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Let (eγ)γ∈Γ denote the unit vector basis of c00(Γ) and let (e∗γ) denote the dual basis.
We define a norm ‖ · ‖ on c00(Γ) as follows:

(1.1) ‖
∑

aγeγ‖ = sup(
n∑

i=1

(
∑
γ∈Fi

|aγ |)2)1/2,

where the supremum is taken over all n ≥ 1 and all disjoint Fi ∈ F (1 ≤ i ≤ n).
The generalized Baernstein space (B(F), ‖ · ‖) is the completion of c00(Γ) with

respect to ‖ · ‖. Note that (eγ)γ∈Γ is a 1-unconditional basis of B(F) and that ‖ · ‖
satisfies a lower 2-estimate for disjointly supported vectors x, y:

(1.2) ‖x+ y‖2 ≥ ‖x‖2 + ‖y‖2.

The first space of this type was introduced by Baernstein [3] with Γ = N and
F = S1 = {E ⊂ N : |E| ≤ minE} (the Schreier family), with the extra assumption
that maxFi < minFi+1 for 1 ≤ i ≤ n − 1 in (1.1). It was the first example of a
reflexive Banach space with a normalized basis (weakly null by reflexivity) whose
arithmetic means do not converge strongly to zero.

The space B(F) is reflexive (for arbitrary Γ and F). For completeness we present
a proof at the end of the paper.

The norm of (B(F , ‖ · ‖) and its dual norm ‖ · ‖∗ are not 2R in general. For
example, for the original Baernstein space, we have

‖en + em‖ = 2, ‖e∗3 + e∗n‖∗ = 1, ‖(e∗3 + e∗n) + (e∗3 + e∗m)‖∗ = 2 (m,n > 3),

and hence ‖ · ‖ and ‖ · ‖∗ are not 2R norms.
The following question is open to the best of our knowledge.

Question 1. Suppose Γ is uncountable. Does B(F) have an equivalent 2R norm?

In Section 2, motivated by the Schreier hierarchy introduced in [1], we present a
general method for defining, for each countable ordinal α, a family Fα for certain
uncountable Γ. The construction is similar to that of the transfinitely defined
families introduced in [2]. In Section 3 we prove that, for each countable ordinal α,
B(Fα) has an equivalent 2R norm.

In Section 4 we prove, for arbitrary Γ and F , that B(F)∗ admits an equivalent
2R norm. The renorming is essentially the same as the W2R renorming given in
[9].

As an application of these results we prove that the space constructed by Kutzarova
and Troyanski [12] (based on a family of sets introduced in [4]) which does not admit
an equivalent norm that is either uniformly rotund in every direction or uniformly
differentiable in every direction does admit an equivalent 2R norm.

In forthcoming articles we prove positive results for other classes of spaces. In
particular, in [7] we consider the existence of equivalent symmetric 2R norms for
spaces with a symmetric basis.

2. Transfinitely defined families

• Let S be any set of cardinality at least 2 and let S := SN.
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• For distinct p = (p(i))∞i=1 ∈ S and q = (q(i))∞i=1 ∈ S, let d(p, q) = 1 if
p(1) 6= q(1) and, for k ≥ 2, let d(p, q) = k if p(k) 6= q(k) and p(j) = q(j) for
1 ≤ j ≤ k − 1.

• For A ⊂ S, with |A| ≥ 2, let

A♯ = min{d(p, q) : p, q ∈ A, p 6= q}.

We define, for each countable ordinal α, a hereditary family Fα of finite
subsets of S.

• Let

F0 = {∅} ∪ {{p} : p ∈ S}.

• If k ≥ 1 and F is any collection of finite subsets of S satisfying the conditions
set out in the Introduction, let

F (k) = F0 ∪ {A ∈ F : A♯ ≥ k}.

Note that since F is hereditary, F (k) is also hereditary.
• If α = β+ is a successor ordinal, let Fα be any hereditary family satisfying
the following:

– Fβ ⊆ Fα.

– If A ∈ Fα and |A| ≥ 2, then there exist Ai ∈ Fβ (1 ≤ i ≤ A♯) such that

A = ∪A♯

i=1Ai.

• If α is a limit ordinal, choose αr ↑ α (r ≥ 1) and define

Fα = ∪∞
r=1F (r)

αr
.

Note that, for each k ≥ 1,

F (k)
α = ∪∞

r=1F (r∨k)
αr

,

where r ∨ k := max(r, k).

