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functional and hence defines a convex body in Rn; such a convex body is called
the projection body of K and denoted by ΠK. Hereafter, Volm refers to the
m-dimensional Lebesgue measure (volume). From (2.2) below, one can easily see
that ΠK is an origin symmetric convex body, where a convex body K is said to
be origin symmetric if K = −K. The projection body ΠK plays important roles
in affine isoperimetric inequalities including, e.g., Zhang’s projection inequality
[33] and Petty’s projection inequality [29]. These two inequalities can be stated
as follows: for any K ∈ Kn, one has

(1.1)
1

nn

(
2n

n

)
≤ Voln(K)n−1Voln(Π

◦K) ≤
(

ωn
ωn−1

)n
,

where ωn denotes the volume of the unit ball Bn
2 in Rn and

K◦ = {x ∈ Rn : hK(x) ≤ 1}

defines the polar body of K ∈ Kn
0 . Equality holds for the first inequality in (1.1)

(i.e., Zhang’s inequality) if, and only if, K is a n-dimensional simplex (convex
hull of n + 1 affinely independent points); equality holds for the second inequality
in (1.1) (i.e., Petty’s inequality) if, and only if, K is an ellipsoid. The proof of
Petty’s inequality follows from the classical Steiner symmetrization, and the proof
of Zhang’s inequality, as presented in [18], made critical use of the covariogram
function.

The covariogram function is a fundamental notion in convex geometry and ap-
pears often in the literature. We denote by gK : Rn → R, the covariogram function
of K ∈ Kn, which is given by (see e.g., [3])

(1.2) gK(x) = Voln (K ∩ (K + x)) = (χK ⋆ χ−K)(x) for x ∈ Rn,

where (f ⋆ g)(x) =
∫
Rn f(y)g(x − y) dy is a convolution of functions f, g : Rn → R

and χK(x) is the characteristic function of K. The significance of the covariogram
function can be seen immediately from the following facts. First of all, it is easily
checked that the support of gK(x) is the difference body of K given by

DK = {x : K ∩ (K + x) 6= ∅} = K + (−K),

where the Minkowski sum of two Borel sets is given by K +L = {x+ y : x ∈ K, y ∈
L}.

Among those important results related to the difference body are the following
inequalities: for K ∈ Kn one has

2n ≤ Voln(DK)

Voln(K)
≤
(
2n

n

)
.

The first inequality is a direct consequence of the Brunn-Minkowski inequality (see
e.g. [14]), and equality holds if, and only if, K is symmetric about a point (i.e.
a translate of K is origin symmetric). This provides a measurement for the sym-
metry of convex bodies. The second inequality is the famous Rogers-Shephard
inequality [30], in which equality holds if, and only if, K is a n-dimensional sim-
plex. Chakerian [6] was the first to show the connection between the covariogram
and the difference body, yielding a succinct proof of the Rogers-Shephard inequality.
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The proof uses another property of the covariogram function: it inherits the 1/n
concavity property of the Lebesgue measure, because the covariogram function is
defined as a convolution of characteristic functions of convex bodies.

Secondly, the classical result by Matheron [27] shows that dgK(rθ)
dr

∣∣
r=0+

= −hΠK(θ).
Thus, the covariogram function naturally leads to the projection body via the vari-
ational approach, which is one of the crucial steps in the proof of Zhang’s projection
inequality in [18]. In particular, Gardner and Zhang showed that

DK ⊆ nVoln(K)Π◦K,

with equality if, and only if, K is a n-dimensional simplex.
Formula (1.2) for the covariogram function gK can be adapted to define the

mth-order covariogram function in a natural way. To do this, we always identify,
throughout this paper, Rnm with the product structure Rn × · · · ×Rn, and a point
in Rnm is often written as x̄ = (x1, . . . , xm), with each xi ∈ Rn. Note that the
product structure is of central importance in later context. Schneider [32] proposed
the mth-order covariogram function gK,m : Rmn → R for K ∈ Kn and m ∈ N as
follows:

(1.3) gK,m(x) = Voln (K ∩mi=1 (xi +K)) for x̄ ∈ Rmn.

When m = 1, one obtains the covariogram function gK in (1.2). Consequently, one
can define the mth-order difference body of K, denoted by Dm(K), as the support
of the mth-order covariogram function gK,m. Clearly Dm(K) is a convex body in
(Rn)m = Rnm and

Dm(K) := {x = (x1, . . . , xm) ∈ (Rn)m : K ∩mi=1 (xi +K) 6= ∅}.
An important inequality related to Dm(K) is the mth-order Rogers-Shephard in-
equality proved by Schneider [32]:

(1.4) Voln(K)−mVolnm (Dm(K)) ≤
(
nm+ n

n

)
,

with equality if, and only if, K is a n-dimensional simplex. A lower bound for the
left-hand side of (1.4), which can be shown to be nonzero due to affine invariance, is
obtained for arbitrary m ∈ N and for every symmetric convex body K when n = 2,
and is conjectured to be attained by ellipsoids when n ≥ 3 and m ≥ 2.

Through a variational approach, the mth-order covariogram function gK,m also
leads to the mth-order projection body of K. In [20], together with Haddad, the
authors proved that

(1.5)
d

dr
gK,m(rθ)

∣∣∣∣
r=0+

= −hΠmK(θ) for θ̄ ∈ Snm−1,

where ΠmK, the mth-order projection body of K ∈ Kn, is the nm-dimensional
convex body whose support function is given by

hΠmK(x) = hΠmK(x1, . . . , xm) =

∫
∂K

max
1≤i≤m

〈xi, nK(y)〉−dy.

In the above formula, ∂K denotes the topological boundary of K, dy = dHn−1(y),
Hn−1 is the (n − 1)-dimensional Hausdorff measure on ∂K, nK : ∂K → Sn−1
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is the Gauss map, which associates y ∈ ∂K with its outer unit normal,
and, for a ∈ R, a− = −min(a, 0). The sharp upper and lower bounds for
Voln(K)nm−mVolnm (Π◦,mK), with Π◦,mK = (ΠmK)◦, have been established in
[20]. As an example, we only mention the lower bound, i.e, the mth-order Zhang’s
projection inequality [20]:

Theorem 1.1. Fix m ∈ N and K ∈ Kn. Then, one has

Voln(K)nm−mVolnm (Π◦,mK) ≥ 1

nnm

(
nm+ n

n

)
.

Equality occurs if, and only if, K is a n-dimensional simplex. The latter is also
equivalent to the condition Dm(K) = nVoln(K)Π◦,mK.

Note that themth-order Zhang’s projection inequality was proved in [20] by using
the following chain of set inclusions: for K ∈ Kn, m ∈ N, and −1 < p ≤ q < ∞,
one has

Dm(K) ⊆
(
q + n

n

) 1
q

Rmq K ⊆
(
p+ n

n

) 1
p

Rmp (K) ⊆ nVoln(K)Π◦,mK,

with equality in any set inclusion if, and only if, K is an n-dimensional simplex. Here
Rmp (K) is the (m, p) radial mean body of K (i.e., the special case of Definition 4.1
where µ is the Lebesgue measure in Rn). Note that the above chain of set inclusions
provides an alternative proof for the inequality (1.4) proven by Schneider. When
m = 1, the chain of set inclusions reduces to set inclusions for the radial mean bodies
RpK shown by Gardner and Zhang [18].

The aforementioned mth-order results are based on the Lebesgue measure on
Rn. A natural question to ask is whether these results can be extended to general
measures on Rn. A major goal of this paper is to study the mth-order weighted
projection body and prove a related Zhang’s projection inequality. Before we do
this, we now introduce some basic notions.

For convenience, let λn denote the Lebesgue measure on Rn; we will simply write
λ when possible. We say a measure has density if it has density with respect to λ.
That is, a measure has density if

dµ

dλ
= ϕ, with ϕ : Rn → R+, ϕ ∈ L1

loc(Rn).

All such measures are examples of Radon measures, i.e., locally finite and regular
Borel measures on Rn. For a fixed K ∈ Kn, we denote by M(K) the class of Radon
measures µ on Rn such that µ has locally integrable density ϕ : Rn → R+, and
additionally contains K in its support and ∂K in its Lebesgue set. For µ ∈ M(K),
define the Borel measure SµK on Sn−1, called the weighted surface area measure, by
the following formula:∫

Sn−1

f(u) dSµK(u) =

∫
∂K

f(nK(y))ϕ(y) dy

for f ∈ C(Sn−1), where C(Sn−1) denotes the set of all continuous functions on
Sn−1. Here, ϕ is understood on ∂K as the representative of ϕ given by the Lebesgue
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differentiation theorem. A more “hands-on” definition will be given in Definition 2.1;
note that the measure SµK satisfies (2.3) in that definition. It can be checked that

(1.6) SµK(Sn−1) = µ+(∂K) := lim inf
ϵ→0

µ (K + ϵBn
2 )− µ(K)

ϵ
=

∫
∂K

ϕ(y) dy.

The weighted projection body of a convex body K ∈ Kn [26], denoted ΠµK, can be
defined via its support function:

hΠµK(θ) =

∫
∂K

〈nK(y), θ〉−ϕ(y) dy for θ ∈ Sn−1.

Note that hΠµK is clearly positive on Sn−1 if ϕ is positive almost-everywhere on
∂K, and hence ΠµK ∈ Kn

0 . As the case for the Lebesgue measure on Rn, ΠµK
can be linked with a weighted covariogram function by a variational approach. Let
K ∈ Kn and µ be a Borel measure on Rn. The µ-covariogram of K is the function
given by

(1.7) gµ,K(x) = µ(K ∩ (K + x)).

