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DENSITY BOUNDS FOR UNIT BALL PACKINGS RELATIVE TO
THEIR OUTER PARALLEL DOMAINS

KAROLY BEZDEK* AND ZSOLT LANGI!

ABSTRACT. We prove that the highest density of non-overlapping translates of a
given centrally symmetric convex domain relative to its outer parallel domain of
given outer radius is attained by a lattice packing in the Euclidean plane. This
generalizes some earlier (classical) results. Sharp upper bounds are proved for the
analogue problem on congruent circular disks in the spherical (resp., hyperbolic)
plane and on congruent balls in Euclidean 3-space.

1. INTRODUCTION

Packings and coverings, in particular, those with congruent balls, have a long
history in mathematics, with many applications in sciences. Motivated by recent
developments in natural sciences (see for example, [9, 15] for more information on
such developments in molecular biology and crystallography), it seems that there
is a need to broaden this investigation to families of convex bodies that are not
packings, but in which some control on the overlap of the bodies prevents them
to become coverings. These families are usually called soft packings. In the recent
papers [5, 6], the authors investigated two notions of density related to soft packings
of convex bodies in Euclidean spaces. In this paper we continue our investigation,
and examine also soft packings in spaces of constant curvature. Before stating our
results, we present a brief review on the background of our research.

Let us recall the classical notion of density for translative packings of convex
bodies in Euclidean spaces. Let the Euclidean norm of the d-dimensional Euclidean
space E¢ be denoted by || - || and let B? := {x € E?|||x|| < 1} denote the (closed)
d-dimensional unit ball centered at the origin o in E?, where d > 1. Next, let
M be an arbitrary o-symmetric convex body (i.e., let M be a compact, convex
set with non-empty interior, and with M = —M) in E%, d > 1 and let M be the
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d-dimensional Minkowski space (i.e., d-dimensional normed space) with M as its
unit ball, and norm |[|x|[p := min{p > 0jx € uM]} for any x € EY Then let
P:={c;+M |ieclCNwith |c; —cgllm > 2 for all j # k € I} be an arbitrary
packing of unit balls in M with P := (J,c;(c; +M). Finally, let

, volg(P N RBY)
0 =1 _—
uP) = s o (RBY)

be the (upper) density of P in M and let
ot := sup oy (P)
P

be the largest density of packings of unit balls in M, where voly(-) denotes the d-
dimensional volume (i.e., Lebesgue measure) of the corresponding set in E¢. Com-
puting oy for M = E? is a long-standing open problem of discrete geometry with
the exact values known only for d = 2 ([10]), 3 ([11]), 8 ([16]), and 24 ([8]). (For
more details see for example, Chapter 1 of [4]). The concept of density has been
extended to soft packings by the authors in [5] and [6] as follows. As above, let
P:={c;+M|iec I C N with |c;j —cgllm > 2 for all j # k € I} be an
arbitrary packing of unit balls in M. Moreover, for any d > 2 and A > 0 let
Py ={ci+ (1 +AM | i € I} with Py := [J;c;(c;i + (1 + A)M) denoting the
outer parallel domain of P := (J;.;(c; + M) for outer radius A in M (see Figure 1).
Furthermore, let .

soft L VOld(P,\ N RB )

P = B L (RB)
be the (upper) density of the outer parallel domain P) assigned to the unit ball
packing P in M. Finally, let

S (N) = sup (Py)

be the largest density of the outer parallel domains of unit ball packings having
outer radius A in M. Putting it somewhat differently, one could say that the family
Pr={ci+ (1 +AM)M | i € I} of closed balls of radii 1 + X is a packing of soft balls
with soft parameter \ in M, if P := {c; + M | i € I} is a unit ball packing of M in
the usual sense. In particular, 550 (7P,) is called the (upper) soft density of the soft
ball packing P, in M with 5&,‘&“()\) standing for the largest soft density of packings
of soft balls of radii 1 + A having soft parameter A in M.

