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Thus, λ(P ) = 1/(1 + c(V (P ))). The above observation (1.1) implies that for any
polytope P ⊆ Rn one has λ(P ) ≥ 1/(n+ 1) (equiv. c(A) ≤ n). The only polytopes
for which λ(P ) = 1/(n+ 1) are simplices. This was proved by Schneider in [10] see
[11, Theorem 3.1.9], see Proposition 7.5 for an alternative proof.

We call a polytope P ⊆ Rn “λ-vertex generated” if λ(P ) ≥ λ, and we denote
the class of λ-vertex generated polytopes by VG(Rn, λ). Clearly VG(Rn, λ) is a
decreasing family in λ. It is easy to check that λ(P ) ≤ 1/2 for any polytope P
by considering a 1-dimensional face of P . We let VG(Rn) = VG(Rn, 1/2) be the
smallest of these classes, and call the polytopes in this class “vertex generated”.
Our main objective in this note is to study the class VG(Rn), namely polytopes for
which

P + V (P ) = 2P.

The name “λ-vertex generated” stems from the fact that the equality in the
definition of λ(P ) can be iterated. As we show in Proposition 6.1, P ∈ VG(Rn, λ)
if and only if

P = cl

( ∞∑
i=0

(1− λ)iλV (P )

)
,

where cl(A) denotes the closure of the set A.
This paper is devoted to studying some interesting features of these classes. We

present several of these in the introduction, and the text contains several other
results and observations. Our first main result is that for any λ, the sum of a
polytope in VG(Rn, λ) with a segment is also in VG(Rn, λ).

Theorem 1.2. Let n ≥ 1 and λ ∈ [1/(n + 1), 1/2]. Given x, y ∈ Rn denote
ℓ = [x, y] = {(1−µ)x+µy : 0 ≤ µ ≤ 1} ⊂ Rn. For any P ∈ VG(Rn, λ) it holds that
P + ℓ ∈ VG(Rn, λ) as well.

As a consequence, we get that zonotopes are vertex generated. Recall that a
zonotpe in Rn is the Minkowski sum of a finite number of segments. The class
of zonotopes is well studied, see [11] and references therein. Indeed, Theorem 1.2
implies that all zonotopes are vertex generated, since a segment is clearly vertex
generated.

Corollary 1.3. Let n ≥ 1. Let Z ⊂ Rn be a zonotope. Then Z ∈ VG(Rn).

In the spirit of “generalized zonoids”, see [11], we show that all polytopes are
so-called “generalized VG(Rn)”, namely that any polytope can be summed with a
zonotope and become vertex generated.

Theorem 1.4. Let n ≥ 1, and let P ⊆ Rn be a polytope. Then there exists a
zonotope Z ⊆ Rn such that P + Z is vertex generated.

A natural question is whether any polytope can be approximated by vertex gen-
erated polytopes. We verify this in the plane, and prove that in dimension n = 2
vertex generated polytopes are dense with respect to the Hausdorff metric, in the
class of all convex bodies.

Theorem 1.5. Let P ⊆ R2 be a compact convex set. Then there exists a sequence
(Pm)∞m=1 ⊂ VG(R2) with Pm → P in the Hausdorff metric.
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Theorem 1.2 implies that the Minkowski sum of a vertex generated polytope and
a zonotope remains vertex generated. It is not clear whether VG(Rn, λ) is gener-
ally closed under Minkowski addition (nor whether it is closed under projections).
However, we are able to show that this holds for any pair of centrally symmetric
polytopes which are in a “generic” position. To formulate the result, let NP (v)
denote the cone of normal vectors of a polytope P at a vertex v, namely

NP (v) = {y ∈ Rn : 〈y, x− v〉 ≤ 0, ∀x ∈ P},
where 〈·, ·〉 is the standard scalar product on Rn. A “generic pair” is defined as
follows.

Definition 1.6. Given two polytopes P,Q ⊆ Rn with non-empty interior, we say
that they are a “generic pair” if, given v ∈ V (P ) and w ∈ V (Q), it holds that

NP (v) ∩NQ(w) 6= ∅ =⇒ int(NP (v)) ∩ int(NQ(w)) 6= ∅.

Proposition 1.7. Let n ≥ 1 and λ ∈ [1/(n + 1), 1/2]. Suppose that P,Q ∈
VG(Rn, λ) are centrally symmetric and form a generic pair. Then P+Q ∈ VG(Rn, λ)
as well.

The paper is organized as follows. In Section 2 we show that a λ-vertex gen-
erated polytope must have exponentially many vertices and that faces of λ-vertex
generated are also λ-vertex generated. In Section 3, we prove Theorem 1.2 in a
slightly more general form. In Section 4 we discuss various denseness notions, we
prove Theorem 1.5, we show that, with respect to a weaker metric, λ-vertex gen-
erated polytopes are closed and we prove Theorem 1.4. Section 5 is devoted to
centrally symmetric polytopes. Along with several other observations, we show
that a centrally symmetric polytope is λ-vertex generated if and only if all of its
faces are, and we prove Proposition 1.7. We include a curious fact regarding other
linear variants of vertex generated polytopes, demonstrating that P−V (P ) = P−P
can occur only when P is centrally symmetric and vertex generated. Section 6 is
devoted to the series expansion and covering properties of λ-vertex generated poly-
topes. Section 7 includes some additional remarks and connected results, as well as
a proof of the fact that the simplex is the unique minimizer of λ(P ).

Acknowledgement. The authors were partially supported by ISF grant no. 784/20.
The first and second named authors were also partially supported by European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 770127).

2. Some simple obstacles

We will demonstrate in this paper that the class VG(Rn, λ), for any λ, is quite
rich. In the next section we will see that it includes all zonotopes, which follows
from the stronger claim which is that if a polytope is λ-vertex generated, then it
remains λ-vertex generated also when adding a segment to it. In other words, the
class of λ-vertex generated polytopes is closed under the operation of Minkowski
summation with a segment (and, by induction, under adding any zonotope).

It is clear, however, that not every polytope is vertex generated (for example, a
triangle). In fact, in any dimension n, the simplex is not a member of VG(Rn, λ)
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for any λ > 1/(n+ 1), as we show in Proposition 7.5. We also show there that any
polytope which is not a simplex, does belong to some VG(Rn, λ) with λ > 1/(n+1).

We begin with some simple observations regarding polytopes in the class
VG(Rn, λ). In what follows we denote the boundary of a polytope P ⊆ Rn by
∂P .

Lemma 2.1. Let n ≥ 1 and λ ∈ [1/(n+ 1), 1/2]. If P ∈ VG(Rn, λ) has non-empty
interior then it has at least 1/(1 − λ)n vertices. Moreover, if P ∈ VG(Rn) has
exactly 2n vertices, then it must be a linear image of the cube.

