is a pure charge for any k, so as before (4.4) holds.

In either case, we obtain supn ∥
∑n−1

k=0 S
kη1∥ ≤ M , so by [37] there is a ζ ∈

M(S,Σ, µ) with (I − S)ζ = η1; hence (I − T )(I − S)ζ = (I − T )η1 = ν. □
Definition 4.11. Let T be a positive contraction of L1(S,Σ, µ). A set B ∈ Σ
is called T -absorbing if Tf ∈ L1(B) whenever f ∈ L1(B). This is equivalent to
T ∗1S−B ≤ 1S−B [33, p. 118]. T is called irreducible if the only non-null T -absorbing
set is S (mod µ).

Corollary 4.12. Let (S,Σ, µ) be a σ-finite measure space, and let T and S be
commuting contractions on L1(S,Σ, µ). If T is an irreducible positive contraction,
then the following are equivalent for f ∈ L1:

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓf∥ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓf∥ <∞.

Proof. The set C, the conservative part of T , is T -absorbing [33, p. 118], so by
irreducibility either T is dissipative or T is conservative. If T is dissipative, it has
no non-zero fixed point (all invariant probabilities are supported by C [33, p. 141]),
and Theorem 4.10 applies.

We now assume that T is conservative, so it is ergodic by irreducibility. If T
has a fixed point h ̸= 0 in L1, then, by irreducibility, |h|/∥h∥ defines an equivalent
invariant probability [33, p. 132], and then T is mean ergodic (e.g. [33, p. 73]), so
Theorem 4.1 applies. If T has no fixed points in L1 (except 0), then Theorem 4.10
applies. □
Remark 4.13. 1. Theorem 4.10 applies when T is a dissipative positive contraction,
even without irreducibility, since it has no fixed points, as observed in the previous
proof.

2. A conservative and ergodic positive contraction T on L1 is irreducible, since
T -absorbing sets are invariant.

Theorem 4.14. Let (S,Σ, µ) be a σ-finite measure space, and let T and S be
commuting conservative positive contractions on L1(S,Σ, µ). Then the following
are equivalent for f ∈ L1:

(i) supn,m≥1 ∥
∑n−1

j=0

∑m−1
ℓ=0 SjT ℓf∥ <∞.

(ii) f is a double coboundary of T and S.

(iii) supn≥1 ∥
∑n−1

j=0

∑n−1
ℓ=0 S

jT ℓf∥ <∞.

Proof. Since T is conservative, there exists a decomposition of the space S = C1∪C0,
with each Ci invariant (i.e. T ∗ 1Ci = 1Ci for i = 0, 1), such that every fixed
point of T vanishes on C0, while there exists 0 ≤ p ∈ L1(S) with Tp = p and
{p > 0} = C1 [33, p. 141]. If µ(C0) = 0 or µ(C1) = 0, the desired equivalence
is proved like Corollary 4.12 (and S needs to be only a contraction of L1(S), not
necessarily positive). So we assume now that µ(C0) > 0 and µ(C1) > 0.

By commutation, T (Sp) = S(Tp) = Sp, so the property of C0 yields {Sp > 0} ⊂
C1. It follows easily that if h ∈ L1(C1) (i.e. h ∈ L1(S) supported on C1), then Sh
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is also supported on C1. Hence L1(C1) is invariant under S (i.e. C1 is absorbing
for S), which yields S∗1C0 ≤ 1C0 . Since S is conservative, S∗1C0 = 1C0 , and also
S∗1 = 1, which implies that S∗1C1 = 1C1 . This shows that also C0 is absorbing for
S, and we conclude that L1(C0) and L1(C1) are both invariant under T and under
S. Denote Ti = T|L1(Ci) and Si = S|L1(Ci).

Let f ∈ L1(S) satisfy (iii). Writing f = f1 + f0 with fi = f1Ci , we obtain

sup
n≥1

[
∥
n−1∑
j=0

n−1∑
ℓ=0

Sj
0T

ℓ
0f0∥+ ∥

n−1∑
j=0

n−1∑
ℓ=0

Sj
1T

ℓ
1f1∥

]
<∞.

Since T1 is mean ergodic and T0 has no fixed points (except 0), Theorems 4.1 and
4.10 yield the existence of gi ∈ L1(Ci) such that (I − Ti)(I − Si)gi = fi, i = 0, 1.
Hence (ii) holds with g = g1 + g0. □
Example. Contractions to which Theorem 4.10 applies, Theorems 4.1, 4.5 and 4.7
do not.

Let ν and η be absolutely continuous probabilities on R, and define on L1(R) the
convolution operators Tf = ν ∗ f and Sf = η ∗ f . Neither T nor S has fixed points,
so Theorem 4.10 applies. Neither operator is mean ergodic in L1. Both satisfy the
pointwise ergodic theorem, but they do not preserve a.e. convergence of sequences
of integrable functions. T and S are irreducible, so also Corollary 4.12 applies.

Remark 4.15. In the second example following Corollary 4.6, also Theorem 4.10
does not apply. However, Theorem 4.14 does apply to that example.

Problem. Is Theorem 4.1 true without the assumption that T (or S) is mean
ergodic?
The problem is whether (iii) in Theorem 4.1 implies (ii) without any additional
assumptions on T or S. Theorems 4.5 and 4.7 put different additional assumptions
on both T and S, and as remarked above, these three theorems are not comparable.
However, they suggest that they might just be special cases of a general result which
does not require additional assumptions. An important special case of the problem
is whether the three conditions in Theorem 4.1 are equivalent when T and S are
both positive contractions. The answer is positive when one of them is dissipative
(remark following Corollary 4.12) or when both are conservative (Theorem 4.14),
but we do not know the answer in the general case.
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