The authors proved Rogers-type upper bounds for 5%%&()\) in [5] (see Theorems
5 and 6 as well as Corollary 1), which are sharp for d = 2 and A > 0. On the other
hand, the authors proved in [6] (see Theorem 3) that for any A > 0, among lattice
packings of soft balls of radii 1 + A with soft parameter \ in E? (for an illustration
of a soft lattice packing, see Figure 2), the soft density has a local maximum at the
corresponding FCC lattice.

In this note we continue the line of research presented in [5] and [6], and extend
those results further by introducing the concept of truncated density dyp(A\) that
bridges the concepts of density dp; and soft density 5§A‘I’ft()\) as follows.

Definition 1.1. Let M be an arbitrary o-symmetric convex body in E¢, d > 1
and let M be the d-dimensional Minkowski space (i.e., d-dimensional normed space)
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(I4+M)M

FIGURE 1. A soft packing of translates of the o-symmetric convex
body M. The regions with horizontal stripes and dots correspond
to P and P \ P, respectively.

FIGURE 2. A soft lattice packing of translates of the o-symmetric
convex body M, with a fundamental parallelogram of the lattice.

with M as its unit ball, and norm ||x|[p := min{y > 0|x € pM} for any x € E°.
Then let P := {c; + M | i € I C N with |[c; — ci|lm > 2 for all j # k € I} be
an arbitrary packing of unit balls in M. Moreover, for any d > 2 and A > 0 let
P) := U;es(ci + (1 + XA)M) denote the outer parallel domain of P := J;c;(c; + M)
having outer radius A in M. Furthermore, let

- volg(P N RBY)
onvi (A =1
(A P) o= limsup Zom 5 e

be the (upper) A-truncated density of the unit ball packing P in Py. Finally, let
the largest A-truncated density be defined by

dvi(A) := sup du (A, P),
P

where the supremum is taken for all packings P of unit balls in M. Similarly, let

511@1%106()\) = sup 5M()\, Plattice)v

lattice

where Piattice Stands for an arbitrary lattice packing of unit balls in M.
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Remark 1.2. It follows from the above definitions in a straightforward way that
(1.1) Sm(P) = 852" (Py) - dm(A, P) and Sy = S5 () - Sma(N).

For given o-symmetric convex body M in E?, the smallest A > 0 for which 615\3&()\) =
1, i.e., for which dpy = dp(\), is closely related to the notion of simultaneous packing
and covering constant of M, which has been extensively studied by several authors.
We refer the interested reader to [17] and the references mentioned there. Finally,
we note that by taking a saturated packing of translates of M in E?, it follows that
539 (\) = 1 holds for all A > 1. This together with (1.1) implies that

(1.2) om = dmi(A)

holds for all A > 1.

Remark 1.3. Clearly, if P := {¢,+M |i=1,2,...,n with |[cj—cg|jm > 2forall 1 <
j < k <n} is a packing of n > 1 unit balls in M, then &y (P) = &2*(Py) = 0 and
(A, P) > 0. In particular, for given d > 1,n > 1 and for any sufficiently small
A > 0 the largest dga(\,P) can be obtained for a packing P of n unit balls in E4

that possesses the largest number of touching pairs. (For more details see Theorem
1 in [5].)

Remark 1.4. Clearly, 0 < d&ttice(X) < gy (\) and dy(\) (resp., attice(N)) is a
decreasing function of A > 0 with dy(0) = oiattice(0) = 1.

Independently, L. Fejes T6th [10] and C.A. Rogers [13] (see also [14]) proved that
(1.3) Sy = dpgttice

holds for any o-symmetric convex body M in E2?, where 5@““ denotes the largest
(upper) density of lattice packings of M in E¢. This theorem, i.e., (1.3) is a special
case of the following more general result for sufficiently large A in (1.4).

