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ABSTRACT. We show that the maximal non-central hyperplane sections of the
regular n-simplex of side-length v/2 at a ﬁxed distance ¢ to the centroid are those

n—1
3( +1) <t< 1/m andn25. For

n = 4, the same is true in a slightly smaller range for ¢. This adds to a previous

result for ,/2(n+1) <t <, /nLH. For n = 2,3, we determine the maximal and

the minimal sections for all distances t to the centroid.

parallel to a face of the simplex, if

1. INTRODUCTION

The Busemann-Petty problem and the hyperplane conjecture of Bourgain initi-
ated an investigation of extremal hyperplane sections of convex bodies. This became
a very active area in convex geometry and geometric tomography.

K. Ball [1] found the maximal hyperplane section of the n-cube in a celebrated
paper. The minimal ones had been determined by Hadwiger [5] and Hensley [6].
Meyer and Pajor [11] settled the maximal section problem for the [}-balls, if 0 <
p < 2, and the minimal one for the [}-ball, which was extended by Koldobsky [7] to
[y-balls for 0 < p < 2. Important progress in the case 2 < p < co was made recently
by Eskenazis, Nayar and Tkocz [3]. Webb [16] found the maximal central sections
of the regular n-simplex. The paper by Nayar and Tkocz [13] gives an excellent
survey on extremal sections of classical convex bodies.

For non-central sections at distance ¢ to the centroid, not too many results are
known. Moody, Stone, Zach and Zvavitch [12] proved that the maximal sections of
the n-cube at very large distances from the origin are those perpendicular to the
main diagonal. Pournin [14] showed the same result for slightly smaller distances.
Liu and Tkocz [10] proved a corresponding result for the [-ball, if the distance ¢ to

the origin satisfies % <t < 1. Konig [9] extended this to % <t< % Maximal

non-central sections of the regular n-simplex of side-length /2 were studied by
Konig [8] for relatively large distances t to the centroid. In this paper we extend this

result to smaller distances t for n > 4, resulting in the range <t< /-

3(n+1) +1

Note that for ¢t > /%5, the intersection is empty. The maximal sections are
those parallel to faces, i.e. those perpendicular to the diagonals from the centroid
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to the vertices of the simplex, in dimension n = 4 in a slightly smaller range for
t. The proof uses a volume formula of Dirksen [2] which extended a result of
Webb [16] This formula involves alternating terms with removable singularities, if

<t< resulting in difficulties to find extrema of section volumes.

n—1
3(n+1) 2(n+1)°
For small dimensions n = 2,3, we determine the maximal and the minimal hy-

perplane sections for all possible distances [t| </~ i

To formulate our results precisely, we introduce some definitions and notations.
Let N:={n€Z|n>1} denote the positive integers. For the regular n-simplex
K = A" we use its representation in R?t!

n+1
n={zeR" |z = (:c])’;ill, xj >0, ij =1}
j=1
Let a € 8" := { o = (:cj)’;ﬂl € R | Z?+11 22 = 1 } be a direction vector

and ¢t € R. We will always assume that E"H

a; = 0 so that the centroid ¢ =
n+1(1, --,1) € A" is in the hyperplane a*. By H(a,t) := {z € A" | {a,z) =t} =
{ta} + aL we denote the hyperplane orthogonal to a at distance ¢ to the centroid.
Thus ¢ € Hy(a). Then

A(a,t) :=vol,—1(H(a,t) N A™) =vol,—1({x € A" | {(a,x) =t})

is the parallel section function of A™. We aim to find the extrema of A(-,¢) on S™
for fixed t. For ¢ 75 0 we have non-central sections.

Note that , /-T= is the distance of the vertices e; = (0,...,0, 1 ,0,...,0) of A"

J
to the centroid c; it is the maximum coordinates of a € S™ Wlth Zn+11 a;j = 0 can

attain, and in this case all other coordinates are equal to _\/ﬁ' The side-length

of the simplex A" is v/2, its height "+1 and its volume ”ﬁrl. The distance of

n—1
2(n+1)"

assume that a = (CLJ)”Jrl € S™ satisfies a; > as -+ > ans1. Throughout this paper,
we make the followmg

the centroid to the midpoint of edges of A" By symmetry, we may

General Assumption. A direction vector a = (aj)"'H € R" is always assumed

to satisfy Z?ﬂl a? =1, Z”+11 aj=0and a1 > ag - > apt1.
Note that under thls assumption always ant+1 < 0. We introduce the sets
Hi(a,t) = {x € A" | {(a,z) >t } and H_(a,t) = { x € A" | (a,z) < t }.

For 2(n+1) <t < /747 the set H(a,t) contains just one vertex, namely e;.
Further, Z(;L ]fl% is the distance from the centroid of A™ to the centroid of a

(k — 1)-boundary simplex. For ,/% <t< ,/Z(;]fl% the set Hi(a,t) con-

tains at most k vertices of A™. This follows from Lemma 2.1 below. If a1 < ¢
and x € A", t > Z?ﬂl ajr; = (a,z), hence H(a,t) = 0. If a =t and = € A",
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t> Z;”rll ajxj = (a,z) as well, unless = e;. Then H(a,t) = {e1} and A(a,t) = 0.
Therefore, if A(a,t) > 0, the General Assumption implies that a; > t.

The unit vectors in the direction from the centroid of A™ to the centroid %
of a (particular) boundary (k — 1)-simplex are
NONY L Cind e D N IS SIS S -
n+1 Kk n—k+1"7777 n—k+1 ’
k n—k+1
k=1,---,n. Thus oV points from the centroid of A" to a vertex, a(® to the

midpoint of an edge and a® to the center of a boundary triangle. A hyperplane
orthogonal to the ”main diagonal” a(!) is parallel to a boundary (n—1)-face of A™.
Note that a(»*+1) ig essentially equal to —a®) | up to a permutation of coordinates.

Since Hi(a) = H_¢(—a), we have
(1.1)  Aa,t) = A(—a,—t) , A@@® t)=A@@" D ) k=1,...,n.

We now formulate our main results.
Theorem 1.1. Let n > 5, A™ be the reqular n-simplex and assume that t € R
satisfies 1/3(n+1) <t < /5. Let a € S™ with Z"+11 a; = 0. Then Hy(aM) is a
mazimal hyperplane sectzon of A™ at distance t to the centroid, i.e.

FL—F 1 n n/2 n , n—1

n—1)! \n+1 n+1 ’
All maximal sections at distance t are pamllel to a boundary (n — 1)-face, and
the orthogonal vector is a permutation of aV). For n = 4, the same is true if

03877:f<t<\/§ Forn = 4 and /3= n+1 \/ <t <t,a? yields a

mazximal hyperplane at distance t to the centroid. We have A(a®,t) = A(a™M,1).

The range ,/% <t < ,/;ig was already covered by a result in Konig [8].

As in the results of Moody, Stone, Zach and Zvavitch [12] for the n-cube and of
Liu and Tkocz [10] and Konig [9] for the {}-ball, the maximal hyperplanes far from
the barycenter are those perpendicular to the main diagonal. By Konig [8], a®

if 2n+1
n(n+2) n+1

Aa,t) < A(aW 1) =

is a local maximum of A(-,t) i < t. It can be routinely verified that

2n+1
n(n+2)

For ¢t = 0, by Webb [16] the maximal central sections of A™ are those containing
(n — 1) vertices and the midpoint of the remaining two vertices, orthogonal to
vectors like %(1, 0,...,0,—1). Filliman [4] stated without proof that the minimal

\/ T < \/ 3 +1 for all m > 4. The value # is the solution of a cubic equation.

central sections are those parallel to a face of A™. Recently, Tang [15] proved an
asymptotically sharp lower bound for the volume of central sections of A™.
For dimensions n = 2,3, we give the extrema of A(-,t) for all ¢:

Proposition 1.2. Forn=2 and 0 <t < %, let

all .= <;(\/2—3t2—t t+\/2—3t2>652 and
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1 0ol
altt = (al,b+,b)GSQ,a]::t—H/t?—g,bi::—%ii 92— 3.2 .

Then the extrema of A(-,t) on S% are given by

N _ 1
Maximum : att) ' /6 <ts 16 ° A(a{t}’t) 2VB iy /12-1) )
a) ,%% <t<,/%: AlaM 1) = 2\3/5 \%t
Minimum:{a(l),ogtgiﬁ: A((l)t) %—\%t}

Partially, this can be found already in Dirksen [2] and Konig [8]. For 0 <t <
a turns continuously from al? = %(1,0, —1) as given by Webb’s result [16]

a? = %(1,1,—2)7 etnd1 for % <t< %%, al} turns continuously from o =

%(1, 1,-2) to aM) = %(27 —1,-1). Up to a permutation of coordinates, a(® is
just —al). The distance of the center to a side of the triangle A% is t = %.
Enlarging ¢ a bit, turning the side slightly and moving it partially outside of A2,
intersects A? in about 3 of its length. Thus there is a discontinuity of A(a™*,)
at t = \/6’ where a™?* denotes the direction of largest value of the parallel sectlon
function,

1
\/67
to

1 1
=) =v2> lim AP t)=—.
\/6) N1/VE ( ) V2

_ f _ 9+4V16-6V3
Proposition 1.3. Forn =3 and 0 < t < let tg 2Bvare) 0.43575,
1 = fl—arl =~ (0.34495 and

1 1
all .= (2\/2 — 812 — t,t,t, —(5\/2 — 812 + t)) €S and

A(a®

1
{t} (al,al,b+,b ) ESg,bi = —d1i§\/2—8a~12 ,
where t € t1] and d) € [=1=, 1] is the unique solution of ¢p(a1) =t,
f \f 2

blay) = a1(5 — 12a}) + (6a3 — £)+/28a? — '

1+ 36a3
Then the extrema of A(-,t) on S3 are given by

t 1 . t _ 1
a[{lt},olgtgm. Afalt) = s
<
Mazimum : @ hE<tsh L )
a®, 1 <t<ty: AP, t)=1-—2¢
a® tg <t <o AlaM,t) = 2B —¢)?2
Mmzmum{ a) O§t§7: A(a(l),t)z%ﬁ(@—t)2 } .
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B 4|a1(5+52a2)—(2a2+1)4/28a2—1

For gie <t < t1, A(a!ht) = 9(a@), P(a) = [ T |

Again, al¥ turns continuously from al® = %(1,0,0,—1) as given by Webb [16]
B = _L_

to a'®) = 2\/3(

2—\1@ < t < t1, al?} turns continuously from a® to a(? = %(1,1,—1,—1). Again

there is a discontinuity at the distance of the center to a boundary triangle t = ﬁ,

Aa®, V3 Aty = 3Y3 5 g
2 t\l/z\/g 9 2 18

1,1,1,—3) which is —a") up to a permutation of coordinates. For

The last value stems from the fact that for ¢ X\ f’ also dj \ . The factor 2

is easily explained: Dividing a boundary triangle of A2 by a line through its Center
parallel to a side into a triangle and a trapezoid , the area of the trapezoid is g—th
of the area of the triangle itself.

In the next chapter we state a general formula for A(a,t) which involves al-
ternating terms with removable singularities and give some consequences, e.g. a
formula for A(a(k),t). After some preparations in chapter 3, we prove Theorem 1.1
in chapter 4. The proof uses some ideas also found in Konig [9], though there are
essential differences due to the non-symmetry of A™ and the additional constraint
Z;LJrll a; = 0. Basically, we show that there are at most three different coordinates
in critical points a € S"~! of A(-,t) in addition to the largest two coordinates, which
is then reduced to two with predetermined multiplicity. This leads to specific func-
tions of the largest two coordinates (a1, az) of a to be investigated. We then apply
some monotonicity result proved in chapter 3. In chapter 5 we verify Propositions
1.2 and 1.3.

