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d-dimensional Minkowski space (i.e., d-dimensional normed space) with M as its
unit ball, and norm ∥x∥M := min{µ > 0|x ∈ µM} for any x ∈ Ed. Then let
P := {ci +M | i ∈ I ⊂ N with ∥cj − ck∥M ≥ 2 for all j ̸= k ∈ I} be an arbitrary
packing of unit balls in M with P :=

⋃
i∈I(ci +M). Finally, let

δM(P) := lim sup
R→+∞

vold(P ∩RBd)

vold(RBd)

be the (upper) density of P in M and let

δM := sup
P
δM(P)

be the largest density of packings of unit balls in M, where vold(·) denotes the d-
dimensional volume (i.e., Lebesgue measure) of the corresponding set in Ed. Com-
puting δM for M = Ed is a long-standing open problem of discrete geometry with
the exact values known only for d = 2 ([10]), 3 ([11]), 8 ([16]), and 24 ([8]). (For
more details see for example, Chapter 1 of [4]). The concept of density has been
extended to soft packings by the authors in [5] and [6] as follows. As above, let
P := {ci + M | i ∈ I ⊂ N with ∥cj − ck∥M ≥ 2 for all j ̸= k ∈ I} be an
arbitrary packing of unit balls in M. Moreover, for any d ≥ 2 and λ ≥ 0 let
Pλ := {ci + (1 + λ)M | i ∈ I} with Pλ :=

⋃
i∈I(ci + (1 + λ)M) denoting the

outer parallel domain of P :=
⋃

i∈I(ci +M) for outer radius λ in M (see Figure 1).
Furthermore, let

δsoftM (Pλ) := lim sup
R→+∞

vold(Pλ ∩RBd)

vold(RBd)

be the (upper) density of the outer parallel domain Pλ assigned to the unit ball
packing P in M. Finally, let

δsoftM (λ) := sup
P
δM(Pλ)

be the largest density of the outer parallel domains of unit ball packings having
outer radius λ in M. Putting it somewhat differently, one could say that the family
Pλ = {ci + (1 + λ)M | i ∈ I} of closed balls of radii 1 + λ is a packing of soft balls
with soft parameter λ in M, if P := {ci +M | i ∈ I} is a unit ball packing of M in
the usual sense. In particular, δsoftM (Pλ) is called the (upper) soft density of the soft

ball packing Pλ in M with δsoftM (λ) standing for the largest soft density of packings
of soft balls of radii 1 + λ having soft parameter λ in M.

The authors proved Rogers-type upper bounds for δsoftEd (λ) in [5] (see Theorems
5 and 6 as well as Corollary 1), which are sharp for d = 2 and λ ≥ 0. On the other
hand, the authors proved in [6] (see Theorem 3) that for any λ > 0, among lattice
packings of soft balls of radii 1 + λ with soft parameter λ in E3 (for an illustration
of a soft lattice packing, see Figure 2), the soft density has a local maximum at the
corresponding FCC lattice.

In this note we continue the line of research presented in [5] and [6], and extend
those results further by introducing the concept of truncated density δM(λ) that
bridges the concepts of density δM and soft density δsoftM (λ) as follows.

Definition 1.1. Let M be an arbitrary o-symmetric convex body in Ed, d > 1
and let M be the d-dimensional Minkowski space (i.e., d-dimensional normed space)
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M

(1+  )Ml

Figure 1. A soft packing of translates of the o-symmetric convex
body M. The regions with horizontal stripes and dots correspond
to P and Pλ \P, respectively.

M

(1+  )Ml

Figure 2. A soft lattice packing of translates of the o-symmetric
convex body M, with a fundamental parallelogram of the lattice.

with M as its unit ball, and norm ∥x∥M := min{µ > 0|x ∈ µM} for any x ∈ Ed.
Then let P := {ci + M | i ∈ I ⊂ N with ∥cj − ck∥M ≥ 2 for all j ̸= k ∈ I} be
an arbitrary packing of unit balls in M. Moreover, for any d ≥ 2 and λ ≥ 0 let
Pλ :=

