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Dedicated to the memory of Professor Nicole Tomczak-Jaegermann

ABSTRACT. We consider a generalized Baernstein space associated to a compact
family of finite subsets of an uncountable set. We show that for certain trans-
finitely defined families such spaces admit an equivalent 2-rotund norm. We also
show that for an arbitrary family the dual space admits an equivalent 2-rotund
norm.

1. INTRODUCTION

The notions of 2-rotund and weakly 2-rotund norms were introduced by Milman
[13] and are defined as follows.

Definition 1.1. Let X be a Banach space. We say that a norm || - || on X is
2-rotund (2R) (resp. weakly 2-rotund (W2R)) if for every (z,) C X such that
|zl <1 (n>1) and

m  ||@n, + x| = 2,
m,n—00

there exists € X such that = = lim,_,+ =, strongly (resp. weakly).

It follows from a characterization of reflexivity due to James [10] that if X admits
an equivalent W2R norm then X is reflexive. Héjek and Johanis proved the con-
verse: every reflexive Banach space admits an equivalent W2R norm [9]. Odell and
Schlumprecht [14] proved that every separable reflexive Banach space X admits an
equivalent 2R norm (cf. [8]). However, it is an open question whether every reflexive
Banach space admits an equivalent 2R norm.

Let " be an infinite set. Throughout, F denotes a collection of finite subsets of
I" satisfying the following:

e F contains all singletons;

e F is hereditary, i.e., if F € F and G C F then G € F;

e F is compact, i.e., {1p: F € F} is a compact subset of {0,1}' in the
topology of pointwise convergence.
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Let (ey)yer denote the unit vector basis of coo(I') and let (e7) denote the dual basis.

We define a norm || - || on cgo(I") as follows:
(1.1) 1D ayeqll =sup(> (D la )2,
i=1 yeF;

where the supremum is taken over all n > 1 and all disjoint F; € F (1 <i < n).

The generalized Baernstein space (B(F),| - ||) is the completion of coo(I") with
respect to || - ||. Note that (e),er is a 1-unconditional basis of B(F) and that || - ||
satisfies a lower 2-estimate for disjointly supported vectors x, y:

(1.2) e+ ylI* > flll* + llylI*.

The first space of this type was introduced by Baernstein [3] with I' = N and
F =38 ={FE CN: |E| <minE} (the Schreier family), with the extra assumption
that max F; < min F;11 for 1 < i < n —1in (1.1). It was the first example of a
reflexive Banach space with a normalized basis (weakly null by reflexivity) whose
arithmetic means do not converge strongly to zero.

The space B(F) is reflexive (for arbitrary I' and F). For completeness we present
a proof at the end of the paper.

The norm of (B(F,| - ||) and its dual norm | - ||« are not 2R in general. For
example, for the original Baernstein space, we have

len +emll =2, llez +eplle = 1, [[(e3 +en) + (3 + ei)ll« =2 (m,n > 3),

and hence || - || and || - ||« are not 2R norms.
The following question is open to the best of our knowledge.

Question 1. Suppose I' is uncountable. Does B(F) have an equivalent 2R norm?

In Section 2, motivated by the Schreier hierarchy introduced in [1], we present a
general method for defining, for each countable ordinal «, a family F, for certain
uncountable I'. The construction is similar to that of the transfinitely defined
families introduced in [2]. In Section 3 we prove that, for each countable ordinal a,
B(F,) has an equivalent 2R norm.

In Section 4 we prove, for arbitrary I' and F, that B(F)* admits an equivalent
2R norm. The renorming is essentially the same as the W2R renorming given in
[9].

As an application of these results we prove that the space constructed by Kutzarova
and Troyanski [12] (based on a family of sets introduced in [4]) which does not admit
an equivalent norm that is either uniformly rotund in every direction or uniformly
differentiable in every direction does admit an equivalent 2R norm.

In forthcoming articles we prove positive results for other classes of spaces. In
particular, in [7] we consider the existence of equivalent symmetric 2R norms for
spaces with a symmetric basis.