3. B(F (k)
α ) admits an equivalent 2R norm

Theorem 3.1. For each countable ordinal α and k ≥ 1, B(F (k)
α ) admits a 2R

renorming.

We shall use the following characterization of 2-rotundity (see e.g., [6, II.6.4] or
[9]): ‖ · ‖ is a 2R norm on X if for all (xn) ⊂ X such that

(3.1) lim
m,n→∞

[‖xm + xn‖2 − 2(‖xm‖2 + ‖xn‖2)] = 0,

there exists x ∈ X such that x = limn→∞ xn strongly.
For x ∈ B(F), the support of x, denoted supp x, is defined by

suppx = {γ ∈ S : e∗γ(x) 6= 0}.

Let ‖ · ‖α,k denote the norm in B(F (k)
α ).
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Lemma 3.2. Let α be a limit ordinal (with αr ↑ α as above) and let k ≥ 1. Suppose
that ‖xn‖α,k ≤ 1 (n ≥ 1) and that

(3.2) lim
m,n→∞

‖xm + xn‖α,k = 2.

Then, for some r ≥ 1, lim supn→∞ ‖xn‖αr,r∨k > 0.

Proof. Suppose, to derive a contradiction, that limn→∞ ‖xn‖αr,r∨k = 0 for all r ≥ 1;

in particular, xn → 0 in ℓ2(S). Hence, by a gliding hump argument, approximating
by finitely disjointly supported vectors, and after passing to a subsequence and
relabelling, we may assume that supp xn is finite and that supp xn ∩ suppxm = ∅ if
m 6= n.

Fix n ≥ 1 and F ∈ F (k)
α satisfying

|F ∩ suppxn| ≥ 2.

Let

N = max{d(p, q) : p, q ∈ suppxn, p 6= q}.

It follows that F ♯ ≤ N , and hence

F ∈ ∪N
r=1F (r∨k)

αr
.

Let

xn =
∑

aγeγ

and, for m > n,

xm =
∑

bmγ eγ .

Since xn → 0 in ℓ2(S),

(3.3) lim
n→∞

∑
a2γ = 0.

Since the supports of the xm’s are disjoint, we may assume that aγ ≥ 0 and bmγ ≥ 0.
By assumption, ‖xm‖αr,r∨k → 0 as m → ∞ for all r ≥ 1. Hence

(3.4) lim
m→∞

∑
γ∈F

bmγ = 0

uniformly over all F ∈ F (k)
α satisfying |F ∩ suppxn| ≥ 2.

Note that if F1, F2, . . . , Fs are disjoint sets in F (k)
α satisfying |Fi ∩ suppxn| ≥ 2

(1 ≤ i ≤ s) then s ≤ | suppxn|. Hence (3.4) implies that

(3.5)
∑

γ∈∪s
i=1Fi

bmγ → 0
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as m → ∞ uniformly over all such collections (Fi)
s
i=1. Let Ai =

∑
γ∈Fi

aγ and let

Bm
i =

∑
γ∈Fi

bmγ . Then

s∑
i=1

(Ai +Bm
i )2 =

s∑
i=1

(A2
i + (Bm

i )2 + 2AiB
m
i )

≤
s∑

i=1

A2
i + (

s∑
i=1

Bm
i )2 + 2(

s∑
i=1

Bm
i )(

∑
A2

i )
1/2

≤
s∑

i=1

A2
i + (

s∑
i=1

Bm
i )2 + 2‖xn‖α,k

s∑
i=1

Bm
i

≤
s∑

i=1

A2
i + (

s∑
i=1

Bm
i )2 + 2

s∑
i=1

Bm
i .

Note that (3.5) implies that
∑s

i=1B
m
i → 0 as m → ∞ uniformly over all such

(Fi)
s
i=1. Let ε > 0. It follows that for all m ≥ M(n, ε),

(3.6)

s∑
i=1

(Ai +Bm
i )2 <

s∑
i=1

A2
i + ε ≤ ‖xn‖αk

+ ε ≤ 1 + ε

uniformly over all (Fi)
s
i=1. Moreover, it follows from (3.3) that for all n ≥ N(ε)∑

a2γ < ε2.

