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ON THE mth-ORDER WEIGHTED PROJECTION BODY
OPERATOR AND RELATED INEQUALITIES

DYLAN LANGHARST, ELI PUTTERMAN, M. ROYSDON, AND DEPING YE

ABSTRACT. For a convex body K in R", the inequalities of Rogers-Shephard and
Zhang, written succinctly, are

Vol,(DK) < <2:> Vol,, (K) < Vol,,(nVol,, (K)I°K).

Here, DK = {z € R" : KN (K + x) # 0} is the difference body of K, and II°K
is the polar projection body of K. There is equality in either if, and only if, K
is a nm-dimensional simplex. In fact, there exists a collection of convex bodies,
the so-called radial mean bodies R, K introduced by Gardner and Zhang, which
continuously interpolates between DK and II°K. For m € N, Schneider defined
the mth-order difference body of K as

D™(K) = {(z1,...,2m) € R"™ : K A, (K +z:) # 0} C R™™

and proved the mth-order Rogers-Shephard inequality. In a prequel to this work,
the authors, working with Haddad, extended this mth-order concept to the radial
mean bodies and the polar projection body, establishing the associated Zhang’s
projection inequality.

In this work, we introduce weighted versions of the above-mentioned opera-
tors by replacing the Lebesgue measure with measures that have density. The
weighted version of these operators in the m = 1 case was first done by Roys-
don (difference body), Langharst-Roysdon-Zvavitch (polar projection body) and
Langharst-Putterman (radial mean bodies). This work can be seen as a sequel
to all those works, extending them to mth-order. In the last section, we extend
many of these ideas to the setting of generalized volume, first introduced by
Gardner-Hug-Weil-Xing-Ye.

1. INTRODUCTION

Let R™ be the standard n-dimensional Euclidean space and S® ! be the unit
sphere in R™. By K™ we mean the set of convex bodies (compact, convex sets with
non-empty interiors) in R™. Let KCf be the set of those convex bodies containing the
origin o in their interiors. The support function of K € K™, denoted by hx : R” — R
is defined by hg(z) = sup{(x,y): y € K}, where (z,y) denotes the inner product
of z,y € R". Let 0+ = {z € R® : (§,x) = 0} be the subspace orthogonal to
0 € S"!. By Py K we mean the orthogonal projection of K onto a linear subspace
H. Tt is well known that the function # € S"~! + Vol,,_1(P,. K) is a sublinear
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functional and hence defines a convex body in R"; such a convex body is called
the projection body of K and denoted by IIK. Hereafter, Vol,, refers to the
m-dimensional Lebesgue measure (volume). From (2.2) below, one can easily see
that IIK is an origin symmetric convex body, where a convex body K is said to
be origin symmetric if K = —K. The projection body IIK plays important roles
in affine isoperimetric inequalities including, e.g., Zhang’s projection inequality
[33] and Petty’s projection inequality [29]. These two inequalities can be stated
as follows: for any K € K", one has

(1.1) 1<2”) < Vol (K)™ Vol (TP°K) < ( n )n

n"\n Wn—1

where w,, denotes the volume of the unit ball By in R" and
K°={z eR": hg(x) <1}

defines the polar body of K € K. Equality holds for the first inequality in (1.1)
(i.e., Zhang’s inequality) if, and only if, K is a n-dimensional simplex (convex
hull of n + 1 affinely independent points); equality holds for the second inequality
in (1.1) (i.e., Petty’s inequality) if, and only if, K is an ellipsoid. The proof of
Petty’s inequality follows from the classical Steiner symmetrization, and the proof
of Zhang’s inequality, as presented in [18], made critical use of the covariogram
function.

The covariogram function is a fundamental notion in convex geometry and ap-
pears often in the literature. We denote by gx : R™ — R, the covariogram function
of K € K", which is given by (see e.g., [3])

(1.2) g (x) =Vol, (KN (K +x)) = (xg *x-xk)(z) forz € R",

where (f * g)(x) = [gn f(y)9(z —y) dy is a convolution of functions f,g : R" — R
and y i (x) is the characteristic function of K. The significance of the covariogram
function can be seen immediately from the following facts. First of all, it is easily
checked that the support of gx (z) is the difference body of K given by

DK ={z: KN(K +z)# 0} = K + (—K),

where the Minkowski sum of two Borel sets is given by K+ L={z+y:2 € K,y €
L}.

Among those important results related to the difference body are the following
inequalities: for K € K™ one has

. Vol,(DK) _ (2n
<< < .
~ Vol,(K) ~ \n

The first inequality is a direct consequence of the Brunn-Minkowski inequality (see
e.g. [14]), and equality holds if, and only if, K is symmetric about a point (i.e.
a translate of K is origin symmetric). This provides a measurement for the sym-
metry of convex bodies. The second inequality is the famous Rogers-Shephard
inequality [30], in which equality holds if, and only if, K is a n-dimensional sim-
plex. Chakerian [6] was the first to show the connection between the covariogram
and the difference body, yielding a succinct proof of the Rogers-Shephard inequality.
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The proof uses another property of the covariogram function: it inherits the 1/n
concavity property of the Lebesgue measure, because the covariogram function is
defined as a convolution of characteristic functions of convex bodies.

Secondly, the classical result by Matheron [27] shows that dgfh(fe) o+ = —hnk(0).
Thus, the covariogram function naturally leads to the projection body via the vari-
ational approach, which is one of the crucial steps in the proof of Zhang’s projection

inequality in [18]. In particular, Gardner and Zhang showed that

DK C nVol,(K)II°K,

with equality if, and only if, K is a n-dimensional simplex.

Formula (1.2) for the covariogram function gx can be adapted to define the
mth-order covariogram function in a natural way. To do this, we always identify,
throughout this paper, R™”" with the product structure R™ x --- x R", and a point
in R™ is often written as & = (x1,...,2y), with each x; € R™. Note that the
product structure is of central importance in later context. Schneider [32] proposed
the mth-order covariogram function gim : R™ — R for K € K" and m € N as
follows:

(1.3) 9k (@) = Vol (K ™y (z; + K))  for & € R™.

When m = 1, one obtains the covariogram function g in (1.2). Consequently, one
can define the mth-order difference body of K, denoted by D" (K), as the support
of the mth-order covariogram function gk ,,. Clearly D™ (K) is a convex body in
(R™)™ = R™ and

D™(K) = {7 = (21,...,2m) € (R")™: K Ny (z; + K) # 0}.

An important inequality related to D" (K) is the mth-order Rogers-Shephard in-
equality proved by Schneider [32]:

(1.4) Vol (K) "™ Volnm (D™ (K)) < (”m * ”) ,

n

with equality if, and only if, K is a n-dimensional simplex. A lower bound for the
left-hand side of (1.4), which can be shown to be nonzero due to affine invariance, is
obtained for arbitrary m € N and for every symmetric convex body K when n = 2,
and is conjectured to be attained by ellipsoids when n > 3 and m > 2.

Through a variational approach, the mth-order covariogram function gg ., also
leads to the mth-order projection body of K. In [20], together with Haddad, the
authors proved that

= —hmmg(0) for § € S
r=07t
where II" K, the mth-order projection body of K € K™, is the nm-dimensional
convex body whose support function is given by

(1.5) %g[{’m(rg)

him g (T) = hamg (21, .., Tm) = max (z;,ni(y))—dy.
9K 1<ism

In the above formula, K denotes the topological boundary of K, dy = dH" ! (y),
H"! is the (n — 1)-dimensional Hausdorff measure on 0K, ng : 0K — S*!
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is the Gauss map, which associates y € 0K with its outer unit normal,
and, for ¢ € R, a— = —min(a,0). The sharp upper and lower bounds for
Vol,,(K)"™~"Vol,,, (II>™K), with I[I™K = (II"K)°, have been established in
[20]. As an example, we only mention the lower bound, i.e, the mth-order Zhang’s
projection inequality [20]:

Theorem 1.1. Fixm € N and K € K". Then, one has

1
Vol,, (K)™™""Vol,, (1K) > (

- nnm

nm-—+n
n .

Equality occurs if, and only if, K is a n-dimensional simplex. The latter is also
equivalent to the condition D™ (K) = nVol, (K)II>™K.