2. TRANSFINITELY DEFINED FAMILIES

e Let S be any set of cardinality at least 2 and let S := SN,
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e For distinct p = (p(i))2, € S and ¢ = (q(9))3, let d(p,q) = 1 if

i €S,
p(1) # q(1) and, for k > 2, let d(p, q) = k if p(k) # ¢(k) and p(j) = q(j) for
1<j<k-—1
e For A C S, with |A| > 2, let

A* = min{d(p,q): p,q € A,p # q}.

We define, for each countable ordinal a, a hereditary family JF, of finite
subsets of S.
o Let

Fo={0}u{{p}:pec S}

e If £ > 1 and F is any collection of finite subsets of S satisfying the conditions
set out in the Introduction, let

FB = Fou{Ae F: A* > k).

Note that since F is hereditary, F*) is also hereditary.
e If & = BT is a successor ordinal, let F,, be any hereditary family satisfying
the following:
- F3 C Fa-
— If A € F, and |A| > 2, then there exist 4; € F (1 <1i < A*) such that

A=UY A
e If v is a limit ordinal, choose o, 1 o (r > 1) and define
Fo= U1 7).
Note that, for each k£ > 1,
Fi = Usil]:é:v}c)a

where r V k := max(r, k).

3. B(]—"C(yk)) ADMITS AN EQUIVALENT 2R NORM

Theorem 3.1. For each countable ordinal o and k > 1, B(]:C(Xk)) admits a 2R
renoTming.

We shall use the following characterization of 2-rotundity (see e.g., [6, I1.6.4] or

9]): || - || is @ 2R norm on X if for all (x,) C X such that
(3.) lim [l + all? = 22 + a2 =0,

there exists ¢ € X such that z = lim,,_, o x,, strongly.
For x € B(F), the support of z, denoted supp z, is defined by

suppz = {y € S : e (x) # 0}.

Let || - ||o,x denote the norm in B(]:ék)).
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Lemma 3.2. Let a be a limit ordinal (with o, T« as above) and let k > 1. Suppose
that ||znllar <1 (n>1) and that

(3.2) lim ||z, + 2pllar = 2.
o0

m,n—
Then, for some r > 1, limsup,,_, ||Znlla,. rvk > 0.

Proof. Suppose, to derive a contradiction, that limy, e ||Zn||a, rvi = 0 for all 7 > 1;

in particular, z, — 0 in ¢2(S). Hence, by a gliding hump argument, approximating
by finitely disjointly supported vectors, and after passing to a subsequence and
relabelling, we may assume that supp z,, is finite and that supp x,, N supp x,, = 0 if
m #n.

Fixn>1and F € fc(yk) satisfying

|F' N supp zp| > 2.

Let

N = max{d(p,q): p,q € Suppn,p # q}.
It follows that F¥ < N , and hence

Fe U 7o),

Let

Ty = E ey

and, for m > n,

_ m
Tm = Zb’Y 67.

Since x,, — 0 in £5(S),

(3.3) lim a2 =0.

n—oo

Since the supports of the z,,’s are disjoint, we may assume that a, > 0 and b7" > 0.
By assumption, ||zpm|qa, rvk — 0 as m — oo for all » > 1. Hence

(3.4) Jim_ > =0
yeF

uniformly over all F' € Fék) satisfying |F' N supp x,| > 2.

Note that if Fy, Fs, ..., Fy are disjoint sets in f,gk) satisfying |F; N supp x,| > 2
(1 <i<s)then s <|suppx,|. Hence (3.4) implies that

(3.5) Yoo

’YEUleFi
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as m — oo uniformly over all such collections (F;);_;. Let A4; =)
B" =3 cp, b Then

)

JeF; Oy and let

S S

D (Ait B = (A7 + (B]")® +24,B]")

i=1 i=1

S+ (3B + o3 BI)(Y 4D
i=1 i=1 i=1

<> 2+ (O BM? +2)zllan Y B
=1 =1 i=1

S S S
<> AP+ _BMP+2) B
=1 =1 =1

Note that (3.5) implies that Y ; |, B — 0 as m — oo uniformly over all such
(Fi)i_,. Let € > 0. It follows that for all m > M(n,¢),

S

S
(3.6) D (Ai+ B <> A7 +e< ||zl +e < 1+e
i=1 i=1
uniformly over all (F;)7_,. Moreover, it follows from (3.3) that for all n > N(¢)