Let J ⊂ suppxn. Consider a disjoint collection consisting of Gi ∈ F (k)
α (1 ≤ i ≤ t)

and Gλ ∈ F (k)
α (λ ∈ J) satisfying Gi ∩ supp(xn) = ∅ and Gλ ∩ suppxn = {λ}

(λ ∈ J). Let Cm
i =

∑
γ∈Gi

bmγ and Cm
λ =

∑
γ∈Gλ

bmγ . Then for all m > n > N(ε),∑
λ∈J

(aλ + Cm
λ )2 ≤

∑
λ∈J

a2γ +
∑
λ∈J

(Cm
λ )2 + 2(

∑
λ∈J

a2λ)
1/2(

∑
λ∈J

(Cm
λ )2)1/2

≤ ε+
∑
λ∈J

(Cm
λ )2 + 2ε‖xm‖α,k

≤ ε+
∑
λ∈J

(Cm
λ )2 + 2ε.

Thus,

t∑
i=1

(Cm
i )2 +

∑
λ∈J

(aλ + Cm
λ )2 ≤ 3ε+

t∑
i=1

(Cm
i )2 +

∑
λ∈J

(Cm
λ )2

≤ 3ε+ ‖xm‖2α,k.

(3.7)

Hence, combining (3.6) and (3.7), for all n ≥ N(ε) and m > M(n, ε),

(3.8) ‖xn + xm‖2α,k ≤ 2 + 4ε.

Since ε > 0 is arbitrary, we have

(3.9) lim sup
n→∞

lim sup
m→∞

‖xn + xm‖α,k ≤
√
2,

which contradicts (3.2). □
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The following analogue for successor ordinals has a similar (but simpler) proof.

Lemma 3.3. Let α = β+ be a successor ordinal. Suppose that ‖xn‖α,k ≤ 1 (n ≥ 1)
and that

(3.10) lim
m,n→∞

‖xm + xn‖α,k = 2.

Then

lim sup
n→∞

‖xn‖β,k > 0.

Remark 3.4. (3.9) shows that Lemma 3.2 and Lemma 3.3 can be strengthened by
replacing (3.2) and (3.10) by

lim sup
n→∞

lim sup
m→∞

‖xn + xm‖α,k >
√
2.

The proof of the following lemma uses the fact that Hilbert space (ℓ2, | · |) is
uniformly convex; specifically, for 0 < ε < 2,

(3.11) |x| ≤ 1, |y| ≤ 1, |x− y| = ε ⇒ |x+ y

2
| ≤ 1− ε2

8
.

We will also use the following notation: for x =
∑

γ∈S xγeγ and disjoint sets Fi ⊂ S

(1 ≤ i ≤ n),

|(x;F1, . . . , Fn)|2 := (
n∑

i=1

(
∑
γ∈Fi

xγ)
2)1/2.

Note that if x ≥ 0, then

‖x‖α,k = sup |(x;F1, . . . , Fn)|2,

where the supremum is taken over all n ≥ 1 and disjoint Fi ∈ F (k)
α .

Lemma 3.5. Let α be a limit ordinal (with αr ↑ α as above) and let k ≥ 1. Suppose
that ‖xn‖α,k ≤ 1 (n ≥ 1), that

(3.12) lim
m,n→∞

‖xm + xn‖α,k = 2,

and that there exists x ∈ ℓ2(S) such that, for each r ≥ 1,

(3.13) lim
n→∞

‖xn − x‖αr,r∨k = 0.

Then limn→∞ ‖xn − x‖α,k = 0.

Proof. Note that

‖x‖α,k ≤ lim sup
n→∞

‖xn‖α,k ≤ 1,

since xn → x pointwise. Suppose, to derive a contradiction, that the conclusion is
false. Then, after passing to a subsequence and relabelling, we may assume that

lim
n→∞

‖xn − x‖α,k = δ > 0.

Let x′n = xn − x. By assumption, for all r ≥ 1,

lim
n→∞

‖x′n‖αr,r∨k = 0.
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Let ε > 0. Choose a finitely supported vector y such that

‖x− y‖α,k <
ε2

10
.

By a gliding hump argument, passing to a further subsequence and relabelling, we
may choose disjointly supported vectors yn (n ≥ 1), each with finite support disjoint
from the support of y, such that ‖x′n − yn‖α,k → 0 as n → ∞ and, for all m,n ≥ 1,

‖y + yn||α,k ≤ 1,

and also

‖2y + yn + ym‖α,k > 2− ε2

4
.

Hence

lim
n→∞

‖yn‖α,k = δ,

and, for all r ≥ 1,

(3.14) lim
n→∞

‖yn‖αr,r∨k = lim
n→∞

‖x′n‖αr,r∨k = 0.