Note that the mth-order Zhang’s projection inequality was proved in [20] by using
the following chain of set inclusions: for K € K, m € N, and —1 < p < ¢ < o0,
one has

1 1
D™(K) C (q Z ”) "RI'K C <p Z ”) "RI(K) C nVol, (K)TI*™K,
with equality in any set inclusion if, and only if, K is an n-dimensional simplex. Here
R}'(K) is the (m, p) radial mean body of K (i.e., the special case of Definition 4.1
where p is the Lebesgue measure in R™). Note that the above chain of set inclusions
provides an alternative proof for the inequality (1.4) proven by Schneider. When
m = 1, the chain of set inclusions reduces to set inclusions for the radial mean bodies
R,K shown by Gardner and Zhang [18].

The aforementioned mth-order results are based on the Lebesgue measure on
R™. A natural question to ask is whether these results can be extended to general
measures on R™. A major goal of this paper is to study the mth-order weighted
projection body and prove a related Zhang’s projection inequality. Before we do
this, we now introduce some basic notions.

For convenience, let A\, denote the Lebesgue measure on R™; we will simply write
A when possible. We say a measure has density if it has density with respect to .
That is, a measure has density if

—~ =¢, with ¢:R" - R", ¢c Ll (R").

All such measures are examples of Radon measures, i.e., locally finite and regular
Borel measures on R". For a fixed K € K", we denote by M(K) the class of Radon
measures 1 on R™ such that p has locally integrable density ¢: R — R™, and
additionally contains K in its support and 0K in its Lebesgue set. For u € M(K),
define the Borel measure S%- on S"~1, called the weighted surface area measure, by
the following formula:

(u) S (u) = / F (i (4))b(y) dy
Sn—1 OK

for f € C(S*71), where C(S™!) denotes the set of all continuous functions on
S"~1. Here, ¢ is understood on 0K as the representative of ¢ given by the Lebesgue



THE mth-ORDER WEIGHTED PROJECTION BODY 1327

differentiation theorem. A more “hands-on” definition will be given in Definition 2.1;
note that the measure S% satisfies (2.3) in that definition. It can be checked that
K +€Bg) — u(K)

(1.6) Sk(S" 1) = pt (0K) := lim inf il = B(y) dy.
e—0 € oK

The weighted projection body of a convex body K € K™ [26], denoted II, K, can be
defined via its support function:

(@) = [ (nc(0).0)-6(0)dy tor 057

Note that hp,k is clearly positive on S*—1if ¢ is positive almost-everywhere on
0K, and hence II,K € K{. As the case for the Lebesgue measure on R", I, K
can be linked with a weighted covariogram function by a variational approach. Let
K € K™ and p be a Borel measure on R™. The u-covariogram of K is the function
given by

(L.7) gt () = p(K N (K + 2)).

In [26], the radial derivative of g, x at the origin was computed under some mild
conditions, which were later dropped in [25]:

(1.8) 49y (r6) = —hn,k(0),

dr r=0+

when p € M(K). Combining (1.3) and (1.7), one can define the mth-order u-
covariogram of K as follows:

Definition 1.2. Let n,m € N, K € K™, and p be a Borel measure on R" con-

taining K in its support. The mth-order u-covariogram of K is the function
Gum (K, ) R" — RT given by

g,u,m(K7 j) = glhm(Kv (‘Tlv cee 7xm)) = /K (zl;[ XK(:U - .CC,)) d,u(y).

Clearly, D™ (K) is the support of g, (K, -), and

(1.9) Gum (K, %) = (K (™) (z; + K)) for 7 € R™.

We follow in the footsteps of [20] and begin by taking the radial derivative of
g%m(K ) )

Theorem 1.3. Let K € K", m € N, and ¢ be the density of a Borel measure
€ M(K). For every direction § = (61,...,0,) € S, one has

i [gﬂvm(K7 Té)]

ar =— [ max (0;nk(y))-o(y) dy.

reot oK 1Si<m

Motivated by Theorem 1.3, we give the following definition for the p-weighted
mth-order projection body of K.
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Definition 1.4. Given any K € K", m € N, and a measure u € M(K), we define
the p- weighted mth-order projection body of K to be the nm-dimensional convex
body IT/' K with support function

hH;pK(ﬁUl, B / » lléaizgn@i,w_de{(u), z,€R"4=1,...,m.

With this definition, we can rephrase the result of Theorem 1.3 in the following
way: let p € M(K) for a fixed K € K". Then,

d B
% [Qu,m(K, 7’9)]

When comparing the above formulation of Theorem 1.3 with (1.8) we indeed ob-
tain gy i (61) = b, i (61); also, we have hipk (0) = himi (). We set T, K =
(7 K)°. Using gum(K,-), we define in Definition 4.1 the u-weighted, mth-order

radial mean bodies and prove the following theorem. This theorem, which is stated
for s-concave measures, s > 0, is merely a special case of Theorem 4.5.

= —hiyx (0).

r=0t

Theorem 1.5. Let K € K™ and m € N be fized. Suppose that u is an s-concave
Borel measure, s > 0, on conver subsets of K. Then, for —1 < p < q < 00, one has

1 1 1 1
=4q\¢ =+ p\°? 1 o,
D"™(K) C < . ) RI'\K C < ; ) Ry K C (K"K,
where the last inclusion holds if p € M(K).

There is an equality in any set inclusion if, and only if,

Gpon () = p(K) L pm 16y (),

where lg is the roof function of K, defined in (2.4) below. If u is a locally finite
and regular Borel measure, i.e., s-concave on compact subsets of its support, then
s € (0,1/n] and equality occurs if, and only if, K is a n-dimensional simplex, u is

a positive multiple of the Lebesque measure, and s = %

Our main results below, Theorem 4.5 and Theorem 4.6, require the measure to
have concavity of some sort. It is natural to ask if variants of these inequalities can
hold for measures without any concavity assumptions. While we cannot definitively
say that this is not possible, we are skeptical of such a possibility; such a method
would also require providing a proof of the radial mean body set inclusions (and
of the Rogers-Shephard inequality and the Zhang’s projection inequality) in the
case of the Lebesgue measure without using the concavity of the Lebesgue measure.
Even among F-concave measures, it is very unlikely to obtain a result as elegant as
Theorem 1.5 with concise equality conditions. In this general framework, s-concave
measures are essentially the only measures we have a complete characterization of.
Progress beyond this classification includes the Ehrhard inequality [10, 11] for the
Gaussian measure, and such a concavity is a special case of the concavity from
Theorem 4.6. There is also the resolution of the Gardner-Zvavitch conjecture, the
fact that the Gaussian measure is 1/n-concave on the class of origin symmetric
convex bodies [19, 23, 12]; this was later extended to all rotational invariant, log-
concave measures [8]. We leave to the reader to verify that, formally, the theorems
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in this work are compatible with this concavity if the additional assumption of
symmetry about the origin is made on the convex body K and the covariogram
function g, (K, ) is replaced by the mth-order polarized covariogram, which can
be defined as ry (K, z) = p (K — %) N, (K + %)). As shown when m =1 in
[26, 25], this covariogram will inherit any concavity of the measure p over the class
of origin symmetric convex bodies. Then, the proofs for the relevant versions of
the main theorems (in particular Theorem 1.5 with s = 1/n) are the same line-by-
line, after replacing g, m ([, -) in the appropriate definitions (one would also have to
change, for example, the definition of the projection body when proving the variant
of Theorem 1.3.)

The paper is organized as follows. In Section 2, we will state some facts from
convex geometry that will be used in this paper. Theorem 1.1, and also equations
(1.3) and (1.5) are special cases of more general results presented later in this work.
In particular, Section 3 explores the weighted, mth-order analogues of projection
bodies and proves the associated Zhang’s projection inequality. In Section 4, we
study mth-order, weighted radial mean bodies and prove Theorem 1.5. Finally, in
Section 5, we extend some of our machinery to the notion of generalized volume
introduced in [16].

