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method meets additional difficulties since the auxiliary function is undefined on the
boundary of the feasible set.

In this paper, we intend to develop the approach from [14, 15] for barrier meth-
ods applied to EP (1.1) with nonlinear constraints. We establish some results of
weak convergence of the penalized and regularized methods without monotonicity
assumptions via mild coercivity conditions.

2. Basic preliminaries

We first recall some basic definitions and auxiliary properties. Let X be a
nonempty subset of a Banach space E and φ : X → R be a function. In the
sequel, for every γ ∈ R, we will denote by ℓγ(φ) the set

ℓγ(φ) := {x ∈ X : φ(x) ≤ γ}.
The function φ is said to be

(a) convex on a convex set K ⊆ X, if

φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y), ∀x, y ∈ K and ∀α ∈ [0, 1];

(b) uniformly convex on a convex set K ⊆ X, if there exists a continuous and
increasing function θ : R → R with θ(0) = 0 such that

φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y)− α(1− α)θ(∥x− y∥),
∀x, y ∈ K and ∀α ∈ [0, 1];

(c) coercive with respect to a set K ⊆ X if

φ(x) → +∞ as ∥x∥ → ∞, x ∈ K;

(d) weakly coercive with respect to a set K ⊆ X if there exists a number γ such
that the set ℓγ(φ) ∩K is nonempty and bounded;

(e) upper (lower) semicontinuous at a point z ∈ X, if, for each sequence {xk} → z,
xk ∈ X, it holds that

lim sup
k→∞

φ(xk) ≤ φ(z) (lim inf
k→∞

φ(xk) ≥ φ(z));

(f) weakly upper (lower) semicontinuous at a point z ∈ X, if, for each sequence

{xk} w→ z, xk ∈ X, it holds that

lim sup
k→∞

φ(xk) ≤ φ(z) (lim inf
k→∞

φ(xk) ≥ φ(z)).

Here and below {xk} → z ({xk} w→ z) denotes the strong (weak) convergence of
{xk} to z. We say that any of the properties (e) (f) holds on a set K ⊆ X, if it
holds at any point of K. From the definitions we have

(b) =⇒ (a), (b) =⇒ (c) =⇒ (d), and (f) =⇒ (e),

but the reverse implications are not true in general.
In this section, we will consider EP (1.1) under the following basic assumptions.

(B1) D is a nonempty, convex and closed subset of E and ϕ : D × D → R is
an equilibrium bifunction such that ϕ(·, y) is weakly upper semicontinuous for each
y ∈ D and ϕ(x, ·) is convex for each x ∈ D.
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If we add the boundedness of D, EP (1.1) will have a solution due to the simple
specialization of the well-known existence result due to Ky Fan; see [6]. It suffices
to take the weak topology in E.

Proposition 2.1. If (B1) holds and D is bounded, then EP (1.1) has a solution.

However, we are interested in investigating the general unbounded case. Then,
we should utilize a suitable coercivity condition. Let µ : E → R denote a lower
semicontinuous and convex function µ : E → R, which is weakly coercive with
respect to the set D. For instance, we can take µ to be a uniformly convex function.
Note that, under the assumptions above on µ, all the sets ℓs(µ) ∩ D, s ∈ R, are
either empty, or bounded (see [7] and also, for instance, [20, Chapter 3, Theorem
3.14]).

The next existence result was proved in [15], Theorem 3.1 under the following
mild coercivity condition:

(C1) There exist a number r such that, for any point x ∈ D \ ℓr(µ), there is a point
z ∈ D with

(2.1) min{ϕ(x, z), µ(z)− µ(x)} < 0 and max{ϕ(x, z), µ(z)− µ(x)} ≤ 0.

Note that under the assumptions (B1) and (C1), the set ℓr(µ)∩D is nonempty
(see Lemma 3.2 in [15]).

Theorem 2.2. Let us assume that the set D, the bifunction ϕ, and the function µ
satisfy the conditions in (B1) and (C1). Then EP (1.1) has a solution.