In [26], the radial derivative of gµ,K at the origin was computed under some mild
conditions, which were later dropped in [25]:

(1.8)
dgµ,K(rθ)

dr

∣∣∣∣
r=0+

= −hΠµK(θ),

when µ ∈ M(K). Combining (1.3) and (1.7), one can define the mth-order µ-
covariogram of K as follows:

Definition 1.2. Let n,m ∈ N, K ∈ Kn, and µ be a Borel measure on Rn con-
taining K in its support. The mth-order µ-covariogram of K is the function
gµ,m(K, ·) : Rnm → R+ given by

gµ,m(K, x̄) = gµ,m(K, (x1, . . . , xm)) =

∫
K

(
m∏
i=1

χK(y − xi)

)
dµ(y).

Clearly, Dm(K) is the support of gµ,m(K, ·), and

(1.9) gµ,m(K, x̄) = µ (K ∩mi=1 (xi +K)) for x̄ ∈ Rmn.

We follow in the footsteps of [20] and begin by taking the radial derivative of
gµ,m(K, ·).

Theorem 1.3. Let K ∈ Kn, m ∈ N, and ϕ be the density of a Borel measure
µ ∈ M(K). For every direction θ̄ = (θ1, . . . , θm) ∈ Snm−1, one has

d

dr

[
gµ,m(K, rθ̄)

] ∣∣∣∣
r=0+

= −
∫
∂K

max
1≤i≤m

〈θi, nK(y)〉−ϕ(y) dy.

Motivated by Theorem 1.3, we give the following definition for the µ-weighted
mth-order projection body of K.
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Definition 1.4. Given any K ∈ Kn, m ∈ N, and a measure µ ∈ M(K), we define
the µ- weighted mth-order projection body of K to be the nm-dimensional convex
body Πmµ K with support function

hΠm
µ K(x1, . . . , xm) =

∫
Sn−1

max
1≤i≤m

〈xi, u〉−dSµK(u), xi ∈ Rn, i = 1, . . . ,m.

With this definition, we can rephrase the result of Theorem 1.3 in the following
way: let µ ∈ M(K) for a fixed K ∈ Kn. Then,

d

dr

[
gµ,m(K, rθ̄)

] ∣∣∣∣
r=0+

= −hΠm
µ K(θ̄).

When comparing the above formulation of Theorem 1.3 with (1.8) we indeed ob-
tain hΠ1

µK
(θ1) = hΠµK(θ1); also, we have hΠm

λ K
(θ̄) = hΠmK(θ̄). We set Π◦,m

µ K :=

(Πmµ K)◦. Using gµ,m(K, ·), we define in Definition 4.1 the µ-weighted, mth-order
radial mean bodies and prove the following theorem. This theorem, which is stated
for s-concave measures, s > 0, is merely a special case of Theorem 4.5.

Theorem 1.5. Let K ∈ Kn and m ∈ N be fixed. Suppose that µ is an s-concave
Borel measure, s > 0, on convex subsets of K. Then, for −1 < p ≤ q <∞, one has

Dm(K) ⊆
(1
s + q

q

) 1
q

Rmq,µK ⊆
(1
s + p

p

) 1
p

Rmp,µK ⊆ 1

s
µ(K)Π◦,m

µ K,

where the last inclusion holds if µ ∈ M(K).

There is an equality in any set inclusion if, and only if,

gsµ,m(K,x) = µ(K)sℓDm(K)(x),

where ℓK is the roof function of K, defined in (2.4) below. If µ is a locally finite
and regular Borel measure, i.e., s-concave on compact subsets of its support, then
s ∈ (0, 1/n] and equality occurs if, and only if, K is a n-dimensional simplex, µ is
a positive multiple of the Lebesgue measure, and s = 1

n .

Our main results below, Theorem 4.5 and Theorem 4.6, require the measure to
have concavity of some sort. It is natural to ask if variants of these inequalities can
hold for measures without any concavity assumptions. While we cannot definitively
say that this is not possible, we are skeptical of such a possibility; such a method
would also require providing a proof of the radial mean body set inclusions (and
of the Rogers-Shephard inequality and the Zhang’s projection inequality) in the
case of the Lebesgue measure without using the concavity of the Lebesgue measure.
Even among F -concave measures, it is very unlikely to obtain a result as elegant as
Theorem 1.5 with concise equality conditions. In this general framework, s-concave
measures are essentially the only measures we have a complete characterization of.
Progress beyond this classification includes the Ehrhard inequality [10, 11] for the
Gaussian measure, and such a concavity is a special case of the concavity from
Theorem 4.6. There is also the resolution of the Gardner-Zvavitch conjecture, the
fact that the Gaussian measure is 1/n-concave on the class of origin symmetric
convex bodies [19, 23, 12]; this was later extended to all rotational invariant, log-
concave measures [8]. We leave to the reader to verify that, formally, the theorems
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in this work are compatible with this concavity if the additional assumption of
symmetry about the origin is made on the convex body K and the covariogram
function gµ,m(K, ·) is replaced by the mth-order polarized covariogram, which can
be defined as rµ,m(K, x̄) = µ

(
(K − xi

2 ) ∩
m
i=1 (K + xi

2 )
)
. As shown when m = 1 in

[26, 25], this covariogram will inherit any concavity of the measure µ over the class
of origin symmetric convex bodies. Then, the proofs for the relevant versions of
the main theorems (in particular Theorem 1.5 with s = 1/n) are the same line-by-
line, after replacing gµ,m(K, ·) in the appropriate definitions (one would also have to
change, for example, the definition of the projection body when proving the variant
of Theorem 1.3.)

The paper is organized as follows. In Section 2, we will state some facts from
convex geometry that will be used in this paper. Theorem 1.1, and also equations
(1.3) and (1.5) are special cases of more general results presented later in this work.
In particular, Section 3 explores the weighted, mth-order analogues of projection
bodies and proves the associated Zhang’s projection inequality. In Section 4, we
study mth-order, weighted radial mean bodies and prove Theorem 1.5. Finally, in
Section 5, we extend some of our machinery to the notion of generalized volume
introduced in [16].

2. Preliminaries

Denote by SK(·) the surface area measure of a convex body K ∈ Kn. SK is a
Borel measure on Sn−1, defined via the formula

SK(A) = Hn−1(n−1
K (A)) for every Borel set A ⊂ Sn−1,(2.1)

where nK is the Gauss map of K. Recall that, for y ∈ ∂K, nK(y) is the outer unit
normal vector to K at y, which is uniquely defined for almost all y ∈ ∂K. As the set
NK = {x ∈ ∂K : K does not have a unique outer normal at x} is of Hn−1-measure
zero, we continue to write ∂K in place of ∂K \ NK , without any confusion. The
Cauchy projection formula (see e.g., [15, pg. 408, Eq. (A.45)]) states that: for
θ ∈ Sn−1,

(2.2) Voln−1 (Pθ⊥K) =
1

2

∫
Sn−1

|〈θ, u〉|dSK(u) =

∫
Sn−1

〈θ, u〉−dSK(u),

where the last equality follows from the fact that SK has center of mass at the
origin.

Following (2.1), we define the weighted surface area measure as follows. Recall
that if f : X → Y is a measurable map between measurable spaces and µ is a
measure on X, then the pushforward of µ by f , denoted f∗µ, is the measure on Y
defined by (f∗µ)(A) = µ(f−1(A)).

Definition 2.1. For a convex body K ∈ Kn and a Borel measureM on ∂K which is
absolutely continuous with respect to the Hausdorff measure on ∂K, the M -surface
area measure of K is defined as SMK = (nK)∗M , the pushforward of M by nK .

Writing ϕ for the density of M with respect to Hn−1, we have

(2.3) SMK (A) =M(n−1
K (A)) =

∫
n−1
K (A)

ϕ(x) dHn−1(x)
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for every Borel set A ⊂ Sn−1.

In particular, for µ ∈ M(K) with density ϕ, the measure ϕ(x) dHn−1(x) can be
used to define a surface area measure via (2.3) which is the same as in (1.6).

Let L ⊂ Rn be a subset containing the origin o in its interior. For such an L, if
the line segment [0, x] ⊂ L for all x ∈ L, then L is called a star-shaped set. The
radial function of a star-shaped set L is denoted by ρL : Rn \ {o} → R and defined
by ρL(y) = sup{τ : τy ∈ L}. A compact star-shaped set with continuous radial
function will be called a star body (with respect to the origin), and the set of all
star bodies (with respect to the origin) is denoted by Sn0 . In general, a set E ⊂ Rn
is said to be star body with respect to x if E − x ∈ Sn0 . Clearly, every K ∈ Kn is
a star body with respect to every x ∈ int(K). The roof function for convex bodies
plays important roles in the characterization of equality in our main results. For a
convex body K containing the origin, its roof function can be formulated by

ℓK(x) =


1 x = o,

0 x 6∈ K,(
1− 1

ρK(x)

)
x ∈ K \ {o}.

We often use its equivalent form in polar coordinates: for θ ∈ Sn−1 and r ∈
[0, ρK(θ)],

(2.4) ℓK(rθ) =

(
1− r

ρK(θ)

)
,

and ℓK(rθ) = 0 if r > ρK(θ). When K ∈ Kn
0 , it is often more convenient to write

ℓK(x) as follows: ℓK(x) = 1−‖x‖K for x ∈ K and 0 otherwise, where ‖ · ‖K stands
for the Minkowski functional of K, defined as ‖x‖K = ρK(x)−1.

A function ψ : Rn → R is said to be a concave function if

ψ((1− τ)x+ τy) ≥ (1− τ)ψ(x) + τψ(y)

holds for every x, y ∈ supp(ψ), the support of ψ, and τ ∈ [0, 1]. A non-negative
function ψ is s-concave, s > 0, if ψs is a concave function, and is log-concave
if logψ is concave. The log-concavity can be obtained by s-concavity by letting
s → 0+. A direct application of Jensen’s inequality shows that for any s > 0, an
s-concave function is also log-concave.

We shall need the following result which states how a log-concave function can
be used to construct a convex body in Kn

0 .