2. PRELIMINARIES

Denote by Sk (-) the surface area measure of a convex body K € K". Sk is a
Borel measure on S"~!, defined via the formula

(2.1) Sk(A) = H"H(ni(A)) for every Borel set A C "1,

where ng is the Gauss map of K. Recall that, for y € 0K, ng(y) is the outer unit
normal vector to K at y, which is uniquely defined for almost all y € K. As the set
Ng = {x € OK : K does not have a unique outer normal at x} is of H"~!-measure
zero, we continue to write 0K in place of 0K \ N, without any confusion. The
Cauchy projection formula (see e.g., [15, pg. 408, Eq. (A.45)]) states that: for
6 eSS,

(2.2)  Volp_i (Py K) = % /S (B wldSk (w) = /S (8. w)-dSi(u),

where the last equality follows from the fact that Sk has center of mass at the
origin.

Following (2.1), we define the weighted surface area measure as follows. Recall
that if f : X — Y is a measurable map between measurable spaces and p is a
measure on X, then the pushforward of u by f, denoted fyu, is the measure on Y

defined by (fu)(A) = pu(f~(4)).

Definition 2.1. For a convex body K € K" and a Borel measure M on K which is

absolutely continuous with respect to the Hausdorff measure on 9K, the M-surface

area measure of K is defined as S¥ = (nx).M, the pushforward of M by ny.
Writing ¢ for the density of M with respect to H" !, we have

(2.3 S (4) = Ml (4)) = [ ICCLI
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for every Borel set A C S*~1.

In particular, for 4 € M(K) with density ¢, the measure ¢(x) dH"!(x) can be
used to define a surface area measure via (2.3) which is the same as in (1.6).

Let L C R™ be a subset containing the origin o in its interior. For such an L, if
the line segment [0,z] C L for all x € L, then L is called a star-shaped set. The
radial function of a star-shaped set L is denoted by pr, : R™ \ {0} — R and defined
by pr(y) = sup{7 : 7y € L}. A compact star-shaped set with continuous radial
function will be called a star body (with respect to the origin), and the set of all
star bodies (with respect to the origin) is denoted by Sj. In general, a set £ C R"
is said to be star body with respect to z if £ —x € §j. Clearly, every K € K™ is
a star body with respect to every x € int(K). The roof function for convex bodies
plays important roles in the characterization of equality in our main results. For a
convex body K containing the origin, its roof function can be formulated by

1 T = o0,
(1—/)%(96)) xz € K\ {o}.

We often use its equivalent form in polar coordinates: for # € S*~! and r €
[O’pK (9)]7

r
2.4 Cx(rf :(1—),

=y = k@

and i (rf) = 0if r > pg (). When K € K, it is often more convenient to write
Ui (x) as follows: lx(z) =1 — |||k for x € K and 0 otherwise, where || - || x stands
for the Minkowski functional of K, defined as ||| x = px(z)~L.

A function ¥ : R™ — R is said to be a concave function if

V(L =7z +7y) = (1 —71)Y(x) + 7¢(y)

holds for every z,y € supp(t), the support of ¢, and 7 € [0,1]. A non-negative
function 1 is s-concave, s > 0, if ¥® is a concave function, and is log-concave
if log is concave. The log-concavity can be obtained by s-concavity by letting
s — 0T. A direct application of Jensen’s inequality shows that for any s > 0, an
s-concave function is also log-concave.

We shall need the following result which states how a log-concave function can
be used to construct a convex body in K.

Proposition 2.2 (Theorem 5 in [1] and Corollary 4.2 in [18]). Let f be a log-concave
function on R™. Then, for every p > 0, the function on S*~! given by

%) 1/
0 — <p/0 f(r@)rpldr> ’

defines the radial function of a convex body containing the origin in its interior.
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Let K be a convex body in R™. For p > —1,p # 0, the function

1 v
PR, K (0) (Voln(F.’) /KPK—x(Q) dl’) , 0e€sS

is well defined on S"~! and defines the radial function of a star body R, K, i.e., the
pth radial mean body of K introduced by Gardner and Zhang [18]. By appealing
to continuity in p, RgK and R, K can be defined as well, and in fact, one has
R K = DK [18]. Note that R,K tends to {o} as p — —1, and hence, to obtain
an interesting limit at —1 another family of star bodies depending on K € K" is
needed. These new star bodies are called the pth spectral mean bodies of K [18] and
are defined as follows: the Oth spectral mean body is e - RgK and the pth spectral

1
mean body, for p € (—1,0)U(0,00), is (p+1)» R, K. This renormalization naturally
brings the polar projection body into the new family, as one has

(p+ 1)r RyK — Vol (K)I°K as p— (—1)T.

By using Berwald’s inequality [2, 4], Gardner and Zhang [18, Theorem 5.5] ob-
tained that, for —1 < p < ¢ < o0,

(2.5) DK C (” * q) R,K C (" TP > R,K C nVol, (K)II°K,
q p

with equality in each inclusion in (2.5) if, and only if, K is a n-dimensional simplex.
Note that for any p > 0, R,K is an origin symmetric convex body (as can be
easily checked by applying Proposition 2.2 to the covariogram function), however
the convexity of R,K for p € (—1,0) is still unknown. Extension of the radial mean
bodies themselves in different settings can be found in [20, 21, 25].

Many of our results require the measure p to have some concavity. To this end,
let F': (0, (R™)) — (—00,00) be a continuous, invertible and strictly monotonic
function. We say that a Borel measure p is F'-concave on a class C of compact Borel
subsets of R™ if

(2.6) wrA+ (1 —7)B) = F~! (TF(u(A)) + (1 — 7)F(u(B)))

for any A, B € C and 7 € [0, 1]. When p satisfies (2.6) for F'(t) =t*, s € R\ {0}, pis
said to be a s-concave measure, while y is a log-concave measure if u satisfies (2.6) for
F(t) = logt. In particular, the Lebesgue measure A on R" is a 1/n-concave measure
on the class of compact subsets of R”, due to the Brunn-Minkowski inequality. In
fact, Borell’s classification of concave measures [5] states that a Radon measure is
log-concave on Borel subsets of R™ if, and only if, u has a density ¢(x) that is
log-concave, i.e., ¢(z) = e %) where ¢ : R® — R is convex. Similarly, a Radon
measure is s-concave on Borel subsets of R”, s > 0, if, and only if, u has a density
¢ that is zero almost everywhere if s > 1/n, is constant if s = 1/n, or is s/(1 — ns)-
concave if s € (0,2).

The following result asserts that the u-covariogram inherits the concavity of the
measure .

Proposition 2.3 (Concavity of the covariogram, [26]). Consider a class of convex
bodies C C K™ with the property that K € C — KN (K + x) € C for every x € DK.
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Let 1 be a Borel measure finite on every K € C. Suppose F is a continuous and
invertible function such that p is F-concave on C. Then, for K € C, g, i 1is also
F-concave, in the sense that, if F' is increasing, then F o g, i is concave, and if I
is decreasing, then F o g, i 1is convez.

We shall need the following result regarding some properties of concave functions.

Lemma 2.4 (Lemma 2.4, [26]). Let f be a concave function that is supported on
L € K§ such that

<0, forallfdeS™
dr r=0%

and f(0) > 0. Define z(0) = — (h(0)) ™" f(0). Then,

—00 < f(rf) < f(o) [1 — (2(8))7'r]

whenever § € S*~1 and r € [0,pr(0)]. In particular, if f is non-negative, then we
have

0< f(?”9) < f(o) [ (Z 0))"'r] and  pr(9) < 2(0).
o) [1-

In this case, f(rf) = “Ir] forr €0,pL(0)] if, and only if, pr(6) =
z(0).

Recall that M(K) is the set of Borel measures 1 on R™ such that p has locally
integrable density ¢: R™ — R* containing K in its support and 0K in its Lebesgue
set. Let K € K" and u € M(K) be F-concave, where F' is a non-negative, differen-
tiable, strictly increasing function. It follows from (1.7), (1.8) and Proposition 2.3
that supp(F o g, k) = DK, F o g, i is concave and

LFogu)rh)| = Flguc(0) -1 (r6)

dr r=0+ r=0t

= —F'(u(K))hm,x(0) for any 6 € s,
Moreover, applying Lemma 2.4 to f(rf) = (F o g, x)(rf) and L = DK, one has
(

F(u(K)) o1 _ Fu(K))
pok (0) < Wh JK(O) 7= F’(,u(K)szK(e)'
This yields
(2.7) DK C 5,((‘; ((?))) K.