Without loss of generality, we may assume that y ≥ 0 and yn ≥ 0 for all n ≥ 1. Fix
n ≥ 1 and let m > n. Suppose that 2y+yn+ym is normed by disjoint sets F1, . . . , Fu

in Fα,k (we suppress the dependence of Fi on n and m to simplify notation), i.e.,

|(2y + yn + ym;F1, . . . , Fu)|2 = ‖2y + yn + ym‖α,k > 2− ε2

4
.

Since

|(y + yn;F1, . . . , Fu)|2 ≤ ‖y + yn‖α,k ≤ 1

and

|(y + ym;F1, . . . , Fu)|2 ≤ ‖y + ym‖α,k ≤ 1,

the uniform convexity of ℓ2 yields

|(yn − ym;F1, . . . , Fu)|2 < ε.

We may assume that F1, . . . , Fs have nonempty intersection with both supp y and
supp yn, that Fs+1, . . . , Ft intersect supp y but not supp yn, and that Ft+1, . . . , Fu

do not intersect supp y. Note that s ≤ | supp y| and |Fi ∩ supp(y + yn)| ≥ 2 for
1 ≤ i ≤ s. Hence, repeating the argument used to prove (3.5), we deduce that

(3.15) lim
m→∞

∑
γ∈∪s

i=1Fi

bmγ = 0

for ym =
∑

bmγ eγ . Hence

|(ym;F1, . . . , Fs)|2 <
ε

2

for all m > M1(n, ε).
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Note that yn vanishes on Fi for s+ 1 ≤ i ≤ t. Hence, for all m > M1(n, ε),

|(yn + ym;F1, . . . , Ft)|2 = (
s∑

i=1

(
∑
γ∈Fi

(bnγ + bmγ ))2 +
t∑

i=s+1

(
∑
γ∈Fi

bmγ )2)1/2

≤ (

s∑
i=1

(
∑
γ∈Fi

(bnγ − bmγ ))2 +
t∑

i=s+1

(
∑
γ∈Fi

bmγ )2)1/2

+ 2(
s∑

i=1

(
∑
γ∈Fi

bmγ )2)1/2

(by the triangle inequality in ℓ2)

= |(yn − ym;F1, . . . , Ft)|2 + 2|(ym;F1, . . . Fs)|2
≤ ε+ ε = 2ε.

So

|(2y + yn + ym;F1, . . . , Ft)|2 ≤ 2|(y;F1, . . . , Ft)|2 + |(yn + ym;F1, . . . , Ft)|2
≤ 2‖y‖α,k + 2ε.

Thus,

(2− ε2

4
)2 < |(2y + yn + ym;F1, . . . , Fu)|22

= |(2y + yn + ym;F1, . . . , Ft)|22 + |(yn + ym;Ft+1, . . . , Fu)|22

(since y vanishes on Fi for t+ 1 ≤ i ≤ u)

≤ (2‖y‖α,k + 2ε)2 + ‖yn + ym‖2α,k.

(3.16)

Since y, yn, and ym are disjointly supported, we have

(3.17) ‖y‖2α,k + ‖yn‖2α,k ≤ ‖y + yn‖2α,k ≤ 1

and

(3.18) ‖y‖2α,k + ‖ym‖2α,k ≤ ‖y + ym‖2α,k ≤ 1.

Combining (3.16), (3.17), and (3.18),

4‖y‖2α,k + 2(‖yn‖2α,k + ‖ym‖2α,k) ≤ 4

= (2− ε2

4
)2 + ε2 − ε4

16

≤ (2‖y‖α,k + 2ε)2 + ‖yn + ym‖2α,k + ε2

≤ 4‖y‖2α,k + ‖yn + ym‖2α,k + (8ε+ 5ε2).

Hence for all m > M1(n, ε),

(3.19) ‖yn + ym‖2α,k + (8ε+ 5ε2) ≥ 2(‖yn‖2α,k + ‖ym‖2α,k).
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Now suppose ε is chosen so that 8ε + 5ε2 < 2δ2. Since limn→∞ ‖yn‖α,k = δ, it
follows from (3.19) that

lim inf
n→∞

lim inf
m→∞

‖yn + ym‖α,k >
√
2δ.

which contradicts Remark 3.4 since, for all r ≥ 1,

lim
n→∞

‖yn‖αr,r∨k = 0.