Theorem 1.5. For any o-symmetric plane conver body M and X\ > 0, there is a
lattice packing Prattice of translates of M such that dyp(\, Plattice) = OM(A). In other
words, we have

(1.4) du(A) = a3t ()
for any o-symmetric plane conver body M and X > 0.
Clearly, (1.2), (1.3), and (1.4) imply

Corollary 1.6. §iattice()\) = glattice poids for all A > 1 and for all o-symmetric
convez body M in E2.

Remark 1.7. Theorem 1.5 for M = E2, has already been proved in [5] as follows.
Let 0 < A < % — 1 =0.1547... and H be a regular hexagon circumscribed about

the unit disk B2 in E2. Then
T

(15) 51[*]2 ()\) = . (H 5 (1 n )\)BZ) — Ilégttice()\)’

where area(-) := vola(+).
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Clearly, it is sufficient to prove Theorem 1.5 under the assumption that M has
(C°°-class boundary and it is strictly convex. We note that in this case the bisector
of any nondegenerate segment [x,y] is homeomorphic to a line ([1]). We denote the
bisector of [x,y]| by B(x,y).

Definition 1.8. Let x1,Xa,...,x; € M satisfy ||x;||p > 2 for all ¢ with 1 <i < k.
Then the set

P = {x:||x|lm < ||x — x;||m for all i with 1 <1i <k}

is called a bisector k-gon (shortly, B-k-gon) of M. For any A > 0, we call the area
of PN (1+ A\)M the \-truncated area of P.

The proof of Theorem 1.5 relies on the following Dowker-type theorem.

Theorem 1.9. For any A > 0 and n > 3, let A,(M, \) denote the infimum of the
A-truncated areas of all B-n-gons of M. Then the sequence {A,(M,\)} is convez.
Furthermore, if k is a divisor of n and M has k-fold rotational symmetry, then
there is a B-n-gon of M with k-fold rotational symmetry whose \-truncated area
is An(M,X). In particular, if n is even, there is an o-symmetric B-n-gon whose
A-reduced area is An (M, N).

Next, we state a strengthening of (1.5) as follows. Let P be a plane of constant
curvature (i.e., let P be either the Euclidean, or spherical, or hyperbolic plane), and
let F be a packing of disks of radius r in P, Let B be an element of F centered
at q, and let V be the Voronoi cell of B. On the sphere, we also assume that the
distance of any vertex of V from q is less than 5. Let B, denote the disk of radius
(14 X)r concentric with B. Then let the density of B with respect to the truncated
Voronoi cell BNV (resp., the soft density of the soft disk B) with respect to V
having soft parameter A and hard core B) be defined by

area(B)

OB,V A) = area(B, N'V)’

<resp., 5(B,V,\) = area(B/\ﬂV)>

area(V)

For any 0 < r (on the sphere we also assume that r < %), let R(r) denote the
circumradius of a regular triangle T, of sidelengths 2r. (Note that our assumption
implies that on the sphere R(r) < 7.) Furthermore, if the vertices of T, are
P1, P2, P3, and for i = 1,2,3, B; and B, denote the disks of radius r and (1 + \)r

centered at p;, respectively, then we set
area (U?Zl B; N Tr>
area (U?:1 B/ N TT>

We note that the distance of any sideline of V from q is at least r, and the distance
of any vertex of V' from the center of the disk of radius r contained in V is at least
R(r).

area <U§:1 B/ N TT>
area (T,)

Oreg(T) 1= , | resp., Greg(r) =

Theorem 1.10. With the above notation, we have

(B, V,A) < 0yeg(r) and (B, V,A) < Greg(r).



1198 K. BEZDEK AND Z. LANGI

Remark 1.11. We note that the first inequality of Theorem 1.10 is a strength-
ening of (1.5) in the FEuclidean case and an extension of it to the spherical (resp.,
hyperbolic) plane. On the other hand, the second inequality of Theorem 1.10 is
an extension of the 2-dimensional case of Theorem 5 in [5] to planes of constant
curvature.