Proof. Indeed, by assumption P ⊆
∪

v∈V (P )(λv + (1− λ)P ) and so comparing vol-
umes

vol(P ) ≤ |V (P )| vol((1− λ)P ) = |V (P )|(1− λ)n vol(P ).

This completes the proof of the inequality. Next, assume that P ∈ VG(Rn) has
exactly 2n vertices. This means that each intersection ( v+P

2 )∩ (w+P
2 ) is non-empty

(includes (v + w)/2) and has measure zero. Therefore, considering a separating
hyperplane, there exists some unit vector u ∈ Rn such that u is an outer normal to
P at v and −u is an outer normal of P at w. A subset of ∂P with this property
(that for any two of its elements one can find such a u) is called an “antipodal set”.
In other words, the vertices of P form an antipodal set of cardinality 2n. By a result
of Danzer and Grünbaum [5], this happens only if P is a linear image of the cube.
This completes the proof. □
We remark that for λ > 1/2 is it easy to see that any P ∈ VG(Rn, λ) with non-empty
interior has strictly more than 1/(1 − λ)n vertices since the copies λv + (1 − λ)P
cannot have disjoint interiors.

Next, we claim that faces of λ-vertex generated polytopes are also λ-vertex gener-
ated. In particular, any polytope with a triangular 2-dimensional face is not vertex
generated. We prove a formally stronger claim, namely that if a face of P is included
in (1 − λ)P + λV (P ), then the face is λ-vertex generated (even without requiring
the whole polytope to be in VG(Rn, λ)).

Lemma 2.2. Let n ≥ 1 and λ ∈ [1/(n+ 1), 1/2]. Let P ⊆ Rn be a polytope and let
F be a face of P . Assume F ⊆ (1 − λ)P + λV (P ). Then F = (1 − λ)F + λV (F ).
In particular, faces of λ-vertex generated polytopes are λ-vertex generated.

Proof. Let x ∈ F . By our assumption there exist v ∈ V (P ), y ∈ P such that
x = (1− λ)y+ λv. Clearly both y and v belong to F . A vertex of P which belongs
to F is also a vertex of F , and the proof is complete. □
Remark 2.3. We note that VG(Rn, λ) is not closed under intersection with either
other λ-vertex generated polytopes or a subspace, because we can translate and ro-
tate two cubes so that their intersection is a simplex, and as all centrally symmetric
polytopes are sections of higher-dimensional hyper-cubes.

3. Zonotopes, and Minkowski addition of a segment

In this section we will prove that the sum of a λ-vertex generated polytope and
a segment is λ-vertex generated. In fact, we show something slightly more general,
namely that for a polytope P all of whose faces are λ-vertex generated, the difference
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between the polytope and the average (1−λ)P+λV (P ) only decreases when passing
to P + ℓ for any line segment ℓ. More precisely we prove the following.

Theorem 3.1. Let n ≥ 1 and λ ∈ [1/(n+ 1), 1/2]. Let P ⊆ Rn be a polytope such
that all of its (n − 1)-dimensional faces are λ-vertex generated. Let ℓ ⊆ Rn be an
origin symmetric line segment and let P ′ = P + ℓ. Then

(3.1) P ′ \
(
(1− λ)P ′ + λV (P ′)

)
⊆ P \ ((1− λ)P + λV (P )).

In particular, if P is λ-vertex generated (so that the right hand side is empty) then
so is P + ℓ for any segment ℓ.

To prove Theorem 3.1 we need the following simple lemma.

Lemma 3.2. Let n ≥ 1, P ⊆ Rn a polytope, F a face of P and θ ∈ Sn−1 satisfy
that P ∩ (εθ + F ) = ∅ for any ε > 0. Then for any c > 0, F + cθ is a face of
P + [−cθ, cθ].

Proof. We will use the following notation: for a polytope P and a unit vector u, we
let Fu denote the face of P in direction u, namely

Fu(P ) = {x ∈ P : 〈u, x〉 = sup
y∈P

〈u, y〉 = hP (u)}.

It is well known (see [11, Theorem 1.7.5]) that Minkowski addition respects this
definition, namely that for u ∈ Sn−1 and polytopes P,Q ⊆ Rn one has

(3.2) Fu(P +Q) = Fu(P ) + Fu(Q).

The condition that P ∩ (εθ + F ) = ∅ for any ε > 0 is equivalent to the existence of
some u ∈ Sn−1 which belongs to the normal cone of F (that is, F = Fu(P )) and
such that 〈u, θ〉 > 0. Indeed, this follows from the duality between the “support
cone” of a convex body at a point and the normal cone, see [11, Section 2.2, eq.
(2.2)]. Thus

Fu(P + [−cθ, cθ]) = Fu(P ) + Fu([−cθ, cθ]) = F + cθ.

This completes the proof of the lemma. □
We proceed with the proof of Theorem 3.1. In what follows, we denote the relative

interior of a set A ⊆ Rn by relint(A).

Proof of Theorem 3.1. Given ℓ denote ℓ = [−cθ, cθ] where θ ∈ Sn−1 and c > 0.
We start by showing that (1 − λ)P + λV (P ) ⊆ (1 − λ)P ′ + λV (P ′). Let x ∈
(1− λ)P + λV (P ), and choose v ∈ V (P ), y ∈ P such that (1− λ)y+ λv = x. Since
{v} is a 0-dimensional face of P , either (v + R+θ) ∩ P = ∅ or (v − R+θ) ∩ P = ∅
(or both). By interchanging θ and −θ we may assume without loss of generality
the former, and by Lemma 3.2 we get that v + cθ ∈ V (P + ℓ) = V (P ′). Using that
y − λ

1−λcθ ∈ P + ℓ = P ′, we get

x = (1− λ)y + λv = (1− λ)(y − λ

1− λ
cθ) + λ(v + cθ) ∈ (1− λ)P ′ + λV (P ′).

Next, let x ∈ P ′ \ ((1 − λ)P ′ + λV (P ′)). We have just demonstrated that x 6∈
(1 − λ)P + λV (P ), and are left with showing that x ∈ P . Assume towards a
contradiction that x 6∈ P . Since x ∈ P + ℓ it follows that P ∩ (x + [−cθ, cθ]) 6= ∅,
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and (again, switching to −θ if needed) we may assume P ∩(x+[−cθ, 0)) 6= ∅. We let
c′ := inf{r > 0 : x− rθ ∈ P} and x′ = x− c′θ. In other words, x′ is one of the two
intersection points of x+Rθ and ∂P , the one closer to x. Denote by F the minimal
face of P containing x′ so that x′ ∈ relint(F ). By our assumption (taking into
account Lemma 2.2), F = (1 − λ)F + λV (F ) so that there exist v ∈ V (F ), y ∈ F
such that (1−λ)y+λv = x′. Since x′ ∈ relint(F ) and c′ was minimal, the direction
θ must satisfy that there is some u ∈ Sn−1 in the normal cone of F with 〈u, θ〉 > 0
and thus (F + εθ) ∩ P = ∅ for any ε > 0. We use Lemma 3.2 to conclude that

v + cθ ∈ V (P + ℓ), and since 0 < c′ ≤ c we have that c′−λc
1−λ ∈ [−c, c] and so

y + c′−λc
1−λ θ ∈ P + ℓ. Therefore

x = x′ + c′θ = (1− λ)(y +
c′ − λc

1− λ
θ) + λ(v + cθ) ∈ (1− λ)P ′ + λV (P ′).