□

The following analogue for successor ordinals has a similar (but simpler) proof.

Lemma 3.6. Let α = β+ be a successor ordinal. Suppose that ‖xn‖α,k ≤ 1 (n ≥ 1),
that

(3.20) lim
m,n→∞

‖xm + xn‖α,k = 2,

and that there exists x ∈ ℓ2(S) such that

(3.21) lim
n→∞

‖xn − x‖β,k = 0.

Then limn→∞ ‖xn − x‖α,k = 0.

Proof of Theorem 3.1. We will prove the result for a fixed α and for all k ≥ 1 by

transfinite induction on α. The result clearly holds for α = 0 since B(F (k)
0 ) =

B(F0) = ℓ2(S) for all k ≥ 1. So suppose the result holds for all β < α and for all
k ≥ 1.

Case I: α is a limit ordinal. So F (k)
α = ∪∞

r=1F
(r∨k)
αr , where αr ↑ α. By inductive

hypothesis, each B(F (r∨k)
αr ) admits an equivalent 2R norm ||| · |||αr,r∨k. Note that

||| · |||αr,r∨k ≤ Cr‖ · ‖α,k
for some Cr < ∞. Thus,

||| · |||2α,k := ‖ · ‖2α,k +
∞∑
r=1

1

2rC2
r

||| · |||2αr,r∨k

defines an equivalent norm ||| · |||α,k on B(F (k)
α ). Let us show that ||| · |||α,k is a 2R

norm. Suppose that (xn) ⊂ B(F (k)
α ) satisfies

lim
m,n→∞

|||xn + xm|||2α,k − 2(|||xn|||2α,k + |||xm||||2α,k) = 0.

Note that

|||xn + xm|||2α,k − 2(|||xn|||2α,k + |||xm|||2α,k)

≤ −(‖xn‖α,k − ‖xm‖α,k)2 −
∞∑
r=1

1

2rC2
r

(|||xn|||αr,k − |||xm|||α+r,k)
2.

It follows that limn→∞ ‖xn‖α,k = L for some L ≥ 0, that

(3.22) lim
m,n→∞

‖xn + xm‖2α,k − 2(‖xn‖2α,k + ‖xm‖2α,k) = 0,
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and that, for all r ≥ 1,

lim
m,n→∞

|||xn + xm|||2αr,k∨r − 2(|||xn|||2αr,k∨r + |||xm|||2αr,k∨r) = 0.

Since each ||| · |||αr,r∨k is a 2R norm, it follows from (3.1) that there exists x ∈ ℓ2(S)
such that, for all r ≥ 1,

lim
n→∞

|||xn − x|||αr,r∨k = 0.

Moreover, (3.22) implies that

lim
m,n→∞

‖xn + xm‖α,k = 2L.

So, by Lemma 3.5,

lim
n→∞

‖xn − x‖α,k = 0,

and hence

lim
n→∞

|||xn − x|||α,k = 0

as desired.
Case II: α = β+ is a successor ordinal. The proof is very similar to the limit

ordinal case. By the inductive hypothesis, B(F (k)
β ) admits an equivalent 2R norm

||| · |||β,k. Let
||| · |||2α,k = ‖ · ‖2α,k + ||| · |||2β,k.

Using Lemma 3.6 instead of Lemma 3.5 and repeating the argument of Case I shows
that ||| · |||α,k is a 2R norm. □

4. B(F)∗ admits an equivalent 2R norm

Let F be a compact, hereditary family of finite subsets of an infinite set Γ con-
taining all singleton sets. We prove in Section 5 that (B(F), ‖ · ‖) is reflexive. Day
[5] introduced the norm ‖ · ‖Day on c0(Γ) defined by

‖
∑

aγeγ‖Day = sup(
n∑

i=1

4−i|aγi |2)1/2,

where the supremum is taken over all n ≥ 1 and all choices of distinct γi ∈ Γ
(1 ≤ i ≤ n). We define an equivalent norm on B(F)∗ thus:

|||x |||2 = ‖x‖2∗ + ‖x‖2Day (x ∈ B(F)∗).

The following result is essentially due to Hájek and Johannis. It is a consequence
of Theorem 3 and Corollary 4 of [9] and the reflexivity of B(F)∗.

Lemma 4.1. Suppose (yn) ⊂ B(F)∗ satisfies

(4.1) lim
m,n→∞

|||yn + ym|||2 − 2(|||yn|||2 + |||ym|||2) = 0.