It would be very interesting to find analogues of the above stated 2-dimensional
results in higher dimensions. Here we state the following result in E2. Let D be a
regular dodecahedron circumscribed about the unit ball B3, and note that the cir-
cumradius of D is R = \/gtan% = 1.2584 ..., and the radius of the midscribed ball

VIO2VE _ 1755,

of D (touching the edges of D at their midponts) is ryq =
Forany 0 < A< R—1, let
VOlg(Bg)
vol3(D N (1+N)B3)’
One might wonder (see Problem 4 in [5]) whether for any 0 < A < R —1,if V is
the Voronoi cell of B? in an arbitrary unit ball packing of E3, then
VO]3<B3)
vols(V N (1+ A\)B3)
Theorem 1.12. For any 0 < X\ < 710 — 1, if V is a Voronoi cell of B? in an
arbitrary unit ball packing of E3, then
VOlg(Bg)
vols(V N (1+ A\)B3)
Remark 1.13. On the one hand, we note that 7g3(\) = 4W(1+/\)3_§76r7r()\2+%/\3) for
all 0 < XA < rpig—1=0.1755.... On the other hand, Theorem 4 of [5] proves the

following: Let 0 < A < 2 —1 = 0.1547... and set ¢y := — arctan (@tan(fxbo)) =

T3 (A) ==

< 3 (A).

< 13 (A).

V3
0.0524 ..., where ¢ := arctan % = 0.6154.... If V is a Voronoi cell of B? in an
arbitrary unit ball packing of E3, then
V013(B3)

vols(V N (1 + \)B3)

m — 61
T — 60 + (37 — 18%0)A — (67 + 1800)A2 — (57 + 6g) A3
(Unfortunately, the formula for 7gs(A) in Theorem 4 of [5] was computed incor-

rectly.) As 7ps(A) < Tgs(A) holds for all 0 < A < % — 1 = 0.1547... therefore

Theorem 1.12 of this paper improves Theorem 4 of [5].

< Tps(N) =

Remark 1.14. We note that the proof of Theorem 3 in [6] implies in a straightfor-
ward way the following statement. For any A > 0, among lattice packings of unit
balls in E?, the A-truncated density has a local maximum at the corresponding FCC
lattice.

We cannot resists to raise the following problem.
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Conjecture 1.15. For all A > 0, among packings of unit balls in E3, the A-truncated
density has a maximum at the corresponding FCC lattice.

Remark 1.16. Hales’s celebrated proof [11] of the Kepler conjecture and (1.2)
imply Conjecture 1.15 for any A > 1. On the other hand, Conjecture 1.15 seems to
be open for 0 < A < 1. For answering the latter question, the following inequality
of Hales [12] might be helpful: Let ap := 1.26, and x;, i = 1,2,...,m be a set of
points in E? satisfying 2 < ||x;|| < 2a9 and 2 < ||x; — x;|| for any i # j. Then
2442(m—12)ag < >, |Ixi]|. (For a related concept we refer the interested reader
to [7].)

In the rest of this note we prove the theorems stated.

2. PROOFS OF THEOREMS 1.5 AND 1.9

To prove the theorems, we use the description of the properties of Voronoi cells
of point systems in normed planes in e.g. [1]. In particular, we note that as M is
strictly convex and it has a C*°-class boundary, for any distinct x,y € M, B(x,y)
is a C*°-class, simple curve. For the proofs of our theorems, we need Lemma, 2.1.

Lemma 2.1. For any mutually distinct points x,y,z, B(x,y) and B(y, z) intersect
if and only if X, y, z are not collinear, and in this case they have a unique intersection
point.

Proof. The proof is based on the following reformulation of the statement: if x,y,z
are collinear, then there is no homothetic copy of M containing all of them in its
boundary, and if they are not collinear, there is a unique such copy. To prove this
statement, it is enough to observe that for any distinct points x,y, there is a 1-
parameter family of homothetic copies of M containing them in their boundaries.

O

First, we show how Theorem 1.9 yields Theorem 1.5.