This contradicts our assumption on x, and the proof is complete. □

Using that a segment is vertex generated, and Theorem 3.1 which implies that
when we add a segment to a vertex generated polytope it remains vertex generated,
we get that any zonotope in any dimension is vertex generated, proving Corollary
1.3. We will see another simple proof that zonotopes are vertex generated in Section
5.

4. On various denseness notions for VG(Rn) and VG(Rn, λ)

It is natural to ask whether vertex generated polytopes are dense within the class
of polytopes, or, similarly, within the class of all convex bodies (when considering the
Hausdorff metric, this is the same question). We are able to prove this in dimension
n = 2, which is the subject of Section 4.1. In Section 4.2 we define a different metric
on polytopes, dF , which is weaker than the Hausdorff metric dF (P,Q) ≥ dH(P,Q),
and such that with respect to this metric the vertex generated polytopes form a
closed set. The metric is quite natural and is given by the Hausdorff distance
between the vertex-sets of the polytopes. We consider other similar questions,
such as whether one can always add a zonotope to a polytope so that the resulting
polytope is vertex generated (we show this is correct, see Theorem 1.4). In the same
vein, one can try to add a very small polytope such that the resulting polytope is
vertex generated, which, if true, would imply density with respect to Hausdorff
distance. However, this we show cannot hold, and if a polytope P ⊆ Rn is not
vertex generated then there is some ε > 0 such that for all polytopes Q ⊆ εBn

2 the
polytope P +Q is not vertex generated. These two results are given in Section 4.3.

4.1. Vertex generated polytopes in the plane. In this section, we focus on
planar vertex generated polytopes, showing that they are dense in the class of all
planar convex bodies:

Theorem 4.1. The class VG(R2) of vertex generated polytopes in the plane is
dense, with respect to the Hausdorff distance, in the class of all planar convex bodies.

We shall make use of the following lemma (which actually holds in any dimension).
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Lemma 4.2. Let P ⊆ R2 be a polytope with non-empty interior. For any u ∈ ∂P ,
there exists r > 0 such that

(u+ rB2
2) ∩ P = (u+ rB2

2) ∩
1

2
(P + u).

Proof. We denote the 1-dimensional faces of P by E(P ), that is, edges of P . Fix
some u ∈ ∂P and denote

r =
1

2
min{d(u,E) : E ∈ E(P ), u 6∈ E} > 0.

Given x ∈ (u + rB2
2) ∩ P , denote by u′ ∈ ∂P the point farthest from u for which

x ∈ [u, u′]. Clearly u′ ∈ ∂P so that it lies on some edge. It cannot, however, lie
only on an edge which includes u, since in such a case we would have that x ∈ ∂P
and u′ is a vertex with x ∈ [u, u′], and then u′ lies on two edges, one of which does
not include u. By our choice of r, we have d(u, u′) ≥ 2r (again, one can distinguish
the two cases, x ∈ ∂P and x ∈ int(P )). Since d(x, u) ≤ r we see that in fact
x ∈ [u, (u+ u′)/2]. However, [u, (u+ u′)/2] ⊆ (P + u)/2 so that x ∈ (P + u)/2, as
needed. □

Proof of Theorem 4.1. Let P be a polytope and ε > 0. Clearly, we may also assume
that P is not vertex generated, so that, in particular, P is not centrally-symmetric
up to any translation. Indeed, centrally symmetric polytopes in the plane are zono-
topes (see Remark 5.3) which are vertex generated, by Corollary 1.3. Our goal is
to construct a polytope Q ∈ VG(R2) such that dH(P,Q) ≤ ε.

By Lemma 4.2, there exists some δ > 0 such that for every vertex v of P it holds
that P ∩ int(v + δB2

2) ⊆ (P + V (P ))/2.
Denote the set of vertices of P by {vi}mi=1, and set vm+1 = v1. Assume that

the vertices are labeled so that Ei = (vi, vi+1) is an edge of P (i.e., a 1-dimenional
face) for each i ∈ {1, . . . ,m}. Let ηi be the outer normal of Ei and θi be an
outer normal of vi which is different from all the outer normals {ηj}mj=1. For each

i ∈ {1, . . . ,m}, consider a circle of sufficiently large radius such that Ei is a chord
with corresponding (minor) arc Ai and the following conditions hold as well (see
Figure 1):

(C1) dH(Ai, Ei) < ε,

(C2) 2ei −Ai ⊆ P , where ei =
vi+vi+1

2 is the center of the edge Ei,

(C3) Ai ∩ {vi + θ⊥i } = vi and Ai ∩ {vi+1 + θ⊥i+1} = vi+1.

By (C3), we see that Q′ = conv(
∪m

i=1Ai) ⊇ P is a compact convex set, and
that every boundary point of Q′ is an extremal point of Q′. Moreover, since P
is not centrally-symmetric up to any translation, we know that Q′ is not centrally-
symmetric up to any translation, as well.

Consider the family {Su}u∈∂Q′ = {int(u+Q′)/2}u∈∂Q′ . We claim that it forms a
cover of int(Q′) and therefore a cover of the compact set

P ′ := P \ (
∪

v∈V (P )

int(v + δB2
2)) ⊆ int(Q′),

where δ > 0 is the positive constant chosen at the beginning of the proof.
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To show that this is indeed a cover, let x ∈ int(Q′) and suppose that x ∈ (a, b)
for some a, b ∈ ∂Q′. Note that if |x− a| < |x− b| then x ∈ (a, (a+ b)/2) and hence
x ∈ Sa. This means that x is either in some Su or is the center of every line section
of P passing through x. The latter would imply that P − x is centrally-symmetric,
and as we assumed that this is not the case, we conclude that {Su}u∈∂Q′ is indeed
a cover of Q′.

Figure 1. The construction of Q′.

By the compactness of P ′, we may select a finite sub-cover {Su′
j
}nj=1 of P ′ such

that V (P ) ⊆ {u′j}nj=1. Let Qk be the convex hull of k ≥ n points {u′j}nj=1 ∪{uj}k−n
j=1

on the boundary ofQ′ such that dH(Qk, Q
′) → 0. As one can verify, using a standard

compactness argument, for some k0 big enough, the family {int(u′j + Qk0)/2}nj=1

forms a cover of P ′ as well. We define our desired polytope by Q = Qk0 . Clearly,
by (C1), we have dH(P,Q) < ε. Also note that, by our construction, V (P ) ⊆
{u′j}nj=1 ⊆ V (Q).