Then there exists y ∈ B(F)∗ such that

yn → y weakly as n → ∞
and

lim
n→∞

‖yn − y‖∞ = 0.
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Dualizing (1.2), the dual space (B(F)∗, ‖ · ‖∗) satisfies an upper 2-estimate for
disjointly supported vectors x, y ∈ B(F)∗:

‖x+ y‖2∗ ≤ ‖x‖2∗ + ‖y‖2∗.
Moreover, for all x ∈ B(F)∗ and F ∈ F ,

‖x · 1F ‖∗ = ‖x · 1F ‖∞ ≤ ‖x‖∞.

Lemma 4.2. Suppose that y and yn have disjoint finite supports (n ≥ 1), that

‖y‖∗ = ‖yn‖∗ = 1 (n ≥ 1),

and that

lim
n→∞

‖yn‖∞ = 0.

Then, for all δ > 0,

lim
n→∞

‖y + δyn‖∗ = (1 + δ2)1/2.

Proof. We may assume that y ≥ 0 and yn ≥ 0. Choose positive norming vectors
x, xn ∈ B(F) with

(x, y) = ‖x‖ = ‖y‖∗ = 1, (xn, yn) = ‖xn‖ = ‖yn‖∗ = 1,

where (·, ·) denotes the duality pairing for B(F)×B(F)∗. Note that x and xn have
disjoint finite supports (n ≥ 1). Fixing n ≥ 1, choose disjoint Fi ∈ F (1 ≤ i ≤ N)
such that

‖x+ δxn‖ = |(x+ δxn;F1, . . . , FN )|2.
We may assume that only F1, . . . , Fk have non-empty intersection with both supp x
and suppxn. Note that

k ≤ M := | suppx|.
For each 1 ≤ i ≤ k,

‖yn · 1Fi‖∗ ≤ ‖yn‖∞.

Hence
k∑

i=1

‖yn · 1Fi‖∗ ≤ M‖yn‖∞ → 0 as n → ∞.

Let F = ∪k
i=1Fi. (To simplify notation we suppress the dependence of F on n.)

Then

‖xn − xn · 1F ‖ ≥ (xn − xn · 1F , yn)
= (xn, yn − yn · 1F )
= 1− (xn, yn · 1F )

≥ 1−
k∑

i=1

‖yn · 1Fi‖∗

→ 1 as n → ∞.

Hence

lim
n→∞

(‖xn‖2 − ‖xn − xn · 1F ‖2) = 1− lim
n→∞

‖xn − xn · 1F ‖2 = 0.
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Since (B(F , ‖·‖) satisfies a lower 2-estimate, it follows that ‖xn ·1F ‖ → 0 as n → ∞.
Hence

1 + δ2 ≤ lim inf
n→∞

‖x+ δxn‖2

≤ lim sup
n→∞

‖x+ δxn‖2

= lim sup
n→∞

|(x+ δxn;F1, . . . FN )|22

= lim sup
n→∞

|(x+ δxn − δxn · 1F ;F1, . . . , FN )|22

≤ lim sup
n→∞

[‖x‖2 + δ2‖xn − xn · 1F ‖2]

(since no Fi intersects both supp x and supp(xn − xn · 1F ))

= 1 + δ2.

Thus,
lim
n→∞

‖x+ δxn‖2 = 1 + δ2,

and hence

(1 + δ2)1/2 ≥ lim sup
n→∞

‖y + δyn‖∗

(since ‖ · ‖∗ satisfies an upper 2-estimate)

≥ lim inf
n→∞

‖y + δyn‖∗

≥ lim inf
n→∞

(x+ δxn, y + δyn)

‖x+ δxn‖

=
1 + δ2

(1 + δ2)1/2

= (1 + δ2)1/2.

□
Theorem 4.3. ||| · ||| is an equivalent 2R norm for B(F)∗.

Proof. Suppose (yn) ⊂ B(F)∗ satisfies (4.1). By Lemma 4.1 there exists y ∈ B(F)∗

such that y = w − limn→∞ yn and limn→∞ ‖yn − y‖∞ = 0. Suppose, to derive a
contradiction, that (yn) does not converge strongly to y. Passing to a subsequence
and relabelling, we may assume that yn = y + zn where

lim
n→∞

‖zn‖∗ = δ > 0, lim
n→∞

‖zn‖∞ = 0,

and that the following limits exist:

lim
n→∞

‖y + zn‖∗, lim
n,m→∞

‖2y + zn + zm‖∗.