Let € > 0 be arbitrary. Consider a packing P = {c + M : ¢ € X} of translates
of M such that the density of X + M with respect to its outer parallel domain
X + (14+ A)M of outer radius A is at least dyr(A) —e. Note that adding translates of
M to P may decrease its density, and thus, we cannot assume that it is a saturated
packing. Nevertheless, we show that there is some r > 0 and a modified packing P’
with density at least dpi(A) — e such that for any x € M, ||x — c||m < 2r for some
ce X.

Indeed, for any r > 2, let X, = X N (r — 1)M. Clearly, we may choose some
sufficiently large value 7’ such that the density of X, + M with respect to its outer
parallel domain of outer radius A is at least dy(A) — . Choose some countable set
Y C M such that ||y — y'|lm > 2r' for any distinct y,y’ € Y, and Y + 2r'M = M.
We define X’ = (Jyey(y + Xiv). Then P = {c+ M : c € X'} is a packing of
translates of M. Furthermore, the density of this packing is at least dp(\) — €, and
for any z € M, we have ||z — c||; < 27/ for some ¢ € X'.

In the remaining part, we show that if P = {c+ M : ¢ € X} is a packing of
translates of M such that for some r > 0, X +rM = M, then

area(M)

(2.1) 7A6(M, N

> (A, P).
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Here we observe that by Theorem 1.9, there is an o-symmetric B-6-gon circum-
scribed about M with area equal to Ag(IM, \). The sides of this B-6-gon belong
to bisectors of the form B(o,£x), B(o,+2y) and B(o,£(x +y)) for some linearly
independent vectors x,y € M, implying that the packing Pjattice = {kx+my +M :
k,m € Z} is a lattice packing of M with density Zze&(/[l\fi)), and thus, (2.1) implies
Theorem 1.5.

Let us decompose M into the Voronoi cells of the elements of P, where for any
c; € X, C; denotes the cell of ¢; in this decomposition. Furthermore, by our
assumptions and Lemma 2.1, C; is a starlike topological disk, and its boundary is a
closed chain of arcs such that each arc is a connected part of a bisector B(c;, c;) for
some c; € X. These arcs are called the sides of C;, and the unique intersection point
of two consecutive sides is a vertex of C;. This also shows that the decomposition
is edge-to-edge. Let n; denote the number of sides of C;, and A; denote the area of
the region C; N (c; + (1 + A\)M).

For any R > 0, let Pg denote the family of Voronoi cells contained in RB?, and
let Ngr denote the cardinality of Pgr. Since for any cell C;, ¢;+M C C; C ¢; +rM,
it is easily deduced that the limit n := limg . ZC%:RM exists. Furthermore, as
the edge graph of the Voronoi decomposition, formed by the vertices and sides of the

cells, is planar, by Euler’s theorem we obtain that n < 6. Then, by Theorem 1.9,

ZC'LEPR A > ZCZ-EPR An, (M, ))
Ng - Nr

which readily yields the inequality in (2.1).

(2.2)

> Aﬁ(Ma )‘))

FiGURE 3. An illustration for the proof of Theorem 1.9. The area
of the dotted region is A(Xy).

In the remaining part of the section, we prove Theorem 1.9. First, observe that,
by compactness, for any n there is a B-n-gon P of minimal A-reduced area containing
M, and every side of P touches M. Let S denote the family of closed oriented arcs
(in counterclockwise direction) in the Euclidean unit circle S*, where Xy denotes the
closed counterclockwise oriented arc in S! from x to y. For any x € S, let p,. denote
the unique point of bd(M) with outer unit normal vector x. For any x,y € S!, let
R(xy) denote the (closed) region bounded by the counterclockwise oriented arc in
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bd(M) from p, to py and the bisectors B(o,2p,), B(o,2p,) touching M at p, and
py, respectively, such that o ¢ R(Xy) (see Figure 3). Finally, define A(Xy) as the
area of (1 + A\)M N R(xy). We recall Lemma 5 from [2].