If we replace (2.1) in (C1) with the stronger condition

(2.2) µ(z) ≤ µ(x) and ϕ(x, z) < 0,

then we can show, in addition, that all the solutions belong to the bounded set
D ∩ ℓr(µ). In general, the further coercivity conditions (C2)–(C4) considered in
this paper will lead to a stronger result, namely, the existence of solutions, which
belong to a bounded set, without proving the boundedness of the whole solution
set.

3. The classical barrier method

Throughout the next sections we will consider EP (1.1) under the following basic
assumptions (B2):

• D is a nonempty set of the form

(3.1) D = V ∩W,

where W and V are convex and closed sets in a reflexive Banach space E
such that the set

D0 = V ∩ intW

is nonempty;
• ϕ : V ×V → R is an equilibrium bifunction such that ϕ(·, y) is weakly upper
semicontinuous for each y ∈ V and ϕ(x, ·) is convex for each x ∈ V ;
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• µ : E → R is lower semicontinuous, convex and weakly coercive with respect
to the set D.

A barrier function B with respect to W is a function enjoying the following
properties:

(i): B : intW → R is nonnegative, convex and lower semicontinuous;
(ii): B(x) → +∞ as x → Γ, where Γ = ∂W .

We will denote by DM the subset of D0 given by

DM := ℓM (B) ∩ V.

Example 3.1.

(i): In the particular case of a set W described via functional constraints, i.e.

W = {x ∈ E : hi(x) ≤ 0, i = 1, . . . ,m},

where hi : E → R is convex, i = 1, . . . ,m, we can set

B(x) = −
m∑
i=1

1/hi(x),

B(x) =

m∑
i=1

max {− ln(−hi(x)), 0}p , p ≥ 1.

Another possibility could be to take

B(x) = −1/h(x),

B(x) = max {− ln(−h(x)), 0}p , p ≥ 1,

where h(x) = maxi=1,...,m{hi(x)} (see [8, 19,21]).
(ii): In case of a finite dimensional space E, the function

B(x) = max {− ln dW (x), 0}p , p ≥ 1,

where the distance function dW : W → R+ is given by

dW (x) = d(x,Γ) = min
z∈Γ

{∥x− z∥},

is a convex barrier function on W (see [9], Theorem 6.20).
(iii): The perturbed (regularized) barrier function

B̃(x) = B(x) + µ(x),

where µ is, in addition, nonnegative, seems also suitable since it is weakly
coercive with respect to D and it can be used instead of µ for the penalized
problems. We will discuss this approach in Section 4.

The main result of this section relies on the following coercivity condition:

(C2) There exist a number r such that, for every x ∈ D0 \ ℓr(µ) there exists z ∈ D0

such that

min{ϕ(x, z), B(z)−B(x)} < 0 and max{ϕ(x, z), B(z)−B(x), µ(z)− µ(x)} ≤ 0
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We now introduce, for any positive τ , the penalized equilibrium problem EPτ defined
as follows: given a barrier function B with respect to W , let ϕτ : D0 ×D0 → R be
given by

ϕτ (x, y) = ϕ(x, y) + τ(B(y)−B(x)).

Then, EPτ is to find a point x∗τ ∈ D0 such that

(3.2) ϕτ (x
∗
τ , y) ≥ 0, ∀y ∈ D0.

Our plan is, first, to prove the existence of solutions to the penalized equilibrium
problem EPτ (3.2) for every τ , then to show that for any sequence τl ↓ 0, we are
able to reach a solution of the original equilibrium problem (1.1) as a limit point of
a sequence of solutions of problems EPτl .

Lemma 3.2. Fix τ > 0. If the conditions in (B2) and (C2) hold, then the penalized
problem EPτ admits a solution, which belongs to ℓr(µ)

∩
D0.