The author would like to thank the referee for carefully evaluating the paper, for
his questions and suggestions, helping to improve the manuscript.

2. A VOLUME FORMULA FOR SECTIONS OF THE n-SIMPLEX

The general assumption on a implies
Lemma 2.1. Let a € S™, Z"Jrll a; =0,a1>ay > >apt1 and 1 <k < n.

i) Ifa; > --->a, >0, ap < Z(%kjﬁ In particular, a1 < 1/RLH. If a1 > ao,
n—2
3(n+1)
i) If ap > a2 >0, a1 < ¥(ag) : \/” 1\/1 "‘H —“—2. Y s a decreasing

function with ¥? = Id, a1 = v (az) if and only if ag = ¥ (ay).

Therefore, if ,/% <t< 1/Z(—n ]f:rﬁ, as assumed in Theorem 1.1 for k = 2

or k=1, ap41 <t and there are < k vertices e; of A™ in H, (a,t).
We will use the function v throughout the paper.

az <
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Proof. 1) Using the Cauchy Schwarz inequality, we find that

k +1 +1 k
dim1a; = =2 < Vn—k+ 1330 af = Vn—k+ 141370 a,

which together with kay < Z ", a; and kai < Z : 1 aj implies aj < Z(_n'fl%

ii) For k = 2, the previous inequalities yield (a; + a2)? < (n — 1)(1 — (a? + a3)).
This quadratic inequality implies a1 < \/ "Tfl \/ 1-— "Tﬂag — 2 =: 9Y(az). Since

V' (ag) = — n=l_(tl/na___ 1 - y isstrictly decreasing. We have aj = P(asg)

n \/1—(n+1)/na?2 ™
if and only if (a3 + a2)? = (n — 1)(1 — (a} + @3)), which is symmetric in a; and
as. O

We need an explicit formula for A(a,t). Put x4 := max(x,0) for any = € R.
Then:

Proposition 2.2. Letn € N, t € R with [t| < /5 and a € S™ with Z;LJrll a; =0.

Assume that a1 > ag > -+ > apt1. Then
vn+1 ”il (a; — )"

k1 kg (@5 — ak)

(2.1) Ala,t) =

This is Corollary 2.4 of Dirksen [2] It is stated there for sequences a € S™
without Z"H a; = 0, but explained how to transform it into the above formula.
Formula (2 1) generalizes a result of Webb [16] for central sections. The proof
uses the Fourier transform technique explained in Koldobsky’s book [7] leading to
A(a fR HZJF% m ds, which is evaluated using the residue theorem.

By (1 1) A(a,t) = A(—a, —t). Possibly exchanging (a,t) with (—a,—t), we may
apply (2.1) with at most [”‘2*'1] non-zero terms, thus with less than n non-zero terms.

For the standard vectors a®) we have the following result.

Proposition 2.3. Let 1 < k < n and — ,/ = k+1 (s ey ]f:rl% Then
k—
k _ /nFl (n—1y  [k(n—k+1) +1
A(al®) 1) = e (s1) nn—i—l ( kD) (nt1) k+1 (nt1) ) ( n+1) _t)

Since [(a®),e;)| > m for all j = 1,...,n + 1, A(a®, t) = 0 for

k

t< =\ E D

Proof. By continuity, formula (2.1) also holds for all sequences a € S™ with a; >

ag > -+ > ap >t > agy1,- - ,0p+1 where some or all of the a; with | > k
may be equal. For k = 1, equation (2.1) immediately implies the claim. For
ar >ax >t 2>as,...,0n41,

e T ( S (ag — )"t )) .
J

(n—1la; —aq H;Lié (a1 — Clj) H;H_?} (ag —

For k = 2, with a(® = (b,b,¢,--- ,¢), b:= \/7% = — W%HH)’ let a(e) :=
\/117?(17-1—8,() —&,¢, 0 ,0), Z;L+11a( )] =0, Z;l+11a( ) =1, a(e) — a? and
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A(a(e),t) = A(a®,t) as e — 0. The continuous extension of (2.1) to a(e) then
contains two alternating non-zero summands with b4+& = a1 and b—e = aq, provided

that b — e > t. We find for t < | /5=ty

(n— 1) L=t
\/714(&(2)’15)_;1—1}(1)25(( b—ctel  (b—c—em 1
t)n—l 2

)

where g(z) := = C)n,l,g’(a:) (n—1)(t—c

z—t)""
($ C)n Y

go) = (=) (t+\/oery) <\/@>n( %_t)"ﬂ , since gL =

2(n—1)
n+l °
R n—k+1 . k
Fork>2and ak:(b,...,b,c,...,c),b.— k(n++1),c.—— m
k ntl—k
and t < b we consider k equidistant points of step-size € around b, b + je, j =
—[£],...,[£], to define a(e) similarly, and then (2.1) yields a (k — 1)-st order e-step
size difference Agk_l) g of the function g(x) := %, namely
(n—1! : 1 1 _ 1 _
A(a®™ ) =1lim —— ——— AGE=D ) = (k=1)
U = lim ey g A0 = gy )

The power in the denominator of g is reduced by the fact that there are (k — 1)
products of differences of values near b resulting in the (k — 1)-st order difference.
One verifies by induction that

n — x—t)vk
(k_ll)!g"“‘”(@ = (k_ 1) (t—c)’f‘l((w _t)c)n :

k(n—k+1)
n+1

i (t+ ordieen) (VS -0)" - O
In particular, A(a (nJ{)l <\/nT+1>n( n_ )"‘1 s <Aoo

AW),@:@(\/M) (Y ec— = RN =

For all

and Wlth we have that

+3

c n (1) (2)
oD <t </ Ala'V,t) > A(a'?,t) is true asymptotically for

~ . 1 __c )
c~2.6363: A (a n(n+1)> A ( W) O ) leads to the requirement

2(v/2 + ¢) = exp(1 + (v/2 — 1)c), which has only one positive solution ¢ ~ 2.6363.
Let ¢, be the positive solution in dimension n of A(aM,t,) = A(a®,t,) less than

Then t3 ~ 0.4357, t4 ~ 0.3877 and t5 ~ 0.3426.

2( +1)

3. PREREQUISITES

In this chapter we prove two results which are needed in the proof of Theorem
1.1 in the next chapter. The first one is used to reduce the number of different
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coordinates of extremal critical points of A(-, ), the second is a monotonicity result
for A(a,t).

Proposition 3.1. Let n > 4, <t<as <ai,pr,s €Nandc,d,ecR be

(n+1)
such that a; +az +c+d+e =0, a1+a2+c—+7+% =1,p+r+s=n—1. Then

p+1 r+1
4 —t\"! ar - & ar — ¢ ay — €\ "+
as —t o —d as — ¢ ‘
2 2= 5 ag — ¢ 2= ¢

For the proof we need the

Lemma 3.2. Letn > 4, <t<ag <ay and c € R. Then:

3(n+1)
(i) Ife<o, (“;——;) > (g;——)d
(ii) If c < g(n) = 2\/3(n+1) \/ r;z+11) (Z;:Q > (Z;:E)Z

Proof. (i) Since (Z;:C) is decreasing in ¢, it suffices to prove (i) for ¢ = 0. This

[

3
means (Z;:i) > (g—;) or equivalently t(a$ — a3) — ajaz(a? — a3) > 0, which is

equivalent to ¢ > (aalaz(w By Lemma 2.1 a1 < 9(as), hence aj +as < 1/)((12)4-

)2+3a1a2
CLQ:\/nT_l\/]_ "+1a%+n 1 a9 = 7(042 \/n 1n+1 ,71 aj+1 2 1 >0
ntly2,2
since ”Tfl > i "nﬁlzg is satisfied in view of as < 1/2(n +1) which holds by Lemma
T n %2
2.1. Thus 7 is increasing in a9, so that ay +ag < ( 2&;11)) = 2(:+1 ) Therefore

forn>4

ayaz(a + az) <a1+a2 1 /2(n—1) n—2
(a1 — a2)? + 3ajaz -3 n+1 3(n+1)
is satisfied and (i) holds for ¢ < 0.
2
(ii) In view of (i), we may assume that ¢ > 0. The claim (Z;:t) > (‘“_C)

t az—c
is equivalent to (a; — ag)[(a1 + a2 — 2¢)t + ¢* — ayaz] > 0. Therefore we need

t> %;_c;c =: h(c). Since h/(c) = 2% > 0, if ¢ < az < a1, h is increasing

in [0, ag]. Note here that ¢ < g( ) <t <ay Nowco=t—+/(a; —t)(ag —t) is the
solution of t = h(c) = % with ¢g <t < as. Thus for ¢ < ¢g, h(c) < t. By the

a1+az2—2c

and hence ¢y = t—/(a1 — t)(ag — t) > 2t — \/ >2\/ n+1 \/7;+11):g(n).
Thus, if ¢ < g(n), ¢ < ¢p and h(c) <t is satlsﬁed O

arithmetic-geometric mean inequality /(a1 — t)(GQ —t) <

Proof of Proposition 3.1. Assume that 9 < g < ¢. Then ¢ < 0. By assumption

1/ 3(n+1) < ag < a1 and by Lemma 2.1 1) £ < (n+1) We distinguish some cases
for n > 4:
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c\ 3 d e

d —t a1—y —t ar— a1—<
a) If £, > g(n), (Z;_t> > (@—%) , (Z;_t> > max ((@f) , <a2—§)> and
the claim will follow from p—gl—kr—i—l%—s%—l <n-1 :p+r+s, ie. p > 4.
This is satisfied: Since ¢ < 0, |¢| = a1 +ax +d+e > 2 (n+1) + (r+s)g(n) =

n— 2 €
2(1 +r+s) sty — (r+8)y /oy and § = 1—af —a3 —r(§)" — ()" <
2 n—

— 202 — (r 4 5)g(n)?, implying

2
n—2 n—1
5.1) . (2(1+T+8) ] —(r+s),/72(n+1))

35 -+ o)

Since r,s € N, r + s > 2. For n = 5 this yields p > 3.035, i.e. p > 4. The right
side of (3.1) is increasing in 7 4+ s and in n. Thus p > 4 holds for all n > 5. For
n=4,p+r+s=3means p=r=s=1. But (3.1) yields p > 1. Thus this case is
impossible for n = 4.

2
d
b) If g < g(n) < ¢, we have (“ﬁt) > <a1_§> and the claim will follow

az—t

from %+%+3+1 <n—-1=p+r+s,ie 11 < 4p+ 3r. This requires
p>2o0rp=1andr > 3. We check this similarly as above, if d > 0: Then
lef > a1 +az+d+e> 2/ (n+1) +sg(n), & < 1—§n—+1—sg( n)2. This yields
(3.1) with r + s replaced by s. For s =1, n = 4, (3.1) yields p > 1.19, i.e. p > 2is
satisfied, as needed. For s > 1 or n > 4, p will be even larger. For n = 4, this case
is impossible, since p+r+s=n—1=3requiresp=r=s=1.

If d < 0, we only need for the claim that %—i—%l—ks—%l <n—1=p+r-+s, which
means p+r > 3. We show that p = r = 1 is impossible so that p-+r > 3 will follow.