2 2
D a2 <
Let J C supp z,. Consider a disjoint collection consisting of G; € é’“) (1<i<t)

and G € fék) (A € J) satisfying G; N supp(z,) = 0 and G Nsuppx, = {\}
(AeJ). Let O7" = 3", b5 and CF' =3 05" Then for all m >n > N(e),

Y (ax+OP <D ad+ (G +2()_ad) A ()2

NeJ AeJ AeJ NeT NeJ
Se+ Z(C)T\n)Q + 2¢)|zm .k
NeJ
<e+ ) (CF)? + 2.
AeJ

Thus,
t

D CT?+D (ax+CF)* <3e+ Y (CMP+ > _(CF)?
=1

(3.7) i=1 AeJ AeJ
< 3+ wmll2 -
Hence, combining (3.6) and (3.7), for all n > N(e) and m > M (n,¢),
(3.8) |20 + T |5 < 2+ 4e.
Since € > 0 is arbitrary, we have

(3.9) lim sup lim sup ||z, + T [lax < V2,
(o ¢]

n—oo m—r

which contradicts (3.2). O
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The following analogue for successor ordinals has a similar (but simpler) proof.

Lemma 3.3. Let a = BT be a successor ordinal. Suppose that ||z ||k <1 (n>1)
and that
(3.10) lim ||zm + 2nllar = 2.

m,n— o0

Then
limsup ||zy||gr > 0.
n—oo
Remark 3.4. (3.9) shows that Lemma 3.2 and Lemma 3.3 can be strengthened by
replacing (3.2) and (3.10) by

lim sup lim sup ||z, + Z [l ak > V2.
n—o0 m—0o0
The proof of the following lemma uses the fact that Hilbert space (fo,] - |) is
uniformly convex; specifically, for 0 < & < 2,

52

(3.11) 2l <Ll <Lz —yl=e= T2 <1-Z

We will also use the following notation: for x = ) _<x,e, and disjoint sets F; C S

(1<i<n),

~€eS

n

|(z; F1y .oy Fy)lo = (Z(Z %)2)1/2.

i=1 ~v€F;
Note that if z > 0, then
2]k = sup |(z; F1, ..., Fo)l2,

where the supremum is taken over all n > 1 and disjoint F; € ék).

Lemma 3.5. Let « be a limit ordinal (with o, T o as above) and let k > 1. Suppose
that ||zpllar <1 (n>1), that

(3.12) im ||z, + 2o llar = 2,

m,n—00

and that there exists © € lo(S) such that, for each r > 1,

(3.13) lim ||zn, — 2| a, vk = 0.
n—oo

Then limy, o0 ||2n — 2|lax = 0.

Proof. Note that

[€]lap < limsup [lzn[lap < 1,
n—oo

since x, — x pointwise. Suppose, to derive a contradiction, that the conclusion is
false. Then, after passing to a subsequence and relabelling, we may assume that

le |lzn — 2|0k =06 > 0.
n o
Let z), = x, — x. By assumption, for all r > 1,

nh_)Holo ||33;z||oc7»,r\/k =0.
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Let € > 0. Choose a finitely supported vector y such that

e

10°

By a gliding hump argument, passing to a further subsequence and relabelling, we

may choose disjointly supported vectors y,, (n > 1), each with finite support disjoint
from the support of y, such that ||z, — ynlla.x — 0 as n — oo and, for all m,n > 1,

2 = Yllar <

|y + ynllak < 1,
and also
&2
HQZ/ + Yn + ymHa,k >2— Z
Hence
lim {|yn/lar = 9,
n—oo
and, for all r > 1,
(3-14) nh_g)lo ||yn||0cr,r\/k: = nll_{g() ||x{rz||0é7-,T’Vk =0.