⋃
i∈I(ci + (1+ λ)M) denote the outer parallel domain of P :=

⋃
i∈I(ci +M)

having outer radius λ in M. Furthermore, let

δM(λ,P) := lim sup
R→+∞

vold(P ∩RBd)

vold(Pλ ∩RBd)

be the (upper) λ-truncated density of the unit ball packing P in Pλ. Finally, let
the largest λ-truncated density be defined by

δM(λ) := sup
P
δM(λ,P),

where the supremum is taken for all packings P of unit balls in M. Similarly, let

δlatticeM (λ) := sup
Plattice

δM(λ,Plattice),

where Plattice stands for an arbitrary lattice packing of unit balls in M.
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Remark 1.2. It follows from the above definitions in a straightforward way that

(1.1) δM(P) = δsoftM (Pλ) · δM(λ,P) and δM = δsoftM (λ) · δM(λ).

For given o-symmetric convex body M in Ed, the smallest λ ≥ 0 for which δsoftM (λ) =
1, i.e., for which δM = δM(λ), is closely related to the notion of simultaneous packing
and covering constant of M, which has been extensively studied by several authors.
We refer the interested reader to [17] and the references mentioned there. Finally,
we note that by taking a saturated packing of translates of M in Ed, it follows that
δsoftM (λ) = 1 holds for all λ ≥ 1. This together with (1.1) implies that

(1.2) δM = δM(λ)

holds for all λ ≥ 1.

Remark 1.3. Clearly, if P := {ci+M | i = 1, 2, . . . , n with ∥cj−ck∥M ≥ 2 for all 1 ≤
j < k ≤ n} is a packing of n ≥ 1 unit balls in M, then δM(P) = δsoftM (Pλ) = 0 and
δM(λ,P) > 0. In particular, for given d > 1, n > 1 and for any sufficiently small
λ > 0 the largest δEd(λ,P) can be obtained for a packing P of n unit balls in Ed

that possesses the largest number of touching pairs. (For more details see Theorem
1 in [5].)

Remark 1.4. Clearly, 0 < δlatticeM (λ) ≤ δM(λ) and δM(λ) (resp., δlatticeM (λ)) is a

decreasing function of λ ≥ 0 with δM(0) = δlatticeM (0) = 1.

Independently, L. Fejes Tóth [10] and C.A. Rogers [13] (see also [14]) proved that

(1.3) δM = δlatticeM

holds for any o-symmetric convex body M in E2, where δlatticeM denotes the largest

(upper) density of lattice packings of M in Ed. This theorem, i.e., (1.3) is a special
case of the following more general result for sufficiently large λ in (1.4).

Theorem 1.5. For any o-symmetric plane convex body M and λ ≥ 0, there is a
lattice packing Plattice of translates of M such that δM(λ,Plattice) = δM(λ). In other
words, we have

(1.4) δM(λ) = δlatticeM (λ)

for any o-symmetric plane convex body M and λ ≥ 0.

Clearly, (1.2), (1.3), and (1.4) imply

Corollary 1.6. δlatticeM (λ) = δlatticeM holds for all λ ≥ 1 and for all o-symmetric
convex body M in E2.

Remark 1.7. Theorem 1.5 for M = E2, has already been proved in [5] as follows.
Let 0 < λ < 2√

3
− 1 = 0.1547... and H be a regular hexagon circumscribed about

the unit disk B2 in E2. Then

(1.5) δE2(λ) =
π

area (H ∩ (1 + λ)B2)
= δlatticeE2 (λ),

where area(·) := vol2(·).
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Clearly, it is sufficient to prove Theorem 1.5 under the assumption that M has
C∞-class boundary and it is strictly convex. We note that in this case the bisector
of any nondegenerate segment [x,y] is homeomorphic to a line ([1]). We denote the
bisector of [x,y] by B(x,y).

Definition 1.8. Let x1,x2, . . . ,xk ∈ M satisfy ||xi||M ≥ 2 for all i with 1 ≤ i ≤ k.
Then the set

P = {x : ∥x∥M ≤ ∥x− xi∥M for all i with 1 ≤ i ≤ k}

is called a bisector k-gon (shortly, B-k-gon) of M. For any λ > 0, we call the area
of P ∩ (1 + λ)M the λ-truncated area of P.

The proof of Theorem 1.5 relies on the following Dowker-type theorem.