It is left to show that Q is vertex generated. Let x ∈ Q. Suppose first that
x ∈ P . If x ∈ int(v + δB2

2) for some v ∈ V (P ) then, by our choice of δ > 0,
x ∈ (P + V (P ))/2, and since V (P ) ⊆ V (Q), it follows that x ∈ (Q + V (Q))/2,
as well. Otherwise, x ∈ P ′ and then, by our choice of {u′j} in the construction,

x ∈ (u′j +Q)/2 for some vertex u′j ∈ V (Q).

Suppose next that x ∈ Q \ P . In this case, x ∈ conv(Ai ∪ Ei) for some i. Let
y ∈ ∂Q be the intersection of the ray emanating from ei and passing through x with
∂Q. Clearly, we also have y ∈ conv{Ai∪Ei}. If y ∈ V (Q) then by (C2), 2x−y ∈ Q,
and hence x ∈ 1

2(V (Q) +Q). Otherwise, let a, b ∈ V (Q) be the vertices of the edge
containing y. By definition, a, b ∈ Ai and so, by (C2), we have 2ei − a, 2ei − b ∈ Q.
By interchanging the roles of a and b, we may assume that x ∈ conv(ei,

1
2(a+ b), a)

and so 2x−a ∈ conv{2ei−a, b, a} ⊆ Q. Consequently, we get that x ∈ 1
2(Q+V (Q)),

which completes our proof. □

4.2. Non-denseness with respect to a non-standard metric. While the ques-
tion of denseness of vertex generated polytopes with respect to the Hausdorff metric
remains open in dimensions n ≥ 3, we may define a weaker metric with respect to
which vertex generated polytopes form a closed set within the class of all polytopes.
This metric, which we denote dF , is defined for a pair of polytopes as the Hasudorff
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distance between the sets of their vertices. Since one may approximate a segment,
say, in the Hausdorff metric, by a sequence of triangles which are the convex hulls
of the segment with a vertex close to the middle of the segment, we see that dF is
weaker that dH (as this is an example where dH → 0 and dF 6→ 0). Let us formally
introduce this new metric on polytopes.

Definition 4.3. Let n ≥ 1. Given polytopes P,Q ⊆ Rn with vertex sets V (P ) and
V (Q) respectively, let dF (P,Q) = dH(V (P ), V (Q)) or, equivalently,

dF (P,Q) = min{ε > 0 : V (Q) ⊆ V (P ) + εBn
2 and V (P ) ⊆ V (Q) + εBn

2 }.

Clearly dF (P,Q) ≥ dH(P,Q) (using that V (P ) + εBn
2 ⊆ P + εBn

2 and that for a
convex set A, a polytope is included in A if and only if all its vertices are in A). It
turns out that with respect to the metric dF and for any λ, the class VG(Rn, λ) is
closed.

Proposition 4.4. Let n ≥ 1 and λ ∈ [1/(n + 1), 1/2]. For any polytope P ⊆ Rn

which is not λ-vertex generated, there exists some ε > 0 such that if dF (P,Q) < ε
then Q is not λ-vertex generated as well. Equivalently, for polytopes P, (Pm)∞m=1 ⊆
Rn, if Pm ∈ VG(Rn, λ) and dF (Pm, P ) → 0 then P ∈ VG(Rn, λ).

Proof. Consider a sequence of polytopes (Pm)∞m=1 ⊆ VG(Rn, λ) and a polytope P ⊆
Rn such that dF (Pm, P ) −→ 0. In particular dH(Pm, P ) → 0 and Pm are uniformly
bounded. Given x ∈ P , one may find a sequence xm ∈ Pm such that xm → x. As
Pm ∈ VG(Rn, λ) we can write xm = (1−λ)ym+λvm with ym ∈ Pm and vm ∈ V (Pm).
Since vm and ym are bounded, there exists sub-sequences vmi ymi which converge.
We call their limits v, y respectively, and note that x = (1− λ)y + λv. Using again
that Pm → P in the Hausdorff distance and V (Pm) → V (P ) in the Hausdorff’s
distance, it follows that v ∈ V (P ) and y ∈ P . We thus see P = (1− λ)P + λV (P ),
as claimed. □

4.3. Generalized vertex generated polytopes. We start with the result that
any polytope is a so-called “generalized vertex generated polytope” namely that
for any polytope one can find some zonotope such that their Minkowski sum is
vertex generated. The name is inspired by the notion of a “generalized zonoid”
from convexity (see [11, Section 3.5]) which is defined to be a convex body K such
that there exist two zonoids Z1, Z2 with K + Z1 = Z2 (a zonoid is defined to be a
limit of zonotopes in the Hausdorff metric, for definition and many interesting facts
see [11, Section 3.5]). For zonoids, however, if a polytope is a generalized zonoid
then it must be a zonotope to begin with (see Corollary 3.5.7 in [11]) whereas for
our question, any polytope can be summed with a vertex generated polytope to
obtain a vertex generated polytope. On the other hand, Theorem 1.4 is similar in
spirit to the fact that generalized zonoids are dense within the class of centrally
symmetric convex bodies in the Hausdorff metric (see [11, Corollary 3.5.7]).

Theorem 1.4. Let n ≥ 1. For any polytope P ⊆ Rn there exists a zonotope
Z ⊆ Rn such that P + Z is vertex generated.

Proof. We prove the claim by induction on the dimension n. For n = 1 there is
nothing to prove as a segment is vertex generated.
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Next, assume the statement of the theorem holds for any dimension k < n, and
let P ⊆ Rn be a polytope. Its boundary is the union of a finite number of faces Fi

of dimension k < n, and so by the inductive assumption we may, for each i, find a
zonotope Zi in the affine hull of Fi (or, more precisely, the linear subspace which
is a translation of this affine hull) such that Fi + Zi is vertex generated. Denote
Z =

∑
Zi, and by (3.2) we have for any θ

Fθ(P + Z) = Fθ(P ) +
∑

Fθ(Zi).

We do not claim that P ′ = P + Z is vertex generated, but only that it satisfies
the condition ∂P ′ ⊆ (P ′ + V (P ′))/2 (note that for n = 2 this condition is satisfied
automatically as all facets are segments). To show this containment, consider some
vector θ ∈ Sn−1, and let i = i(θ) denote the index of the corresponding face of
P , namely Fθ(P ) = Fi. Because Zi ⊆ θ⊥, clearly Fθ(Zi) = Zi, which means in
particular that

Fθ(P + Z) = Fi + Zi +
∑
j ̸=i

Fθ(Zj).