3. A HIGHER-ORDER WEIGHTED PROJECTION BODY OPERATOR

In this section, we will introduce the mth-order weighted projection body operator
and prove some of its properties. We first establish the concavity of g, .m(K,-)
defined in Definition 1.2, namely,

gﬂym(K’ j) = gu,m(Kv ($1, s xm)) = /K (}_Il XK(y - xl)) d:“’(y)
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Lemma 3.1. Let m € N, K € K", and F be a positive, continuous and invertible
function. Let p be a Borel measure on R™ such that p is F-concave on a class of
convex bodies C C K™ with the property that K € C implies K N (K +z;) € C for
every T = (x1,...,2m) € D™(K). Then, for K € C, gum(K,-) is also F-concave,
in the sense that, if F is increasing, then F o g, m(K,-) is concave, and if F is
decreasing, then F o g, m(K,-) is conver.

Proof. For any t € [0,1], T = (z1,...,2y) € D™(K) and ¥ = (y1,...,Ym) €
D™(K), let

m

(3.1) K'(z,5) = Kn [ﬂ((l—t)xi—i-tyi—i-K)

The desired result will follow once the following is verified:

o (F- )]

=1

(32)  K'zy) 2 (-1t [Kﬁ(ﬂ(wﬁ—K))

=1

Indeed, suppose F' is increasing. This set inclusion, together with (2.6), then yields
m
KN <ﬂ<yi+K))

F(gum(K, (1 =)z +ty)) z,7)))
Aoeo)])

AT
(o (P 9))) (s (Fn )

= (1 = t)F(gu,m(K, 7)) + tF(gum(K,9)),

where the third line uses the F-concavity of p. This shows that F o g, (K, ") is
concave. Similar computations show that if F' is decreasing, then F o g, (K, ") is
convex.

Now we show that (3.2) holds. To this end, let

e(l-1) [Kﬂ (ﬁ(-%‘-FK))

i=1

+1

Kn (ﬁ(yi + K))
i=1

Then z = (1 — t)z + t2/, with
m m
ze KN (ﬂ(wl—i—K)) and 2’ € KN <m(yl+K)) .
i=1 =1

By the convexity of K, we see that z € K. For each i = 1,...,m, there exist
Zi, Z, € K such that z = ; + Z; and 2’ = y; + 2], which means that

Z=(1—t)z;+ty; + (1L —t)Z +tz) € (1 —t)a; +ty; + K

holds for every i = 1,...,m. It then follows that z € K'(Z, ), as required. O
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We now introduce our main tool in proving Theorem 1.3, Aleksandrov’s varia-
tional formula for arbitrary measures. For a continuous function A : S"~1 — (0, 00),
the Wulff shape or Alexandrov body of h is defined as

(3.3) Bl= () {zxe€R": (z,u) < h(u)}.
ueSn—1

Lemma 3.2 (Aleksandrov’s variational formula for arbitrary measures, Lemma 2.7
in [24]). Let K be a convez body, let p € M(K), and let f be a continuous function
on S*~t. Then

This extends the result of [16], which proves the same formula under the assump-
tion that K has the origin in its interior and that g has continuous density. We
now prove Theorem 1.3, which we restate here for convenience.

Theorem 1.3. Let K € K", m € N, and ¢ be the density of a Borel measure
€ M(K). For every direction 8 = (01, ...,0,) € S, one has

d

T [gﬂ,m(K7 Té)]

dr == max (927 nK (y)>*d)(y) dy.

r—o+ oK 1i<m

Proof. 1t can easily be checked that hxir9(u) = hi(u) + r(u,d) for any r > 0 and
for any 6 € R™. Moreover, any convex body L is the Wulff shape of its support
function hyp, ie., L = (\,cgn112 : (u,x) < hr(u)}. For notational convenience, let
6p=0and K, = KN(K+7r61)N---N (K +7r6;). Then

K, = m ﬂ {z: (u,x) < hiiro,(u)}

i=0yeSn—1

= ﬂ ﬂ{:c {u, ) < hyeyre, (w) )
ueSn—1i=0

= ﬂ {z: (u,x) < OI<I%i<Ilm(hK(U) +r(bi,u))}
ueSn—1 T

= ﬂ {z: (u,z) < hg(u) + Toginm<u76i>}
ueSn—1 o

= [hac(w) + 7 min (u,6,)],

where the last equality follows from (3.3). It follows from (1.9) that
G (K, 70) = p(K).
Applying Lemma 3.2 to
f(uw) = min (u,0;) = min (—(u,6;)—) = — max (u,6;)_,

0<i<m 1<i<m 1<i<m
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one gets, with the help of Definition 2.1,

a [9u.m (K, ré)] = / max (u, 0;)_ dSt (u)
S

dr n—1 1<i<m

/ max (ng(x),0;)_ ¢(z) dH " (z).

oK 1<i<m
This completes the proof. O

Henceforth we will suppose that ¢, the density of y, is strictly positive on K.
Thus, for each § € S™~1

(3.4) dii GumEor®)] | == [ max (0, n(y))-é(y) dy < 0.

=0+ oK 1<i<m

Following the argument leading to (2.7), by using Lemma 2.4 and Lemma 3.1, it
can be checked that

p(iy ¢ EEE) pom e

Fr(p(K)) "
where F' is a non-negative, differentiable and strictly increasing function, K € K"
is a convex body, and u € M(K) is an F-concave Borel measure.

For an invertible linear map 7 : R — R", we define T : R™" — R™" by T'(z) =
(T(z1),...,T(x,)) where & = (z1,...,2,) € R, Note that T is an invertible
linear map on R™". Denote by |det T'| the absolute value of the determinant of 7.
For a Borel measure p, define

= |det T|~H(T™")up

where (T~ 1),p is the pushforward of y under 7-!. One verifies that u” is abso-
lutely continuous with respect to the Lebesgue measure A and satisfies du’ (z) =

o(Tx) d\(z).

We now determine the behavior of HZ‘K under linear transformations.

Proposition 3.3. Let T be an invertible linear map on R", K € K™, and p €
M(K). For m € N, one has

IN(TK) = |detT| - T~ tH rK,
where | det T'| is the absolute value of the determinant of T.

Proof. Apply Theorem 1.3 to TK to obtain that, for § = (6y,...,0,,) € S™~1,
w (TK) O, (TK + 6:)) — p(TK)

h, m é -
17 Tk (0) et t
i P (T (K Ny (K +tT71;))) — w(TK)
t—0t t
pt (KN (K +tT74;)) — uT (K
= —|det T lim * (K O, ) = w0
t—0t t
= ‘det T| hHTTK( _l(é)) - h\detT\HZlK(T_l(é))
= hﬁ\ detT\H;”TK(é)’
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and the claim follows. [

Recall that a function is said to be radially non-decreasing if for every ¢ € [0, 1]
and x € R", one has p(tx) < ¢(z). We shall need the following chord integral
inequality. We recall that the support of a function is the set

supp(f) = {z € R" : f(z) # 0}.

Lemma 3.4 (Lemma 3.2 from [26]). Let u be a Borel measure on R™ with radially
non-decreasing, locally integrable density ¢ (with respect to the Lebesque measure
A), and let f : R" — R* be a compactly supported, concave function such that

o € int(supp(f)) and f(o) = max f(z). Set
szz{eegn—lzdfw) :o}.
r=0*t
If ¢: RT™ — R is an increasing function, then
z(0)
| aendu@ <s [ [T o dras
supp(f) St=h\Qf /0

dr
Psupp( ) (6) 1
o[ a(£(0))$(r0)r" " dr do,
a; Jo
where

r -1 1
z<9>——(dfflf) _0+) flo) and 5 =n [ a(s@n)a -0y

Equality occurs if, and only if:
(1) for 6 € S*" 1\ Qy, one has 2(0) = ppp(r)(0), f(r0) is an affine function for
7 € [0, pupp(s)(0)], and, for every r >0, ¢(r0) is independent of r;
(2) for almost every 0 € Qf, one has f(rf) = f(o) for every r € [0, pypp(s)(0)]-

We are now ready to prove the analogue of Zhang’s projection inequality for
II'K. We remark that even when m = 1, the results presented here are strictly
stronger than those of [26]; in that work, there was a Lipschitz assumption on the
density of the measure pu.