Theorem 1.9. For any λ > 0 and n ≥ 3, let An(M, λ) denote the infimum of the
λ-truncated areas of all B-n-gons of M. Then the sequence {An(M, λ)} is convex.
Furthermore, if k is a divisor of n and M has k-fold rotational symmetry, then
there is a B-n-gon of M with k-fold rotational symmetry whose λ-truncated area
is An(M, λ). In particular, if n is even, there is an o-symmetric B-n-gon whose
λ-reduced area is An(M, λ).

Next, we state a strengthening of (1.5) as follows. Let P be a plane of constant
curvature (i.e., let P be either the Euclidean, or spherical, or hyperbolic plane), and
let F be a packing of disks of radius r in P, Let B be an element of F centered
at q, and let V be the Voronoi cell of B. On the sphere, we also assume that the
distance of any vertex of V from q is less than π

2 . Let Bλ denote the disk of radius
(1+λ)r concentric with B. Then let the density of B with respect to the truncated
Voronoi cell Bλ ∩V

(
resp., the soft density of the soft disk Bλ with respect to V

having soft parameter λ and hard core B
)
be defined by

δ(B,V, λ) :=
area(B)

area(Bλ ∩V)
,

(
resp., δ̄(B,V, λ) :=

area(Bλ ∩V)

area(V)

)
.

For any 0 < r (on the sphere we also assume that r < π
3 ), let R(r) denote the

circumradius of a regular triangle Tr of sidelengths 2r. (Note that our assumption
implies that on the sphere R(r) < π

2 .) Furthermore, if the vertices of Tr are
p1,p2,p3, and for i = 1, 2, 3, Bi and B′

i denote the disks of radius r and (1 + λ)r
centered at pi, respectively, then we set

σreg(r) :=
area

(⋃3
i=1Bi ∩Tr

)
area

(⋃3
i=1B

′
i ∩Tr

) ,
resp., σ̄reg(r) =

area
(⋃3

i=1B
′
i ∩Tr

)
area (Tr)

 .

We note that the distance of any sideline of V from q is at least r, and the distance
of any vertex of V from the center of the disk of radius r contained in V is at least
R(r).

Theorem 1.10. With the above notation, we have

δ(B,V, λ) ≤ σreg(r) and δ̄(B,V, λ) ≤ σ̄reg(r).
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Remark 1.11. We note that the first inequality of Theorem 1.10 is a strength-
ening of (1.5) in the Euclidean case and an extension of it to the spherical (resp.,
hyperbolic) plane. On the other hand, the second inequality of Theorem 1.10 is
an extension of the 2-dimensional case of Theorem 5 in [5] to planes of constant
curvature.

It would be very interesting to find analogues of the above stated 2-dimensional
results in higher dimensions. Here we state the following result in E3. Let D be a
regular dodecahedron circumscribed about the unit ball B3, and note that the cir-
cumradius of D is R =

√
3 tan π

5 = 1.2584 . . ., and the radius of the midscribed ball

of D (touching the edges of D at their midponts) is rmid =

√
10−2

√
5

2 = 1.1755 . . ..
For any 0 < λ ≤ R− 1, let

τE3(λ) :=
vol3(B

3)

vol3(D ∩ (1 + λ)B3)
.

One might wonder (see Problem 4 in [5]) whether for any 0 < λ ≤ R − 1, if V is
the Voronoi cell of B3 in an arbitrary unit ball packing of E3, then

vol3(B
3)

vol3(V ∩ (1 + λ)B3)
≤ τE3(λ).

Theorem 1.12. For any 0 < λ ≤ rmid − 1, if V is a Voronoi cell of B3 in an
arbitrary unit ball packing of E3, then

vol3(B
3)

vol3(V ∩ (1 + λ)B3)
≤ τE3(λ).