But Fθ(Zj) are zonotopes and Fi + Zi ∈ VG(Rn), and so by Theorem 3.1 also
their sum is vertex generated. This shows that the face of P ′ in direction θ is
vertex generated. Since θ was arbitrary, this shows that every face of P ′ is vertex
generated, and we get that ∂P ′ ⊆ (P ′ + V (P ′))/2.

We next find a zonotope Z ′ such that P ′+Z ′ is vertex generated. Choose η ∈ Sn−1

such that

(4.1) Fη(P
′) = {u1}, F−η(P

′) = {u2}

for some u1, u2 ∈ V (P ′). (namely η,−η are each in the interior of the normal cone
of some vertex, this is true for almost every η).

Note that P ′ ⊆ [u1, u2] + η⊥, so there exists a zonotope Z ′ ⊆ η⊥ large enough
such that P ′ ⊆ [u1, u2] + Z ′. Since a zonotope is a sum of line segments, we see
that, by inductively using Theorem 3.1 (the conditions of which are satisfied by our
construction of P ′) we have

(4.2) (P ′ + Z ′) \ 1

2
(P ′ + Z ′ + V (P ′ + Z ′)) ⊆ P ′ \ 1

2
(P ′ + V (P ′)) ⊆ P ′.

Note that by construction Fη(Z
′) = F−η(Z

′) = Z ′ and hence, by (4.1) and (3.2),
we have Fη(P

′ + Z ′) = u1 + Z ′ and F−η(P
′ + Z ′) = u2 + Z ′. Since vertices of a

polytope’s face are vertices of the polytope itself we get

V ([u1, u2] + Z ′) ⊆ V ([u1, u2]) + V (Z ′) = V (u1 + Z ′) ∪ V (u2 + Z ′) ⊆ V (P ′ + Z ′).

Finally from the fact [u1, u2] + Z ′ is a zonotope, Corollary 1.3 implies that it is
vertex generated, and therefore

P ′ ⊆ [u1, u2] + Z ′ ⊆ 1

2
([u1, u2] + Z ′ + V ([u1, u2] + Z ′)) ⊆ 1

2
(P ′ + Z ′ + V (P ′ + Z ′)).

Joining this with (4.2), we see that (P ′ + Z ′) \ (P ′ + Z ′ + V (P ′ + Z ′))/2 must be
empty, meaning that P ′ + Z ′ is vertex generated, and the proof is complete. □
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Remark 4.5. Let us remark on the degrees of freedom in our final choice of Z in
the proof of Theorem 1.4. For a two dimensional polytope P ⊆ R2, our choice of
η was only limited to the condition that Fη(P ) = {u1}, F−η(P ) = {u2} for some
u1, u2 ∈ V (P ), which is true for almost any η ∈ S1. More generally, for any polytope
P ⊆ Rn for which

∂P ⊆ 1

2
(P + V (P )),

our choice of η in the proof requires only that Fη(P ) = {u1}, F−η(P ) = {u2} for
some u1, u2 ∈ V (P ), which is true for almost any η ∈ Sn−1, and the choice of the
zonotope Z is only limited by P ⊆ [u1, u2] + Z.

Note that if one could choose, in Theorem 1.4, a very small Z, namely if for every
ε > 0 one could find such a Z contained in εBn

2 , then this would imply denseness of
vertex generated polytopes, with respect to the Hausdorff distance, within the class
of all polytopes (and hence within the class of all convex bodies). However, this
cannot hold true. Indeed, denote the Minkowski subtraction of two sets A,B ⊆ Rn

by
A	B = {x ∈ Rn : x−B ⊆ int(A)}.

Our next proposition implies that if P 6∈ VG(Rn, λ) then its Minkowski sum with
any body in a small enough ball cannot be in VG(Rn, λ).

Proposition 4.6. Let n ≥ 1 and λ ∈ [1/(n+ 1), 1/2]. Let P,Q ⊆ Rn be polytopes.
Then

(P \ ((1− λ)P + λV (P )))	Q ⊆ (P +Q) \ ((1− λ)(P +Q) + λV (P +Q)).

In particular, if P + Q ∈ VG(Rn, λ) then no translate of Q can fit into P \
((1− λ)P + λV (P )).

Proof. It is clear that (P \ ((1− λ)P + λV (P )))	Q ⊆ P 	Q ⊆ P +Q, so we need
only show that the left hand side includes no points in ((1 − λ)(P+Q)+λV (P+Q)).
The latter is included in Q + (1 − λ)P + λV (P ), so in particular for any point
x ∈ ((1− λ)(P +Q) + λV (P +Q)) there exists some y ∈ Q such that x − y ∈
(1 − λ)P + λV (P ), namely x − Q 6⊆ P \ ((1 − λ)P + λV (P )). This means that
x 6∈ (P \ ((1− λ)P + λV (P )))	Q, as claimed. □

5. Vertex generated symmetric polytopes

Restricting to the class of centrally-symmetric polytopes enables us to prove
additional properties regarding λ-vertex generated polytopes.

We first show that for a centrally symmetric polytope, being λ-vertex gener-
ated is equivalent to all of its facets being λ-vertex generated, namely that for
centrally symmetric P , the converse of Lemma 2.2 holds. This gives an easy in-
ductive proof for the fact that zonotopes are vertex generated, reproving Corollary
1.3. After establishing this fact, we show that any n-dimensional λ-vertex gener-
ated polytope can be realized as a facet of a centrally symmetric (n+1)-dimensional
λ-vertex generated polytope. In particular this means that if one knows that cen-
trally symmetric λ-vertex generated polytopes in dimension n+ 1 are closed under
Minkowski addition, then so is the class of all λ-vertex generated polytopes in Rn.
While this fact is yet to be proven, we do show that if two centrally symmetric
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λ-vertex generated polytopes are in generic position then their Minkowski sum is
also λ-vertex generated (a generic pair of polytopes was defined in Definition 1.6).
Finally we prove a statement regarding the sum of the vertices V (P ) of a polytope
with some linear image of P , a special case of which is the following curious fact:
If P − V (P ) is a convex set, then P is centrally symmetric and vertex generated,
namely P − V (P ) = P + V (P ) = 2P .

We start by showing that for centrally symmetric polytopes, the converse of
Lemma 2.2 holds.

Lemma 5.1. Let n ≥ 1 and λ ∈ [1/(n + 1), 1/2]. Let P ⊆ Rn be a centrally
symmetric polytope and assume that ∂P ⊆ (1− λ)P + λV (P ). Then P is λ-vertex
generated.