Proposition 2.2 (Theorem 5 in [1] and Corollary 4.2 in [18]). Let f be a log-concave
function on Rn. Then, for every p > 0, the function on Sn−1 given by

θ 7→
(
p

∫ ∞

0
f(rθ)rp−1dr

)1/p

defines the radial function of a convex body containing the origin in its interior.
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Let K be a convex body in Rn. For p > −1, p 6= 0, the function

ρRpK(θ) =

(
1

Voln(K)

∫
K
ρK−x(θ)

pdx

) 1
p

, θ ∈ Sn−1

is well defined on Sn−1 and defines the radial function of a star body RpK, i.e., the
pth radial mean body of K introduced by Gardner and Zhang [18]. By appealing
to continuity in p, R0K and R∞K can be defined as well, and in fact, one has
R∞K = DK [18]. Note that RpK tends to {o} as p → −1, and hence, to obtain
an interesting limit at −1 another family of star bodies depending on K ∈ Kn is
needed. These new star bodies are called the pth spectral mean bodies of K [18] and
are defined as follows: the 0th spectral mean body is e · R0K and the pth spectral

mean body, for p ∈ (−1, 0)∪ (0,∞), is (p+1)
1
pRpK. This renormalization naturally

brings the polar projection body into the new family, as one has

(p+ 1)
1
pRpK → Voln(K)Π◦K as p→ (−1)+.

By using Berwald’s inequality [2, 4], Gardner and Zhang [18, Theorem 5.5] ob-
tained that, for −1 < p ≤ q <∞,

(2.5) DK ⊆
(
n+ q

q

)
RqK ⊆

(
n+ p

p

)
RpK ⊆ nVoln(K)Π◦K,

with equality in each inclusion in (2.5) if, and only if, K is a n-dimensional simplex.
Note that for any p ≥ 0, RpK is an origin symmetric convex body (as can be
easily checked by applying Proposition 2.2 to the covariogram function), however
the convexity of RpK for p ∈ (−1, 0) is still unknown. Extension of the radial mean
bodies themselves in different settings can be found in [20, 21, 25].

Many of our results require the measure µ to have some concavity. To this end,
let F : (0, µ(Rn)) → (−∞,∞) be a continuous, invertible and strictly monotonic
function. We say that a Borel measure µ is F -concave on a class C of compact Borel
subsets of Rn if

(2.6) µ(τA+ (1− τ)B) ≥ F−1 (τF (µ(A)) + (1− τ)F (µ(B)))

for any A,B ∈ C and τ ∈ [0, 1]. When µ satisfies (2.6) for F (t) = ts, s ∈ R\{0}, µ is
said to be a s-concave measure, while µ is a log-concave measure if µ satisfies (2.6) for
F (t) = log t. In particular, the Lebesgue measure λ on Rn is a 1/n-concave measure
on the class of compact subsets of Rn, due to the Brunn-Minkowski inequality. In
fact, Borell’s classification of concave measures [5] states that a Radon measure is
log-concave on Borel subsets of Rn if, and only if, µ has a density ϕ(x) that is

log-concave, i.e., ϕ(x) = e−ψ(x), where ψ : Rn → R is convex. Similarly, a Radon
measure is s-concave on Borel subsets of Rn, s > 0, if, and only if, µ has a density
ϕ that is zero almost everywhere if s > 1/n, is constant if s = 1/n, or is s/(1−ns)-
concave if s ∈ (0, 1n).

The following result asserts that the µ-covariogram inherits the concavity of the
measure µ.

Proposition 2.3 (Concavity of the covariogram, [26]). Consider a class of convex
bodies C ⊆ Kn with the property that K ∈ C → K ∩ (K + x) ∈ C for every x ∈ DK.
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Let µ be a Borel measure finite on every K ∈ C. Suppose F is a continuous and
invertible function such that µ is F -concave on C. Then, for K ∈ C, gµ,K is also
F -concave, in the sense that, if F is increasing, then F ◦ gµ,K is concave, and if F
is decreasing, then F ◦ gµ,K is convex.

We shall need the following result regarding some properties of concave functions.

Lemma 2.4 (Lemma 2.4, [26]). Let f be a concave function that is supported on
L ∈ Kn

0 such that

h(θ) :=
df(rθ)

dr

∣∣∣∣
r=0+

< 0, for all θ ∈ Sn−1,

and f(o) > 0. Define z(θ) = − (h(θ))−1 f(o). Then,

−∞ < f(rθ) ≤ f(o)
[
1− (z(θ))−1r

]
whenever θ ∈ Sn−1 and r ∈ [0, ρL(θ)]. In particular, if f is non-negative, then we
have

0 ≤ f(rθ) ≤ f(o)
[
1− (z(θ))−1r

]
and ρL(θ) ≤ z(θ).

In this case, f(rθ) = f(o)
[
1− (z(θ))−1r

]
for r ∈ [0, ρL(θ)] if, and only if, ρL(θ) =

z(θ).

Recall that M(K) is the set of Borel measures µ on Rn such that µ has locally
integrable density ϕ : Rn → R+ containing K in its support and ∂K in its Lebesgue
set. Let K ∈ Kn and µ ∈ M(K) be F -concave, where F is a non-negative, differen-
tiable, strictly increasing function. It follows from (1.7), (1.8) and Proposition 2.3
that supp(F ◦ gµ,K) = DK, F ◦ gµ,K is concave and

d

dr
(F ◦ gµ,K)(rθ)

∣∣∣∣
r=0+

= F ′(gµ,K(o))
d

dr
gµ,K(rθ)

∣∣∣∣
r=0+

= −F ′(µ(K))hΠµK(θ) for any θ ∈ Sn−1.

Moreover, applying Lemma 2.4 to f(rθ) = (F ◦ gµ,K)(rθ) and L = DK, one has

ρDK(θ) ≤ F (µ(K))

F ′(µ(K)
hΠµK(θ)−1 =

F (µ(K))

F ′(µ(K)
ρΠ◦

µK(θ).

This yields

(2.7) DK ⊆ F (µ(K))

F ′(µ(K))
Π◦
µK.

3. A Higher-Order Weighted Projection Body Operator

In this section, we will introduce themth-order weighted projection body operator
and prove some of its properties. We first establish the concavity of gµ,m(K, ·)
defined in Definition 1.2, namely,

gµ,m(K, x̄) = gµ,m(K, (x1, . . . , xm)) =

∫
K

(
m∏
i=1

χK(y − xi)

)
dµ(y).
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Lemma 3.1. Let m ∈ N, K ∈ Kn, and F be a positive, continuous and invertible
function. Let µ be a Borel measure on Rn such that µ is F -concave on a class of
convex bodies C ⊆ Kn with the property that K ∈ C implies K ∩mi=1 (K + xi) ∈ C for
every x̄ = (x1, . . . , xm) ∈ Dm(K). Then, for K ∈ C, gµ,m(K, ·) is also F -concave,
in the sense that, if F is increasing, then F ◦ gµ,m(K, ·) is concave, and if F is
decreasing, then F ◦ gµ,m(K, ·) is convex.

Proof. For any t ∈ [0, 1], x = (x1, . . . , xm) ∈ Dm(K) and y = (y1, . . . , ym) ∈
Dm(K), let

Kt(x, y) = K ∩

[
m⋂
i=1

((1− t)xi + tyi +K)

]
.(3.1)

The desired result will follow once the following is verified:

(3.2) Kt(x, y) ⊇ (1− t)

[
K ∩

(
m⋂
i=1

(xi +K)

)]
+ t

[
K ∩

(
m⋂
i=1

(yi +K)

)]
,

Indeed, suppose F is increasing. This set inclusion, together with (2.6), then yields

F (gµ,m(K, (1− t)x̄+ tȳ)) = F (µ(Kt(x, y)))

≥ F

(
µ

(
(1− t)

[
K ∩

(
m⋂
i=1

(xi +K)

)]
+ t

[
K ∩

(
m⋂
i=1

(yi +K)

)]))

≥ (1− t)F

(
µ

(
K ∩

(
m⋂
i=1

(xi +K)

)))
+ tF

(
µ

(
K ∩

(
m⋂
i=1

(yi +K)

)))
= (1− t)F (gµ,m(K, x̄)) + tF (gµ,m(K, ȳ)),

where the third line uses the F -concavity of µ. This shows that F ◦ gµ,m(K, ·) is
concave. Similar computations show that if F is decreasing, then F ◦ gµ,m(K, ·) is
convex.

Now we show that (3.2) holds. To this end, let

z̄ ∈ (1− t)

[
K ∩

(
m⋂
i=1

(xi +K)

)]
+ t

[
K ∩

(
m⋂
i=1

(yi +K)

)]
.

Then z̄ = (1− t)z + tz′, with

z ∈ K ∩

(
m⋂
i=1

(xi +K)

)
and z′ ∈ K ∩

(
m⋂
i=1

(yi +K)

)
.

By the convexity of K, we see that z̄ ∈ K. For each i = 1, . . . ,m, there exist
z̃i, z̃

′
i ∈ K such that z = xi + z̃i and z

′ = yi + z̃′i, which means that

z̄ = (1− t)xi + tyi + ((1− t)z̃i + tz̃′i) ∈ (1− t)xi + tyi +K

holds for every i = 1, . . . ,m. It then follows that z̄ ∈ Kt(x̄, ȳ), as required. □
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We now introduce our main tool in proving Theorem 1.3, Aleksandrov’s varia-
tional formula for arbitrary measures. For a continuous function h : Sn−1 → (0,∞),
the Wulff shape or Alexandrov body of h is defined as

[h] =
⋂

u∈Sn−1

{x ∈ Rn : 〈x, u〉 ≤ h(u)}.(3.3)

Lemma 3.2 (Aleksandrov’s variational formula for arbitrary measures, Lemma 2.7
in [24]). Let K be a convex body, let µ ∈ M(K), and let f be a continuous function
on Sn−1. Then

lim
t→0

µ([hK + tf ])− µ(K)

t
=

∫
Sn−1

f(θ) dSµK(θ).

This extends the result of [16], which proves the same formula under the assump-
tion that K has the origin in its interior and that µ has continuous density. We
now prove Theorem 1.3, which we restate here for convenience.