Lemma 2.2. Let f : S — R be a bounded function with f(pp) = 0 for all p € S*.
For any integer n > 3, let

mn—inf{Zf(S):XCS is a tiling of S' with ]X]—n}.
SeX

If for any @273 C T124, we have
f(@1z3) + f(x2xs) < f(z122) + f(T273),

then the sequence {my,} is convex. Furthermore, if in addition, there is some positive
integer k that divides n, and f has k-fold rotational symmetry, and there is an n-
element tiling X of S such that m,, = Y sex [(S), then there is an n-element tiling
X' of St with k-fold rotational symmetry such that m, = Y osex: f(5).

Let I[X]: E? — {0,1} denote the indicator function of the set X N (1+ A\)M for
any X C 2. Consider arcs Tox3 C Z122 C S'. Then it is easy to check that

IR(x1x))(a) + I[R(%2x3)(q) — [[R(x1xX3)](q) — I[R(X2x1)](q) > 0

is satisfied for any q € E2. This shows that the conditions in Lemma 2.2 are met
for the function f(-) = A(:), implying Theorem 1.9.

3. PROOF OF THEOREM 1.10

In the proof, for any points p,q € P, where on the sphere we assume that they
are not antipodal, we denote by [p,q] the shortest geodesic arc connecting p and
q. For any triangle T with q as a vertex, we set

area(T N B)
area(T N B,)

Before proving the theorem, we first prove two lemmas.

area(T N B,)

p(B,T) = area(T)

, and p(B,T) :=

Lemma 3.1. Let L be a line through q, and let R, be a half line starting at a point
p of L\ int(B) such that R, is perpendicular to L. For any s > 0 (on the sphere
for any 0 < s < T), let p(s) denote the point of R, whose distance from p is s.
Furthermore, for any 0 < s1 < sa (on the sphere for any 0 < s1 < so < 3), let
T(s1,s2) denote the triangle with vertices q,p(s1) and p(s2). Then p(B,T(s1,s2))
and p(B,T(s1,s2)) are non-increasing functions of s1 and ss.

Proof. Let 0 < 51 < s3 < 55 be given (on the sphere assume also that s5 < 7). With-
out loss of generality, assume that the ratio of the angles of T(sy, s2) and T(s1, s5)
at q is rational. Then we can dissect T(s1,s5) into triangles Ty, Ty, ..., Tk, all
having q as a vertex such that they have equal angles at q, denoted by ~, any two
consecutive members share a side, and p(sz2) is a vertex of some triangles T; and
T;11. Let ¢ : P — P be the rotation around q with angle v that moves p(s1)
closer to p(s2). Then, for any value of i, (T;) C Tit1, ¢(T; NB) = T;;1 N B
and ¢(T; N By) = T;+1 N By. This proves that p(B,T(s1,s2)) > p(B,T(s1,55)),
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implying that p(B, T(s1,s2)) is a non-increasing function of sp. To prove that it is
a non-increasing function of s1, we may apply a similar argument.

To verify the monotonicity property of p(B, T(s1, $2)), note that there is a unique
value § such that p(s) € B, if and only if s < s. Furthermore, if 0 < 51 <
s9 < 5, then p(B,T(s1,s2)) = 1. Thus, to prove that p(B,T(s1,s2)) is a non-
increasing function of so, it is sufficient to consider values s < s; < sy < ).
But in this case, repeating the argument in the previous paragraph, we obtain
p(B, T(s1,52)) > p(B, T(s1,55)), showing that the function is non-increasing in the
second variable. To prove the monotonicity in the first variable, we can repeat the
same argument. O

FIGURE 4. An illustration for the proof of Lemma 3.2.