Theorem 3.5. Fizx m € N and K € K". Let v1,...,v, be Borel measures on
R"™, each having radially non-decreasing density, and set v = v1 ® -+ Q vy, to be
the associated product measure on R™. Let F': RT™ — R™ be a strictly increasing
and differentiable function. Let a Borel measure i on R™ be F'-concave on a class
of convex bodies C C K™ with the property that K € C yields p € M(K) and
KN, (K+x;) €C for every (x1,...,2m) € D™(K). Then,

F(,U,(K)) o,m ) fK 1= 1V’L )d,LL(y)
3.5 —— I K | > .
(35) Y <F’(M(K)) : " nm [y FRUF(u(K))E)(1 — tyrm=1dt
Equality occurs if, and only if, the following are true:

(1) If o is the density of v, then, for each 6 € SP™ 1 ©(rf) is independent of
r, and
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(2) for each § € S~ Fo Gum (K, r0) is an affine function in the variable r

for m €0, ppm () (0)], which is also equivalent to

D (K) = F(u(K))

= FuE)

Proof. Our goal is to estimate

Fim [ gun(Ko7) dv(a),

where g, m(K,Z) is given in Definition 1.2. Note that, from Lemma 3.1, F o
gu,m (I, &) is concave on its support. It follows from Fubini’s theorem that

I:/n.../nM[Km<iOl(xi+K)>
(.. ﬁxy,K(xi)du(y) A (Tm) -+ - dvy (21)
[ (o)

= /Kil;[lw(y — K) du(y).

We now apply Lemma 3.4 with f = F o g,.,(K, ) and ¢ = F~1, together with

(3.4) and Theorem 1.3. Note that Q; = 0, f(0) = F(gum(K,0)) = F(u(K)), and
2(0) = %PHE”"K@)- Letting ¢ denote the density of v, this yields

AV (Tm) + - - dvi(x1)

F= [ ol @)

= / FlFo Gum (K, T)]dv(T)
D

m(K)
F(pu(K)) )
B ) om (0) ]
< / / P o) drdf
Snmfl 0
1

« <nm / Fl[F(u(K))t](l—t)”mldt)

0

— nmv F(M(K)) o,m ! —1 _ p\nm—1
=y () [ - ot

as desired. The equality conditions are inherited from Lemma 3.4 as well. g

Notice that, as F' : Rt — R™ is strictly increasing, one has

1 1
/z?WNMK»ml—wm1ﬁ5uuo/X1—wmlﬁ:
0 0

Thus, (3.5) implies in particular that

F(H(K)) o,m H;il V’L(y — K)
”<F%Mﬂ3f5 Kj;z/; gy )

pE).
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In the case when F(t) = t°, i.e., the measure in Theorem 3.5 is assumed to be
s-concave, then (3.5) becomes

V(H(K) HZmK) > S IT% vily — K) du(y)
s nmu( K f t1/s(1 — t)nm— 1t

After a rearrangement, one gets

i) (o)
T T vy — K dp(y) =\ nm

Moreover, in this case the equahty conditions are quite simple to state: K must
be a n-dimensional simplex and the density ¢ of p must be constant on K — that

is, equality holds only in the classical case. These results are summarized in the
following corollary.

(3.6)

Corollary 3.6. Fixm € N and K € K". Let v1,...,vy be Borel measures on R",
each having radially non-decreasing density, and set v = 11 ® --- @ vy, to be the
associated product measure on R™". Let s > 0 and let u be a locally finite, regular,
s-concave measure on R™. Then, inequality (3.6) holds with equality if, and only if,
the following are true:

(i) If o is the density of v, then, for each @ € S, ©(rf) is independent of r,

(ii) K is a n-dimensional simplez,

(iii) the density of u is constant on K,

(iv) s=1/n.

In the following, we will provide a detailed proof for the equality characterization
in Corollary 3.6. To fulfill this goal, we need to introduce a bit more background.
First, recall that the following are equivalent (see e.g., [9, Section 6], or [7, 30]):

(i) K is a n-dimensional simplex.

(ii) For any x € R™ such that (K +z)NK # 0, K N (K + z) is homothetic to
K, namely, there exist a constant ¢ > 0 and a vector x¢g € R"™, such that
KN(K+z)=aK+z)={ar+z9:2 € K}.

Next, we recall a result of Milman and Rotem [28, Corollary 2.16]:

Lemma 3.7. Let i be a locally finite, regular, s-concave measure on R™ with density
¢. Suppose thatt € (0,1) and A, B C R" are Borel sets of positive measure satisfying

H(EA+ (L= )B)" = tu(A)° + (1 — Du(B)".

Then up to p-null sets, there exist c,m > 0, b € R™ such that B = mA 4+ b and
p(mz +b) =c- ¢(x) for all x € A.

We can now prove the following proposition.

Proposition 3.8. Fiz K € K™, m € N, and s > 0. Let u be a locally finite, regular,
and s-concave Borel measure on compact subsets of the support of its density ¢,
which contains K. Then, for every 6 € S*™1, g, m(K;r0)* is an affine function in r
for m € [0, ppm iy (0)] if, and only if, K is an n-dimensional simplex, ¢ is constant
on K, and s =1/n.
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Proof. Note that D™(K) is the support of g, n(K,-). Let € int(D™(K)) and
t € (0,1). The fact that g,..(K,-) is affine on the segment [0, Z] precisely means
that for all t € (0,1),

(3.7) WK (0,2))" = (1 = )u(K)* + tu(K (0, 2))%,

where K'(0,9) = K (i~ (K +ty;) as in (3.1). Examining the proof of Lemma 3.1,
we see that K'(0,z) 2 (1 —t)K + tK*'(0,7), and equality can hold in (3.7) only if
K'(0,2) = (1 —t)K + tK'(0,%). In particular, we have

(1= DK +tK1(0,2))" = (1 - u(K)* + tu(K*(0,2))".

By Lemma 3.7 and the fact that both K and K'(0,z) are convex, it follows that
K is homothetic to K'(0,7) = KN(K+z1)N---N(K +x,,) for any Z € int(D™(K)).
Setting z9 = - -+ = x,,, = 0, we have in particular that K N (K + z1) is homothetic
to K for all 1 € int(DK). This implies that K is a n-dimensional simplex.

It remains to show that the density of u is constant on K. To this end, we use the
second conclusion of Lemma 3.7 (with A = K and B = K N (K + z) for arbitrary
x € int(DK)): there exists c¢(x) > 0 such that for each y € K, ¢(Azy) = c(z)p(y),
where A, is the (unique) affine transformation which maps K onto K N (K + x).
But note that A, is a continuous map from the compact, convex set K to itself, so
it has a fixed point y due to Brouwer’s fixed point theorem. For such y, we have
o(y) = ¢(Asy) = c(x)9(y), implying c(z) = 1.

For any x € K there exists a vertex v of K such that v belongs to any face
containing x. Noting that K — v+« is an n-simplex whose vertex corresponding to
v is at x, one sees that K, = KN (K —v+xz) is an n-simplex homothetic to K, with
the homothety sending z to v; hence we have ¢(z) = ¢(v). If = is an interior point
of K, any vertex of K satisfies the above condition, which shows that ¢(u) = ¢(v)
for any two vertices u,v € K, and hence that ¢ is constant on K.

Thus we are back to the case of Lebesgue measure, which we know is affine when
raised to the 1/n power on pairs of homothetic bodies, namely, s = 1/n.

Conversely, one can easily verify that, if K is a n-dimensional simplex and ¢ is
constant on K, then g, m (K, -)1/ ™ is affine on radial segments, as in the classical
Zhang’s projection inequality. O

Proof of Corollary 3.6. Suppose that equality holds in (3.6). Condition (i) is pre-
cisely the same as condition (1) in the equality case of Theorem 3.5. Condition (2)
of the equality case of Theorem 3.5 states that (g,,m (K, r0))* is affine in r for each
6 € SP~1 which, by Proposition 3.8, holds if and only if K is a n-dimensional
simplex, the density of p is constant on K, and s = 1/n. ]

4. WEIGHTED mTH-ORDER RADIAL MEAN BODIES

In this section, we will introduce the weighted mth-order radial mean bodies, and
prove Theorem 1.5.