Theorem 1.3. Let K ∈ Kn, m ∈ N, and ϕ be the density of a Borel measure
µ ∈ M(K). For every direction θ̄ = (θ1, . . . , θm) ∈ Snm−1, one has

d

dr

[
gµ,m(K, rθ̄)

] ∣∣∣∣
r=0+

= −
∫
∂K

max
1≤i≤m

〈θi, nK(y)〉−ϕ(y) dy.

Proof. It can easily be checked that hK+rθ(u) = hK(u) + r〈u, θ〉 for any r ≥ 0 and
for any θ ∈ Rn. Moreover, any convex body L is the Wulff shape of its support
function hL, i.e., L =

⋂
u∈Sn−1{x : 〈u, x〉 ≤ hL(u)}. For notational convenience, let

θ0 = 0 and Kr = K ∩ (K + rθ1) ∩ · · · ∩ (K + rθi). Then

Kr =
m⋂
i=0

⋂
u∈Sn−1

{x : 〈u, x〉 ≤ hK+rθi(u)}

=
⋂

u∈Sn−1

m⋂
i=0

{x : 〈u, x〉 ≤ hK+rθi(u)}

=
⋂

u∈Sn−1

{x : 〈u, x〉 ≤ min
0≤i≤m

(hK(u) + r〈θi, u〉)}

=
⋂

u∈Sn−1

{x : 〈u, x〉 ≤ hK(u) + r min
0≤i≤m

〈u, θi〉}

= [hK(u) + r min
0≤i≤m

〈u, θi〉],

where the last equality follows from (3.3). It follows from (1.9) that

gµ,m(K, rθ̄) = µ(Kr).

Applying Lemma 3.2 to

f(u) = min
0≤i≤m

〈u, θi〉 = min
1≤i≤m

(−〈u, θi〉−) = − max
1≤i≤m

〈u, θi〉−,
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one gets, with the help of Definition 2.1,

d

dr

[
gµ,m(K, rθ̄)

] ∣∣∣∣
r=0+

= −
∫
Sn−1

max
1≤i≤m

〈u, θi〉− dSµK(u)

= −
∫
∂K

max
1≤i≤m

〈nK(x), θi〉− ϕ(x) dHn−1(x).

This completes the proof. □
Henceforth we will suppose that ϕ, the density of µ, is strictly positive on K.

Thus, for each θ̄ ∈ Smn−1,

d

dr

[
gµ,m(K, rθ̄)

] ∣∣∣∣
r=0+

= −
∫
∂K

max
1≤i≤m

〈θi, nK(y)〉−ϕ(y) dy < 0.(3.4)

Following the argument leading to (2.7), by using Lemma 2.4 and Lemma 3.1, it
can be checked that

Dm(K) ⊆ F (µ(K))

F ′(µ(K))
Π◦,m
µ K,

where F is a non-negative, differentiable and strictly increasing function, K ∈ Kn

is a convex body, and µ ∈ M(K) is an F -concave Borel measure.
For an invertible linear map T : Rn → Rn, we define T : Rmn → Rmn by T (x̄) =

(T (x1), . . . , T (xn)) where x̄ = (x1, . . . , xm) ∈ Rnm. Note that T is an invertible
linear map on Rmn. Denote by | detT | the absolute value of the determinant of T .
For a Borel measure µ, define

µT = | detT |−1(T−1)∗µ

where (T−1)∗µ is the pushforward of µ under T−1. One verifies that µT is abso-
lutely continuous with respect to the Lebesgue measure λ and satisfies dµT (x) =
ϕ(Tx) dλ(x).

We now determine the behavior of Πm
µ K under linear transformations.

Proposition 3.3. Let T be an invertible linear map on Rn, K ∈ Kn, and µ ∈
M(K). For m ∈ N, one has

Πmµ (TK) = | detT | · T−tΠmµTK,

where | detT | is the absolute value of the determinant of T .

Proof. Apply Theorem 1.3 to TK to obtain that, for θ̄ = (θ1, . . . , θm) ∈ Smn−1,

hΠm
µ TK(θ̄) = − lim

t→0+

µ ((TK) ∩mi=1 (TK + tθi))− µ(TK)

t

= − lim
t→0+

µ
(
T
(
K ∩mi=1 (K + tT−1θi)

))
− µ(TK)

t

= −| detT | lim
t→0+

µT
(
K ∩mi=1 (K + tT−1θi)

)
− µT (K)

t

= | detT | hΠm
µT
K(T−1(θ̄)) = h| detT |Πm

µ K
(T−1(θ̄))

= h
T−t| detT |Πm

µT
K
(θ̄),
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and the claim follows. □

Recall that a function is said to be radially non-decreasing if for every t ∈ [0, 1]
and x ∈ Rn, one has φ(tx) ≤ φ(x). We shall need the following chord integral
inequality. We recall that the support of a function is the set

supp(f) = {x ∈ Rn : f(x) 6= 0}.

Lemma 3.4 (Lemma 3.2 from [26]). Let µ be a Borel measure on Rn with radially
non-decreasing, locally integrable density ϕ (with respect to the Lebesgue measure
λ), and let f : Rn → R+ be a compactly supported, concave function such that
o ∈ int(supp(f)) and f(o) = max f(x). Set

Ωf :=

{
θ ∈ Sn−1 :

df(rθ)

dr

∣∣∣∣
r=0+

= 0

}
.

If q : R+ → R is an increasing function, then∫
supp(f)

q(f(x)) dµ(x) ≤ β

∫
Sn−1\Ωf

∫ z(θ)

0
ϕ(rθ)rn−1 dr dθ

+

∫
Ωf

∫ ρsupp(f)(θ)

0
q(f(o))ϕ(rθ)rn−1 dr dθ,

where

z(θ) = −
(
df(rθ)

dr

∣∣∣∣
r=0+

)−1

f(o) and β = n

∫ 1

0
q(f(o)t)(1− t)n−1dt.

Equality occurs if, and only if:

(1) for θ ∈ Sn−1 \Ωf , one has z(θ) = ρsupp(f)(θ), f(rθ) is an affine function for
r ∈ [0, ρsupp(f)(θ)], and, for every r > 0, ϕ(rθ) is independent of r;

(2) for almost every θ ∈ Ωf , one has f(rθ) = f(o) for every r ∈ [0, ρsupp(f)(θ)].

We are now ready to prove the analogue of Zhang’s projection inequality for
Πmµ K. We remark that even when m = 1, the results presented here are strictly
stronger than those of [26]; in that work, there was a Lipschitz assumption on the
density of the measure µ.

Theorem 3.5. Fix m ∈ N and K ∈ Kn. Let ν1, . . . , νm be Borel measures on
Rn, each having radially non-decreasing density, and set ν = ν1 ⊗ · · · ⊗ νm to be
the associated product measure on Rnm. Let F : R+ → R+ be a strictly increasing
and differentiable function. Let a Borel measure µ on Rn be F -concave on a class
of convex bodies C ⊆ Kn with the property that K ∈ C yields µ ∈ M(K) and
K ∩mi=1 (K + xi) ∈ C for every (x1, . . . , xm) ∈ Dm(K). Then,

(3.5) ν

(
F (µ(K))

F ′(µ(K))
Π◦,m
µ K

)
≥

∫
K

∏m
i=1 νi(y −K) dµ(y)

nm
∫ 1
0 F

−1[F (µ(K))t](1− t)nm−1dt
.

Equality occurs if, and only if, the following are true:

(1) If φ is the density of ν, then, for each θ̄ ∈ Snm−1, φ(rθ̄) is independent of
r, and
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(2) for each θ̄ ∈ Snm−1, F ◦ gµ,m(K, rθ̄) is an affine function in the variable r
for r ∈ [0, ρDm(K)(θ̄)], which is also equivalent to

Dm(K) =
F (µ(K))

F ′(µ(K))
Π◦,m
µ K.

Proof. Our goal is to estimate

I :=

∫
Rnm

gµ,m(K,x) dν(x),

where gµ,m(K, x̄) is given in Definition 1.2. Note that, from Lemma 3.1, F ◦
gµ,m(K, x̄) is concave on its support. It follows from Fubini’s theorem that

I =

∫
Rn

· · ·
∫
Rn

µ

[
K ∩

(
m⋂
i=1

(xi +K)

)]
dνm(xm) · · · dν1(x1)

=

∫
Rn

· · ·
∫
Rn

(∫
K

m∏
i=1

χy−K(xi) dµ(y)

)
dνm(xm) · · · dν1(x1)

=

∫
K

m∏
i=1

νi(y −K) dµ(y).

We now apply Lemma 3.4 with f = F ◦ gµ,m(K, ·) and q = F−1, together with
(3.4) and Theorem 1.3. Note that Ωf = ∅, f(o) = F (gµ,m(K, o)) = F (µ(K)), and

z(θ̄) = F (µ(K))
F ′(µ(K))ρΠ◦,m

µ K(θ̄). Letting φ denote the density of ν, this yields

I =

∫
Dm(K)

gµ,m(K, (x)) dν(x)

=

∫
Dm(K)

F−1[F ◦ gµ,m(K,x)]dν(x)

≤

(∫
Snm−1

∫ F (µ(K))

F ′(µ(K))
ρ
Π
◦,m
µ K

(θ̄)

0
φ(rθ̄)rnm−1drdθ̄

)

×
(
nm

∫ 1

0
F−1[F (µ(K))t](1− t)nm−1dt

)
= nmν

(
F (µ(K))

F ′(µ(K))
Π◦,m
µ K

)∫ 1

0
F−1[F (µ(K))t](1− t)nm−1dt,

as desired. The equality conditions are inherited from Lemma 3.4 as well. □

Notice that, as F : R+ → R+ is strictly increasing, one has∫ 1

0
F−1[F (µ(K))t](1− t)nm−1dt ≤ µ(K)

∫ 1

0
(1− t)nm−1dt =

µ(K)

mn
.