Lemma 3.2. Let ' be a point at distance R(r) from q. Fori = 1,2, let T; =
conv{q,q’,pi} be a triangle with right angle at p;, let r; denote the distance of p;
and q. Assume that r <r; <ry < R(r). Then

p(BaTl) > p(B,Tg), and ﬁ(BaTl) > ﬁ(BaTQ)

Proof. Tt is easy to show that r; < ry implies that the angle of T at q is larger
than that of T9, and thus we may assume that [q, p2] and [q’, p1] cross. Let the
intersection point of these segments be x (see Figure 4). Let T, = conv{q, p1,x},
Ty, = conv{q,x,q’'} and T. = conv{x,q’, p2}. Then, by Lemma 3.1, we have

p(BaTa) > p(BaTb) > p(BvTC))

implying that p(B,T;) > p(B,T2). By the same lemma we similarly obtain that
p(B,T,) > p(B, Ty). Furthermore, an argument similar to the proof of Lemma 3.1
yields p(B,Ty) > %&Q}C), which readily implies the required inequality for

D [

Now we prove Theorem 1.10. Let us dissect the Voronoi cell V of q into triangles
by connecting q to all vertices of V. Furthermore, if the orthogonal projection of q
onto any side of V lies inside the side, we dissect the corresponding triangle obtained
in the previous step into two right triangles by connecting q to this ortogonal
projection. Note that any triangle obtained in this way is either obtuse, or a right
triangle.
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Let T be a triangle obtained in the previous paragraph. Let rp denote the
distance of q from the sideline of T opposite to it, and let dp denote the distance of
q from the farthest vertex of T. Note that rr > r and dr > R(r). By Lemma 3.1,
we have that fixing the value of rr, p(B,T) and p(B,T) are maximized if T is
a right triangle, and dp = R(r). Under these conditions, by Lemma 3.2, p(B,T)
is maximal if ro = 7. But in this case p(B,T) = 0,¢¢(r) and p(B,T) = Greq(r),
implying Theorem 1.10.

4. PROOF OF THEOREM 1.12

Without loss of generality, we may assume that the distance of every face plane
of V from o is at most 1 + A. Let the face-planes of V be H; with i =1,2,... , m.
For any H;, let C; denote the spherical segment of (1 + A\)B? truncated by H; from
this ball. To minimize the density, we need to maximize vols (|J"; C;). Let the
height of C;, defined as (1 + \) minus the distance of H; from o, be denoted by h;.

Note that
V013 <U Cz) < ZVOlg(CZ’).
=1 i=1

A well-known formula shows that vol3(C;) = 7 <(1 + A\)h? — %§> We set

m

h3
— E 2 i
F(h17h27"'7hm) = Z‘:171- <(1 +)\)hl - 3) .
Consider the function f(h) := ((1 + A)h% - %3) Then f'(h) = wh(2(1+A)—h) >

0 and f”(h) = m(2(14+X)—2h) > 0forall 0 < h < 14+ \. It follows that f is a strictly
increasing and convex function of h on the interval [0, A]. Hence, if Y 1", h; < 12,

then

m

(4.1) F(hi,ha,... hy) = ;f(h,») <12r ((1 +A)A2 — A;) .

Note that the right-hand side of (4.1) is vol3((1+\)B?\ D), implying Theorem 1.12
in this case.

In the remaining part we show that > ", h; < 12X. Suppose the contrary, and
note that this implies m > 12. We recall the following lemma of Hales from [12].

Lemma 4.1. Let ag := 1.26, and x;, i = 1,2,...,m be a set of points in E3
satisfying 2 < ||x;]] < 209 and 2 < ||x; — x| for any i # j. Then

(1
Z;L <2||xi\) <12,

where L(t) := gg:f for 0 <t < .

Applying Lemma 4.1 for the centers of the balls generating the faces of V, we
have
ap — 1—A 1 "

122§:L(1+)\—hi): m + > hi.

ag— 1 ag—1
i=1 0 0 i=1
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Combining it with the indirect assumption, we obtain

(4.2) 120 <Y " hi <12(ap — 1) = m(ag — 1 = A).
=1

From this, a rearrangement of the terms in the leftmost and rightmost expressions
yields

(m—12)(cg —1—=X) <0,
which contradicts the fact that both factors on the left-hand side are positive.
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