Definition 4.1. Let u be a Borel measure on R" with density ¢ containing K € K™
in its support. For m € N and p > —1, the p-weighted (m,p) radial mean body
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R}, K is defined as the star body in R™ whose radial function for 6 € SPm1 s

given by:

prg (0 = s [ (L in Gpra(-00) ) duto)

for p # 0. The case p = 0 follows from continuity of the pth average. We also let
R% K = limy oo R K.

Proposition 4.2. Fiz m,n € N and a Borel measure p containing a convex body
K € K" in its support. Then, RY} K = D™(K).

Proof. Let y € R"™\{o}. Properties of pth averages yield, if we write y = (y1,...,Ym),
that

pry K (Y) = gleaé(zqumm PE—(—Yi) = prR K (U) = ppm (1) (Y)-

That is, R K = D™(K). 0

Let v : [0,00) — [0,00) be an integrable function that is right continuous and
differentiable at 0. Define the Mellin transform (see e.g., [13]) by

Joo () —(0)) dt, p € (=1,0),

1) Mylp) = {fooo P 1ap(t) dt, p >0 such that #*~1y(¢t) € LY(RT).

Clearly, the Mellin transform is piece-wise continuous. The relation between the
pu-weighted (m, p) radial mean bodies and the Mellin transform is summarized in
the following result.

Proposition 4.3. Let m,n € N be fized. Suppose that p is a Borel measure on R"
with support containing K € K. Then, for each § € SP"~1,

pr, K (0)F = pPMy,, o) (P)
w(K)

_ ﬁ pom ) (6) Gum (K, r0)rP~dr, p>0,

ﬁ fooo (gmm(Kv rd) — M(K)) rP~tdr, pe (-1,0).

The case p =0 again follows by continuity.
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Proof. Observe that x € N, (K + r6;) if, and only if, —rf; € K — x for every
i=1,...,m. But this is equivalent to r < pg_,(—6;). Then, for p > 0:

/K(Z i {px (= 9@')}>de( )

/ / X ooy ()1 L dp(a)
P[] x et @) dutoyar

—p/ gu,m(ere) v 1d7“
0

PDm(K)( ) _
= p/ Gum (K, r0)rP~Ldr.
0

For p € (—1,0), we obtain

[ (min, (oreat-0)) it
_ _p/ /mlm L

,,,,,

) _p/ / XU oo (~00) ()77l da(2)
K Jo
= —p/o /[{XU121{1¢(K+7~01-)}($) du(x)rpfldr

= p/ooo,u <K\ (ﬂ(K +r0i))) rPldr

i=1
— b [ (lE) = g (K1)
0
Inserting the definition of the Mellin transform, (4.1), yields the claim. g

It can be checked from Proposition 2.2, Lemma 3.1, and Proposition 4.3 that,
if p is s-concave for s > 0 and p > 0, then R}’ K is an nm-dimensional convex
body containing the origin in its interior. However, for p € (—1,0), it is not known
whether R} K is convex, even when p is s-concave (or, more specifically, when pu
is the Lebesgue measure) and m = 1. Observing from integration by parts, and the
differentiability of g,, ., (K, rf) almost everywhere (as a function in 7 on its support),
we obtain that, for all p € (—1,0) U (0, c0),

4.2 )P L om0 @) K,r0))'rPd

(42) g0 = = [ G 00 a0,

where the derivative is in 7 (notice since g, m,(K,rf) is decreasing, the function
—(gum(K,70)) is positive). Clearly, R} K — {o} as p — (—=1)*. In view of this,
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we need to renormalize R K by (p+ 1)1/ P Ry, K, which provides a wonderful
relation between Ry, K and I, K as p — (—=1)".

Proposition 4.4. Fix m,n € N. Let K € K" be a convex body and pn € M(K).
Then,

1 1/p pm _ o,m
p—)l(lznl)"" (p+1)"P R} K = p(K)II;"K.

Proof. For p € (—1,0),let p= —s. Then s € (0,1) and by (4.2), for each § € S"™~1,

_ pom (i) (0) (_ r0)Y
(4.3) (1-— 5)pR;’}HK(9)_S =(1- 8)/ ) ( g,u,m(Kv 0)) S dr

0 p(K)

It has been proved in [22] (see also [21, Lemma 4]) that if ¢ : [0,00) — [0,00) is a
measurable function with lim, o+ ¢(t) = ¢(0) and such that [t *0¢(t)dt < oo
for some s € (0, 1), then

o0
(4.4) lim (1 — s)/ t™%p(t) dt = ¢(0).
s—1- 0
This, together with (4.3), Theorem 1.3 and Definition 1.4, yields that, for every
9_ c Snmfl’
_ P (6)
r=0+ 1K)

: s _ (—Gum (K, 10))
82?7(1 - S),OR;)’?HK(Q) - #M(K)

This further implies, setting p = —s, that

1 l/p 7) = o, m 7]
p_g§b+(p-%1) PRy, i (0) = p(K)prrom g (6).

This completes the proof. O

Thus, the shape of R} K approaches that of p(K)I;™K as p— (—1)". On the
other hand, applying Hélder’s inequality to (4.2) with respect to the probability
measure —u(K) " g, m(K,r0) dr, if p € M(K) for a fixed K € K", the following

holds for —1 < p < g < oot
Ry K C R, K C D™(K).

We now show how this chain of inclusions may be reversed under an F-concavity
assumption.

Theorem 4.5. Let K € K" be a convex body. Suppose that F : [0, u(K)) — [0, 00)
is a continuous, increasing, and invertible function. Let u be a finite Borel measure
which is F'-concave on the class of convex subsets of K. Then, for —1 < p < q < o0,
one has

C C C ———211I
D(M_C@MKWWK_CmMKmWK_pw(»ELK
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where C(p, p, K) =

(ﬁfolF_l [F(p(K)) (1 —1)] tp_ldt)ig forp >0,

(g P (PG~ 0]~ ()2t +1) 7 forp e (-1,0)

and, for the last set inclusion, we additionally assume that p € M(K) and that F(x)
is differentiable at the value x = pu(K). The equality conditions are the following:

(1) For the first two set inclusions there is equality of sets if, and only if, F(0) =
0 and F o g,m(K,r) = F(u(K))lpmk)(z), where Ly is the roof function of
K defined in (2.4).

(2) For the last set inclusion, the sets are equal if, and only if, F'o g, m(K;x) =

F(u(K))lo () with C = N T K.

Proof. Let G(p) := C(p, u, K ),()RgmM k(p). From Berwald’s inequality for F-concave
measures in [25], this function is non-increasing in p, which establishes the first
three set inclusions. For the last set inclusion, we first rewrite

C(p, p, K)
G(p) = W

Therefore, from Proposition 4.4, it suffices to show that, as p — —1,

C(p, p, K) F(u(K))
(p+1)Vr  F'(u(K)u(K)

Indeed, from integration by parts, for all p € (—1,0) U (0, 00), one gets

1
(p+ 1) prp. k(6).

_(FWEDN T ([ e )
Can 1) = (P T ([ 1 p - ) )
Therefore, the result follows from (4.4). O

As a byproduct, we obtain Theorem 1.5, which we reproduce for the convenience
of the reader.

Theorem 1.5. Let K € K" and m € N be fized. Suppose that i is an s-concave
Borel measure, s > 0, on convex subsets of K. Then, for —1 < p < q < o0, one has

1 3 1 5
AN s TD\" 1 o,
D™(K) C < . ) RIK C < , > Ry K © (KK,
where the last inclusion holds if p € M(K).