Thus, (3.5) implies in particular that

ν

(
F (µ(K))

F ′(µ(K))
Π◦,m
µ K

)
≥
∫
K

∏m
i=1 νi(y −K)

µ(K)
dµ(y).
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In the case when F (t) = ts, i.e., the measure in Theorem 3.5 is assumed to be
s-concave, then (3.5) becomes

ν

(
µ(K)

s
·Π◦,m

µ K

)
≥

∫
K

∏m
i=1 νi(y −K) dµ(y)

nmµ(K)
∫ 1
0 t

1/s(1− t)nm−1dt
.

After a rearrangement, one gets

(3.6)
µ(K)ν

(
1
sµ(K)Π◦,m

µ K
)∫

K

∏m
i=1 νi(y −K) dµ(y)

≥
(
nm+ 1

s

nm

)
.

Moreover, in this case the equality conditions are quite simple to state: K must
be a n-dimensional simplex and the density ϕ of µ must be constant on K – that
is, equality holds only in the classical case. These results are summarized in the
following corollary.

Corollary 3.6. Fix m ∈ N and K ∈ Kn. Let ν1, . . . , νm be Borel measures on Rn,
each having radially non-decreasing density, and set ν = ν1 ⊗ · · · ⊗ νm to be the
associated product measure on Rnm. Let s > 0 and let µ be a locally finite, regular,
s-concave measure on Rn. Then, inequality (3.6) holds with equality if, and only if,
the following are true:

(i) If φ is the density of ν, then, for each θ̄ ∈ Snm−1, φ(rθ̄) is independent of r,
(ii) K is a n-dimensional simplex,
(iii) the density of µ is constant on K,
(iv) s = 1/n.

In the following, we will provide a detailed proof for the equality characterization
in Corollary 3.6. To fulfill this goal, we need to introduce a bit more background.
First, recall that the following are equivalent (see e.g., [9, Section 6], or [7, 30]):

(i) K is a n-dimensional simplex.
(ii) For any x ∈ Rn such that (K + x) ∩K 6= ∅, K ∩ (K + x) is homothetic to

K, namely, there exist a constant a > 0 and a vector x0 ∈ Rn, such that
K ∩ (K + x) = aK + x0 = {ax+ x0 : x ∈ K}.

Next, we recall a result of Milman and Rotem [28, Corollary 2.16]:

Lemma 3.7. Let µ be a locally finite, regular, s-concave measure on Rn with density
ϕ. Suppose that t ∈ (0, 1) and A,B ⊂ Rn are Borel sets of positive measure satisfying

µ(tA+ (1− t)B)s = tµ(A)s + (1− t)µ(B)s.

Then up to µ-null sets, there exist c,m > 0, b ∈ Rn such that B = mA + b and
ϕ(mx+ b) = c · ϕ(x) for all x ∈ A.

We can now prove the following proposition.

Proposition 3.8. Fix K ∈ Kn, m ∈ N, and s > 0. Let µ be a locally finite, regular,
and s-concave Borel measure on compact subsets of the support of its density ϕ,
which contains K. Then, for every θ ∈ Sn−1, gµ,m(K; rθ)s is an affine function in r
for r ∈ [0, ρDm(K)(θ)] if, and only if, K is an n-dimensional simplex, ϕ is constant
on K, and s = 1/n.
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Proof. Note that Dm(K) is the support of gµ,m(K, ·). Let x̄ ∈ int(Dm(K)) and
t ∈ (0, 1). The fact that gµ,m(K, ·) is affine on the segment [o, x̄] precisely means
that for all t ∈ (0, 1),

(3.7) µ(Kt(o, x̄))s = (1− t)µ(K)s + tµ(K1(o, x̄))s,

where Kt(o, ȳ) = K
⋂m
i=1(K + tyi) as in (3.1). Examining the proof of Lemma 3.1,

we see that Kt(o, x̄) ⊇ (1 − t)K + tK1(o, x̄), and equality can hold in (3.7) only if
Kt(o, x̄) = (1− t)K + tK1(0, x̄). In particular, we have

µ((1− t)K + tK1(0, x̄))s = (1− t)µ(K)s + tµ(K1(0, x̄))s.

By Lemma 3.7 and the fact that both K and K1(0, x̄) are convex, it follows that
K is homothetic to K1(0, x̄) = K∩(K+x1)∩· · ·∩(K+xm) for any x̄ ∈ int(Dm(K)).
Setting x2 = · · · = xm = o, we have in particular that K ∩ (K + x1) is homothetic
to K for all x1 ∈ int(DK). This implies that K is a n-dimensional simplex.

It remains to show that the density of µ is constant on K. To this end, we use the
second conclusion of Lemma 3.7 (with A = K and B = K ∩ (K + x) for arbitrary
x ∈ int(DK)): there exists c(x) > 0 such that for each y ∈ K, ϕ(Axy) = c(x)ϕ(y),
where Ax is the (unique) affine transformation which maps K onto K ∩ (K + x).
But note that Ax is a continuous map from the compact, convex set K to itself, so
it has a fixed point y due to Brouwer’s fixed point theorem. For such y, we have
ϕ(y) = ϕ(Axy) = c(x)ϕ(y), implying c(x) = 1.

For any x ∈ K there exists a vertex v of K such that v belongs to any face
containing x. Noting that K − v+x is an n-simplex whose vertex corresponding to
v is at x, one sees that Kx = K∩ (K−v+x) is an n-simplex homothetic to K, with
the homothety sending x to v; hence we have ϕ(x) = ϕ(v). If x is an interior point
of K, any vertex of K satisfies the above condition, which shows that ϕ(u) = ϕ(v)
for any two vertices u, v ∈ K, and hence that ϕ is constant on K.

Thus we are back to the case of Lebesgue measure, which we know is affine when
raised to the 1/n power on pairs of homothetic bodies, namely, s = 1/n.

Conversely, one can easily verify that, if K is a n-dimensional simplex and ϕ is
constant on K, then gµ,m(K, ·)1/n is affine on radial segments, as in the classical
Zhang’s projection inequality. □

Proof of Corollary 3.6. Suppose that equality holds in (3.6). Condition (i) is pre-
cisely the same as condition (1) in the equality case of Theorem 3.5. Condition (2)
of the equality case of Theorem 3.5 states that (gµ,m(K, rθ̄))

s is affine in r for each
θ̄ ∈ Snm−1, which, by Proposition 3.8, holds if and only if K is a n-dimensional
simplex, the density of µ is constant on K, and s = 1/n. □

4. Weighted mth-Order Radial Mean Bodies

In this section, we will introduce the weighted mth-order radial mean bodies, and
prove Theorem 1.5.

Definition 4.1. Let µ be a Borel measure on Rn with density ϕ containing K ∈ Kn

in its support. For m ∈ N and p > −1, the µ-weighted (m, p) radial mean body
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Rmp,µK is defined as the star body in Rnm whose radial function for θ̄ ∈ Snm−1 is
given by:

ρRm
p,µK(θ̄)p =

1

µ(K)

∫
K

(
min

i=1,...,m
{ρK−x(−θi)}

)p
dµ(x)

for p 6= 0. The case p = 0 follows from continuity of the pth average. We also let
Rm∞,µK = limp→∞Rmp,µK.

Proposition 4.2. Fix m,n ∈ N and a Borel measure µ containing a convex body
K ∈ Kn in its support. Then, Rm∞,µK = Dm(K).

Proof. Let ȳ ∈ Rnm\{o}. Properties of pth averages yield, if we write ȳ = (y1, . . . , ym),
that

ρRm
∞,µK(ȳ) = max

x∈K
min

i=1,...,m
ρK−x(−yi) = ρRm

∞K(ȳ) = ρDm(K)(ȳ).

That is, Rm∞,µK = Dm(K). □

Let ψ : [0,∞) → [0,∞) be an integrable function that is right continuous and
differentiable at 0. Define the Mellin transform (see e.g., [13]) by

(4.1) Mψ(p) =

{∫∞
0 tp−1(ψ(t)− ψ(0)) dt, p ∈ (−1, 0),∫∞
0 tp−1ψ(t) dt, p > 0 such that tp−1ψ(t) ∈ L1(R+).

Clearly, the Mellin transform is piece-wise continuous. The relation between the
µ-weighted (m, p) radial mean bodies and the Mellin transform is summarized in
the following result.

Proposition 4.3. Let m,n ∈ N be fixed. Suppose that µ is a Borel measure on Rn
with support containing K ∈ Kn. Then, for each θ̄ ∈ Snm−1,

ρRm
p,µK(θ̄)p = pM gµ,m(K,rθ̄)

µ(K)

(p)

=

 p
µ(K)

∫ ρDm(K)(θ̄)

0 gµ,m(K, rθ̄)r
p−1dr, p > 0,

p
µ(K)

∫∞
0

(
gµ,m(K, rθ̄)− µ(K)

)
rp−1dr, p ∈ (−1, 0).

The case p = 0 again follows by continuity.
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Proof. Observe that x ∈ ∩mi=1(K + rθi) if, and only if, −rθi ∈ K − x for every
i = 1, . . . ,m. But this is equivalent to r ≤ ρK−x(−θi). Then, for p > 0:∫

K

(
min

i=1,...,m
{ρK−x(−θi)}

)p
dµ(x)

= p

∫
K

∫ mini=1,...,m{ρK−x(−θi)}

0
rp−1dr dµ(x)

= p

∫
K

∫ ∞

0
χ⋂m

i=1{r≤ρK−x(−θi)}(r)r
p−1dr dµ(x)

= p

∫ ∞

0

∫
K
χ⋂m

i=1{x∈(K+rθi)}(x) dµ(x)r
p−1dr

= p

∫ ∞

0
gµ,m(K, rθ̄)r

p−1dr

= p

∫ ρDm(K)(θ̄)

0
gµ,m(K, rθ̄)r

p−1dr.