Ifp=r=1,0=a1+ax+ct+d+e>2 (n+1)+sg( n)+c+d>2(1+s) 3(7;;21)—

s\/ (it _\/3211 =: v(s,n), using +d? < 1—af—a3 < 405 e+d| < \/ Fo

2(n+1) 3(n+1)°
For s =1, v(s,n) > 0,if n > 6. Forn =5, weneed 4 =p+r+s=2+s, ie.
s = 2. However, also 7(2,5) > 0. Thus p + r > 3 is satisfied. The case n = 4 needs
a separate argument.

d 2 e
¢ < g(n), we have that (Z;:i) > max <(Z;:§> ’(22:5)2) and we
need %—i—%—i—% <n—-1=p+r+s,ie 8<4p+ 3(r+s), which is always
satisfied, also for n = 4.
d) For n = 4, case b) with d < 0 was left open. Then
d,e = —at@te 4+ 1. /2 3(a} + a3 + ) — 2(a1a2 + a1c + agc). Calculation shows

<a1—d> (a1—6>:1+(a1_a2) 2(a1 + az) + ¢ -

as —d as — e (a1+a2+c)2+2a%—alc—§

<a1_t>:1+(a1—a2) !

az—t ag—t'

)IfT7
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We will prove that (Z;t> > (‘“_d> (‘”_e>. The claim of Proposition 3.1 will

t as—d as—e

then follow from the inequality § + 2 < 3 for the exponents. We have to show
_ 1
that ¢(a1,as) := (ar+azto)+2a5—arc—, > ay — t. Using a? + a3 > %, le| < \/%,

2(a1+az)+c
2

it can be checked that % = 1+2(a1(2a(2a)1—:ta;)f$22a10 © > 0. Therefore ¢(ay,az) >
¢(az,az) = (2az+c)” 4222120 22272 —: k(c¢). We want to minimize k(c) on the interval
€ [—1,0]. We have ¥/(c) = %—Ofor cr = —day + £1/40a3 — 2. Only
c+ satlsﬁes cr > —1 as needed for a € 5’4, and c4 is the minimum of k. We have
\/40a2 — 5ag, hence ¢(ay,az) \/40a2 — bao. It is easy to see that
thlSlS>a2—\/ﬁ>CL2—t. O

The second auxiliary result concerns the monotonicity of a very special function
appearing in the proof of Theorem 1.1 in the situation that (n—2) of the coordinates
of a critical point a € S™ of A(-,t) with fixed a; > as > t coincide.

Proposition 3.3. Let n > 4,

38;1) <t<ag <ai. Let

W= W(ar,a2) = \/(n — )1 0} — a3) — (a1 +a2)? .

ay —t n—1
F = F(ay,a2) := ; (a1 n)_2 ; = ,
al a2 a1 a2 _ V¥yn—2
(a1 + + /—(n 1)W> (al + pro W)
—t n—1
G = G(a1,a2) = (a2 )7 )

(o 25552+ G W) (o2 + 2~ 2W)

and f = f(ay,az) = F(al’ajl):i(al’”). Then for fived a1, f is strictly increasing in
as.

By Lemma 2.1 as < %(a1), and this guarantees that W is well-defined. For
as = P(a1), W = Wi(a1,¢¥(a1)) = 0. W decreases if as increases. For the proof we
need

Lemma 3.4. Let n > 4, ,/3(7;‘17121) <t<ay <ar and
W(ai,az) := \/(n —1)(1 —af —a3) — (a1 + a2)?, ¢ := —a;:? —\/ﬁ(n_l)W(al, as)
and d = —4t92 4 Vnn:fW(al, az). Then :
(a) ag —d > 3(ag —t) + (a1 — a2) ,
(b) ag —c>5(ag —t) + L=92,

n—1
- 3
(c) =c <3

Proof. (a) Let § := ag —t, £ := a1 —t. We claim that t —d > ¢ + &. Inserting ¢,&
into ¢ — d, this is equivalent to ¢ — d = ¢ 4 5+€ %Ln_?W(al, az) > 6 + ¢ which
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means vn — 2 W(ay,a2) < (n+ 1)t — (n — 2)(d 4+ ). This is equivalent to
(n—2)[n—1=2(n+1)(t* + (6 +&)t) — n(6? + &%) — 25¢]
< (n+ 1% =2(n—2)(n+ 1) + &)t + (n - 2)*(0 +¢)?

The terms with (§ + €)t on both sides cancel, and the inequality is clearly satisfied

if (n—2)(n—1) < ?((n+1)>+2(n—2)(n+1)) = * 3(n+1)(n—1), ie. £ > 5025,
which holds by assumption on ¢t. Hence t —d > a; + ag — 2t = 2(ag —t) + (a1 — ag),
a2—d_(12—t+t—d>3(&2—75)—1—(011—(12)

(b) We have t— C—t—}—alJraQ—i—\/i( )W(ahag) > t+a1+a2 =t+ 1“ +a1 a2.
We claim that t + —=ga2 > 4(ag — t) holds. This is equ1valent tot > ( %%)ag

_ 2n—2
Since t > /562y = \/gn T2t 2 V50t @20 /5001 2 5 — §ty will imply
the claim, and this is true for all n > 4. Hence as—c = as—t+t—c > 5(a2 t)—|—%.
a1 w(az _ LH _1
(c) By Lemma 2.1 & < =,/ /a2 . Using ag > (n+1)
find y := Z—; < ”TH %f - 5. Since Z;% is decreasing for x > 0 and —c > 0,
> aitap lude &=¢ < a1+al+a _ ny+l We cl h ny+1 3
—c = 1% we conclude — < a+“1+“2 = Sty e claim that nty < 5.

3n— 2
2n

20l o _n (3" 2+ ) n—L or equivalently, 2(2n — 3)? < 9(n — 1)(n — 2),

This is equivalent to y < Using the above estimate for y, it suffices to show

n—2 n+1 2n—3 2n— 3’
which holds for all n > 4. Hence Z;_z % for all n > 4. O

Remark. By Lemma 3.4 (a), ag+ %92 — 7%W = ap—d > 0, so that the denom-
inators of F'(a1, a2) and G(a1,az) in Proposition 3.3 are positive and F'(aj,az) > 0,
G(al, ag) > 0.

Proof of Proposition 3.3. We denote by ' the derivative with respect to as. Then

f/<a17 a2)
_ F(ar,a2)(1 + (a1 — az)(In F)' (a1, az)) — G(a1,a2)(1 + (a1 — az)(In G)'(a1, a2))
(a1 — a2)? '
We will show that f/(a1,a2) > 0. This is equivalent to
F(ax,
M [1 + (a1 — a2)(In F)'(ay, az)] > 1+ (a1 —a2)(InG) (a1, as) .
G(al, CLQ)
We have W'(ay,a2) = —WT}‘ZCQJZ;) Let u:=ay + 4192 y:=qay + 492 Then
n—2 _ V/n—2 nasta; 1 + vVn—2 nagstai
—1 n—1 Wi(a1,a2) n—1 n—1 Wi(a1,a2)

(In F) (a1, as) = —

Ve W e

A tedious calculation with the common denominator
1 vn—2
h(u) = (u + mW(al, a2)> <u — o1 W(al, a2)>
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shows that this is equal to (In F)'(a1,a2) = —%. Therefore

/ _ _h(u)—h(v)_h(v)_ az — ¢ as —d
1+ (a1 — az)(In F)' (a1, a0) =1 Mw = ) <a1 _C> <a1 —d> ,

where ¢ := —“};_r‘{? — \/nT21(n71)W(a1’a2)’ d:= —“;L%‘{Q + Vnn:fW(al,ag). We have
a1 +as+ (n—2)c+d=0,a2+ a3+ (n—2)c?+d*>=1. We get

F(ay,as) , a; —t\" fag — e\ [an —d\?

Sa,a2) —as)(In F -

G(a1,a2) [ (a1 = ax)(In F) <a1’a2)] ags —t a; —c a; —d
and we have to show that this is > 1+ (a1 — a2)(In G)'(a1, a2). We have

(n_2)i _ Vn—=2 nasta; 1 + \/ 2 nas+ai
n—

n—1 n—1 n—1 W(ai,a2) 1 W(a1,a2)
(ln G)'(al,ag) = - : /n—2 :
ag —t Y+ 77(711)W(a1’ as) nf_l W(a17a2)
Using that ¢ —d = _7\/7%W(a1’ as), as—c=y+ 771@21(71_1)14/(0,1, az) and ag —d =

\/7

W (a1,az), we find after some calculation

(lnG)’(m,az)_(”_l)( e )_ :

as—t ag—c ay —d

‘We have to show
n—1 n—1 2
a; —t al —c a; —d
3.2
(3.2) (aQ—t> > (ag—c> (ag—d> x

x<1+(a1—a2){(n—1)( CH S S D

as—t ag—c¢ as —d

Let z := ‘“ 2 >0,y:= “12 2 >0 and z: al;“; > 0. Then we need

(3.3) I+2)" >0+ A +2)2 0+ (n—1)(z—y)—22) .

By Lemma 3.4, y < £ and z < % 715 Now the right side of (3.3) is

increasing in z and ¥, since their derivatives satisfy

(n—1)z— 57

204+ 2)14+(n—1)(z—y)—22—(1+2)] >2(1+2) [g

} -0,
(n=1)(1+y)" ?[1+(n—-1)(z—y) - 22— (1 +y)]
4 2x T

>(n—1)(1+y)" 2 [(n— 1)5x— 5+2 5

Therefore (3.3) will be satisfied if for all x > 0
(3.4)

bnl) = (1+ )" = (1+ %)"_1 <1 + ?)ji)z <1 +(n— 1)% - 32+xm) >0

holds. We use induction on n to show that ¢, (x) > 0foralln > 5and all0 < z < %
For n = 5, expansion shows that ¢5(z) = ﬁzgzo a;rd, ay = %, a; > 0 for
3
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j=1,,5, a5 = —goe= < 0. Since ag(3)8 = 2= < i, ¢s5(z) > 5( )3 > 0. For
n > 5, assume that ¢,(z) > 0 for all 0 < z < 5. Then

ny1(z) — ()
:x(1+x)n—1_$<1+x>nl<l+ T >2<1+4n:€_2 T >
5 3+ 25 53+ =z

zy\n-1 z \? /16 4
>x¢>n(m)+x<1+g) <1+3—|—x> (25nx—3m>>0.

For x > g, £ 2> %, we use that by Lemma 3.4 (c), $1=¢ = 1+y < %, y < % Then
(3.3) will be satisfied if

By () = (g(ler))n_l - <1+ 3ix>2 (1+(n (@ — %) - 32f$> >0

h _ _ Z;:OBJ('I_%)J . . .
olds. For n =5, ®5(x) = o with 8; > 0 for all 5 =0,---,7, Bo > 75.
3

Thus ®5(x) > 0 for all x > % For n > 5 and z > g,
7 (2 n-l T 2
o, > (Zn 1+ (1+(n—-D(@—2)-
T N S [ S

~(5t) (-3)

Thus ®,(z) > 0 implies ®,,41(x) > 0, since for z > 5 and n > 5 we have
n—1
s (GL+2)" > 5140’ > 5(14+0)°(0—3) > (145)°(e

2
T 1
) > <1+ 3+x) (= —3)
Therefore we have verified (3.3) and (3.2) for all n > 5.

For n = 4, we use that by Lemma 3.4 we actually have a better estimate for y,
a1 —a2z

namely y < S =T =z + . Then we need only that for z > 0

3 2
~ x x T 2x
=(1 3 (1 1+ — 14+32—-3—"—" — >0.
fa(x) = (1+2) < +5+§§> ( +3+x> ( + o 5+2 3+x>
1.2

Calculation shows that ¢y(z) = (=i =y Z?:o v;xd, ;>0 for all j =0,---,8

3

2

_1
2

w\&z

with g = % > %. Thus (54( ) > GW > 0 for all z > 0. Hence inequality
(3.3) holds for n = 4, too. O

4. PROOF OF THEOREM 1.1

Proof. The case /5 2( +1) <t< 1/# is covered by Theorem 1.1 of [8]. Hence

oy <t < \/ster-
in the Introduction, the general assumption and A(a,t) > 0 implies that a; > ¢

holds. By Lemma 2.1 az < 1/3(7:17421) <t a2 < \/50h n+1 and a1 < nLH We

have to consider two cases: a1 >t > ag,...,a,+1 and a; > ag >t > as,...,an+1,

assume that We may assume A(a,t) > 0. As mentioned
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with limiting case a3 = ay. In the first case, formula (2.1) contains only one non-
zero summand, in the second case two non-zero summands. In the second case

az > ma and by Lemma 2.1 a1 < ¢(az) < 4/3.

i) Assume first that a1 > t > ag,...,ap4+1. By continuity, (2.1) is also valid if

some or all of the values ag, ...,an+1 coincide. To find the maximum of A(a,t) =
vn+1 (al—t)n71
(=D T o)

the constraints Z;‘Jrll aj = 0, Z;‘Jrll a? = 1, we first look for the critical points of

A(-, %) in the interior of €, i.e. when ag,...,ant1 < t. We show later in ii) that the
maximum of A(-,t) is not attained on the boundary of Q. The Lagrange function

in Q := {(a1,a2,...,an41) | a1 >t > ag,...,ap+1} relative to

n+1 A n+1 n+1
L(a,t) =(n—1)In(a; — t) — Zlnal—aj B Za?—l +u Zaj
=1 j=1

gives the critical points of A(-,t) relative to the above constraints,

oL n—1 1
= - A =0
Oa; a1 —t Zal—a-+ a ’

oL 1
— = +Aa+pu=0,01=2,....,.n+1.
6(1[ a; —

As shown in [8], this implies p = njrl a1 —» A =n— (n—1);% and that the a,
[ > 2 are solutions of the quadratic equation > —pz —¢ =0, p = a1 — %ntlal

q= m% Thus there are at most two different values among the a;’s, [ > 2.