There is an equality in any set inclusion if, and only if,

gz,m(Kv :L') = M(K)SZDW(K)(x)

If 1 is a locally finite and reqular Borel measure, i.e., s-concave on compact subsets

of its support, then s € (0,1/n] and equality occurs if, and only if, K is a n-

dimensional simplex, p is a positive multiple of the Lebesgue measure, and s = %
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Proof. Applying Theorem 4.5 to F'(z) = x°, one gets, when p > 0,

1 -1 1 5
[ g (PP OT)
C(p,u,K)—(p/O (1)t ldt) _<I‘(i+p+1) ’

and similarly for p € (—1,0). The equality conditions from Theorem 4.5 yield that
9pm(K;2) is an affine function along rays for z € D™(K). If p is a locally finite
and regular measure on compact sets, then one must have s € (0, 1/n] from Borell’s
classification of concave measures; for such s-concave measures, Proposition 3.8
above shows that K is a n-dimensional simplex, the density of u is constant, and
§ = % O
Note that it is assumed in Theorem 4.5 that F' > 0. Without this assumption,
C(p,p, K) may tend to 0 as p — oo, and so C(p, p, K)R}!, K will tend to the
origin; hence, the first set inclusion may be lost. However, the assumption that F'
is nonnegative fails, for instance, in the important case of log-concave functions.
Thus, we give a result for possibly negative F' as well, which is slightly weaker:

Theorem 4.6. Fiz m € N. Suppose a Borel measure p on R™ with density is finite
on some K € K" and Q-concave, where Q : (0, u(K)] — (—00,00) is an increasing
and invertible function. Then, for —1 < p < g < oo, one has

m m 1 o,m
Colq, m, K)R;, K C Cq(p, 1, K)R))!, K C mﬂu’ K,
where Co(p, u, K) =
(st i @ @K — )7 1ar) 7 for b0,
(5 JoZ (@7 [QUu(E) — )] — p(K)) ) ™ for p e (~1,0),

and, for the second set inclusion, we additionally assume that p € M(K) and that
Q(z) is differentiable at the value x = p(K). In particular, if p is log-concave, then

1 1 .
—— < R"K C ———R" K C p(K)II;"K,
I'(1+q)e (1 +p)

: 1 m
where limy, 0 — R} L

T K is interpreted via continuity.
I'(1+p)P

Proof. The first inclusion follows from the second case of Berwald’s inequality for
measures, established in [25]. For the second inclusion, we can assume without loss
of generality that p > 0. Then, for every § € S~ ! one has, by Lemma 2.4 applied

to f = Q © gu,m(Kv ')7

o CQE)
0= gum{fr0) <@ [Q“‘(K” <1 QUu(K)) pno,mKw))]'

m
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Since Q(u(K)) may possibly be negative, we shall leave Q(u(K)) inside the integral
and obtain, with the help of Proposition 4.3:

P c(0)

p pom (k) (0) _ )
= M(K)/o Gum (K5 r0)rP~ dr

. ppm (1) (0) . _Q'(M(K)) , .
< o ¢ [Q(“(K” (1 QUiE) Png»mK(9)>] o

o (6 Q' (u(K)) I
) (pn< 7 ) L [T Q) — g

K)
Consequently, Cq(p, 1, K)prry, x(0) < mpﬂﬁ‘m (0), which yields the result.
U

5. GENERALIZATION OF CHORD INTEGRAL INEQUALITIES

In this section, we demonstrate how Lemma 3.4 serves as a prototype of a more
general theorem, which is of independent interest. We require some background
notions.

Let G : (0,00) x S 1 — (0,00) be a continuous function such that G(0,6) = 0
for almost every § € S*~! and

9G(t,0)
ot

is continuous on (0,00) x S"~L. Let G = G; and assume that G : (0,00) x S*~1 —
(0,00) is a continuous function such that, for any R € (0, c0),

Gy(t,0) =

(5.1) / G(r,0)drdf < .
(0,R)xSn—1
The general dual volume of a star body L C R™ [16, 17] can be formulated by
~ 1 pL(0
Vo(L) = — G(pr(0 / / G(r,0)drdo.
n Sn—1 Sn—1

The goal of this section is to generalize Lemma 3.4 to the setting of the general
dual volume.

Theorem 5.1 (Two Chord Integral Inequalities for Generalized Volume). Suppose
f:[0,00)xS" 1 — [0, 00) is a non-negative function supported on L € K¢ such that
for every 6 € S"=1, f(t,0) is concave on t € (0,pr(6)). Let h : [0,00) — [0,00) be
an increasing, non-negative, differentiable function. Let G : (0, 00) x S*~ — (0, 00)
be a function such that (5.1) holds. Fiz some a > —1. The following statements
hold.

(1) If G(ur,-) > u*G(r,-) for u € [0,1], r > 0, one has

(0 ~
(52 Lo e o i = g, Ve,
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where

Bo = inf {(Oé + 1)/0 h(f(0,0)T) (1 —7)%r|.

feSn—1

There is equality in (5.2) if, and only if, G(r,-) is homogeneous of degree
a, £(0,0) is a constant on S*, and

F(r,0) = £(0,0) (1= (pr(9))"'r) = £(0,0)¢L(r0),

that is, f is affine on each ray.
(2) Suppose that G(ur,-) < u*G(r,-) foru € [0,1], r > 0 and

max f(r,0) = f(0,0)

0<r<pr ()
r=0*t

for each 8 € S" L. Let
1
i 968?11*111)\@ [(a t1) /0 h(f (0, 9)7) (1- T)adT] :

_ ()’(7’,0)
o n—1 .,
Qf = {HES '77’

and let

Then,
pr(9)
/ / h(f(r,0))G(r,0)dr do
sn—1 Jo
PL(o)
(5.3) < Bb/ / G(r,0) dr do
sn=1\Q; Jo

pL(0)
+/Qf/0 h(f(0,0))G(r,8) dr db,

-1
where pz(0) = — (E)fé:g) ‘r:0+> f(0,0). If Qp = 0 and 8f{(9:0) o

continuous for almost all § € S*~', then p7(0) is the radial function of some

+ 15 also

star body L that contains L. In this instance, (5.3) becomes

L(0) -
(5.4) /Sn—1 /Op h(f(r,0))G(r,0)drdd < nBVs(L).

There is equality in (5.3) if, and only if:
(1) for 0 € S""1\ Qy, one has that p;(0) = psupp(s)(0), £(0,0) is a constant on
S*1 and

f(r,0) = £(0,0) (1= (pr(6))'r) = £(0,0)¢1(r0),
that is f is affine on each ray, and, for every r > 0, G(r,-) has homogeneity
of degree o
(2) for almost every 0 € Qy, one has that f(r,0) = f(0,0) for every r €
[0, pL(8)].
If Qp =0, then equality in (5.4) yields L = L.
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Proof. We first show inequality (5.2). For L € Kf, let

(5.5) /S/p h(f(r, 0))G(r, 0) dr do.

Note that the function H(L) is well defined by (5.1). For § € S"! let gy :
[0, p1,(0)) x S*~1 — RT be given by
r
r) = f(0,0)fr(r0) = f(0,0)(1 — —— ).
a0(r) = 0.0)01(r6) = $(0,0) (1~ )
Since f(t,-) is concave on t € [0,00), one has,

r

= 1 (5gn08) 2 g (o0.6) 100 (1 555
> f(0,6)<1 - p;@)'

Since h is increasing, one has h(f(r,0)) > h(gg(r)). Therefore, the monotonicity of
the integral implies that

pL(6)
(5.6) H(L)> /Snl/o h(ge(r))G(r,0)drdo.
For y € [0,1], let

)i =p / /pr (r,0)drdf
. yPL r
(5.7) — /Sn—l/o h <f(0,0) [1 — ypﬂﬁ)}) G(r,0)drde,

where 8/ > 0 is a constant, independent of the direction # and the function G,
chosen such that v (y) < 0 on y € [0,1].

We now show that 3’ exists and that 8 = S, for almost every § € S*~!'. By
hypothesis, we have that G(r, ) is continuous on (0, 00) x S*~! and bounded in the
sense of (5.1). Additionally, h is integrable on each segment (0, s] C (0, 00). Indeed,
since h is an increasing function, it is piece-wise continuous almost everywhere, and
therefore it is dominated on each segment by an integrable function. Consequently,
we may assert that ¢(y) — 0 as y — 0". Since 9 is absolutely continuous on each
[a,b] C (0,y], ¥ may be represented by

+ /ay Y (s)ds

In order to have ' > 0 such that ¥ (y) < 0, it suffices for 5’ to be selected so that
Y’ (y) <0 for almost every y € (0, 1]. Differentiation of ¢ yields the representation

V'(y) = B'1a,r(y) — h(0)IcL(y)
L(0) r rG(r
[ 0.0 /pr W (f(o,a) [1— D Gr0) b o,

sn-1 ypr(9)]/) y?pr(0)
where, from the positivity of G, we have

Ig,(y) = /Sn_l G(ypr(0),0)pr(0)db > 0.
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This further yields that
B < h(0)
ypL(0) r rG(r,0)
+ 1 -1 0,0/ h’< 0,0 {1— D "2 dr de,
el o SO0 T 00®)) wo®

or equivalently, applying the change of variables r = uypr(0), we see that 5/ must
satisfy

B < h(0)
1
Taulo) ™[ 70.0) [ WU0.0)1-uduGuypu(6).0)ps(0)ducd.