For p ∈ (−1, 0), we obtain∫
K

(
min

i=1,...,m
{ρK−x(−θi)}

)p
dµ(x)

= −p
∫
K

∫ ∞

mini=1,...,m{ρK−x(−θi)}
rp−1dr dµ(x)

= −p
∫
K

∫ ∞

0
χ⋃m

i=1{r>ρK−x(−θi)}(r)r
p−1dr dµ(x)

= −p
∫ ∞

0

∫
K
χ⋃m

i=1{x/∈(K+rθi)}(x) dµ(x)r
p−1dr

= −p
∫ ∞

0
µ

(
K \

(
m⋂
i=1

(K + rθi)

))
rp−1dr

= −p
∫ ∞

0
(µ(K)− gµ,m(K, rθ̄))r

p−1dr.

Inserting the definition of the Mellin transform, (4.1), yields the claim. □

It can be checked from Proposition 2.2, Lemma 3.1, and Proposition 4.3 that,
if µ is s-concave for s ≥ 0 and p ≥ 0, then Rmp,µK is an nm-dimensional convex
body containing the origin in its interior. However, for p ∈ (−1, 0), it is not known
whether Rmp,µK is convex, even when µ is s-concave (or, more specifically, when µ
is the Lebesgue measure) and m = 1. Observing from integration by parts, and the
differentiability of gµ,m(K, rθ̄) almost everywhere (as a function in r on its support),
we obtain that, for all p ∈ (−1, 0) ∪ (0,∞),

(4.2) ρRm
p,µK(θ̄)p = − 1

µ(K)

∫ ρDm(K)(θ̄)

0
(gµ,m(K, rθ̄))

′rpdr,

where the derivative is in r (notice since gµ,m(K, rθ̄) is decreasing, the function
−(gµ,m(K, rθ̄))

′ is positive). Clearly, Rmp,µK → {o} as p → (−1)+. In view of this,
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we need to renormalize Rmp,µK by (p+ 1)1/pRmp,µK, which provides a wonderful

relation between Rmp,µK and Π◦,m
µ K as p→ (−1)+.

Proposition 4.4. Fix m,n ∈ N. Let K ∈ Kn be a convex body and µ ∈ M(K).
Then,

lim
p→(−1)+

(p+ 1)1/pRmp,µK = µ(K)Π◦,m
µ K.

Proof. For p ∈ (−1, 0), let p = −s. Then s ∈ (0, 1) and by (4.2), for each θ̄ ∈ Snm−1,

(4.3) (1− s)ρRm
p,µK(θ̄)−s = (1− s)

∫ ρDm(K)(θ̄)

0

(−gµ,m(K, rθ̄))′

µ(K)
r−sdr.

It has been proved in [22] (see also [21, Lemma 4]) that if φ : [0,∞) → [0,∞) is a
measurable function with limt→0+ φ(t) = φ(0) and such that

∫∞
0 t−s0φ(t) dt < ∞

for some s0 ∈ (0, 1), then

lim
s→1−

(1− s)

∫ ∞

0
t−sφ(t) dt = φ(0).(4.4)

This, together with (4.3), Theorem 1.3 and Definition 1.4, yields that, for every
θ̄ ∈ Snm−1,

lim
s→1−

(1− s)ρRm
p,µK(θ̄)−s =

(−gµ,m(K, rθ̄))′

µ(K)

∣∣∣∣
r=0+

=
hΠm

µ K(θ̄)

µ(K)
.

This further implies, setting p = −s, that

lim
p→(−1)+

(p+ 1)1/p ρRm
p,µK(θ̄) = µ(K)ρΠ◦,m

µ K(θ̄).

This completes the proof. □

Thus, the shape of Rmp,µK approaches that of µ(K)Π◦,m
µ K as p→ (−1)+. On the

other hand, applying Hölder’s inequality to (4.2) with respect to the probability
measure −µ(K)−1gµ,m(K, rθ̄)

′ dr, if µ ∈ M(K) for a fixed K ∈ Kn, the following
holds for −1 < p ≤ q <∞:

Rmp,µK ⊆ Rmq,µK ⊆ Dm(K).

We now show how this chain of inclusions may be reversed under an F -concavity
assumption.

Theorem 4.5. Let K ∈ Kn be a convex body. Suppose that F : [0, µ(K)) → [0,∞)
is a continuous, increasing, and invertible function. Let µ be a finite Borel measure
which is F -concave on the class of convex subsets of K. Then, for −1 < p ≤ q <∞,
one has

Dm(K) ⊆ C(q, µ,K)Rmq,µK ⊆ C(p, µ,K)Rmp,µK ⊆ F (µ(K))

F ′(µ(K))
Π◦,m
µ K,
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where C(p, µ,K) =
(

p
µ(K)

∫ 1
0 F

−1 [F (µ(K))(1− t)] tp−1dt
)− 1

p
for p > 0,(

p
µ(K)

∫ 1
0(F

−1 [F (µ(K))(1− t)]− µ(K))tp−1dt+ 1
)− 1

p
for p ∈ (−1, 0),

and, for the last set inclusion, we additionally assume that µ ∈ M(K) and that F (x)
is differentiable at the value x = µ(K). The equality conditions are the following:

(1) For the first two set inclusions there is equality of sets if, and only if, F (0) =
0 and F ◦ gµ,m(K,x) = F (µ(K))ℓDm(K)(x), where ℓK is the roof function of
K defined in (2.4).

(2) For the last set inclusion, the sets are equal if, and only if, F ◦ gµ,m(K;x) =

F (µ(K))ℓC(x) with C = F (µ(K))
F ′(µ(K))Π

◦
µK.

Proof. Let G(p) := C(p, µ,K)ρRm
p,µK(p). From Berwald’s inequality for F -concave

measures in [25], this function is non-increasing in p, which establishes the first
three set inclusions. For the last set inclusion, we first rewrite

G(p) =
C(p, µ,K)

(p+ 1)1/p
(p+ 1)1/pρRm

p,µK(θ).

Therefore, from Proposition 4.4, it suffices to show that, as p→ −1,

C(p, µ,K)

(p+ 1)1/p
→ F (µ(K))

F ′(µ(K))µ(K)
.

Indeed, from integration by parts, for all p ∈ (−1, 0) ∪ (0,∞), one gets

C(p, µ,K) =

(
F (µ(K))

µ(K)

)− 1
p
(∫ 1

0

[
F ′ (F−1[F (µ(K))(1− t)]

)]−1
tpdt

)− 1
p

.

Therefore, the result follows from (4.4). □

As a byproduct, we obtain Theorem 1.5, which we reproduce for the convenience
of the reader.

Theorem 1.5. Let K ∈ Kn and m ∈ N be fixed. Suppose that µ is an s-concave
Borel measure, s > 0, on convex subsets of K. Then, for −1 < p ≤ q <∞, one has

Dm(K) ⊆
(1
s + q

q

) 1
q

Rmq,µK ⊆
(1
s + p

p

) 1
p

Rmp,µK ⊆ 1

s
µ(K)Π◦,m

µ K,

where the last inclusion holds if µ ∈ M(K).

There is an equality in any set inclusion if, and only if,

gsµ,m(K,x) = µ(K)sℓDm(K)(x).

If µ is a locally finite and regular Borel measure, i.e., s-concave on compact subsets
of its support, then s ∈ (0, 1/n] and equality occurs if, and only if, K is a n-
dimensional simplex, µ is a positive multiple of the Lebesgue measure, and s = 1

n .
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Proof. Applying Theorem 4.5 to F (x) = xs, one gets, when p > 0,

C(p, µ,K) =

(
p

∫ 1

0
(1− t)1/stp−1dt

)− 1
p

=

(
pΓ(1s + 1)Γ(p)

Γ(1s + p+ 1)

)− 1
p

,

and similarly for p ∈ (−1, 0). The equality conditions from Theorem 4.5 yield that
gsµ,m(K;x) is an affine function along rays for x ∈ Dm(K). If µ is a locally finite
and regular measure on compact sets, then one must have s ∈ (0, 1/n] from Borell’s
classification of concave measures; for such s-concave measures, Proposition 3.8
above shows that K is a n-dimensional simplex, the density of µ is constant, and
s = 1

n . □

Note that it is assumed in Theorem 4.5 that F ≥ 0. Without this assumption,
C(p, µ,K) may tend to 0 as p → ∞, and so C(p, µ,K)Rmp,µK will tend to the
origin; hence, the first set inclusion may be lost. However, the assumption that F
is nonnegative fails, for instance, in the important case of log-concave functions.
Thus, we give a result for possibly negative F as well, which is slightly weaker:

Theorem 4.6. Fix m ∈ N. Suppose a Borel measure µ on Rn with density is finite
on some K ∈ Kn and Q-concave, where Q : (0, µ(K)] → (−∞,∞) is an increasing
and invertible function. Then, for −1 < p ≤ q <∞, one has

CQ(q, µ,K)Rmq,µK ⊂ CQ(p, µ,K)Rmp,µK ⊂ 1

Q′(µ(K))
Π◦,m
µ K,

where CQ(p, µ,K) =
(

p
µ(K)

∫∞
0 Q−1 [Q(µ(K))− t] tp−1dt

)− 1
p

for p > 0,(
p

µ(K)

∫∞
0 tp−1(Q−1 [Q(µ(K)− t)]− µ(K)) dt

)− 1
p

for p ∈ (−1, 0),

and, for the second set inclusion, we additionally assume that µ ∈ M(K) and that
Q(x) is differentiable at the value x = µ(K). In particular, if µ is log-concave, then

1

Γ (1 + q)
1
q

Rmq,µK ⊂ 1

Γ (1 + p)
1
p

Rmp,µK ⊂ µ(K)Π◦,m
µ K,

where limp→0
1

Γ(1+p)
1
p
Rmp,µK is interpreted via continuity.