In fact, as shown in [8], for ¢ > there is only one possible solution x_ since

-2
v/n(n+1)’

the other one x4 does not satisfy z; < ¢. In this case, the only critical point of
A(,t) is aM) = | /i (L —1 ... =1). It is a (local) maximum by Proposition 1.3

no
2

v/n(n+1)

For n = 4, the condition

of [8], and hence the absolute maximum of A(-,¢). The condition ¢ > is

n—2
”+1) n+1

might be violated, and then there might be two different values among (as, as, a4, as)
in the case of a critical point a. Suppose ¢ := ao appears r times and a5 s times,
r+s = 4. Then a; + rc + sd = 0, a%+r62+sd2 =1 Ifr=s5=2 ¢ =

—% (a1 + /4 — 5a%> <d= —% (al — /4 — 5a%). Inserting these values into the
. 1

= 0 with the above values for A = A\(¢) and p = pu(t) gives

satisfied for all n > 5, since then

2
a formula for ¢, namely ¢t = 5;57;2, a; = 2t + %\/ 100¢2 — 10, which is > \/% for

t > 0.34. However, 0.365 < \/1% < t by our assumption on t for n = 4. Thus
the case r = s = 2 is impossible. Similarly, also » = 1,s = 3 is impossible. This

leaves r = 3,5 =1, c = — 1 <a1 + l\/12 - 15@%) <d= —% <a1 — /12— 15a%>. In
a1(80a2+17)+34/12—15a3

40(8a%—1)

this case t = =: ¢(a1). The function ¢ is strictly decreasing
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W/ 15 5, 2].  Ome has ¢(aq) \/ for a1 < ’/10’ hence ¢(a;) = t has no

solution a; € [4/ 5,1/ For —0 <a < %, one has gi)(,/ﬁ) = \/%, and

¢ is bijective ¢ : [/, \/j] — [%% %] The equation t = ¢(a;) = d has the
solutions a = \/1— ~ (0.548 and a = 2 r ~ 0.667. For a < a1 < a we have

d > t which is impossible. This leaves the possibility that a1 € [123 \1ﬁ —] with
¢ < d < t. In this case, 0.335 ~ z% <t< ¢@ = f ~ 0.411. The value
\/Z =~ 0.365 is in this range. For a = (a1,c,c,c,d) € S* with t € | %,\/%],

9a1(260a —128a2+17)—3(20a%+8a2—3)+/12—15a2
we have A(at) = Afa:¢lan)) = iy g

Comparing this with
3
a1(80a2 +17)+3 12—15a3
A(aW 1) = A(aM, ¢(ay)) = \6[%2 (\ﬁ_ — 40(8a7-1) 1) ’
(tedious) estimates show that A(a,¢(a;)) < A(aV,¢(a1)) for all a; € {%\/%a %)a

with equality for a; = \/%. Thus A(a,t) < A(a,t) for all /2 <t < \/%. In

fact, for t < £ ~0.3877, A(aM,t) < A(aP,t), with £ € [\/Z, —~].

157 /95
ii) The boundary of Qini) is A = {(a1,as,...,an+1) \ a1 >t=ag > as,...,ant1}
Note that by Lemma 2.1 i) we have as, ..., ap41 < (n+1) < t. For t = as we have
_ Vntl (a7 . +1 _ +1 2
A(a,t) = 1, Hﬁ;(al—aj) with constraints Y71 o aj = —t, Y0 Lo af = 1%,

The corresponding Lagrange function yields the necessary conditions for critical
points of A(-,t) in A relative to the constraints

0L n-2 & 1
- — A =0
aal aL —t z;al—aj+ CL1+,Uf )
oL 1
(4.1) — = + A +p=0,1=3,...,n+1,
8&1 alp —
implying for I,k € {3,...,n+ 1}
a; — ag 1 1
= — = Mar —ap) .
(a1 —ap)(ar —ag) a1—a a1 —ay (i = o)
. _ ]_ _ —a]—
If there are | # k with a; # ap, A S T ey anduf—%.

Therefore there are at most two different values among the a;, 1 € {3,...,n+1}. We
claim that there is only one value. Suppose to the contrary that ¢ := a; # a =: d
satisfy (4.1) with multiplicities p and ¢, i.e. p+q¢ =n—1, a1 + pc+ qd = —t,
a? + pc® + qd*> = 1 — 2. Inserting the values of A and yu into the first equation of
(4.1) yields

n—2 p+1 qg+1

_ =0,
ar—t a1—c a1—d
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or equivalently
(42) F:=(n—-2)(a1 —¢c)(a1 —d)—(a—t)[(p+1)(a1 —d)+ (g +1)(a1 —d)] =0 .

However, we will show that F' > 0 holds. The quadratic equations for ¢ and d imply
with W= (n — 1)(1 — a? — 2) — (a1 + t)?, assuming that ¢ > d,

t 1 t 1
c=_BEt, W, q=-9*t PyW
n—1 n—-1\p n—1 n—-1\gq

t 1 t 1
al—c:al—i—al+ — \/a\/I/V,al—dzal—{—alJr + \/ﬁvW.

n—1 n—1 n—1 n—1

Inserting these values into (4.2) and using \[ \/E (p+1 \/7 (g+1) \/7 =

f’ calculation yields

(n—1)°F = (n+1)[(2n - 3)t2 + a1 ((n® — 3)t — nay)] — (n — 1)(n — 2))

pP—q, o
+ n° —2)t — na .
Lt =2 may) VW
n—1 n+1 2 2
Since a; < ¥(t) \/ \/1 t? — - < 1.916t < 2t for all n > 4, (n* —

3)t — na; > 0. Further, a1((n? — 3)t — nay) is strictly increasing as a function of
a € [t,¥(t)] for all n > 5, and for n = 4 attains its strict minimum at a; = t. For

ap >t > 3(n+1) W < "‘H To show F' > 0, the worst caseisp =1, ¢ =n — 2,
since then % = \7/17:?2 attains its (negative) minimum. Replacing in this case
first W by ;f and then a; by ¢, we conclude

(n=1°F > (n-2) ([(n +3)(n+ 1)1 = (n—1)] = (n = 3)(n+1) 3(7;*_12)t> .

The right side is increasing in ¢, its derivative being positive for ¢ > 3(’;‘;21) =: {g.

Note that g depends on n, but for simplicity of notation we will omit the index n.

Replacing t by 4/ 3(n +1) the right side becomes zero and we conclude that F > 0.

Therefore all a;, [ > 3 satisfying (4.1) have to coincide, a3 = -+ - ap41 = —‘:;—_‘*‘f,
W =0, a; = 9(t) and for a = (a1, t,as,...,as)

(n =Dy = (a —t)"2 (n—1\""" 1= g2
WA(’t)_<a1+%+f>nl‘( n > v()(

For n > 4, (t) = 0.6992 and ¢(t)(1 + 5 56)" " = (1 + grG;)" " > 1.01 > 1,
n > 4. Since t > tg, ¥(t) < P(to), implying

(nn\/Tl)llA(a,t) < <”n1>n1 (1 _ wéo)>“ .
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We compare this with

1 n—1
A t) = 1— t
N7E Sl A n !

and want to show that A(a,t) < A(a™),t) for all t € [\/3(’:;21), \/ (njrl)] and n > 5

(1_ t )n 2
— 90’ g decreasing
(17 n+1t)n71

n

and for t € [0.37, /23] for n = 4. The quotient hy,(t) =
s n—2 n—1 :
in [\/m, \/m], since

—(n— ntl _ n— _
iy = AW -0 0D -0

("5 = O ((te) — 1)

The last inequality holds since for ¢(t) = —(n — 2)(y/2=L — ) + (n — 1) (¥(to) — 1)

we have ¢/(t) = —1 < 0, ¢(tg) < —%, n > 4. Therefore with ”Tﬂto = ”3—;2
A(a,t) < A(a, to) - n2—1\""'fne1ye (- J?O))”’Q
A(a® 1) = A(a® tg) n? n (1— /221 '
3
We have @ n 27— 1 =< 2n 3, the latter inequality being equivalent to

20=1 < 3L 2(2n —3)? < 9(n — 1)(n — 2), which is true for all n > 4. Hence

Alat) <n2—1>“1 (n+1>% =
A(a® 2 —oNn1
(alV), ) n n (1—/n=2)n1
which is < 1 for all n > 5, the right side being decreasing in n, as can be seen by

taking the logarithmic derivative with respect to n: The base in the numerator tends
to 3, the one in the denominator to 1 — L > 1 for n — co. For n = 4, 2@t _ -

\/5 3 » Al
for all t > 0.37. For t € [/&,0.37] with /& =~ 0.3651 we have A(a,t) < A(a? 1),
since the formulas for A(a,t) and A(a®,t) show for these t and n = 4

3) = 3 B3 /6 < 0.0355 < 0.0374 < A(a?,0.37) < A(a?,1) .
15 16 32
Therefore the maximum of A(-,¢) is not attained on the boundary of € in 1).
Actually, for \/% <t < 0.3668 we have A(a(V,t) < A(a,t) < AP t), when
n =4.
iii) Assume next that a; > ag >t >
tion 2.2

(n—l)!A( o ! ( (ap — )1 (ay — )" ): B(a,t) — C(a,t)
) ) . .
J

A(a,t) < A(a,

m > as,...,0n+1- Then by Proposi-

a — J—
Vn+1 ar —az \ [[M25 (a1 — aj)  [[}25(a2 — ay — ap
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By continuity, this formula also holds if some or all of the a;, 7 > 3 coincide.

Fix ay > ag > t and consider (a; — az)A(a,t) as a function of (as,...,an+1) with
constraints Z;“Lgl aj = —(a1+as), Z?Jr?} a? = 1—(af +a3). The Lagrange function
L(a M 1) i= Bla,t) = Cla, ) + 2070 a2 — 14 (@34 a3) + (S 4+ (a1 +02))

yields the critical points of A relative to the constraints via

L B(a,t
87: (a’)—c(a’t)—’—)\al+lzt:0)l:37’n+1
da; a1—a; as—aq

This implies that all coordinates a; satisfy the cubic equation in x = q;
B(a,t)(a2 — x) — C(a,t)(a1 — z) + Az(a1 — x)(ag — x) + p(ag — x)(aa —x) =0 .