By using G(ur,-) > u*G(r,-) for u € [0,1], r > 0 and some constant « > —1, we
can get, by letting 7 = 1 — v and by using integration by parts,

(5.8)

1
£(0.9) / W (£(0,0) [1 — u]) uG(uypr(6), 6)pL (6)dudh

Sn—1

/ W (£(0,6) [1 - u]) w1 Glyp1 (6), 8)py, (6) du do
NG / h'<f<o,e>7><1fT>a+1G<pr<9>,e>pL<e>dnw
(100 [ 51000 0= 1) ar ) Gl 0). 00 6108

1
L (Fror+ @) [ G000 0 n2ar) Glms®) 060,

In view of (5.8), one can just let

(5.10) 8 = inf [(a 1) /01 h(f(O,H)T)(l — ) df} ,

fesn—1
which satisfies our requirement. Thus, (5.5), (5.6) and (5.7) imply that ¥ (1) <0

and then
pr(0)
/ / h(f(r,0))G(r,0)drdo
sn—1Jo

>%éM/” G(r,0), dr df = nBaVis(L).

Furthermore, we see that equality occurs when G(r, ) is a-homogeneous, f(0,6) is
a constant on S"~!, and f(r,0) = £(0,6) (1 — (pr(0))"'r) = f(0,0)((r0), that is f
is affine on each ray; these conditions also are the necessary conditions to have the
equality. To see the latter one, assume the equality to be true. Then inequalities
(5.6) and (5.9) both become equalities and hence f(r,0) = f(0,0)¢r(r0) and G(r,-)
has homogeneity of degree «, respectively. Moreover, (5.9) and (5.10) yield that
f(0,0) must be a constant over # € S"!, due the continuity of f(0,6) and the
monotonicity of h. This completes the proof for the first inequality and its equality
characterization.
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Now let us show (5.3), i.e. prove the case when G : (0,00) x S*~! — (0,00) is a
function such that (5.1) holds, and G(ur,-) < u*G(r,-) for u € [0, 1], » > 0 and some
constant « > —1. The hypotheses maxg<,<,, (9 f(r,0) = f(0,0) for all 6 € S
and the concavity of f(r,-) on r € (0,00) yield that for almost every 6 € S"~1,

2w,
or r=0+
Consequently, we have that, for § € Qf and r € [0, pr,(0)] that
af(gr,@)‘ .
0< f(r,0) < £(0,0) |14+ ——r=0Tp| — £(0,0).
S0 < 10.0) 142 e ] £(0.6)

Therefore,

prL(0 pL(0
/ / (r,0)G(r,0)drdo </ / ) G(r,0)drde.
Qy

On the other hand, for € S"~1\ Qf and r € [0, p1.(6)] we obtain

af( T@)‘ . r

77"0 = £(0,0 {1 _ ] )
10,0) ] e =

Since this is true for all r € [0, p(0)], one gets pr(0) < p;(0) for 6 € "1\ Q.
Hence, one has

/S e, /0 " (. 0))G(r.0) dr dO
S (100 |1 ] o
< /Sn_l\ﬂf /Opiw) h <f(o,9) [1 _ p;@]) G(r,0) dr do.

The proof for 6 € S*~1\ Q; then follows similarly to the first case (by changing the
direction of the inequalities and replacing the infimum by the supremum). In the
case that Qy = (), we remark that pr(0) < p;(0) implies L C L. If there is equality
in the inequality in this instance, then pz(0) = p;(6) for every 6 € S*~, yielding

0< f(r,0) < f(0,6)

L = E; the remaining equality conditions following analogously to the previous
inequality. O

Remark 5.2. The following variant of (5.2) holds, whose proof is the same. Let H
be a subspace of R™ with dimension j. Then, for an explicit B, r

PLNH ~
(5.11) /S m/ B(F(r,0))G (r, 0) dr db > jBaiVis (L0 H).

One can apply this result to obtain the following. Firstly, consider a subspace of
R™ with the following structure: H = H; ® --- ® H,,,, where each H; is dimension
n; € {1,...,n — 1,n}. Next, apply (5.11) with L = D"™(K), pt = p1 X -+ X fm,
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with each p; a radially decreasing measure on R™, and G(r,6) = ¢(rf)r"™~! with
¢ the density of p. Then, one obtains [31, Theorem 3].

Observe that, in Theorem 5.1, if Qf = @ and f(0,6) is a constant function

on § € S"1 then B, = Bp. In particular, f(r,0) = f1(rf) for some function
fi:R™ - [0,00), and so

1
Ba=By=(a+1) /O B (F1(0)7) (1 — 7)°dr.

In Theorem 5.1, we have actually proven something stronger than asserted, since
bounds were done on the integral over R and not over S"~!. We outline these local
versions as a corollary.

Corollary 5.3. Suppose f : [0,00) x S"~1 — [0,00) is a non-negative function
supported on L € K} such that f(t,-) is concave ont € [0,00), h : [0,00) — [0, 00) is
an increasing, non-negative, differentiable function, and G : (0,00) x S*~ — (0, 00)
is a function such that (5.1) holds. Fiz some constant a > —1. The following
statements hold.

(1) If G(ur,) > u®G(r,-) foru € [0,1], r > 0, then, for almost every § € S~

pr(0)
/0 h(f(r,0))G(r,0)dr

> (/OM) G(r,0) dr) - ((a +1) /01 B (£(0,0)7) (1 — T)ad7>

pL(0)
— 5.(0) (/0 G(r.0)d ) Ba(0)G(p1(6), )

(2) If G(ur,) < u*G(r,-) for u €[0,1], r > 0, and
max )f(?”,@) = f(079)7

0<r<pr (6

then, for each § € S*~1\ Qy, with Qy defined as in Theorem 5.1,

pL(0)
/0 h(F(r,0))G(r,0) dr

< (/Opi(e) G(r,0) dr) : ((a 1) /01 h(f(o, 9)T> (1- T)ad7'>

pz(0)
= Bp(0) </0 G(r,0) dr) = Bp(0)G(p5(0),0).

The results in Theorem 5.1 are based on the assumption (5.1), but a similar result
can be obtained for those G : (0,00) x S"~! such that G : (0,00) x S"™1 — (0, 00)
is a continuous function, and for any R € (0, c0),

(5.12) / G(r,0)drdf < co.
(R,00)xSn—1
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Indeed, under the above conditions on G and G(ur,-) > u*G(r,-) for u € [1, 00) and
r > 0 with some constant @ < —1 (note that o < —1 is natural due to (5.12)), if
&>0andh:[0,00) — [O o0) is an increasing, non-negative, differentiable function,
then for any y € (0,00), one has,

pr(Q)DG 9\ dr do
/sn 1/pr(0> ( [ r M
Zﬁg/gnl/ym(g) G(r,0) dr db

> nfeVx(yL);

and its local version: for each 6 € S~ 1,

Lw)heb‘wﬁwDGwmmz@@wﬂW“’

pL(0

where the constant ﬁg and the function G are given by
~ 1
fe=—(a+1) [ h(en)a - ) ar,
0

Gt 0) = / Glr.0)dr  for all (1,0) € (0,00) x S",
t
1 ~ 1 &0
=2 [ Gue),0d =" / G(r,0) dr do.
n Snfl Sn 1 oL )

Similar results hold for the case when G : (0,00) x S*! — (0,00) is a function
such that (5.12) holds, and G(ur,-) < u*G(r,-) for u € [1,00) and r > 0 with some
constant o < —1. In this case, if £ > 0 and h : [0,00) — [0,00) is an increasing,
non-negative, differentiable function, then for any y € (0, 00), one has,

/Snl /yzw)h <E [1 pr(G)D Glr6) dr df

< 5 / / G(r,0)drdf = nﬁgV (yL);
Sn=t Jypr(6

and its local version: for each # € S*~1,

Lm)heb—wﬂmbemwMS@@wdﬂm'

pL(0

The proof is almost identical to that of Theorem 5.1, and hence will be omitted.
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