Without loss of generality, we may assume that y > 0 and y,, > 0 for all n > 1. Fix
n > 1 and let m > n. Suppose that 2y—+y, + ¥y, is normed by disjoint sets F1, ..., F,
in F, 1 (we suppress the dependence of F; on n and m to simplify notation), i.e.,

2

€
’<2y+yn+ym§FIa~--aFU)’2 = H2y+yn+ym”a,k >2— 1

Since

|(y+yn§F1>-"aFu)|2 < ||y+yn|a,k: <1
and

|(y + Ym; F1, ... aFu)|2 < Hy + ymHa,k <1,
the uniform convexity of ¢y yields

‘(yn_ym;Flw--aFu”Z <E.
We may assume that Fi, ..., Fs have nonempty intersection with both suppy and

Supp Yn, that Fsiq,..., F; intersect suppy but not suppy,, and that Fiiq,..., F,
do not intersect suppy. Note that s < |suppy| and |F; Nsupp(y + y,)| > 2 for
1 <4 < s. Hence, repeating the argument used to prove (3.5), we deduce that
. m
(3.15) Jim > =0
’YeuleFi

for y,, = > b7'e,. Hence

€

’(ym;F17"'7FS)|2< 5

for all m > M;i(n,¢).
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Note that y,, vanishes on F; for s + 1 <14 < t. Hence, for all m > M;j(n,¢),

s

Y+ s Fr e F) = OO 00+ 02+ 3 (O 0)?)

i=1 vyeF; i=s5+1 yE€F;

s

<QoQo @ =P+ Y (Y0

i=1 ~yeF; i=s+1 yEF;
S
22 5
i=1 vyeF;

(by the triangle inequality in ¢3)

= |(Yn — ym: 1, F) |2+ 2|(ym3 F1, -

<e+e=2
So
|2y + yn + Ym; Fro oo Fo)l2 < 2(y; Firy -, Fy) |2 + |[(Yn + Yms F1, - -
Thus,
(3.16)
82 2 2
(2 - Z) < |2y + yn + Ym; F1, ..., Fu)l5

= |(2y+yn+ym;Fla~-7Ft)|%+|(yn+ym;Ft+1w--aFu)%

(since y vanishes on F; for t +1 < i < u)

< 2lyllae +28)* + llyn + ymlla -

Since y, yn, and y,, are disjointly supported, we have

(3.17) lyllas + lunll2e < Ny +ynll2p <1
and
(3.18) yll2 e+ lymlZe < ly + ymllZ, < 1.

Combining (3.16), (3.17), and (3.18),

4lyl2 & + 2(/lynllZ x + lymllze) <4
4
9

e 2
=(2- ) E_T6

1/2

1/2

)Ft)|2

(2Hyllak+2€) +llyn + ymllag + €
< AllyllZ ke + llyn + ymlla . + (8 + 5¢2).

Hence for all m > M;(n,¢),

(3.19) 1y + Y|k + (8 +5%) > 2(/lynllz s + Iy 12, 5)-
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Now suppose ¢ is chosen so that 8 + 5¢2 < 262 Since limy—e0 ||Ynllax = 6, it
follows from (3.19) that

lim inf lim inf ||yn, + Ym ||k > V26.
n—oo m—0o0
which contradicts Remark 3.4 since, for all » > 1,

lim ||yn”ar,TVk 0.
n—00

O
The following analogue for successor ordinals has a similar (but simpler) proof.

Lemma 3.6. Let o = 81 be a successor ordinal. Suppose that ||zy||ar <1 (n > 1),
that

(3.20) lim |Zm + Zallar = 2,

and that there exists x € l2(S) such that
(3.21) T 12y — ol = 0.

Then limy, o0 ||2n — 2|lax = 0.

Proof of Theorem 3.1. We will prove the result for a fixed o and for all £ > 1 by

transfinite induction on «. The result clearly holds for & = 0 since B(]—'ék)) =
B(Fo) = £2(S) for all k> 1. So suppose the result holds for all 3 < a and for all
k> 1.

Case I: o is a limit ordinal. So F{) = U?ilfc(y:\/k)

hypothesis, each B(Fqa (TVk)) admits an equivalent 2R norm || - ||, rvi- Note that

I llerve < Crll - llak

, where a, T a. By inductive

for some C, < co. Thus,

o0
1
I 12k =1 ok + D el 12, vk
2rC
r=1 r
defines an equivalent norm || - |45 on B (fék)). Let us show that || - ||ox is a 2R

norm. Suppose that (z,) C B(Fc(yk)) satisfies

tim e+ 2l — 20zl om0 =0

Note that
lzn + zmll2 k= 20lzallZ g + lzmll2 )

< —(

— llzmlla)? ZQTOZ lznllars = lzmllasre)?.

r=1

It follows that lim, o [|Zn||a,x = L for some L > 0, that

(3.22) mlgbrgoo |z + xm”?y,k - 2(Hani,k + ”xm”i,k) =0,
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and that, for all r > 1,

tim a4 zmlZ, e — 202l e+ Bl ) = 0.