Therefore there are at most three different values among the coordinates a;, [ > 3
of a critical point a € S™. Suppose these occur with multiplicities p,r,s, p +r +
s =n—1, and call them (z = a; =) ¢, 4, €. Then a1 +as +c+d+e = 0,

P’ T S
2 2,2 d2 & _
af+a;+ 5 + 5+ 5 =1and

(n—1)!
NoEs

A(a,t)

_ 1 ( (a1 — 1) B (ay — t)"! )
ar —az \ (a1 — £)P(ar — D (a1 = €)*  (ag — £)P(ag — $)"(az = €)*
B-C
ay—ag

Suppose that £ < < ¢. Then ¢ < 0and by Lemma 2.1 a1 < /-2, ag < 4 /2(2+11

We perturb the values ¢,d,e by § >e:=00 >0, § := ¢ T’ 2 € (0,1) in the following

.5

way: ¢ =c+(0—¢),d =d—90,¢ =e+e. Then a1+a2+c +d +¢€ =0,
a? + a3+ % + drﬁ +€2 =14 0(6?), since s(0—e)— 45+ ¢ = 0. These values are
independent of ay. Calculatlon shows that

gor(6) = T
(a1 =5 —(1=0)7)P (a1 =T+ 7) (e — 5 —05)°
satisfies
9ar (8) = 9, (0) + (06— 5) 5+0(5%)

(a1 — —)P-H(al — d>r+1(a1 )5+1

where the terms in the numerator are positive. (The value of e could be modified
e = 05 + O(6?) to guarantee that a? + a3 + < + ﬁ + £ = 1 holds precisely.
The additional second order perturbation yields the same result for gq,(9).) Let
B(6) := (a1 — )" g4, (0) and C(8) := (ag — t)" g4, (d). We claim that the first
order perturbation of B, B(d) — B(0), is bigger than the one of C, C(d) — C(0), so
that B(6) — C(8) > B(0) — C(0), as § — 0 (up to O(6%)). This is equivalent to the
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inequality (a1 — )" "1g4,(0) > (a2 — )" 1gq4,(9) for small 6, i.e.

+1 +1
a; —t n-l al—; P al—g " al—g st
as —t “\am—c d as — ¢ ’
2 2= 5 as — 2= 3
p+7r+s =mn—1. By Proposition 3.1 this inequality is true. Therefore, fixing
a; > ag > t, A(a,t) increases if ¢ is replaced by ¢ + d1, d by d — d2 and e by e + 03

for small §1,0d92,03 > 0 depending on each other. This holds independently of .
Therefore the maximum of A(a, t) relative to fixed a; > as > t occurs for o= % <

Further, we claim that in the maximum case, the multiplicity of ¢ should be s =

If s > 2, the vector a would have p coordinates g and s coordinates ¢ with g < £,

@O -

p+s=n—1c+e=—(a1+a2), % + é = 1—a? —a3. Define a perturbed vector a’
having p coordinates % = ﬁ%@, s—1 coordinates % =<- S% and 1 coordinate

= ¢+ —¢(0), where () = %i °~= for small 6 > 0, 0 < ¢(§) < 6. Then
e = %—i—%—i—O(é?’) =1-a}—ad3+0(8%).

d+d'+e = c+e = —(a1+az) and &+
Let
1
a, (0) = (9)

c
(01— 5 =5

Calculation shows that

Do

Gay (5) — Yy (0) = + 0(53) )

N =

(ay — %)p“(m _ §)s+2

with ¢ — 2 > 0 being independent of a;. We remark that if £(d) is chosen as
the solution of the quadratic equation implied by requiring that o' satisfies the
constraints exactly, and not only up to O(6%), the same is true. The given value
g(8) is an O(6%)-approximation of this solution. Again we have B(§) — C(§) >
B(0) — C(0), i.e. A(d’,t) > A(a,t), since

ap —t\"" 1> “y - ar — ¢\
as — t as — % as — § '
The last inequality follows from Proposition 3.1 with the choice r = s —1, s =1,
2 2
ct(s=1f+¢=—(ar+a)and p(£)*+ (s = 1)(£)* +(£)* =S +< =1-af —a3.
The vector a’ again has three different coordinates, the largest one of multiplicity
1. Applying the first case then shows that in the maximum case the two smaller

coordinates should coincide.
For e of multiplicity 1 and of multiplicity n — 2 we have

(n - D! _ ! (e —t)" ! B (ap — )"
V1 At = o ((al =25 —e) (a2 — ;55)" (a2 — €)> ’

with a1 +as+c+e =0, a1+a2+ 2+e = 1. This yields ¢ = —f(a1+a2) \/"TQW,

e = ——L-(a1 + ap) + L= W where W = /(n —1)(1 —a? — a3) — (a1 + a2)?,
with 55 < e, ¢ < 0. The square root W is well-defined, since by Lemma 2.1
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ay < Y(ay) = \/” 1\/1 - % or equivalently a; < w(az) In fact, ¢
is strictly decreasing and 1 : [\/ i D) ,1/1(\/3(nJr1 )] — \/ n+1 (\/3(

bijective with ¢! = 1) and (, /sty n+1 \[ V2= %, / n+1 % Further,

¢(\/28L_+11)) = \/2(n+1). Inserting the values of ¢ and e, we have that

(4.3)
MA(a t) = 1 ( (a1 —t)"!
\/m al — as (al 4 a1+a2 + (n I)W)n_2(a1 + a’rlztliz _ \{L?W)
_ (ag — )" ! )
(az + SEE + gy W) (a2 + S - EEW)
1
i — (B(a1,a2) — C(a1,az2)) .
By Proposition 3.3 B(al’ajl):i(al’@) is increasing in ag. Thus the maximum of A(a,t)

. . . 1
occurs either for ay — aq, if a1 < ( +1) or for ag = ¥(ay), if a1 > 1/%.

Recall here that , /("Tfl) <az <4/ 2(n+1), so that in the latter situation as = a; is

impossible.

iv) We first consider the subcase of iii) that ¢t < a1 < 3y and

2(n+1 (n+l) < a3.
Then the limit ay — a1 can be taken in (4.3) using l’Hosp1tal’s rule, yielding with
V(n,a1) := /n—1-2(n+1)a} and @ = (a1,a1,c(ar), - ,clar),d(ar)), c(ar) =

2 V(n,a 2 vVn—2V(n,a1)
= \fn72(n1421) and d(ay) = — 20 + YRR tha

(4.4)
(n+ 1., (n—1)

)

n—1

= (al _ t)_n72 M(nata al) = f(n7t7a1) y

<a1 + m‘/(n,al))n ' (al \:L:V(n, a1)>2

where M(n,a;) = 4a? + (n — 1)ast — Z—I_% - mpal + (n—1)t]V(n,a1). We

claim that f(n,t,a;) is strictly increasing as a function of a;. Let

fl(n ; (11) — (a1 — t)n—g
% : n_2

(a1 + mV(n, a1)> (a1 gV(n, a1)>
falmtran) o= o ) Mn.tar)

(a1 + mV(n,m» <a1 \{l:V(n,al)>

Then f(n,t,a1) = fi(n,t,a1)fa(n,t,as). We will show that for n > 5 the functions
f1 and f5 are both increasing in a;. For n = 4 we have to multiply fi by a1 — ¢
and divide fs by /a1 — t to get the same result. Since f1, fo > 0, it suffices to prove
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that (In f;)'(n,t,a1) > 0 for a; > ¢ and ¢ = 1,2, where ' denotes the derivative with

respect to ay. As for f; we have, using V'(n,a1) = 721(/?:2@)1»
2a1v/n—2 2a1v/n—2
(n f1) (n,tay) = “=5 17 (RN ()

o N B t V(n,a1) Vn—2V(n,a
ax ai + \/7(7114-1) a; — #
n—3 (n— 1)A n—3

- ’ A= 3 — V , .

ar—t  aA— n+1 (n+3)ay N (n,a1)

This is positive if and only if

n+1 2a1 n+1 2a1 n—3
1 - A= - - .
<3 <t n—l) — <t n—l) <(n+3)a1 f_2V(n,a1))

Assume first that n > 5 holds. For the last inequality it suffices to verify

n+1 2a1 n—3
1 t— 3)a; — \%4 =:
< n_3 ( - 1) ((n+ )ai V=2 (n,a1)> gn(ar)
for all a1 € (\/3&7;21), \/2(’;7111)] =: I,, since in this subcase a; < 2&111) is as-
sumed. We have g, ( 3&7;21)) = 1 and we will show for all n > 5 that g¢/,(a1) > 0

for all a; € I,,. We find

gﬁl(al)_ n—2 B 4aq
n+3 3n+1) n-1

(45) n 2(n — 3) (n+1)a; n—2  2a n V(n,a1)

' (n+3)vn—2 | V(n,a1) 3n+1) n-1 n—1 |~

: n—2 4a1 .
Since SntD) e = n+1 2\/712 7 =: k(n) > 0ifand only if (n—1)(n—2) >
24, i.e. n>1T7, gn(al) > O holds for all n > 7, since the bracket [-] is always positive.
For n = 5,6, k(5) = f f_ —0.169, k(6) = (\/127— Z) ~ —0.0417. For

n = 5,6 we have to estimate [-] from below. Easy estimates show that

f

_n=2 _ 201
ai ( EICESY) ~2L) > ap, where as =

bracket [-] in (4.5) is > ¢(V(n, a1)), Where o(s) = A—i—Bs s> 0,with A = (n+1)a,

and B = —1-. The minimum of ¢ in (0,00) is 2VAB = 2,/ attained at

s = \/ . Hence for n =5, 6 gg(f;) > (n+(:57;\/?’)72 Zﬂan Inserting the values for

n, oy, yields that gf(ap) > 15 > 0 and gG(a) > 2 > 0. Thus gp(a1) > 1 for a; € I,
and hence fj is strictly increasing for n > 5. Similarly for n = 4, /a1 —t fi(n,t,a1)

, g = ;—5 for all a; € I,,. Therefore the
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is increasing in aq1. Concerning fo we have
N(n,t,a1) := M'(n,t,a1) = 8ay + (n — 1)t

n—3 n—1
2 4a? + (n — Dagt — >,
\/n—2V(n,a1)< 1 Jar n+1

V(n,a1) vn—2V(n,a)
M. t = 1 —
2(nta1) = (n+ )<a1+m(n+l)> <a1 n+1
n—3 n—1
= (’I’L + 3)@% - 7ma1V(n, CL]_) - "+ 1 .
We get
n— (n=3)(n+1) _ af
L 2043 — 2V (na) + 2000 o
(In f) (n,t, 1) = —— — v ynoz Tnm)
ap —t M2(n7ta al)
N(n,t
+ (na ,(11)
M(n7t7a1)
B 1 2(n+3)a; — \;‘%V(n, ap)
o a1 —1t MQ(n,t, al)

n N(n,t,a1)  Na(n,t,a1)
M(n,t,a;) Ma(n,t,a1)) ’

with Nao(n,t,aq) := o(n=3nt1) &1y claim that both terms in the brackets
n—2 V(nval)

are positive. Calculation shows that the first term in brackets is positive if and only

. (TL+3)CL +Z+} . _— n—2 1
ift > ot 3ar— =V (man) H,(a1). We have H, (\/ (n+1)) \/W and claim

that for all n > 5 the function H,, is strictly decreasing in I,,. Then for a; > t,

Hy(a1) < 3( ) <t will be satisfied. As for Hj,, we find with = 1> 2a}
n—3 (n+1)ax
(0 o) = — 201 G Vi)
" (n+3)af+ 157 2n+3)ar — 5V (n,a1)
n—3 (nt+1)ay
< 1 _ 1+ (n+3)v/n—2 V(n,a1)
T (n+5)ar 2(n+3)a; — %V(n, ay)
Calculation shows that the latter is negative if and only if
n— V(n,a n a
1< \/73((71(4-1):13 + Tig\/(n,lal)) ¢( Vinan) ) =: Ip(a1) with A : nT—l and
B = "—ig in terms of the above functlon ¢. Therefore 1,(a1) > \7?%322\/14 =
\7732 (n+1)(2+3) =: ®(n). We have that ® is increasing with ®(5) = @ >

1. Therefore H, is decreasing for all n > 5. The second term in brackets is
positive if and only if g(n,t,a1) :== N(n,t,a1)Ma(n,t,a1) — Na(n,t,a1)M(n,t,a1) >
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0. Calculation shows

n—1)2
g(n,t,a1) = ((n +1)(n + 3)a? — (n—&—11>> t+

2a1

1
5 (2(n2 +8n—21)a? + ———(n? — 10n + 17))

n — n+1
n—3

B vn—2(n+1)

V(n,a) [8(n+ 2a? + (n —1)(n+ 3)ayt — 221” .