Proof. We divide the proof in three steps:

Step 1. Since D0 ̸= ∅, there exists a positive M such that the set DM is non empty.
We start by proving the existence of solutions of the reduced equilibrium problem

(3.3) ϕτ (x, y) ≥ 0, ∀y ∈ DM

by applying Theorem 2.2 to the set DM and the bifunction ϕτ .
Note that (B1) is fulfilled and, in addition, ϕτ satisfies the coercivity condition

(C1) on DM with respect to the function µ and the scalar r given in (C2). Indeed,
if x ∈ DM \ ℓr(µ), then x ∈ D0 \ ℓr(µ) and, from (C2), there exists z ∈ D0, such
that B(z) ≤ B(x) ≤ M , implying that z ∈ DM . Moreover, from the condition
min{ϕ(x, z), B(z) − B(x)} < 0, it follows easily that ϕτ (x, z) < 0 and thus (2.2)
holds. Therefore, by the remark below Theorem 2.2, the equilibrium problem (3.3)
admits solutions and all these solutions belong to the bounded set DM ∩ ℓr(µ).

Step 2. Let now Mk ↑ +∞, and denote by xτ (Mk) a solution of the equilib-
rium problem (3.3) on DMk

. Since D ∩ ℓr(µ) is convex, closed, and bounded, and
xτ (Mk) ∈ D ∩ ℓr(µ) for every k, without loss of generality we can assume that

xτ (Mk)
w→ x∗τ ∈ D ∩ ℓr(µ)

as k → +∞.
It is easy to prove that x∗τ ∈ D0. Indeed, fix y ∈ DM1 . By observing that

DMk
⊆ DMk+1

, for every k ≥ 1, we get for any k

B(xτ (Mk)) ≤
1

τ
ϕ(xτ (Mk), y) +B(y)

Since every weakly upper semicontinuous function admits a maximum on
every closed, convex and bounded set by the Weierstrass theorem, the bounded-
ness of {ϕ(xτ (Mk), y)} implies the boundedness of {B(xτ (Mk))}. Since B(x∗τ ) ≤
lim infk→∞B(xτ (Mk)) < +∞, we get x∗τ ∈ intW . Moreover, x∗τ ∈ V , and thus
x∗τ ∈ D0.

Step 3. Finally, we show that x∗τ is a solution of the equilibrium problem (3.2).
Suppose, by contradiction, that there exists y ∈ D0 such that

ϕ(x∗τ , y) + τ(B(y)−B(x∗τ )) < 0.
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Then, since y ∈ DMk
for a suitable k,

ϕ(xτ (Mk), y) + τ(B(y)−B(xτ (Mk))) ≥ 0

for all k ≥ k. By the weak upper semicontinuity of ϕ(·, y) and weak lower semicon-
tinuity of B, we get

ϕ(x∗τ , y) + τ(B(y)−B(x∗τ )) ≥ 0,

a contradiction. □
We are now ready to prove the basic theorem for the barrier method.

Theorem 3.3. Let the assumptions in (B2) and (C2) hold and let B be a barrier
function with respect to W . Then:

(i) EP (1.1), (3.1) has a solution;
(ii) EPτ (3.2) has a solution for each τ > 0 and all these solutions belong to

ℓr(µ)
∩

D0;
(iii) Each sequence {x∗τl} of solutions of EPτl with τl ↓ 0 has weak limit points,

all these weak limit points belong to ℓr(µ)
∩

D and are solutions of EP (1.1),
(3.1).

Proof. By Lemma 3.2 we know that for every τ > 0 the penalized equilibrium
problem EPτ (3.2) admits a solution x∗τ ∈ D0 ∩ ℓr(µ). Besides, if there exists
another solution x̄τ ∈ D0 \ ℓr(µ), then, by (C2) there exists z ∈ D0 ∩ ℓr(µ) such
that ϕτ (x̄τ , z) < 0, which is a contradiction. Therefore, assertion (ii) holds. Fix
τl ↓ 0, and denote by x∗τl a solution in ℓr(µ)∩D0 of EPτl . Without loss of generality,
we can assume

x∗τl
w→ x∗ ∈ D ∩ ℓr(µ).

We show that x∗ is a solution to EP (1.1).
First of all, by the assumptions on B,

ϕ(x∗τl , y) + τlB(y) ≥ τlB(x∗τl) ≥ 0 ∀y ∈ D0.

By the upper semicontinuity of ϕ(·, y), we have

ϕ(x∗, y) ≥ lim sup
l→+∞

(ϕ(x∗τl , y) + τlB(y)) ≥ 0 ∀y ∈ D0.