Since each || |, rvk is a 2R norm, it follows from (3.1) that there exists @ € ¢5(S)
such that, for all » > 1,

lim ||zn — 2|a, rvi = 0.
n—o0
Moreover, (3.22) implies that

lim ||y, + Zmlaxr = 2L.
™m,n—00

So, by Lemma 3.5,
lim ||z, — 2ok =0,

n—oo
and hence
lim [, — o = 0
n—oo
as desired.

Case II: o = 31 is a successor ordinal. The proof is very similar to the limit

ordinal case. By the inductive hypothesis, B(F, ék)) admits an equivalent 2R norm

I lx- Let

Ik =1 1ok + 0 03
Using Lemma 3.6 instead of Lemma 3.5 and repeating the argument of Case I shows
that || - |lo,% is a 2R norm. O
4. B(F)* ADMITS AN EQUIVALENT 2R NORM

Let F be a compact, hereditary family of finite subsets of an infinite set I' con-
taining all singleton sets. We prove in Section 5 that (B(F), || - ||) is reflexive. Day
[5] introduced the norm || - [|pay on ¢o(I') defined by

n
I ZavevHDay = SUP(Z 4_Z|a%‘2)1/2a
i=1
where the supremum is taken over all n > 1 and all choices of distinct v; € T’
(1 <i<mn). We define an equivalent norm on B(F)* thus:
Iz 17 = Izl + l|lzl|Bay ~ (z € B(F)").

The following result is essentially due to Hajek and Johannis. It is a consequence
of Theorem 3 and Corollary 4 of [9] and the reflexivity of B(F)*.

Lemma 4.1. Suppose (yn) C B(F)* satisfies
(1) tim g+ gl = 2012 + ) = 0.
Then there exists y € B(F)* such that

Yn =y  weakly as n — 0o

and

lim ||y, — yl|eo = 0.
n—oo
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Dualizing (1.2), the dual space (B(F)", | - [|+) satisfies an upper 2-estimate for
disjointly supported vectors z,y € B(F)*:
2+l < 2]+ llyll?.
Moreover, for all z € B(F)* and F € F,
[z 1rll« = |2 1plloo < [[#]loc-
Lemma 4.2. Suppose that y and y, have disjoint finite supports (n > 1), that

lylle = llynlls =1 (n=1),
and that
nh_{IOlo [9nlleo = 0.
Then, for all 6 > 0,
Tim [l + Oyl = (1 +8%)1/2,

Proof. We may assume that y > 0 and y, > 0. Choose positive norming vectors
x,x, € B(F) with
(@,y) =zl = llylls =1, (@n,yn) = [[2nll = llynll« =1,

where (-, ) denotes the duality pairing for B(F) x B(F)*. Note that x and z,, have
disjoint finite supports (n > 1). Fixing n > 1, choose disjoint F; € F (1 <1i < N)
such that

|l 4+ dzn|| = [(z + dxpn; F1y ..., FN)|2.

We may assume that only F7i, ..., F} have non-empty intersection with both supp =
and supp z,,. Note that

k < M :=|suppz|.
For each 1 < i <k,

[yn - L7 [l < [lynlloo-

Hence
k

> llyn - el < Mllynllo — 0 as n— oo.

i=1
Let F' = Ui-“:lFl-. (To simplify notation we suppress the dependence of F' on n.)
Then

||xn Tn * 1FH ( — T - 1Fayn)
( TnsYn — : 1F)
=1- (xnayn 1F)

>1- Z Hyn : 1F1H*
=1

—1 asn — oo.
Hence

lim (a2 — [0 — 2 - Lpll?) = 1 — lim [lan — 2 - 12 =
n—00 n—0o0
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Since (B(F, ||-]|) satisfies a lower 2-estimate, it follows that ||z, -1F|| — 0 as n — oc.
Hence