Proof. Given x ∈ P let c ≥ 1 such that cx ∈ ∂P . By our assumption there
exists v ∈ V (P ) such that cx ∈ λv + (1 − λ)P . However, since P is centrally
symmetric, also 0 ∈ λv + (1 − λ)P (since 0 = λv + (1 − λ)(− λ

1−λv) and − λ
1−λv ∈

P ). The set λv + (1 − λ)P is convex, and so together with 0 and cx it includes
x = (1− 1/c)0 + (1/c)cx, and the proof is complete. □

Remark 5.2. In fact we see that the “central symmetry” condition is an overshoot
for λ < 1/2, and we can ask for less, −λP ⊆ (1 − λ)P . Note that we always have
this for λ = 1/(n + 1) since −P ⊆ nP . This observation implies, however, that if
for example, −P ⊆ (n− 1)P , then (using that the facets are 1/n-vertex generated)
the whole polytope is 1/n-vertex generated.

Using Lemma 5.1 we can provide a simple proof for Corollary 1.3.

Another proof of Corollary 1.3. Recall that a zonotope is centrally symmetric, and
all of its faces are centrally symmetric zonotopes of lower dimension (in fact, a
polytope is a zonotope if and only of all of its two-dimensional faces are centrally
symmetric, see [11, Theorem 3.5.2]). We prove the corollary by induction, where
clearly one dimensional zonotopes are vertex generated since these are simply seg-
ments. If we know that (n − 1)-dimensional zonotopes are vertex generated, and
we are given an n-dimensional zonotope Z then it is centrally symmetric, and its
boundary ∂Z is the union of finitely many zonotopes which are vertex generated by
induction, so that ∂Z ⊆ (∂Z + V (∂Z))/2 ⊆ (Z + V (Z))/2. Applying Lemma 5.1,
Z is vertex generated as well. □

Remark 5.3. It is well-known that all centrally symmetric polytopes in the plane
R2 are zonotopes, see e.g., [11, Corollary 3.5.7] and hence vertex generated. How-
ever, in higher dimensions there exist centrally symmetric polytopes which are not
zonotopes. One such example is the cross polytope for n ≥ 3, which has faces
which are simplices and hence is not vertex generated. On the other hand, there
also exist centrally symmetric vertex generated polytopes which are not zonotopes,
and one such example is the sum of the cross polytope with a suitable chosen zono-
tope. Indeed, one may choose a suitable zonotope by Theorem 1.4, and the fact
that the cross polytope summed with a zonotope is not a zonotope follows e.g. from
[11, Corollary 3.5.7].



VERTEX GENERATED POLYTOPES 1183

Next we show that every vertex generated polytope in Rn can be realized as a
facet of a centrally symmetric vertex generated polytope in dimension (n+ 1).

Proposition 5.4. Let n ≥ 1 and λ ∈ [1/(n+1), 1/2], and let P ∈ VG(Rn, λ). Then
there exists a centrally-symmetric Q ∈ VG(Rn+1, λ) such that P = Fu(Q) for some
u ∈ Sn.

Proof. Given P ∈ VG(Rn, λ), define P ′ = conv(P × {1},−P × {−1}) ⊆ Rn+1 =
Rn × R. The polytope P ′ is centrally symmetric and its facets in directions en+1

and −en+1 are translates of P and −P respectively (where (ei)
n+1
i=1 is the standard

vector basis in Rn × R.) Moreover, for any (uj)
m
j=1 ⊆ Sn \ e⊥n and (cj)

m
j=1 ⊆ R,

the polytope Q = P ′ +
∑m

j=1 cj [−uj , uj ] satisfies that its facets in directions en+1

and −en+1 are translates of P and −P respectively (again, by using (3.2), say).
It is also important to note that all faces of P ′ which are not in the hyperplanes
H1 = {xn+1 = 1} H−1 = {xn+1 = −1}, are not parallel to these hyperplanes
(equivalently, are not orthogonal to en+1). Indeed, a face of P ′ is a convex hull of
some subset of its vertices, and these vertices belong to H1 ∪H−1, so if the subset
includes at least one element from each of the hyperplanes, then the corresponding
face includes the edge between these two vertices, which is not orthogonal to en+1.

Our task is to choose (uj), (cj) such that Q is λ-vertex generated. To this end,
we will make sure that all of its faces are λ-vertex generated and use Lemma 5.1.
We will go over all the faces of P ′ which are not included in the hyperplanes H1

and H2 (as these are automatically λ-vertex generated) and use, for each one, the
construction in the proof of Theorem 1.4. In other words, for each such face F of
P ′ we find a zonotope ZF in the affine hull of F such that F + ZF ∈ VG(Rn+1, λ).
(If F was λ-vertex generated, we pick ZF = {0}). Moreover, we can, using Remark
4.5, choose all the vectors ξi participating in the construction of ZF =

∑mF
i=1[−ξi, ξi]

so that they are not in e⊥n+1 (here it is essential that F is not orthogonal to en+1.
We let Q = P ′ +

∑
F ZF where F runs over all of the faces of P ′ which are not

orthogonal to en+1. We claim that all faces of Q are λ-vertex generated. Indeed,
let u ∈ Sn, and denote F ∗ the face of P ′ in direction u. Employing (3.2), as usual,
we have

Fu(Q) = F ∗ +
∑
F

Fu(ZF ) = F ∗ + Fu(ZF ∗) +
∑

F ̸=F ∗

Fu(ZF )

The set F ∗ + Fu(ZF ∗) = F ∗ + ZF ∗ is λ-vertex generated and it is summed with
zonotopes, so by Theorem 3.1 the face Fu(Q) is λ-vertex generated as well. This
completes the proof. □

We proceed with proving Proposition 1.7, namely that the sum of a generic pair
(see Definition 1.6) of centrally symmetric λ-vertex generated polytopes is λ-vertex
generated as well.

We remark that we can relax the condition that the polytopes are centrally
symmetric and assume instead that the polytopes satisfy the conditions asserted in
Remark 5.2.

Proof of Proposition 1.7. Since P +Q is centrally symmetric, by Lemma 5.1 it suf-
fices to show that its facets are λ-vertex generated, which is equivalent to ∂(P+Q) ⊆
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(1 − λ)(P + Q) + λV (P + Q). Given x ∈ ∂(P + Q), there exists a unit vector
u ∈ Sn−1 such that x ∈ Fu(P + Q) = Fu(P ) + Fu(Q) (by (3.2), as usual). Let
x = x1 + x2 where x1 ∈ Fu(P ) and x2 ∈ Fu(Q). As P,Q are λ-vertex gen-
erated, so are their faces, (see Lemma 2.2) namely there exist v1 ∈ V (Fu(P )),
y1 ∈ Fu(P ), v2 ∈ V (Fu(Q)) and y2 ∈ Fu(Q) such that x1 = (1 − λ)y1 + λv1 and
x2 = (1 − λ)y2 + λv2. Clearly u ∈ NP (v1) ∩ NQ(v2), meaning in particular that
NP (v1)∩NQ(v2) 6= ∅. Since P,Q are assumed to be a generic pair, this implies that
int(NP (v1))∩ int(NQ(v2)) 6= ∅. In such a case it is easy to check (see e.g. [4, Chapter
6, Lemma 1.3]) that v1 + v2 ∈ V (P + Q) (as they are the Minkowski sum of the
faces of P and Q in direction w ∈ int(NP (v1))∩ int(NQ(v2)), say). We see thus that

x = (1− λ)(y1 + y2) + λ(v1 + v2) ∈ (1− λ)(P +Q) + λV (P +Q).