Remark 1.13. On the one hand, we note that τE3(λ) = 4π
4π(1+λ)3−36π(λ2+ 2

3
λ3)

for

all 0 < λ ≤ rmid − 1 = 0.1755 . . . . On the other hand, Theorem 4 of [5] proves the

following: Let 0 < λ ≤ 2√
3
−1 = 0.1547 . . . and set ψ0 := − arctan

(√
2
3 tan(5ϕ0)

)
=

0.0524 . . . , where ϕ0 := arctan 1√
2
= 0.6154 . . . . If V is a Voronoi cell of B3 in an

arbitrary unit ball packing of E3, then

vol3(B
3)

vol3(V ∩ (1 + λ)B3)

≤ τ̂E3(λ) :=
π − 6ψ0

π − 6ψ0 + (3π − 18ψ0)λ− (6π + 18ψ0)λ2 − (5π + 6ψ0)λ3
.

(Unfortunately, the formula for τ̂E3(λ) in Theorem 4 of [5] was computed incor-
rectly.) As τE3(λ) < τ̂E3(λ) holds for all 0 < λ ≤ 2√

3
− 1 = 0.1547 . . . therefore

Theorem 1.12 of this paper improves Theorem 4 of [5].

Remark 1.14. We note that the proof of Theorem 3 in [6] implies in a straightfor-
ward way the following statement. For any λ > 0, among lattice packings of unit
balls in E3, the λ-truncated density has a local maximum at the corresponding FCC
lattice.

We cannot resists to raise the following problem.
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Conjecture 1.15. For all λ > 0, among packings of unit balls in E3, the λ-truncated
density has a maximum at the corresponding FCC lattice.

Remark 1.16. Hales’s celebrated proof [11] of the Kepler conjecture and (1.2)
imply Conjecture 1.15 for any λ ≥ 1. On the other hand, Conjecture 1.15 seems to
be open for 0 < λ < 1. For answering the latter question, the following inequality
of Hales [12] might be helpful: Let α0 := 1.26, and xi, i = 1, 2, . . . ,m be a set of
points in E3 satisfying 2 ≤ ∥xi∥ ≤ 2α0 and 2 ≤ ∥xi − xj∥ for any i ̸= j. Then
24+2(m−12)α0 ≤

∑m
i=1 ∥xi∥. (For a related concept we refer the interested reader

to [7].)

In the rest of this note we prove the theorems stated.

2. Proofs of Theorems 1.5 and 1.9

To prove the theorems, we use the description of the properties of Voronoi cells
of point systems in normed planes in e.g. [1]. In particular, we note that as M is
strictly convex and it has a C∞-class boundary, for any distinct x,y ∈ M, B(x,y)
is a C∞-class, simple curve. For the proofs of our theorems, we need Lemma 2.1.

Lemma 2.1. For any mutually distinct points x,y, z, B(x,y) and B(y, z) intersect
if and only if x,y, z are not collinear, and in this case they have a unique intersection
point.

Proof. The proof is based on the following reformulation of the statement: if x,y, z
are collinear, then there is no homothetic copy of M containing all of them in its
boundary, and if they are not collinear, there is a unique such copy. To prove this
statement, it is enough to observe that for any distinct points x,y, there is a 1-
parameter family of homothetic copies of M containing them in their boundaries.

□
First, we show how Theorem 1.9 yields Theorem 1.5.
Let ε > 0 be arbitrary. Consider a packing P = {c +M : c ∈ X} of translates

of M such that the density of X + M with respect to its outer parallel domain
X+(1+λ)M of outer radius λ is at least δM(λ)− ε. Note that adding translates of
M to P may decrease its density, and thus, we cannot assume that it is a saturated
packing. Nevertheless, we show that there is some r > 0 and a modified packing P ′

with density at least δM(λ) − ε such that for any x ∈ M, ∥x − c∥M ≤ 2r for some
c ∈ X.

Indeed, for any r > 2, let Xr = X ∩ (r − 1)M. Clearly, we may choose some
sufficiently large value r′ such that the density of Xr′ +M with respect to its outer
parallel domain of outer radius λ is at least δM(λ)− ε. Choose some countable set
Y ⊂ M such that ∥y − y′∥M ≥ 2r′ for any distinct y,y′ ∈ Y , and Y + 2r′M = M.
We define X ′ =

⋃
y∈Y (y + Xr′). Then P = {c + M : c ∈ X ′} is a packing of

translates of M. Furthermore, the density of this packing is at least δM(λ)− ε, and
for any z ∈ M, we have ∥z− c∥M ≤ 2r′ for some c ∈ X ′.