1+ 62 < liminf ||z + 0z,
n—o0

< limsup ||z + 0z,
n—oo

= limsup |(x + dxp; F1, ... FN)|3
n—oo

= limsup |(z + dxp, — 62y - 1p; F1, ..., FN)|3

n—oo

< limsup[||z]|? + 8[|z — 25 - 17]|?]
n—o0

(since no Fj intersects both supp x and supp(z,, — x, - 1p))
=1+

Thus,
lim ||z + 0z, )% = 1 + 62,
n—oo

and hence

(140632 > limsup ||y + 6yn]|«
n—oo

(since || - ||« satisfies an upper 2-estimate)
> liminf [|y + 0yn |«
n—oo

> lim inf (z + 02,y + Oyn)

T nooo |+ dzn |
1+ 62

(4

Theorem 4.3. || - || is an equivalent 2R norm for B(F)*.

Proof. Suppose (y,) C B(F)* satisfies (4.1). By Lemma 4.1 there exists y € B(F)*
such that y = w — lim, 00 Yn and lim, o [|Yn — ylloo = 0. Suppose, to derive a
contradiction, that (y,) does not converge strongly to y. Passing to a subsequence
and relabelling, we may assume that y, = y + 2, where

lim [|z,]|« =90 >0, lim |z,]lco =0,
n—00 n—00
and that the following limits exist:
lm ||y + 2zplls, Um |2y 4 25 + 2|«
n—00 ,1M—00
Let € > 0. By passing to a further subsequence, a gliding hump argument and the

fact that lim, e ||2n]|cc = 0 show that there exist vectors 3’ and z/, (n > 1) with
disjoint finite supports such that

(42) by~ /lle <e. lim [z — 2]l = 0.
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Note that (4.1) implies that

(4.3) lim |2y + 2n + 2mll2 = 2(|y + 2l + [y + 2mZ) = 0.
m,n— 00

Since limy, o0 ||2,|oc = 0, Lemma 4.2 yields
lim ly + 2,13 = |ly/[12 + lim {2712 = [l + 6%
Since (B(F, || - ||l+) satisfies an upper 2-estimate,

lim (12 + 2, + 22 < 4lly')12 + 26

n,m—r00
Hence
Limsup(||2y + 2}, + 2,12 = 2(/ly" + 27,17 + Iy + 2, 19)]
,Mm—00
< A|ly'|I2 +26° — 2(2[ly'|12 + 26°)
= —262,
which contradicts (4.2) and (4.3) provided ¢ is sufficiently small. O

Based on a family of sets introduced in [4], Kutzarova and Troyanski [12] con-
structed a Banach space Y which does not admit an equivalent norm that is uni-
formly rotund or uniformly differentiable in every direction. As an application of
our results, we show that Y does admit an equivalent 2R norm.

Corollary 4.4. The Banach spaceY defined in [12] admits an equivalent 2R norm.

Proof. The space Y is defined as X @& X*, where X is defined below.

Let S = N. Let F; be the collection of all finite subsets F of S such that, if
|F| > 2, then for all p € F, p(1) = 1 and p(i) € {1,2,...,i — 1} for all i > 2 and
such that there exists m > 3 such that for all distinct p,q € F, p(i) = ¢(i) for all
1 <i<m—1and p(m) # q(m), which implies that F* = m and |F| = m — 1.
Let || - ||1 denote the norm of B(F1). The space X is defined to be the closed linear
span of

{ep: p(1) = L,p(i) € {1,2,...,i — 1},i > 2}
in B(F1). The successor case of the proof of Theorem 3.1 shows that

2 2 2
-1 =115+ - 117,

is an equivalent 2R norm on B(F7). Hence || - || restricts to an equivalent 2R norm
on X. By Theorem 4.3, B(F;)* admits an equivalent 2R norm. Note that X* is
isomorphic to a quotient space of B(Fy)*. It is easily seen that a quotient norm of
a 2R norm is 2R. Hence X* admits an equivalent 2R norm, || - ||’ say. Finally,

Iz, 2l = VIzl? + la=? - ((z,27) € X & X7)

is an equivalent 2R normon X § X* =Y. O
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5. B(F) IS REFLEXIVE

Theorem 5.1. For arbitrary I' and F, B(F) is reflexive.