This shows that ∂(P +Q) ⊆ (1−λ)(P +Q)+λV (P +Q), and by Lemma 5.1 P +Q
is λ-vertex generated. □

In the remainder of this section we focus on λ = 1/2. The idea behind our
next theorem is based on the following attempt to generalize the notion of vertex
generated polytopes. What would happen if we asked for a polytope to satisfy,
instead of P + V (P ) = 2P , the relation

P − V (P ) = P − P.

Clearly there is an inclusion of the left hand side in the right hand side, and in the
special case of centrally symmetric polytopes, this is yet again the definition of a
vertex generated polytope. It turns out that in fact there is no other instance where
this equality can hold. In fact, much more can be said. The mere requirement that
P − V (P ) is a convex set, already implies that P is centrally symmetric and vertex
generated. Moreover, the operation K 7→ −K can be replaced in this claim by any
K 7→ AK for any A ∈ GLn(R) such that Ak = Id for some positive integer k.

Theorem 5.5. Let P ⊆ Rn be a polytope and let A ∈ GLn(R) satisfy Ak = Id for
some natural number k > 0. Then the following statements are equivalent:

(1) P + V (AP ) is convex
(2) P is vertex generated and P = AP + x for some x ∈ Rn.

In particular, if P −P = P −V (P ) then P is a centrally symmetric vertex generated
polytope.

To prove Theorem 5.5, we need the following simple lemma.

Lemma 5.6. Let P,Q ⊆ Rn be two polytopes and let u ∈ Sn−1. Suppose that
P + V (Q) = P +Q. Then

Fu(P +Q) = Fu(P ) + V (Fu(Q))

and, in particular, dim(Fu(P +Q)) = dim(Fu(P )).

Proof. First note that by our assumption and (3.2),

Fu(P + V (Q)) = Fu(P +Q) = Fu(P ) + Fu(Q) ⊇ Fu(P ) + V (Fu(Q)).

To prove the reverse inclusion, let x ∈ Fu(P + V (Q)). By definition, there exist
y ∈ P and v ∈ V (Q) such that x = y + v and 〈u, x〉 = hP+Q(u). By the additivity
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of the support function with respect to Minkowski addition (see e.g., [11, Theorem
1.7.5]), we therefore have

hP (u) + hQ(u) = hP+Q(u) = 〈u, x〉 = 〈u, y〉+ 〈u, v〉.

Since 〈u, y〉 ≤ hP (u) and 〈u, v〉 ≤ hQ(u), it follows that 〈u, y〉 = hP (u) and 〈u, v〉 =
hQ(u). We thus conclude that, y ∈ Fu(P ) and v ∈ V (Fu(Q)), which completes our
proof. □

Proof of Theorem 5.5. The fact that (2) implies (1) is immediate. We proceed to
prove that (1) implies (2). Since P + V (AP ) includes all the extremal points of
P+AP , it follows that conv(P+V (AP )) = P+AP , and so convexity of P+V (AP )
implies that P + V (AP ) = P +AP .

We next show that for any u ∈ Sn−1, dim(FAu(P )) = dim(Fu(P )). We use that
P +AP = P + V (AP ), that FAu(AP ) = A−TFu(P ) and Lemma 5.6, to conclude

dim(A−TFu(P )) ≤ dim(FAu(P ) +A−TFu(P ))(5.1)

= dim(FAu(P +AP )) = dim(FAu(P )).

Therefore, dim(Fu(P )) ≤ dim(FAu(P )). Since (5.1) holds for any direction u,
using our assumption that Ak = I, we see that

(5.2) dim(Fu(P )) ≤ dim(FAu(P )) ≤ · · · ≤ dim(FAku(P )) = dim(Fu(P )),

and so dim(Fu(P )) = dim(FAu(P )), as claimed, and the inequality in (5.1) is in fact
an equality.

Note that we can also infer that the affine hull of FAu(P ), denoted by aff(FAu(P )),
is a translate of the affine hull of A−TFu(P ) (which we denote here by
aff(A−TFu(P ))) since the equality dim(FAu(P ) + A−TFu(P )) = dim(A−TFu(P ))
implies that aff(FAu(P )) is a subset of a translate of the set aff(A−TFu(P )) and
hence the equality dim(A−TFu(P )) = dim(FAu(P )) implies that their affine hulls
coincide.

Next we show that if dim(Fu(P ))=1 then we have vol1(FAu(P ))=vol1(A
−TFu(P )).

Indeed, if dim(Fu(P )) = 1 then, by (5.1), dim(FAu(P )) = dim(FAu(P + AP )) = 1.
In particular, since FAu(P +AP ) = FAu(P ) +A−TFu(P ), it follows that

vol1(FAu(P +AP )) = vol1(FAu(P )) + vol1(A
−TFu(P )).

Moreover, by Lemma 5.6, we have (since FAu(AP ) is one-dimensional)

vol1(FAu(P +AP )) = vol1(FAu(P ) + V (FAu(AP ))) ≤ 2vol1(FAu(P ))

and hence vol1(A
−TFu(P )) = vol1(FAu(AP )) ≤ vol1(FAu(P )) for any u. We

can iterate this inequality to get the chain of inequalities vol1(FAu(P )) =
vol1(FAu(A

kP )) ≤ · · · ≤ vol1(FAu(A
2P )) ≤ vol1(FAu(AP )) ≤ vol1(FAu(P )). We

conclude that vol1(FAu(P )) = vol1(A
−TFu(P )).

So far, we have established that for any u ∈ Sn−1 such that dim(Fu(P )) = 1,
A−TFu(P ) and FAu(P ) are translates of one another. Next, we prove the following
claim:

(5.3) ∀F ∈ F(P ) ∃G ∈ F(P ) such that AnP (F ) = nP (G).
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Indeed, first note that for every u ∈ relint(nP (F )), we have F = Fu(P ) and that,
by definition, the finite set {FAu : u ∈ relint(nP (F ))} := {F1, . . . , Fk} satisfies that

A relint(nP (F )) ⊆
k∪

i=1

relint(nP (Fi)).