In the remaining part, we show that if P = {c + M : c ∈ X} is a packing of
translates of M such that for some r > 0, X + rM = M, then

(2.1)
area(M)

A6(M, λ)
≥ δM(λ,P).
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Here we observe that by Theorem 1.9, there is an o-symmetric B-6-gon circum-
scribed about M with area equal to A6(M, λ). The sides of this B-6-gon belong
to bisectors of the form B(o,±x), B(o,±2y) and B(o,±(x+ y)) for some linearly
independent vectors x,y ∈ M, implying that the packing Plattice = {kx+my+M :

k,m ∈ Z} is a lattice packing of M with density area(M)
A6(M,λ) , and thus, (2.1) implies

Theorem 1.5.
Let us decompose M into the Voronoi cells of the elements of P, where for any

ci ∈ X, Ci denotes the cell of ci in this decomposition. Furthermore, by our
assumptions and Lemma 2.1, Ci is a starlike topological disk, and its boundary is a
closed chain of arcs such that each arc is a connected part of a bisector B(ci, cj) for
some cj ∈ X. These arcs are called the sides ofCi, and the unique intersection point
of two consecutive sides is a vertex of Ci. This also shows that the decomposition
is edge-to-edge. Let ni denote the number of sides of Ci, and Ai denote the area of
the region Ci ∩ (ci + (1 + λ)M).

For any R > 0, let PR denote the family of Voronoi cells contained in RB2, and
let NR denote the cardinality of PR. Since for any cell Ci, ci+M ⊆ Ci ⊆ ci+ rM,

it is easily deduced that the limit n := limR→∞

∑
Ci∈PR

ni

NR
exists. Furthermore, as

the edge graph of the Voronoi decomposition, formed by the vertices and sides of the
cells, is planar, by Euler’s theorem we obtain that n ≤ 6. Then, by Theorem 1.9,

(2.2)

∑
Ci∈PR

Ai

NR
≥
∑

Ci∈PR
Ani(M, λ)

NR
≥ A6(M, λ),

which readily yields the inequality in (2.1).

x

y

p

p

B(o,2p )

y

x

B(o,2p )x

y

M

(1+  )Ml

o

Figure 3. An illustration for the proof of Theorem 1.9. The area
of the dotted region is A(x̂y).

In the remaining part of the section, we prove Theorem 1.9. First, observe that,
by compactness, for any n there is a B-n-gonP of minimal λ-reduced area containing
M, and every side of P touches M. Let S denote the family of closed oriented arcs
(in counterclockwise direction) in the Euclidean unit circle S1, where x̂y denotes the
closed counterclockwise oriented arc in S1 from x to y. For any x ∈ S1, let px denote
the unique point of bd(M) with outer unit normal vector x. For any x,y ∈ S1, let
R(x̂y) denote the (closed) region bounded by the counterclockwise oriented arc in
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bd(M) from px to py and the bisectors B(o, 2px), B(o, 2py) touching M at px and
py, respectively, such that o /∈ R(x̂y) (see Figure 3). Finally, define A(x̂y) as the
area of (1 + λ)M ∩R(x̂y). We recall Lemma 5 from [2].

Lemma 2.2. Let f : S → R be a bounded function with f(p̂p) = 0 for all p ∈ S1.
For any integer n ≥ 3, let

mn = inf

{∑
S∈X

f(S) : X ⊂ S is a tiling of S1 with |X| = n

}
.

If for any x̂2x3 ⊂ x̂1x4, we have

f(x̂1x3) + f(x̂2x4) ≤ f(x̂1x4) + f(x̂2x3),

then the sequence {mn} is convex. Furthermore, if in addition, there is some positive
integer k that divides n, and f has k-fold rotational symmetry, and there is an n-
element tiling X of S1 such that mn =

∑
S∈X f(S), then there is an n-element tiling

X ′ of S1 with k-fold rotational symmetry such that mn =
∑

S∈X′ f(S).

Let I[X] : E2 → {0, 1} denote the indicator function of the set X ∩ (1 + λ)M for
any X ⊆ E2. Consider arcs x̂2x3 ⊂ x̂1x4 ⊂ S1. Then it is easy to check that

I[R(x̂1x4)](q) + I[R(x̂2x3)](q)− I[R(x̂1x3)](q)− I[R(x̂2x4)](q) ≥ 0

is satisfied for any q ∈ E2. This shows that the conditions in Lemma 2.2 are met
for the function f(·) = A(·), implying Theorem 1.9.