Since V(n,aq) is decreasing in a1, g is obviously strictly increasing in a; and in ¢.

We have for t = a; = that g(n,t,a1) = 0. Thus for ¢t < a1, g(n,t,a1) > 0,

3(n+1)
and hence f5 is increasing in ap, too. For n = 4, b(zi\/li_atl) is increasing in a; and

hence f(4,t,a1) is increasing in aq, too.

We conclude that for ,/3&7121) <t<a < ,/2&%11, A(a,t) is increasing in aj.

Since for a; — L V(n,a1) — 0 and hence @ — a?, we find from (4.4)

(n+1

A, t) < Aa®,t) = (ﬁ’f)ﬁ ( 2%11))” (\/%“) (\/%‘t)w’

ift<

50n +11) coinciding, of course, with the value for A(a(®,t) given in Proposi-
tion 2.3. Therefore in this case a(? yields the maximum of A(-,).

v) Secondly, consider the subcase of iii) that a; > (n +1) =:t;. By Lemma 2.1,

ay < Pla1) < Y(ty) =t;. Thus ag >t > ag >t >ty := (n+1) Since A(-,t) is

increasing in ag, the maximum occurs for ag = 1(a;). Then W = 0 and

n—1 n—1
a1—t o ag—t
oo, () - (o)
4.6 N Aat) = —: Blay, as,t) .
@) Ay p— (@r.02.1)

/ _ _n+l Vn—1lay _ 1 - ; —
For a; > t1, ¥'(a1) by ey 1. Since ¥(t1) = t1, we have for

a; > t1 and a suitable 6 € (t1,a1)
a1 —az = a1 —P(a1) = a1 —t1 — (Y(a1) —P(t1)) = (a1 = t1)(1 = ¢'(0)) > 2(a1 —t1) -

We will show for n > 5 that A(a,t) < A(a™),t), considering two cases: first,
n_l
2(n+1)
are sufficiently far apart that we can omit the second term in B(aq,as,t). In the
second case, we use the mean value theorem to estimate B(ai,as,t). The second

case is investigated in part vi) below, the case n = 4 in part vii).

a; > =: ty and secondly t; < a; < t3. In the first case, a1 and az = ¥(a;)
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Thus let n > 5 and a; > to > t1 > ag = (a1) >t > ty. By (4.6)

(4.7)
0D g0ty < 5 -t \"_egyt (- T
vn+1 @ 2(a1 —t1) \ qy + M © 2(ag —t1) \ 1 4 L¥a)

n ap
(m=lyn=1 1 L\ !
o al =1L
2(a; —t1) \1+ 1L ’

n aj

IN

IN

Since 1% = Id and 7 is decreasing, this implies a1 = 1(a2) < (to)
%to < \/;,/n%rl =: tg. The last inequality follows from "i;l < (

n

%to)2 =1- n+1 + nQ + \/§n+1\/ 7_1 , which is implied by 1 —
n > 5. We want to show that L is strictly less than

1 n—1
(n—1)! 1 ( n >n_2 n+1
=) AW, ) = 1 t] =R
Vn+1 (a¥,%) n+1 n ’

i.e. that (4.6) does not yield the maximum of A(-,t). We have

_1 n—1
G e -
R 2(a; —t n+1 1.t
(=t \a-y/=a+ih)
1—-t
Now A(t) := In( “ ) is decreasing in ¢, since
(1= B (15 35)
Wit) = - + —= - S TS S < 0, so that h is
ar—t Lt artat (-t artqt )
maximal for ¢t = tg := 3(7;7121) Therefore
2 1 —1
L (ST — o '
R = 2(&1 - 751) n+1 11 - Qn(al)-
(0]
(1= /" to) 1+ 5 3)
n—1
_to
We claim that ¢(a;) := alitl . L“ta)l(H — )) is first decreasing and then
n n ay

increasing in (t1,t3]. This will imply Qp(a1) < max(Qn(t2), Qn(ts)) for all a1 €
[to, t3]. The logarithmic derivative of ¢ is

oy 1 (n — 1)t (n— 1)t
(ln gb) (al) - a] — tl al (a1 — to) al (na1 + to)

_ nt0a1 — a% — (TL — 1)t0t1 (n — 1)t0
(a1 (al — to)(al — tl) aj (na1 + t[)) '
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The first term is negative for a; > t1 close to t1, being singular at ¢;. The quadratic
term

q(ay) = ntgay — a% —(n—tot1 = \/ n-2 (7? \;Tzn_i)12)3> a%

The second zero of g is near ntg — t1, clearly > 1

is positive at a; = t3 = 3n+1
for n > 5. Thus the first term in (In ¢)’(a1) has exactly one zero a € (t1,t3). It
is decreasing in modulus for a; € (¢1,a), since ¢ is increasing there, with negative
values, and the denominator aj(a; — to)(a; — t1) is increasing, too. Therefore also
(In¢)'(a1) has exactly one zero a € (t1,t3) with a < a, since we add a second
positive term. This means that ¢ is first decreasing and then increasing in (t1,t3).

Therefore I
— < Qnlar) < max(Qn(t2), Qn(ts)) , a1 € [t2,t3] .

R
To estimate Q,(t3), we use m S (ff+f\/ 1) < (V6+-3 )7:_::23 <
4.6 — m Logarithmic differentiation Shows that fi(n) := (1 + fn\/" n=2yn—1 jq
increasing in n, so that fi(n) > fi(5) > 3 for n > 5. We also use fo(n) =
(Ligl)"—%\/g < 1. Note that {2 = f\/> and /2t = \/ . The func-
1_7
. _ 7 — __ V3-v2
tion f3(a) := e is decreasing in « € (0, 1), since (In f2) () = Fraia) <

1— n—2

0. Applying this for a = /222, fy(n) := \/L"Q satisfies f4(n) < f14(5) < 0.82 for
1=y 5
all n > 5. We conclude that

11 fa(n)» 1 2 11 1
t3) < (4.6 — < —(4.6 ———)0.82""" =
which is decreasing in n, with f5(n) < f5(5) < 0.98 < 1 for all n > 5.

As for Qn(t2), we have t—o = % ; 1/"THt0 = ”3—712 By the arithmetic-
geometric mean inequality 2(t =V2yn+1(y/n—3+vn—1) <2V2n+ 2 NG
Therefore

NN - 55
n® — 2 n _—
e < vt (M) i Vil
(- 5=+ 8, F)
Ve
Let fg(n) := ——=. Then fs(5) < 0.604 and we claim that fs(n) < 2 for all
=
n > 6. This is equivalent to 2 < 5 %:_% —3y/z2= = f7(n). Now ”:E >
2 2

1—71/ <1—ﬁ,sothatf7 5[ \fl—%)>2foralln>7

Also f7(6 ) > 2. Further, fs(n) = (1 +1 %Z_—f)” 1'is increasing in n, being

2



1312 HERMANN KONIG

essentially of the form (1 + %%(1 + O(1)))", with fg(n) fs(5) > 1.64 for all

2v2n n— .
n > 5. Hence for n > 6, we have Q,(t2) < 124 (%) ! =: fo(n ), which

is decreasing in n, with fo(n) < fo(6) < 0.83 < 1 for n > 6. For n = 5, the

2

estimate has to be refined: first, replace to ~ 0.6124 by to = ~ 0.6191,

(n+1)

with ﬁ < 12 and the corresponding f6( ) < 0.617, f3(5) > 1.64. We also use

f2(5) < 0.931. Then for n =5, Qn(t2) < 15 64 0.931-0.617* < 0.99 < 1. This leaves
the estimate for Q,(ay) for a; € [tz,t], n = 5. In this situation, we may improve

the estimate 1+ 1 w(m) >1+ 1 t leading to L, by using w(m) > w(b) > 0.86 and
(14 1%layn-1 5 (1 + 086yn— 1 > 1.88, n = 5. Then for a; € [tQ,tﬂ and n = 5,

n al

10v2
1;82‘f 0.931 - 0.604* < 0.96 < 1. This shows A(a,t) < A(a™M,t) also for
D.

vi) We now study the case n > 5 and tg < t < az = ¥(a1) < t1 < a1 < ta.
Again, we estimate the right side B(ay, az,t) in (4.6). Let v := 1292 and consider

g(x) == (ZL)"1. Then ¢'(x) = (n— )Lt +9), o"(2) = (n - D& (1 +
Y)(n(t +v) — 2(x + 7)). Since 4t > 2aq, 2t > az, ¢"(x) > 0 for all z € (a2, a1).
Therefore ¢’ is increasing in (ag, a1) and we find from (4.6) with suitable 6 € (a2, a1)

_ 1oy — (a1 —t)" 2 ai + az
B(al,ag,t)—g(ﬁ)gg(al)—(n—l)m H‘ﬁ .
To estimate B(ai,as,t), we will use a; + ag = a1 + ¢(a1) < 2t;. This follows from
V() < -1,z > t1 Further, we claim that “2 >1- %% Slnce Y is decreasmg,

a5 ¥ t2) \/n2 on4+1 \/n2 2n+1 > 1 +
ay — 2n—1 2n—1

L
R
n =

. Our claim will follow from

n2—12n+1 1B1 5 41 1
This is true, since for n > 5 we have g 12 Er =25+ 25 T3 Thus

(14 Lazyn (1_,_%(1_%%)) >(1+ 2L %forn>5. Weﬁnd

n ay 25n

sz (2 (o 20) 85

na1

9 n—1\" 2% (1——)”2

< —(n-1 t a1 )
_20(n )< n > (+n—1) a?