Proof. The first inclusion follows from the second case of Berwald’s inequality for
measures, established in [25]. For the second inclusion, we can assume without loss
of generality that p > 0. Then, for every θ̄ ∈ Snm−1, one has, by Lemma 2.4 applied
to f = Q ◦ gµ,m(K, ·),

0 ≤ gµ,m(K; rθ̄) ≤ Q−1

[
Q(µ(K))

(
1− Q′(µ(K))

Q(µ(K))

r

ρΠ◦,m
µ K(θ̄)

)]
.
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Since Q(µ(K)) may possibly be negative, we shall leave Q(µ(K)) inside the integral
and obtain, with the help of Proposition 4.3:

ρpRm
p,µK

(θ̄)

=
p

µ(K)

∫ ρDm(K)(θ̄)

0
gµ,m(K; rθ̄)rp−1dr

≤ p

µ(K)

∫ ρDm(K)(θ̄)

0
Q−1

[
Q(µ(K))

(
1− Q′(µ(K))

Q(µ(K))

r

ρΠ◦,m
µ K(θ̄)

)]
rp−1dr.

=

(
ρΠ◦,m

µ K(θ̄)

Q′(µ(K))

)p
p

µ(K)

∫ Q′(µ(K))
ρDm(K)(θ̄)

ρ
Π
◦,m
µ K

(θ̄)

0
Q−1 [Q(µ(K))− t] tp−1dt.

Consequently, CQ(p, µ,K)ρRm
p,µK(θ̄) < 1

Q′(µ(K))ρΠ◦,m
µ K(θ̄), which yields the result.

□

5. Generalization of Chord Integral Inequalities

In this section, we demonstrate how Lemma 3.4 serves as a prototype of a more
general theorem, which is of independent interest. We require some background
notions.

Let G : (0,∞) × Sn−1 → (0,∞) be a continuous function such that G(0, θ) = 0
for almost every θ ∈ Sn−1 and

Gt(t, θ) =
∂G(t, θ)

∂t

is continuous on (0,∞) × Sn−1. Let G = Gt and assume that G : (0,∞) × Sn−1 →
(0,∞) is a continuous function such that, for any R ∈ (0,∞),∫

(0,R)×Sn−1

G(r, θ) dr dθ <∞.(5.1)

The general dual volume of a star body L ⊂ Rn [16, 17] can be formulated by

ṼG(L) =
1

n

∫
Sn−1

G(ρL(θ), θ) dθ =
1

n

∫
Sn−1

∫ ρL(θ)

0
G(r, θ) dr dθ.

The goal of this section is to generalize Lemma 3.4 to the setting of the general
dual volume.

Theorem 5.1 (Two Chord Integral Inequalities for Generalized Volume). Suppose
f : [0,∞)×Sn−1 → [0,∞) is a non-negative function supported on L ∈ Kn

0 such that
for every θ ∈ Sn−1, f(t, θ) is concave on t ∈ (0, ρL(θ)). Let h : [0,∞) → [0,∞) be
an increasing, non-negative, differentiable function. Let G : (0,∞)×Sn−1 → (0,∞)
be a function such that (5.1) holds. Fix some α > −1. The following statements
hold.

(1) If G(ur, ·) ≥ uαG(r, ·) for u ∈ [0, 1], r > 0, one has

(5.2)

∫
Sn−1

∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr dθ ≥ nβαṼG(L),
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where

βα = inf
θ∈Sn−1

[
(α+ 1)

∫ 1

0
h (f(0, θ)τ) (1− τ)αdτ

]
.

There is equality in (5.2) if, and only if, G(r, ·) is homogeneous of degree
α, f(0, θ) is a constant on Sn−1, and

f(r, θ) = f(0, θ)
(
1− (ρL(θ))

−1r
)
= f(0, θ)ℓL(rθ),

that is, f is affine on each ray.
(2) Suppose that G(ur, ·) ≤ uαG(r, ·) for u ∈ [0, 1], r > 0 and

max
0≤r≤ρL(θ)

f(r, θ) = f(0, θ)

for each θ ∈ Sn−1. Let

Ωf :=

{
θ ∈ Sn−1 :

∂f(r, θ)

∂r

∣∣∣∣
r=0+

= 0

}
and let

βb = sup
θ∈Sn−1\Ωf

[
(α+ 1)

∫ 1

0
h
(
f(0, θ)τ

)
(1− τ)αdτ

]
.

Then, ∫
Sn−1

∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr dθ

≤ βb

∫
Sn−1\Ωf

∫ ρ
L̃(θ)

0
G(r, θ) dr dθ

+

∫
Ωf

∫ ρL(θ)

0
h(f(0, θ))G(r, θ) dr dθ,

(5.3)

where ρ
L̃
(θ) = −

(
∂f(r,θ)
∂r

∣∣
r=0+

)−1
f(0, θ). If Ωf = ∅ and ∂f(r,θ)

∂r

∣∣
r=0+

is also

continuous for almost all θ ∈ Sn−1, then ρ
L̃
(θ) is the radial function of some

star body L̃ that contains L. In this instance, (5.3) becomes

(5.4)

∫
Sn−1

∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr dθ ≤ nβbṼG(L̃).

There is equality in (5.3) if, and only if:

(1) for θ ∈ Sn−1 \Ωf , one has that ρ
L̃
(θ) = ρsupp(f)(θ), f(0, θ) is a constant on

Sn−1, and

f(r, θ) = f(0, θ)
(
1− (ρL(θ))

−1r
)
= f(0, θ)ℓL(rθ),

that is f is affine on each ray, and, for every r > 0, G(r, ·) has homogeneity
of degree α;

(2) for almost every θ ∈ Ωf , one has that f(r, θ) = f(0, θ) for every r ∈
[0, ρL(θ)].

If Ωf = ∅, then equality in (5.4) yields L = L̃.
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Proof. We first show inequality (5.2). For L ∈ Kn
0 , let

H(L) =

∫
Sn−1

∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr dθ.(5.5)

Note that the function H(L) is well defined by (5.1). For θ ∈ Sn−1, let gθ :
[0, ρL(θ))× Sn−1 → R+ be given by

gθ(r) = f(0, θ)ℓL(rθ) = f(0, θ)
(
1− r

ρL(θ)

)
.

Since f(t, ·) is concave on t ∈ [0,∞), one has,

f(r, θ) = f
( r

ρL(θ)
ρL(θ), θ

)
≥ r

ρL(θ)
f
(
ρL(θ), θ

)
+ f(0, θ)

(
1− r

ρL(θ)

)
≥ f(0, θ)

(
1− r

ρL(θ)

)
.

Since h is increasing, one has h(f(r, θ)) ≥ h(gθ(r)). Therefore, the monotonicity of
the integral implies that

(5.6) H(L) ≥
∫
Sn−1

∫ ρL(θ)

0
h(gθ(r))G(r, θ)drdθ.

For y ∈ [0, 1], let

ψ(y) := β′
∫
Sn−1

∫ yρL(θ)

0
G(r, θ) dr dθ

−
∫
Sn−1

∫ yρL(θ)

0
h

(
f(0, θ)

[
1− r

yρL(θ)

])
G(r, θ) dr dθ,(5.7)

where β′ > 0 is a constant, independent of the direction θ and the function G,
chosen such that ψ(y) ≤ 0 on y ∈ [0, 1].

We now show that β′ exists and that β′ = βα for almost every θ ∈ Sn−1. By
hypothesis, we have that G(r, θ) is continuous on (0,∞)×Sn−1 and bounded in the
sense of (5.1). Additionally, h is integrable on each segment (0, s] ⊂ (0,∞). Indeed,
since h is an increasing function, it is piece-wise continuous almost everywhere, and
therefore it is dominated on each segment by an integrable function. Consequently,
we may assert that ψ(y) → 0 as y → 0+. Since ψ is absolutely continuous on each
[a, b] ⊂ (0, y], ψ may be represented by

ψ(y) = ψ(a) +

∫ y

a
ψ′(s) ds.

In order to have β′ > 0 such that ψ(y) ≤ 0, it suffices for β′ to be selected so that
ψ′(y) ≤ 0 for almost every y ∈ (0, 1]. Differentiation of ψ yields the representation

ψ′(y) = β′IG,L(y)− h(0)IG,L(y)

−
∫
Sn−1

f(0, θ)

∫ yρL(θ)

0
h′
(
f(0, θ)

[
1− r

yρL(θ)

])
rG(r, θ)

y2ρL(θ)
dr dθ,

where, from the positivity of G, we have

IG,L(y) =

∫
Sn−1

G(yρL(θ), θ)ρL(θ) dθ > 0.
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This further yields that

β′ ≤ h(0)

+ IG,L(y)
−1

∫
Sn−1

f(0, θ)

∫ yρL(θ)

0
h′
(
f(0, θ)

[
1− r

yρL(θ)

])
rG(r, θ)

y2ρL(θ)
dr dθ,

or equivalently, applying the change of variables r = uyρL(θ), we see that β′ must
satisfy

β′ ≤ h(0)

+ IG,L(y)
−1

∫
Sn−1

f(0, θ)

∫ 1

0
h′(f(0, θ)[1−u])uG(uyρL(θ), θ)ρL(θ)dudθ.