Let ε > 0. By passing to a further subsequence, a gliding hump argument and the
fact that limn→∞ ‖zn‖∞ = 0 show that there exist vectors y′ and z′n (n ≥ 1) with
disjoint finite supports such that

(4.2) ‖y − y′‖∗ < ε, lim
n→∞

‖zn − z′n‖∗ = 0.
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Note that (4.1) implies that

(4.3) lim
m,n→∞

‖2y + zn + zm‖2∗ − 2(‖y + zn‖2∗ + ‖y + zm‖2∗) = 0.

Since limn→∞ ‖z′n‖∞ = 0, Lemma 4.2 yields

lim
n→∞

‖y′ + z′n‖2∗ = ‖y′‖2∗ + lim
n→∞

‖z′n‖2∗ = ‖y′‖2∗ + δ2.

Since (B(F , ‖ · ‖∗) satisfies an upper 2-estimate,

lim
n,m→∞

‖2y′ + z′n + z′m‖2∗ ≤ 4‖y′‖2∗ + 2δ2.

Hence

lim sup
n,m→∞

[‖2y′ + z′n + z′m‖2∗ − 2(‖y′ + z′n‖2∗ + ‖y′ + z′m‖2∗)]

≤ 4‖y′‖2∗ + 2δ2 − 2(2‖y′‖2∗ + 2δ2)

= −2δ2,

which contradicts (4.2) and (4.3) provided ε is sufficiently small. □

Based on a family of sets introduced in [4], Kutzarova and Troyanski [12] con-
structed a Banach space Y which does not admit an equivalent norm that is uni-
formly rotund or uniformly differentiable in every direction. As an application of
our results, we show that Y does admit an equivalent 2R norm.

Corollary 4.4. The Banach space Y defined in [12] admits an equivalent 2R norm.

Proof. The space Y is defined as X ⊕X∗, where X is defined below.
Let S = N. Let F1 be the collection of all finite subsets F of S such that, if

|F | ≥ 2, then for all p ∈ F , p(1) = 1 and p(i) ∈ {1, 2, . . . , i − 1} for all i ≥ 2 and
such that there exists m ≥ 3 such that for all distinct p, q ∈ F , p(i) = q(i) for all
1 ≤ i ≤ m − 1 and p(m) 6= q(m), which implies that F ♯ = m and |F | = m − 1.
Let ‖ · ‖1 denote the norm of B(F1). The space X is defined to be the closed linear
span of

{ep : p(1) = 1, p(i) ∈ {1, 2, . . . , i− 1}, i ≥ 2}

in B(F1). The successor case of the proof of Theorem 3.1 shows that

||| · |||2 = ‖ · ‖21 + ‖ · ‖2
ℓ2(S)

is an equivalent 2R norm on B(F1). Hence ||| · ||| restricts to an equivalent 2R norm
on X. By Theorem 4.3, B(F1)

∗ admits an equivalent 2R norm. Note that X∗ is
isomorphic to a quotient space of B(F1)

∗. It is easily seen that a quotient norm of
a 2R norm is 2R. Hence X∗ admits an equivalent 2R norm, ||| · |||′ say. Finally,

‖(x, x∗)‖ =
√

|||x|||2 + |||x∗|||′2 ((x, x∗) ∈ X ⊕X∗)

is an equivalent 2R norm on X ⊕X∗ = Y . □
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5. B(F) is reflexive

Theorem 5.1. For arbitrary Γ and F , B(F) is reflexive.

Proof. First, we consider the case Γ = N. Let (en) denote the unit vector basis of
B(F).

Let (Fi)
∞
i=1 ⊂ F be a collection of disjoint elements of F and suppose that∑∞

i=1 |ai|2 ≤ 1. For x =
∑∞

i=1 xiei ∈ B(F),

(5.1) |
∞∑
i=1

ai(
∑
j∈Fi

xj)| ≤ (
∞∑
i=1

|ai|2)1/2‖x‖ ≤ ‖x‖.