3. Proof of Theorem 1.10

In the proof, for any points p,q ∈ P, where on the sphere we assume that they
are not antipodal, we denote by [p,q] the shortest geodesic arc connecting p and
q. For any triangle T with q as a vertex, we set

ρ(B,T) :=
area(T ∩B)

area(T ∩Bλ)
, and ρ̂(B,T) :=

area(T ∩Bλ)

area(T)
.

Before proving the theorem, we first prove two lemmas.

Lemma 3.1. Let L be a line through q, and let Rp be a half line starting at a point
p of L \ int(B) such that Rp is perpendicular to L. For any s > 0 (on the sphere
for any 0 < s < π

2 ), let p(s) denote the point of Rp whose distance from p is s.
Furthermore, for any 0 < s1 < s2 (on the sphere for any 0 < s1 < s2 <

π
2 ), let

T(s1, s2) denote the triangle with vertices q,p(s1) and p(s2). Then ρ(B,T(s1, s2))
and ρ̂(B,T(s1, s2)) are non-increasing functions of s1 and s2.

Proof. Let 0 < s1 < s2 < s′2 be given (on the sphere assume also that s′2 <
π
2 ). With-

out loss of generality, assume that the ratio of the angles of T(s1, s2) and T(s1, s
′
2)

at q is rational. Then we can dissect T(s1, s
′
2) into triangles T1,T2, . . . ,Tk, all

having q as a vertex such that they have equal angles at q, denoted by γ, any two
consecutive members share a side, and p(s2) is a vertex of some triangles Ti and
Ti+1. Let φ : P → P be the rotation around q with angle γ that moves p(s1)
closer to p(s2). Then, for any value of i, φ(Ti) ⊆ Ti+1, φ(Ti ∩ B) = Ti+1 ∩ B
and φ(Ti ∩ Bλ) = Ti+1 ∩ Bλ. This proves that ρ(B,T(s1, s2)) ≥ ρ(B,T(s1, s

′
2)),
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implying that ρ(B,T(s1, s2)) is a non-increasing function of s2. To prove that it is
a non-increasing function of s1, we may apply a similar argument.

To verify the monotonicity property of ρ̂(B,T(s1, s2)), note that there is a unique
value s̄ such that p(s) ∈ Bλ if and only if s ≤ s̄. Furthermore, if 0 < s1 <
s2 ≤ s̄, then ρ̂(B,T(s1, s2)) = 1. Thus, to prove that ρ̂(B,T(s1, s2)) is a non-
increasing function of s2, it is sufficient to consider values s̄ ≤ s1 < s2 < s′2.
But in this case, repeating the argument in the previous paragraph, we obtain
ρ̂(B,T(s1, s2)) ≥ ρ̂(B,T(s1, s

′
2)), showing that the function is non-increasing in the

second variable. To prove the monotonicity in the first variable, we can repeat the
same argument. □

q q'

p

p
x1

2bd B

(1+  )bd Bl

Figure 4. An illustration for the proof of Lemma 3.2.

Lemma 3.2. Let q′ be a point at distance R(r) from q. For i = 1, 2, let Ti =
conv{q,q′,pi} be a triangle with right angle at pi, let ri denote the distance of pi

and q. Assume that r ≤ r1 < r2 < R(r). Then

ρ(B,T1) ≥ ρ(B,T2), and ρ̂(B,T1) ≥ ρ̂(B,T2).