1
The function k(a;) := —5—— is increasing in ay, since (Ink)’(a1) = anli;fg) > 0.

Therefore

9 n—1\" 2t1 (1- *tt )2
B < —(n-— 2 = L.
(a1,a2,t) < 20(71 1) < > <t+ ) t% L

n n—1

Again we claim that A(a,t) < A(a™),t). This will follow from % < 1 with R as in
v). We have

L 9(n—1)<”2_1>n notaty (o)t
n

R n? -1 13 (1- /Lﬂt)n—l'
n

R~ 20
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1— t \n—2
The function h(t) := (t + 5)((+)1)1 is decreasing in ¢, for any fixed 6 € (0,1),
1—y /L gyn—

since (Inh)/(t) = = — 2=2 4

_n=1 _ 1 + 1 (n_
t+d a1—t /nLJrl*t t+6 /nLJrlit

Thus % will be maximal for ¢t = ¢y, when 2 = %7’;‘:3, ntlyy = /422 and
2
then, also using (”251)” < exp(—1),
n_ 1— 2 n—2 )n—?
L 9 1 2 /n(n—2) 1 ( 3p_1
— < —(n—1)exp(—— A V5) : =: a(n
R_QO( ) exp( n) V3 n—13 n—i (1—,/in=2yn—1 )
3 n

Thisgives%§a(5)<099<1f0rn—5 For n > 5, we use 1+ 2 < 14 § for

x <1toestimateivn(n 2) +2\f”"1 <l—#+¥<§foraﬂn27.
V3 V3 V3n | n—1 5

For n = 6, the left side is also < § Therefore

2n—2\n—2
L 18 —/5.°1)
£ < 5= Desp(—) :
R =2 1— ,/1ln=2yn-1
STk b
We know from part v) that - n_z < % for n > 6. Using also 1 — %”T_Q >
Ele
1— 2 > 2 we get for all n > 6 that £ < Zexp(—1)(n—1) ()" "~ —. B(n). Since
(nﬁ) n) = n2 + L —In(3) <0 for all n > 6, B is decreasing with £ < B(n) <

B(6 )<095<1f0ra11n>6 Therefore A(a,t) < A(a™,t )foralln25.

vii) Last we consider the dimension n =4 and a1 > t; = \/13—0, as =YP(a) >t >

to = 1/ . We have

6 o 1 (a1 - t)g . ((Iz — t)?’
(4.8) At = ( ) .

al — ag (a1 + L?{M )3 (GQ + Lgm )3

This is equal to —— [ G (t+a), a = 932 > B := 0.3548, since

ar—az Jaz (z+a)?

h(z) = ((f;;); has the derivative h/(x) = (($+a))4 (t + «). Let to := 0.404. We show

3
that A?a(?f)t’)t) is decreasing for ¢ € [to, /4], where \(}A( aM t) = o <\/g— t) . By

the integral formula, it suffices to prove that k(t) := (E/Z)p(t + ) is decreasing
4y
5

in ¢ for any x < a3 < (t). Note here that t < as = ¢(a1) implies a1 < 1(t) since
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¥? = Id and v is decreasing. We have for 2 < 9 (to) < 0.6717

—2 3 1
Ink)(t) =
(Ink)'(t) xt+\/§_t+t+ﬂ
2\/;4-75—3.% 1 1 1
- > < 0.1777 < -0.03<0.

+ - +

t —  0.268-0.491 . -
@-t(fi-r) 1P 68-0.491 ' 0.758
Therefore k is decreasing for ¢ € [to, %] Thus if we prove that A(a,tg) <
A(aM o) holds, A(a,t) < A(aD,t) will follow for all ¢ € [tg, 1/ 3.

Calculation shows that the formal singularity in (4.8) can be removed; we find
with ag = Qﬂ(al)

3
6 t afe2 2
%A(ayt) = <(a1 + a1§a2)(a2 + a1§a2) ((11 - CLQ)

3(t 4 wtez)
(al + a1-§a2)2(a2 + a1-:|3—a2)
=: fi(t,a1,a2) + fa(t,a1,a2) =: f(t,a1,a2) .

(4.9)

5 (a1 - t)(a2 - t)

We claim that f(t,a1,1(a1)) is decreasing in ay € [/ 35,9 (1/35)] ~ [0.5477,0.6993]
for all t € [{/+%,t0). Then the maximum for these ¢ in (4.9) will be attained for

a1 = ap = 13—0, when fi1 = 0 and fo = %A(a@),t). Therefore for ¢t € [\/%,to],

A(a,t) < A(a®,t), with equality for a; = /3. For t > ¢ ~ 0.3877, A(a!?,t) <
A(aM 1), so that, in particular, A(a,tg) < A(a™),to) holds as required above.
Actually, for all ¢ € [y/ %, /5], fo(t, a1, (ar)) is decreasing in a1 € [y/+5,1(t)]

and f1(t,a1,%(a1)) is increasing. For ¢ € [/ &, to], f2 is decreasing faster than fi

is increasing (up from 0). One has for a; near 1/13—0

F(t a1, (ar)) = %A(a@),t)

2 3
54 2\ (7 2 ) 3 3
‘m(‘“‘ 15> <3+10\/15t_20t)<a1_ 10) 0 (al‘ 10>

This means that close to %, f is decreasing for all ¢ with ¢t < %(ﬁ + 1/1%) ~

0.4448. For t < to, f is decreasing in the full interval [/, ¢ (1/55)], as a tedious
calculation of the derivative %lf(t,al,z/;(al)) shows, using that 1 (a;) < —1 for

a1 € [y/35,1(1/55)]. We do not give the details of the calculation. The conclusion
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is A(a,t) < maX(A~(a(1), t), A(a®, 1)), with equality for ¢t < ¢ and a; = ay and strict
inequality for ¢ > ¢. O
Remark. For 0.411 < ¢t < 0.444, f in part vii) is first decreasing and then increasing

n [y/+,4(t)]. For t > 0.445 f is increasing in the full interval. The situation for

n = 4 is slightly different than for n > 5, in the sense that in the second case
ay > ag > t, t <t leads to a maximal situation A(a,t) = A(a®,t) in the limit

al = ag = ,/2(n+1) for n = 4, whereas for n > 5 it does not. The above quotient

A‘?éﬁ’f?t) is actually also decreasing for t € [4/ %,to], but the quotient may be > 1

for t < t.

5. DIMENSIONS n =2 AND n =3

We now prove Propositions 1.2 and 1.3 and start with the easy case of dimension
2.

Proof of Proposition 1.2. Let a € S? C R? with Z?:l aj =0,1< \/E and a; > t.

Then as + a3 = —aq, a% + a% = 1 — a2 imply that a3 = —% :I: 2 — 3a?,

(a1 — a2)(a1 — ag) = 3a? — 5. By Proposition 2.2 A(a,t) =
If es,e3 € H_(a,t) = {z € A?|{a,x) < t}, we have by Lemma 2.1 that 2¢ >

— 2 1 .
as +az = —ap > —\/;, t > ~ 7 Therefore, if ¢t < — f’ only one vertex e; can

be in H_(a,t). Using A(a,t) = A(—a,—t), it suffices to consider only one non-

zero term in formula (2.1) for A(a,t) when i) % <t< \/g or i) t € [0, -] or

) NG
—t €0, %].
ia_t__6a+1 12a1t . . . 7 _ .
We have da; 6;%_1 = (16a2 OE . This is zero for a1 =t + +/t 1/6, recalling

a1 > t. Fort > %%, ai > \/g which is impossible. For ¢ > i\lf, dglA( t) <0, and

A(a,t) is maximal for aq = \/g, as = ag = —2—\1/?:, ie. a=aW. For 7 <t< 4\/6’

% <ap=t+4/t?—-1/6< \[ and 63:2_ is increasing for x < a; and decreasing
for x > a1 Thus o € $? yields the maximum of A(-,t) in this range of . For
0<t< \f’ again %A(-,t) < 0 and A(-,t) attains its minimum for the maximal

value of aq, i.e. for a.
As for the maximum of A(-,t) for 0 < t < L we have to consider —t, i.e

NG

t d t 6a2+1+12a1t . .
A(a,t) = 2V/3 “1+1. Then E621%t1 = — (16a%71)21 < 0 and A(-,t) is decreasing

in a;. We need al > —t > ag,a3. Thus as +t < 0 with ay = %(\/2 — 3a? — ay).
This implies a1 > £(v/2 — 3t2 + t), and in the maximum case a1 = 3(v2 — 32+ t),
as = —t and a3 = —3(v/2—3t2 — t): Replacing —t = [t| again by ¢ yields the
maximum a!f! stated in Proposition 1.2. O

In dimension 3 there are more critical points of A(a,t).
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Proof of Proposition 1.3. Let a € S3 c R* with Z?Zl aj = 0 and t < @ If
62,63,64 € H_(a,t), we get using Lemma 2.1 1) that 3t > as+as+ay = —ay > —@,

t>— \/g Therefore, if t < — \/g’ only one or two vertices of A3 can be in H_(a,t).
Using A(a,t) = A(—a,—t), it sufﬁces to consider one or two non-zero terms in
formula (2.1) for A(a,t) when i) 2\[ <t< i or ii) ¢t € |0, 2\/3] —t € [0, 2\/5]

Thus we have to consider two possible cases in the volume formula (2.1): if a3 >
t > as,as, ayq, there is only one non-zero term in (2.1); if a1 > a9 >t > as, a4, there
are two terms, exchanging possibly ¢ and —t when [t| < 5 f

a) 1) Consider first the case a; > t > a9, a3, as. As in the proof of Theorem 1.1,
there are at most two different coordinates among (a9, as, aq). Letting ay = a3z =: ¢,
ay =: d, we have aj +2c+d = 0, a? + 2c® + d*> = 1. We have two possibilities

{ cy = §a1+ /6 — 8a? } { c_ = —%al— /6 — 8a? }

dy = —3a1— 1+/6 —8a? ’ d-= —3a1+3/6—8a} |~

For (cy,dy), c+ < aj requires a; > 2\1/5 and if a; >t > 2\/5, cy <t is satisfied. If
1 2

O<t<Zf,forc+<tweneeda1>§\/2—8t —t.

For (c_,d_), d— < a; requires a; > % and if a; > t > %, d_ < t is satisfied.

Ifo<t< 5, for d_ < t we need a; > l\/ —8t2 — L. Proposition 2.2 yields

=Oo| =

&
a1 — 2

A(a t) = f:t(alyt) = m We find with / = E

(In fi) (a1, t) = 7= y 1 [+£(3t—a1)\/6 — 8a2+30a,t—10a2—3] .

1=t 4a1+,/6—8a? 8a1F+/6—8a3

The denominators are positive, if a; > ﬁ or a; > %, respectively.
In the case of fy, let tg := 07 ~ (.4041. Since the factor

F(ay,t) = (3t — a1)\/6 — 8a} + 30a1t — 10a? — 3 is increasing in ¢, its minimum
for t > to is in to, with F(a1,t0) = (15v3 — a1)y/6 — 8a? + 7v3a; — 10a? — 3,

Which is decreasing in a;, with value 0 in a1 = \/g_ Therefore (In f1)" > 0 for all

f

<a < \f and t > tg. Hence for ¢ > ¢y, the maximum of f, isin ¢y = %=, i.e.

2f
a) attains the maximum. The minimum here is irrelevant, since t >ty > ﬁ and
the the minimum of A( t) is zero.

For \/» <t < 10\/> t()u F(alvt) = 0 if and Only if t = 3 + 1Oa1+\/677&¢%

$(ay). The function ¢ is strictly increasing and bijective ¢ : [== @] - [1s, L1

23 2 23 10 /3
For ﬁ <t < %%, let ap be the unique solution of ¢ = ¢(a;). Then fi is
increasing for a; < ap and decreasing for ag < a1, hence attains its maximum
at ap: In this case, A(-,t) attains its maximum at a := (ag, c(agp),c(ap), d(ao)),
o) — (ap—t)? _ (ao—¢(ao))?
A(a,t) = (ao — e T (ao—das)) = Tao—clag))®(ans dao) =: ®(agp). It can be checked that
for ag > 1, this is strictly smaller than AP t) = A(a®, ¢(ag)) = L — 2¢(ag)?,

so that a does not yield the absolute max1mum of A(-,t) for t > ¢(%) = 22+\/E s
t

~ 0.2887, A(a,t) > A(a®,t). But in this

0.2928. However, for t very close to \f ~
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case A(a,t) < A(alt,t) for the vector al® given in Proposition 1.3 and considered
in part b) i) below Actually, ® is decreasing in ag and A(al?},t) is decreasing in t,

so that for 2{ <t < P(3) = 0.2928, A(a,t) = ®(ag) < <1>(2f) = 10/3 ~0.3695 <

0.4069 ~ A(al( 230}, ¢(3)) < A(at®,t), and again @ does not yield the maximum of
A(-,t). We have lim, N Aals} s) = 2/3, see part b) i) below.