Assume now, by contradiction, that there exists y ∈ Γ such that ϕ(x∗, y) < 0. Let
y′ ∈ D0; then, by convexity of ϕ(x, ·), since (1 − λ)y′ + λy ∈ D0 for λ ∈ [0, 1), we
get

0 ≤ ϕ(x∗, (1− λ)y′ + λy) ≤ (1− λ)ϕ(x∗, y′) + λϕ(x∗, y) < 0

for λ close enough to 1, a contradiction. Therefore, assertion (iii) holds too. Asser-
tion (i) follows from (iii). □

4. The regularized barrier method

In this section we will consider the penalized and regularized equilibrium problem

(ẼP τ ): find a point x∗τ ∈ D0 such that

(4.1) φτ (x
∗
τ , y) ≥ 0, ∀y ∈ D0,

where
φτ (x, y) = ϕ(x, y) + τ(B̃(y)− B̃(x)),
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B̃(x) = B(x) + µ(x) and the function µ is, in addition, nonnegative. That is, the
barrier function now combines both penalty and regularized terms. Note that, since

ℓs(B̃) ⊆ ℓs(µ), and B is a barrier function with respect to W, there exists r̃ such

that ℓr̃(B̃)∩D is nonempty and bounded, i.e., B̃ is weakly coercive with respect to
D.

The aim of this section is to provide a new existence result relying on the following
coercivity condition:

(C3) There exists a number r such that, for every x ∈ D0 \ ℓr(B̃), there exists
z ∈ D0 such that

min{ϕ(x, z), B̃(z)− B̃(x)} < 0 and max{ϕ(x, z), B̃(z)− B̃(x)} ≤ 0.

Theorem 4.1. Given a barrier function B with respect to W , let B̃(x) = B(x) +
µ(x) where µ is nonnegative. Let the assumptions in (B2) and (C3) hold. Then:

(i) EP (1.1), (3.1) has a solution;

(ii) ẼP τ (4.1) has a solution for each τ > 0 and all these solutions belong to

ℓr(B̃)
∩

D0;

(iii) Each sequence {x∗τl} of solutions of ẼP τl with τl ↓ 0 has weak limit points,

all these weak limit points belong to ℓr(B̃)
∩

D and are solutions of EP (1.1),
(3.1).

Proof. Let us consider the set D̃M := V ∩ℓM (B̃) ⊆ D0, where M ≥ max (r̃, r). Since

D̃M is nonempty, closed, convex, and bounded, and φτ is a bifunction satisfying

the conditions in (B1) on D̃M , by the well-known result by Ky Fan there exists a

solution to the equilibrium problem on D̃M , say xτ (M). By the coercivity condition

(C3), xτ (M) ∈ ℓr(B̃). Indeed, if xτ (M) ∈ D0 \ ℓr(B̃), there exists y ∈ D̃M such
that φτ (xτ (M), y) < 0, a contradiction.

Let Mj ↑ +∞; without loss of generality, xτ (Mj)
w→ x∗τ ∈ D̃r ⊂ D0. Following

the lines of Steps 2 and 3 in Lemma 3.2, we can show that x∗τ is a solution of (4.1).
Therefore, part (ii) holds.

Furthermore, arguing as in the proof of Theorem 3.3, we can also prove that for

τl ↓ 0, {x∗τl} has weak limit points in D̃r which are solutions of EP (1.1). Therefore,
part (iii) holds too. Part (i) follows from (iii). □

Observe that Theorem 4.1 gives the existence result for EP (1.1), (3.1) under
somewhat different conditions in comparison with those in Theorem 3.3.

We can obtain a similar convergence result for a modified coercivity condition
weaker than (C2):

(C4) There exists a number r such that, for every x ∈ D0 \ ℓr(µ), there exists
z ∈ D0 such that

min{ϕ(x, z), B(z)−B(x), µ(z)− µ(x)} < 0

and
max{ϕ(x, z), B(z)−B(x), µ(z)− µ(x)} ≤ 0.