Proof. First, we consider the case I' = N. Let (e,,) denote the unit vector basis of
B(F).

Let (F;)?2, C F be a collection of disjoint elements of F and suppose that
S Jail? < 1. For z = S22 wie; € B(F),

(5.1) 1D ai(Y ozl < Qo lail) 2] < -
i=1

i=1  jEF

Hence we may identify Y -2, a;1f, € {o with the element & in the unit ball of B(F)*
defined by (5.1).
Suppose = € B(F) has finite support and that

lzll = Qo l2s))Y?

i=1 jeG;

for disjoint G; € F. There exist nonnegative ay, ..., a, with > 1 a? = 1 such that

i=1""1
doai( Y lzil) = llell,

i=1  jeGy

and there exist H; C G; (1 <i < n) such that

Zale%D ZazZm = 2l

=1 jEH; =1 JEG;

Note that H; € F since F is hereditary. Hence the collection of linear functionals
with a representation of the form

o0

[oe)
k= Zailpi € lo (Z |ai]2 =1, (F})2, disjoint sets in F)
i i=1

is a 2-norming set for B(F). It follows that the discretized collection

= {Z +275(")1 22—2” <1}

is a 4-norming set.
Let us show that K C { is compact in the topology of pointwise convergence
on {o. Forn > 1, let

n—Zz (lyp — Lyn),

where U = U, (q’r) F!" and V" = Uginl’r)G?, and for each n > 1,

{F,Gljir 21,1 <i<p(nr),1 <j<qn,r)}
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is a collection of nonempty disjoint elements of F, and

22_27"(19(71,?") +q(n,r)) <1.

r=1

In particular, p(n,r) + q(n,7) < 22" for all n,7 > 1. By a diagonal argument,
passing to a subsequence and relabelling, we may assume that

p(n,r) =pr,q(n,r) =¢q, forallm >r.
By compactness of F, we may also assume that
nlln;oF:i:FT7i (1 SZSP?);JLH;OG?J =G 1<j<aq),

where
{Fr,inr,j: 7’2 171 Szgpral SJ SqT}

is a collection of disjoint (possibly empty) elements of F and

0o
Z 2_2r(pr + QT) <L
r=1

Set F, = U, F; and G, = U" |G, ;. Tt follows that
k=Y 27"(lp —1g,) €K
r=1
and k = limy,_,~ k, pointwise in fo,. So K is compact (and metrizable) in the
topology of pointwise convergence.

For x € B(F), define 2: K — R by #(k) = k(x). Suppose that (k,) C K and
kn — k pointwise in f. Clearly, Z(k,) — Z(k) when x has finite support. Since
the finitely supported vectors are norm-dense in B(F), it follows that z(k,) — z(k)
for all x € B(F), i.e., that 2 is continuous on K. Since K is 4-norming for B(F),
the mapping x — Z defines a linear isomorphism from B(F) onto a closed subspace
of C(K).

Suppose that (z,) C B(F) is bounded and coordinatewise null with respect to
(en). It follows from (5.1) that

lim Z,(k) =0 (k € K).

n—o0

Hence, by the Riesz representation and bounded convergence theorems, &, — 0
weakly in C'(K). In particular, if z, = lpipn—l‘f'l a;e;, where p,_1 < pn, is a
bounded block basis of (e;), then (&) is weakly null in C(K). Hence (z,) is
weakly null in B(F), which implies that (e,) is a shrinking basis. On the other
hand, since (e,) satisfies a lower 2-estimate, it is boundedly complete. 1t follows
from a theorem of James [11] that B(F) is reflexive.

Next suppose that I' is uncountable. Let I'g be a countably infinite subset of IT'.
Then

Xo={x € B(F): suppx C I'p}

is the Baernstein space on I'g corresponding to the family Fo = {FNTy: F € F}.
By the first part of the proof, X is reflexive. But every separable subspace of B(F)
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is contained in X for some I'g. Hence every separable subspace of B(F) is reflexive,
which implies that B(F) is also reflexive since reflexivity is separably determined.
O
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