(5.8)

By using G(ur, ·) ≥ uαG(r, ·) for u ∈ [0, 1], r > 0 and some constant α > −1, we
can get, by letting τ = 1− u and by using integration by parts,∫

Sn−1

f(0, θ)

∫ 1

0
h′ (f(0, θ) [1− u])uG(uyρL(θ), θ)ρL(θ)dudθ

≥
∫
Sn−1

f(0, θ)

∫ 1

0
h′ (f(0, θ) [1− u])uα+1G(yρL(θ), θ)ρL(θ) du dθ

=

∫
Sn−1

f(0, θ)

∫ 1

0
h′ (f(0, θ)τ) (1− τ)α+1G(yρL(θ), θ)ρL(θ) dτdθ

=

∫
Sn−1

(
f(0, θ)

∫ 1

0
h′ (f(0, θ)τ) (1− τ)α+1dτ

)
G(yρL(θ), θ)ρL(θ)dθ

=

∫
Sn−1

(
−h(0) + (α+ 1)

∫ 1

0
h (f(0, θ)τ) (1− τ)αdτ

)
G(yρL(θ), θ)ρL(θ)dθ.(5.9)

In view of (5.8), one can just let

β′ = inf
θ∈Sn−1

[
(α+ 1)

∫ 1

0
h
(
f(0, θ)τ

)
(1− τ)α dτ

]
,(5.10)

which satisfies our requirement. Thus, (5.5), (5.6) and (5.7) imply that ψ(1) ≤ 0
and then ∫

Sn−1

∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr dθ

≥ βα

∫
Sn−1

∫ ρL(θ)

0
G(r, θ), dr dθ = nβαṼG(L).

Furthermore, we see that equality occurs when G(r, ·) is α-homogeneous, f(0, θ) is
a constant on Sn−1, and f(r, θ) = f(0, θ)

(
1− (ρL(θ))

−1r
)
= f(0, θ)ℓL(rθ), that is f

is affine on each ray; these conditions also are the necessary conditions to have the
equality. To see the latter one, assume the equality to be true. Then inequalities
(5.6) and (5.9) both become equalities and hence f(r, θ) = f(0, θ)ℓL(rθ) and G(r, ·)
has homogeneity of degree α, respectively. Moreover, (5.9) and (5.10) yield that
f(0, θ) must be a constant over θ ∈ Sn−1, due the continuity of f(0, θ) and the
monotonicity of h. This completes the proof for the first inequality and its equality
characterization.
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Now let us show (5.3), i.e. prove the case when G : (0,∞)× Sn−1 → (0,∞) is a
function such that (5.1) holds, and G(ur, ·) ≤ uαG(r, ·) for u ∈ [0, 1], r > 0 and some
constant α > −1. The hypotheses max0≤r≤ρL(θ) f(r, θ) = f(0, θ) for all θ ∈ Sn−1

and the concavity of f(r, ·) on r ∈ (0,∞) yield that for almost every θ ∈ Sn−1,

∂f(r, θ)

∂r

∣∣∣∣
r=0+

≤ 0.

Consequently, we have that, for θ ∈ Ωf and r ∈ [0, ρL(θ)] that

0 ≤ f(r, θ) ≤ f(0, θ)

[
1 +

∂f(r,θ)
∂r

∣∣
r=0+

f(0, θ)
r

]
= f(0, θ).

Therefore,∫
Ωf

∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr dθ ≤

∫
Ωf

∫ ρL(θ)

0
h (f(0, θ))G(r, θ) dr dθ.

On the other hand, for θ ∈ Sn−1 \ Ωf and r ∈ [0, ρL(θ)] we obtain

0 ≤ f(r, θ) ≤ f(0, θ)

[
1 +

∂f(r,θ)
∂r

∣∣
r=0+

f(0, θ)
r

]
= f(0, θ)

[
1− r

ρ
L̃
(θ)

]
.

Since this is true for all r ∈ [0, ρL(θ)], one gets ρL(θ) ≤ ρ
L̃
(θ) for θ ∈ Sn−1 \ Ωf .

Hence, one has∫
Sn−1\Ωf

∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr dθ

≤
∫
Sn−1\Ωf

∫ ρL(θ)

0
h

(
f(0, θ)

[
1− r

ρ
L̃
(θ)

])
G(r, θ) dr dθ

≤
∫
Sn−1\Ωf

∫ ρ
L̃
(θ)

0
h

(
f(0, θ)

[
1− r

ρ
L̃
(θ)

])
G(r, θ) dr dθ.

The proof for θ ∈ Sn−1 \Ωf then follows similarly to the first case (by changing the
direction of the inequalities and replacing the infimum by the supremum). In the

case that Ωf = ∅, we remark that ρL(θ) ≤ ρ
L̃
(θ) implies L ⊆ L̃. If there is equality

in the inequality in this instance, then ρL(θ) = ρ
L̃
(θ) for every θ ∈ Sn−1, yielding

L = L̃; the remaining equality conditions following analogously to the previous
inequality. □

Remark 5.2. The following variant of (5.2) holds, whose proof is the same. Let H
be a subspace of Rn with dimension j. Then, for an explicit βα,H

(5.11)

∫
Sn−1∩H

∫ ρL∩H(θ)

0
h(f(r, θ))G(r, θ) dr dθ ≥ jβα,H ṼG(L ∩H).

One can apply this result to obtain the following. Firstly, consider a subspace of
Rn with the following structure: H = H1 ⊗ · · · ⊗Hm, where each Hi is dimension
ni ∈ {1, . . . , n − 1, n}. Next, apply (5.11) with L = Dm(K), µ = µ1 × · · · × µm,
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with each µi a radially decreasing measure on Rn, and G(r, θ) = ϕ(rθ)rnm−1, with
ϕ the density of µ. Then, one obtains [31, Theorem 3].

Observe that, in Theorem 5.1, if Ωf = ∅ and f(0, θ) is a constant function
on θ ∈ Sn−1, then βα = βb. In particular, f(r, θ) = f1(rθ) for some function
f1 : Rn → [0,∞), and so

βα = βb = (α+ 1)

∫ 1

0
h (f1(0)τ) (1− τ)αdτ.

In Theorem 5.1, we have actually proven something stronger than asserted, since
bounds were done on the integral over R and not over Sn−1. We outline these local
versions as a corollary.

Corollary 5.3. Suppose f : [0,∞) × Sn−1 → [0,∞) is a non-negative function
supported on L ∈ Kn

0 such that f(t, ·) is concave on t ∈ [0,∞), h : [0,∞) → [0,∞) is
an increasing, non-negative, differentiable function, and G : (0,∞)×Sn−1 → (0,∞)
is a function such that (5.1) holds. Fix some constant α > −1. The following
statements hold.

(1) If G(ur, ·) ≥ uαG(r, ·) for u ∈ [0, 1], r > 0, then, for almost every θ ∈ Sn−1,∫ ρL(θ)

0
h(f(r, θ))G(r, θ)dr

≥

(∫ ρL(θ)

0
G(r, θ) dr

)
·
(
(α+ 1)

∫ 1

0
h (f(0, θ)τ) (1− τ)αdτ

)

= βα(θ)

(∫ ρL(θ)

0
G(r, θ) dr

)
= βα(θ)G(ρL(θ), θ);

(2) If G(ur, ·) ≤ uαG(r, ·) for u ∈ [0, 1], r > 0, and

max
0≤r≤ρL(θ)

f(r, θ) = f(0, θ),

then, for each θ ∈ Sn−1 \ Ωf , with Ωf defined as in Theorem 5.1,∫ ρL(θ)

0
h(f(r, θ))G(r, θ) dr

≤

(∫ ρ
L̃
(θ)

0
G(r, θ) dr

)
·
(
(α+ 1)

∫ 1

0
h
(
f(0, θ)τ

)
(1− τ)αdτ

)

= βb(θ)

(∫ ρ
L̃
(θ)

0
G(r, θ) dr

)
= βb(θ)G(ρ

L̃
(θ), θ).

The results in Theorem 5.1 are based on the assumption (5.1), but a similar result
can be obtained for those G : (0,∞) × Sn−1 such that G : (0,∞) × Sn−1 → (0,∞)
is a continuous function, and for any R ∈ (0,∞),∫

(R,∞)×Sn−1

G(r, θ) dr dθ <∞.(5.12)
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Indeed, under the above conditions on G and G(ur, ·) ≥ uαG(r, ·) for u ∈ [1,∞) and
r > 0 with some constant α < −1 (note that α < −1 is natural due to (5.12)), if
ξ > 0 and h : [0,∞) → [0,∞) is an increasing, non-negative, differentiable function,
then for any y ∈ (0,∞), one has,∫

Sn−1

∫ ∞

yρL(θ)
h

(
ξ

[
1− yρL(θ)

r

])
G(r, θ) dr dθ

≥ β̃ξ

∫
Sn−1

∫ ∞

yρL(θ)
G(r, θ) dr dθ

≥ nβ̃ξṼG̃(yL);

and its local version: for each θ ∈ Sn−1,∫ ∞

yρL(θ)
h

(
ξ

[
1− yρL(θ)

r

])
G(r, θ) dr ≥ β̃ξG̃(yρL(θ), θ),

where the constant β̃ξ and the function G̃ are given by

β̃ξ = −(α+ 1)

∫ 1

0
h(ξτ)(1− τ)−(2+α)dτ,

G̃(t, θ) =

∫ ∞

t
G(r, θ) dr for all (t, θ) ∈ (0,∞)× Sn−1,

ṼG̃(L) =
1

n

∫
Sn−1

G̃(ρL(θ), θ) dθ =
1

n

∫
Sn−1

∫ ∞

ρL(θ)
G(r, θ) dr dθ.

Similar results hold for the case when G : (0,∞) × Sn−1 → (0,∞) is a function
such that (5.12) holds, and G(ur, ·) ≤ uαG(r, ·) for u ∈ [1,∞) and r > 0 with some
constant α < −1. In this case, if ξ > 0 and h : [0,∞) → [0,∞) is an increasing,
non-negative, differentiable function, then for any y ∈ (0,∞), one has,∫

Sn−1

∫ ∞

yρL(θ)
h

(
ξ

[
1− yρL(θ)

r

])
G(r, θ) dr dθ

≤ β̃ξ

∫
Sn−1

∫ ∞

yρL(θ)
G(r, θ) dr dθ = nβ̃ξṼG̃(yL);

and its local version: for each θ ∈ Sn−1,∫ ∞

yρL(θ)
h

(
ξ

[
1− yρL(θ)

r

])
G(r, θ) dr ≤ β̃ξG̃(yρL(θ), θ).

The proof is almost identical to that of Theorem 5.1, and hence will be omitted.
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[9] H. G. Eggleston, B. Grünbaum and V. Klee, Some semicontinuity theorems for convex polytopes

and cell-complexes, Comment. Math. Helv. 39 (1964), 165–188.
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