Hence we may identify
∑∞

i=1 ai1Fi ∈ ℓ∞ with the element k in the unit ball of B(F)∗

defined by (5.1).
Suppose x ∈ B(F) has finite support and that

‖x‖ = (

n∑
i=1

(
∑
j∈Gi

|xj |)2)1/2

for disjoint Gi ∈ F . There exist nonnegative a1, . . . , an with
∑n

i=1 a
2
i = 1 such that

n∑
i=1

ai(
∑
j∈Gi

|xj |) = ‖x‖,

and there exist Hi ⊆ Gi (1 ≤ i ≤ n) such that

n∑
i=1

ai|
∑
j∈Hi

xj | ≥
1

2

n∑
i=1

ai(
∑
j∈Gi

|xj |) =
1

2
‖x‖.

Note that Hi ∈ F since F is hereditary. Hence the collection of linear functionals
with a representation of the form

k =

∞∑
i=1

ai1Fi ∈ ℓ∞ (

∞∑
i=1

|ai|2 = 1, (Fi)
∞
i=1 disjoint sets inF)

is a 2-norming set for B(F). It follows that the discretized collection

K = {
∞∑
r=1

±2−s(r)1Fr :
∞∑
r=1

2−2s(r) ≤ 1}.

is a 4-norming set.
Let us show that K ⊂ ℓ∞ is compact in the topology of pointwise convergence

on ℓ∞. For n ≥ 1, let

kn =
∞∑
r=1

2−r(1Un
r
− 1V n

r
),

where Un
r = ∪p(n,r)

i=1 Fn
i and V n

r = ∪q(n,r)
i=1 Gn

i , and for each n ≥ 1,

{Fn
r,i, G

n
r,j : r ≥ 1, 1 ≤ i ≤ p(n, r), 1 ≤ j ≤ q(n, r)}
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is a collection of nonempty disjoint elements of F , and
∞∑
r=1

2−2r(p(n, r) + q(n, r)) ≤ 1.

In particular, p(n, r) + q(n, r) ≤ 22r for all n, r ≥ 1. By a diagonal argument,
passing to a subsequence and relabelling, we may assume that

p(n, r) = pr, q(n, r) = qr for all n ≥ r.

By compactness of F , we may also assume that

lim
n→∞

Fn
r,i = Fr,i (1 ≤ i ≤ pr), lim

n→∞
Gn

r,j = Gr,j (1 ≤ j ≤ qr),

where

{Fr,i, Gr,j : r ≥ 1, 1 ≤ i ≤ pr, 1 ≤ j ≤ qr}
is a collection of disjoint (possibly empty) elements of F and

∞∑
r=1

2−2r(pr + qr) ≤ 1.

Set Fr = ∪pr
i=1Fr,i and Gr = ∪qr

i=1Gr,i. It follows that

k =

∞∑
r=1

2−r(1Fr − 1Gr) ∈ K

and k = limn→∞ kn pointwise in ℓ∞. So K is compact (and metrizable) in the
topology of pointwise convergence.

For x ∈ B(F), define x̂ : K → R by x̂(k) = k(x). Suppose that (kn) ⊂ K and
kn → k pointwise in ℓ∞. Clearly, x̂(kn) → x̂(k) when x has finite support. Since
the finitely supported vectors are norm-dense in B(F), it follows that x̂(kn) → x̂(k)
for all x ∈ B(F), i.e., that x̂ is continuous on K. Since K is 4-norming for B(F),
the mapping x 7→ x̂ defines a linear isomorphism from B(F) onto a closed subspace
of C(K).

Suppose that (xn) ⊂ B(F) is bounded and coordinatewise null with respect to
(en). It follows from (5.1) that

lim
n→∞

x̂n(k) = 0 (k ∈ K).

Hence, by the Riesz representation and bounded convergence theorems, x̂n → 0
weakly in C(K). In particular, if xn =

∑pn
i=pn−1+1 aiei, where pn−1 < pn, is a

bounded block basis of (en), then (x̂n) is weakly null in C(K). Hence (xn) is
weakly null in B(F), which implies that (en) is a shrinking basis. On the other
hand, since (en) satisfies a lower 2-estimate, it is boundedly complete. It follows
from a theorem of James [11] that B(F) is reflexive.

Next suppose that Γ is uncountable. Let Γ0 be a countably infinite subset of Γ.
Then

X0 = {x ∈ B(F) : suppx ⊆ Γ0}
is the Baernstein space on Γ0 corresponding to the family F0 = {F ∩ Γ0 : F ∈ F}.
By the first part of the proof, X0 is reflexive. But every separable subspace of B(F)
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is contained in X0 for some Γ0. Hence every separable subspace of B(F) is reflexive,
which implies that B(F) is also reflexive since reflexivity is separably determined.

□
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