Proof. It is easy to show that r1 < r2 implies that the angle of T1 at q is larger
than that of T2, and thus we may assume that [q,p2] and [q′,p1] cross. Let the
intersection point of these segments be x (see Figure 4). Let Ta = conv{q,p1,x},
Tb = conv{q,x,q′} and Tc = conv{x,q′,p2}. Then, by Lemma 3.1, we have

ρ(B,Ta) ≥ ρ(B,Tb) ≥ ρ(B,Tc),

implying that ρ(B,T1) ≥ ρ(B,T2). By the same lemma we similarly obtain that
ρ̂(B,Ta) ≥ ρ̂(B,Tb). Furthermore, an argument similar to the proof of Lemma 3.1

yields ρ̂(B,Tb) ≥ area(Bλ∩Tc)
area(Tc)

, which readily implies the required inequality for

ρ̂. □
Now we prove Theorem 1.10. Let us dissect the Voronoi cell V of q into triangles

by connecting q to all vertices of V. Furthermore, if the orthogonal projection of q
onto any side of V lies inside the side, we dissect the corresponding triangle obtained
in the previous step into two right triangles by connecting q to this ortogonal
projection. Note that any triangle obtained in this way is either obtuse, or a right
triangle.
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Let T be a triangle obtained in the previous paragraph. Let rT denote the
distance of q from the sideline of T opposite to it, and let dT denote the distance of
q from the farthest vertex of T. Note that rT ≥ r and dT ≥ R(r). By Lemma 3.1,
we have that fixing the value of rT , ρ(B,T) and ρ̂(B,T) are maximized if T is
a right triangle, and dT = R(r). Under these conditions, by Lemma 3.2, ρ(B,T)
is maximal if rT = r. But in this case ρ(B,T) = σreg(r) and ρ̂(B,T) = σ̄reg(r),
implying Theorem 1.10.

4. Proof of Theorem 1.12

Without loss of generality, we may assume that the distance of every face plane
of V from o is at most 1 + λ. Let the face-planes of V be Hi with i = 1, 2, . . . ,m.
For any Hi, let Ci denote the spherical segment of (1+ λ)B3 truncated by Hi from
this ball. To minimize the density, we need to maximize vol3 (

⋃m
i=1Ci). Let the

height of Ci, defined as (1 + λ) minus the distance of Hi from o, be denoted by hi.
Note that

vol3

(
m⋃
i=1

Ci

)
≤

m∑
i=1

vol3(Ci).

A well-known formula shows that vol3(Ci) = π
(
(1 + λ)h2i −

h3
i
3

)
. We set

F (h1, h2, . . . , hm) :=

m∑
i=1

π

(
(1 + λ)h2i −

h3i
3

)
.

Consider the function f(h) := π
(
(1 + λ)h2 − h3

3

)
. Then f ′(h) = πh(2(1+λ)−h) >

0 and f ′′(h) = π(2(1+λ)−2h) > 0 for all 0 < h < 1+λ. It follows that f is a strictly
increasing and convex function of h on the interval [0, λ]. Hence, if

∑m
i=1 hi ≤ 12λ,

then

(4.1) F (h1, h2, . . . , hm) =
m∑
i=1

f(hi) ≤ 12π

(
(1 + λ)λ2 − λ3

2

)
.

Note that the right-hand side of (4.1) is vol3((1+λ)B
3 \D), implying Theorem 1.12

in this case.
In the remaining part we show that

∑m
i=1 hi ≤ 12λ. Suppose the contrary, and

note that this implies m > 12. We recall the following lemma of Hales from [12].

Lemma 4.1. Let α0 := 1.26, and xi, i = 1, 2, . . . ,m be a set of points in E3

satisfying 2 ≤ ∥xi∥ ≤ 2α0 and 2 ≤ ∥xi − xj∥ for any i ̸= j. Then

m∑
i=1

L

(
1

2
∥xi∥

)
≤ 12,

where L(t) := α0−t
α0−1 for 0 ≤ t ≤ α0.

Applying Lemma 4.1 for the centers of the balls generating the faces of V, we
have

12 ≥
m∑
i=1

L(1 + λ− hi) =
α0 − 1− λ

α0 − 1
m+

1

α0 − 1

m∑
i=1

hi.
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Combining it with the indirect assumption, we obtain

(4.2) 12λ <
m∑
i=1

hi ≤ 12(α0 − 1)−m(α0 − 1− λ).

From this, a rearrangement of the terms in the leftmost and rightmost expressions
yields

(m− 12)(α0 − 1− λ) ≤ 0,

which contradicts the fact that both factors on the left-hand side are positive.
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[5] K. Bezdek and Z. Lángi, Density bounds for outer parallel domains of unit ball packings, Proc.
Steklov Inst. Math. 288 (2015), 209–225.
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