For 0 <t < \[,

attained at ¢t = 7 and F(aq, 2\[) = (%2 —a1)\/6 — 8a} + 5v/3a; — 10a? — 3 is
decreasing in a; and 0 in a; = 2—\/?:. Thus (In f1)" < 0 for all ﬁ <a < % and

F(ay,t) <0 : since it is increasing in ¢, the maximum of F' is

1 ni — 1 g3 — V3
0§t§2\/§. HencethemlmmumofA—f+forall()gtg2\/?:15111@1— 5

i.e. alM) attains the minimum of A(-,¢). The maximum of A(-,t) = f is attained
at the minimal possible value a; = 1\/ 2 — Sa% — t, and the extremal vector is

t1—< \/2 —8a2 — —;\/2—8a%—t>

i M4y = 1L
with A(a™,t) = Vo

i) In the case of f_, let F(a,t) = (a1 —3t)\/6 — 8a7+30a;t—10a3—3. Recall a; >
%. Then %F(al,t) = 30a1 — 34/6 — 8a% > 0 for a1 > % Hence F' is increasing in t.

For0 <t <ty= 1—70%, f is maximal in to, with F(a1,t0) = (a1 — 15V/3)1/6 — 8aj +

7v/3a; — 10a? — 3, which is increasing in aj, F(@,to) = 0. Therefore (In f_)" <0
forall 0 <t <ty and <a; < f, and f_ attains its maximum at a; = %, ie.
a® = $(1,-1,-1,1) attalns the maximum of A(-,t) in the case of f_ for 0 < ¢ < .
f

The minimum is in a; = %2, with vector a®),

Forto<t<%,WehaveF<01n§<a1<a0andF>Oina0<a1<§

3+10a27a7 678042
3(10;1 \/2/7;)1 =: ¢(a1). Here ¢ : [% l] N [to,%]

is bijective and strictly decreasing, so that there is a unique solution a; € [3, %2].

The minimal possible value of ay is @ = £v/6 — 8t2— L. Moreover, ¢(a) > t = ¢(ao).
Since ¢ is decreasing, a < ag. Hence the maximum of f_ is attained either in

ap = @ orina = Y2 Fort < = 04259 this occurs in @, for ¢ >  in 2.
In the latter case, the maximum of A(-,t) is in a(!). However, for ty < t < £,
f-(a,t) <i-2t2 = A(a? 1), so that the maximum of f_ for tg < t < 1 is attained
either in a(!) or in a(?.

where ag is the solution of t =

b) i) Next we consider the second case a1 > ag >t > ag,as. Then ag+ag = —(a1+
az), a% +a% =1 — a2 — a2 implies as4 = —m + l\/2 1—a? — a%) — (al + az)?,
where 2(1—a? — a3) — (a1 + az)* > 0 requires a; < 34/6 — 8a3 — % =: ¥(ag) < \/g

We also have t < a9 < % (= 2(7;7111)), as shown in Lemma 2.1. Therefore t < ag <

%, a; < \/% Proposition 2.2 yields with (a3 — a3)(a1 — a4) = 3a? + 2a1as + a3 — %,
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(ag — a3)(az — a4) = a? + 2a1az + 3a3 — % that
(5.1)
1 —t)? —1)?
A(a,t) = f(a1,a2,t) = ( on ) T~ L2 — 1) 7) :

a1 —az \3a? 4+ 2a1a2 + a3 — 5 a? + 2a1as + 3a% — 3

The critical points of A(-,t) satisfy 2 8 = g af = 0. In particular,

0= ( of of )(al,ag,t) (a1—a2)[4t(a1+a2)—(1— 2(1% 2a2)][t(1 Qa% 2a2)+2(a1+a2) —(a1+a2)] .

da1 Oas
Therefore either a; = az (in the limit ag — aq) or

da1 Oaz (3(1 +2a1a2+a2 2)( 2+2a1a2+3a2 )

1 —2(ay + as)? + 4ajas or f — (a1 + a2)(1 —2(a1 + a2)?)

5.2 t=
( ) 4(CL1 + ag) 1-— 2<CL1 + a2)2 + 4aias

First, suppose that ¢ > % Then there is no solution (ai,as) of (5.2), since for
172(a1+a2)2+4a1a2
2\/ 4(a1+az2) 2\/
aj +a2+a1:/“£2 3= (az— 2—\/5)(2ag+\f) (2a2+7)(a1—ag)+(a1—a2) > 0 and
(a1+a2)(1-2(a1+a2)?) <
1-2(a1+a2)?+4ara2 2\/5’
for a1 = a9 = #, which is not attained since a1 > ag. If 2a1 + 2a2 > 1, the left

because

<t<as <ar; < \/; we have in the first case <

in the second case also if 2a? + 242 < 1, with equality

side is > 3 and thus cannot be equal to t < \[ either.

Hence for t > f the only critical points of A(-,t) occur for a; = ay (limiting
case). Then a1 = aq <1 5 and by I’'Hospital’s rule
(5.3)

lim f(a1,a,t) =

i = m (al(Sa% — 1)+ t(1 — 4a?) — 4752@1) =: F(a,t) .
1

For a; = 4 we get F(3,t) = 1 — 22, with a = a® = 1(1,1,—1,-1). The critical
points of F' satisfy
OF 4
dar (1222 —1)3 [4(1 + 36a2)£2 — 8ay (5 — 12a2)t + (1 + 1242 — 96a%)] =0
1

with solutions

1 1
(5.4) ty =ty(ay) = T a1 (5 —12a3) + 5(12a% —1)4/28a3 — 1} .

Both functions t; and t_ are bijective in the following ranges, ¢, : [2—\1/5, %] —

[ﬁ, ‘/i‘)"l], t_: [#, 31— [ ‘/i)_l, ﬁ}, where t is increasing and ¢_ decreas-
ing. Here \/<1§6rl 0.3449, \[10 ~ —0.1449. Then t/,(a;) has the same sign

as +ay(3024ai + 504a? — 31) — (216a] + 108a? — 5/2)+/28a? — 1. For ¢ this is
non—negative and zero in a; = #

For t > f (5.4) admits a solution aq only for ¢t =ty (a1). Moreover ¢t < t1 :=

‘[1731 is required to have a solution. Hence the solution interval for t = ¢t (a;) is

te [#, ‘/556“1] with a1 € |

2\[72]
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oF

For t > 1, ;- > 0 and F is increasing, with maximum in a; = i.e. for

1
2
a®: The absolute maximum of A(-,t) is then in a()) or in a(®. Define tg :=
%m ~ 0.4357. For t > tg, the maximum of A(-,t) is in a}), for t < tg, in

a?. For 7 <t < ty, solve t =ty (a1) with a1 € (2\[, ). Then & 71 is positive

for ﬁ < a1 < dp and negative for a1 < a1 < 5. Hence F(-,t) attains its maximum

%, i.e. larger than for a(®. This yields the

maximum a{® of A(-,t) given in Proposition 1.3.
For ¢ ™\, ﬁ we have a; \ ﬁ and F'(aq,t) — 5\2[ gA(a( ) t).

in a1, with a larger value than in a; =

ii) Secondly, we suppose that 0 < ¢t < ﬁ in the case a; > as > t > as,aq.

4 . 1 1
Generally a € S, a1 > 0, ijl a; = 0 requires a; > 3 Then t4(a1) > CNEL

so that ¢;(a;) = t is impossible. However, ¢t_(a;) = t has a solution as long as
t_(a1) > 0. This means a; < i\/l + \/13—1 =: a7 ~ 0.4268.

But first, we consider the case a; = as < 1 . Then t > a3 = —aj + 5V 2 — 8a1 is
required. For a; € [Q\f’ 3], t-(a1) > —a1 + 3+/2 — 8a7 is satisfied: The difference

is zero in a; = %[ and increasing in a;. We have for the function F' given in (5.3)

23

that

4 1, /
(55) F(CL]_, t_ (a]_)) = m |:(I]_ (5 + 52@%) + (2@% + 5) 28@% — 1:|

1
In part a) we had for /¥ that A(al,t) = 2i8t2 =: ®(t) and then
1+ 36a7

®(t—(ar1)) = -

21/(1 4 4a3)(1 + 36a2) — 21 (1203 — 1)(1243 — 5)(8a; + /28a7 — 1)

One can check that ®(t_(a1) > F(a1,t_(a1)) for all a; € (#,a}], with equality

for aq = \f Therefore a!l is also the maximum of A(-,t) in this case.

1— 2(a1+a2) +4aqas d = (a1+a2)(1 2(0,1—‘,—112) ) Of
4(a1+az) —  1-2(a1+a2)?+4aiaz

2
Next, we study the cases ¢t =
(5.2) with 0 <t =t_(a;) < ﬁ
We claim that the second case is impossible, since as < ¢ would not be satisfied:
Let T = ay +a2, y :=4ajaz. Thenaz = —5+35 L V2 — 3r2+yandt = “’f“;%”f), with
2\[ <z < ﬁ and 0 <y < 22 < 1 Assume as < t. We show the contradiction
a3 > t which is equivalent to

(5.6) (1—222 +9)(v/2 - 322 +y —z) > 22(1 — 227) .

We claim that y > 222 + 22v/1 — 222 — 1. This will imply (5.6): Since the left side
of (5.6) is strictly increasing in y, (5.6) follows from

201 — 22%(\/1 — 22 + 20v/1 — 222 — x) > 22(1 — 222) which is true with equality
sign since (x + V1 — 222)2 = 1 — 2% + 221 — 222
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Now y > 222 + 22v/1 — 222 — 1 is equivalent to

(1—2(a3 +a3))” — 4(a1 + a2)? (1 — 2(ar + a2)?)
= (6@% — 1+ 4aras + 2&%) (2&% —1+4ajas + 6@%) >0,

which is true since a; > ag > —%1 + % 6 — Sa% is satisfied: the assumption as >

t> a3 =—93%2 4+ 1,/2—3(af + da3) — (a1 + az)? yields az > —% + 11/6 — 8a3.

Therefore the claim for y is true and the contradiction as > t would follow.

172(a1+a2)2+4a1a2
4(a1+a2)

Ala,t) = m This is smaller than A(al!,t) = \/in, since 2—8t? < 4(a1+as)?

is satisfied in view of (1 —2(a} + a%))2 —4(a1 + a2)? (1 — 2(a1 + a2)?) > 0, as we
just showed.

This leaves the case t = . Calculation using (5.1) shows that then

‘H

iii) This leaves only the minimum case for 0 < ¢ < For a1 = as with

L <ay =ay <1, wehave by (5.5) for t = t_(ay)

2V/3
( t_< )) 36 ( 2) ( 2 21> \/ ? 1
} a/lu ai (1 %)2 ai 5 52(11 20/1 28(11

3 2
This is decreasing in a;. On the other hand, A(a(M,t) = (ﬁ) <£ —t_ (a1)>

2

3

2 2
is increasing in a;. For the maximal possible a1 < a; ~ 0.4268 (zero of t_) we
have t_(d1) = 0 and A(aM),0) = £v/3 ~ 0.4871 < F(a;,0) ~ 0.5551. Hence
A(aM t) < F(ay,t) forall 0 <t < ﬁ, and a™ is the minimum of A(-,t).
1—2(a1+a2)2+4a1a2 1
4(a1+az) 2(a1+az2)”

3 2
This is larger than A(aM),t) = (@) (@ —t(aq, a2)> : Using as > £4/6 — 8a} —

, ag > 0, the difference A(a,t) — A(a(V),t) is minimal for a; = ay = d; which then
0.0986 > 0. This case does not lead to the minimum of A(-,t). O

In the second case t = t(ay,as) = , as above A(a,t) =

ai
3
1S
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