Theorem 4.2. Let the assumptions in (B2) and (C4) hold, with µ nonnegative,
and let B be a barrier function with respect to W. Then:
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(i) EP (1.1), (3.1) has a solution;

(ii) ẼP τ (4.1) has a solution for each τ > 0 and all these solutions belong to
ℓr(µ)

∩
D0;

(iii) Each sequence {x∗τl} of solutions of ẼP τl with τl ↓ 0 has weak limit points,
all these weak limit points belong to ℓr(µ)

∩
D and are solutions of EP (1.1),

(3.1).

Proof. Fix M > 0. Let us consider the reduced EP: find a point xτ (M) ∈ DM such
that

(4.2) φτ (xτ (M), y) ≥ 0, ∀y ∈ DM .

Clearly, (B1) is fulfilled and, in addition, φτ satisfies the coercivity condition (C1)
on DM with respect to the function µ and the scalar r given in (C4). Hence, EP
(4.2) has a solution due to Theorem 2.2, besides, by the remark below Theorem 2.2,
all its solutions belong to the bounded set DM ∩ ℓr(µ). Next, following the lines of

Steps 2 and 3 in Lemma 3.2 and replacing B with B̃ where necessary, we can show
that

xτ (Mk)
w→ x∗τ ∈ D0 ∩ ℓr(µ)

as k → +∞, for any sequence Mk ↑ +∞, and that x∗τ solves EP (4.1). Therefore,
part (ii) holds. The same substitution in the proof of Theorem 3.3 justifies part
(iii). Part (i) follows directly from (iii). □

5. Comparison with other coercivity conditions

In this section we will show that our coercivity conditions (C1)–(C4) are weaker
than other ones recently found in literature. In [16], in a finite-dimensional setting
E, the following weak coercivity condition was suggested for establishing existence
results:

(G) There exists a convex function µ : E → R which is weakly coercive with respect
to the set D, and a number r such that for any point x ∈ D \ ℓr(µ) with

inf
y∈ℓr(µ)

ϕ(x, y) ≥ 0,

there is a point z ∈ D, with µ(z) < µ(x), and ϕ(x, z) ≤ 0.

However, (G) implies (C1). To prove this, fix the same r ∈ R and x ∈ D \ ℓr(µ),
and let us consider two possible cases:

(i): ϕ(x, y) ≥ 0 for every y ∈ ℓr(µ): taking the same z we see that (C1) is
fulfilled;

(ii): there exists y ∈ ℓr(µ) such that ϕ(x, y) < 0. In this case, choose z = y.

It should be noted that condition (G) implies certain weakened coercivity condi-
tions in the case where the initial space admits a partition into a Cartesian product
of spaces so that the usual coercivity holds only with respect to a selected subspace;
see [16] for more details. These relaxed coercivity conditions are useful in the study
of various iterative solution methods; see e.g. [17].

The following well known coercivity condition was used for establishing conver-
gence of penalty methods (see e.g. [10, 13,18]):
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(C) There exists a point x̃ ∈ D0 such that

ϕ(x, x̃) → −∞ as ∥x− x̃∥ → ∞, x ∈ D0.

We conclude by showing the relationship between (C) and (C1)–(C4).
If we set µ(x) = ∥x− x̃∥, then (C) clearly implies (C1). Indeed, the set

D′ =
{
x ∈ D0 : ϕ(x, x̃) ≥ 0

}
is contained ℓρ′(µ) for some positive ρ′. Thus (C1) holds with r = (ρ′) and z = x̃.

Next, if the barrier function B is weakly coercive with respect to D0, the set
ℓB(x̃(B)∩D0 is bounded, therefore it is included in ℓρ′′(µ), for a suitable ρ′′. Taking
ρ = max{ρ′, ρ′′}, z = x̃, and r = ρ, we see that (C2) holds. Therefore, (C4) holds
too.

Let us go back to condition (C3). We recall that the function B̃(x) = B(x)+µ(x)
is weakly coercive with respect to D and that the set D′ is bounded. If we choose

the functions B and µ such that D′ is contained in some set ℓr(B̃), then (C3) holds
true.
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Università Cattolica del Sacro Cuore, Milano, Italy

E-mail address: monica.bianchi@unicatt.it

I. Konnov
Kazan Federal University, Kazan, Russia

E-mail address: konn-igor@ya.ru

R. Pini
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