As shown in (5.2) we know that dim(F ) = dim(Fi) for all i, which means
span(AnP (F )) = span(nP (Fi)). However, in this spanned subspace (which is sim-
ply (AF )⊥) the sets given by relint(nP (F1)), . . . , relint(nP (Fk)) are pairwise disjoint
and open (relative to the subspace). Since A relint(nP (F )) is a connected set, it can-
not be covered by disjoint open sets. Therefore F1 = · · · = Fk. In other words,
A relint(nP (F )) ⊆ relint(FAu) for every u ∈ relint(nP (F )). Applying A and using
this inclusion repeatedly, we obtain

Ak+1 relint(nP (F )) ⊆ Ak relint(nP (FAu(P ))) ⊆ A relint(nP (FAku(P ))).

Since Ak = I and F = Fu(P ), we have A relintnP (F ) = relintnP (FAu(P )) and
hence (as normal cones are closed) AnP (F ) = nP (FAu(P )), as claimed.

Next, we claim that

(5.4) Fw(P ) ⊆ Fu(P ) =⇒ FAw(P ) ⊆ FAu(P ).

Indeed, suppose that u ∈ nP (Fu(P )) ⊆ nP (Fw(P )). By applying A on both sides,
we get

Au ∈ AnP (Fu(P )) ⊆ AnP (Fw(P )).

By (5.3), AnP (Fu(P )) = nP (G) and AnP (Fw(P )) = nP (G
′) for some faces G,G′ of

P withG′ ⊆ G. Therefore , it follows that nP (FAu(P )) ⊆ nP (G) and nP (FAw(P )) ⊆
nP (G

′). Since, by (5.2), dimG = dimFu(P ) = dimFAu, we have FAu(P ) = G, and
similarly FAw(P ) = G′. Thus, we obtain that FAw(P ) = G′ ⊆ G = FAu(P ), as
claimed.

Let Fu be a 1-dimensional face of P and let Fv one of its vertices. By (5.2)
and (5.4), FAu is also a 1-dimensional face of P with FAv as one of its vertices.
Moreover, as we already established, FAu = A−TFu + xu for some xu ∈ Rn, and
(trivially) FAv = A−TFv + xv for some xv ∈ Rn. Our goal is to show that xu = xv,
from which it readily follows that V (AP ) = V (P ) + x for some x ∈ Rn (as all
vertices are connected via 1-dimensional faces). Indeed, denote E = Fu(P ) and
V = Fv(P ). Note that A−TE + xu and A−TE + xv are parallel line segments of
the same length and with a common vertex A−TV +xv (as FAv is a vertex of FAu).
Therefore, these segments are either identical, namely xu = xv or consecutive so
that their union T is a segment and their intersection is A−T theV + xv. Assume
the latter. In particular, we have A−TV + xv ∈ relint(T ). Denote H = (Av)⊥ and
H− = {x ∈ Rn : 〈x,Av〉 ≤ 0}. Since Av is a normal of P at the vertex A−TV + xv
and A−TE + xu is a face of P , we have A−TE + xu ⊆ H− + A−TV + xv. On the
other hand, clearly FAv(AP+xv) = A−TV +xv and A−TE+xv is a face of AP+xv,
which means that A−TE + xv ⊆ H− + A−TV + xv and so T ⊆ H− + A−TV + xv.
However, since A−TV + xv ∈ relint(T ), it follows that Av must be orthogonal to T ,
which contradicts the fact that dim(FAv) = 0. Thus, we have xu = xv.
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Concluding the above, we have V (AP ) = V (P )+x for some x ∈ Rn, and so clearly
AP = P + x. Since P + V (AP ) is assumed to be convex and V (P ) = V (AP ), P
must also be vertex generated, which completes our proof. □

6. A series expansion and covering estimates

In this section, we discuss two more properties of λ-vertex generated polytopes
which are straightforward from the definition, and are the reason for our choice of
name for this class.

We begin with the property, explained in the introduction, characterizing mem-
bers of the class VG(Rn) as polytopes P that can be written as the closure of a
certain infinite sum involving the vertices of P .

Proposition 6.1. Let n ≥ 1 and λ ∈ [1/(n + 1), 1/2]. Let P ⊆ Rn be a polytope.
Then P ∈ VG(Rn, λ) if and only if

P = cl

( ∞∑
i=0

(1− λ)iλV (P )

)
.

Proof. For any polytope, as P is closed and convex and
∑∞

i=0(1− λ)iλ = 1, we have

(6.1)

∞∑
i=0

(1− λ)iλV (P ) ⊆ P

so that the inclusion P ⊇ cl
(∑∞

i=0(1− λ)iλV (P )
)
holds without any assumptions.

We thus need to show that the opposite inclusion holds if and only if P ∈ VG(Rn, λ).
Assume P ∈ VG(Rn, λ). Let R > 0 be such that P ⊆ RBn

2 . Using that P ∈
VG(Rn, λ) we see inductively that for every k ∈ N it satisfies P =

∑k
i=0(1 −

λ)iλV (P ) + (1 − λ)k+1P . Given x ∈ P and ε > 0, we choose k ∈ N such that
R(1− λ)k+1 < ε/2. Then

(6.2) P =

k∑
i=0

(1− λ)iλV (P ) + (1− λ)k+1P ⊆
k∑

i=0

(1− λ)iλV (P ) +
ε

2
Bn

2 .

Therefore there exists v1 ∈
∑k

i=0(1−λ)iλV (P ) such that |v1−x| ≤ ε/2. From (6.1)
we know that

(6.3)

∞∑
i=k+1

(1− λ)iλV (P ) = (1− λ)k+1
∞∑
i=0

(1− λ)iλV (P ) ⊆ (1− λ)k+1P ⊆ ε

2
Bn

2 .

Therefore for any v2 ∈
∑∞

i=k+1(1− λ)iλV (P ) we have that |v2| < ε
2 . Thus we may

conclude that

(6.4) d(x,
∞∑
i=0

(1− λ)iλV (P )) ≤ |(v1 + v2)− x| ≤ |v1 − x|+ |v2| < ε,

proving the inclusion P ⊆ cl
(∑∞

i=0(1− λ)iλV (P )
)
.
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For the other direction, assume P = cl
(∑∞

i=0(1− λ)iλV (P )
)
. Write

P = cl

( ∞∑
i=0

(1− λ)iλV (P )

)
= cl

(
λV (P ) + (1− λ)

∞∑
i=0

(1− λ)iλV (P )

)
⊆ cl(λV (P ) + (1− λ)P ) = λV (P ) + (1− λ)P,

where the last equality is a result of λV (P )+(1−λ)P being a finite union of closed
sets. Since the opposite inclusion λV (P ) + (1 − λ)P ⊆ P , holds trivially (for any
polytope) it follows that P ∈ VG(Rn, λ). □
Remark 6.2. It is instructive to note that when P is the standard simplex in R2,

the set cl
(∑∞

i=1 2
−iV (P )

)
=
∩

k(
∑k

i=1 2
−iV (P ) + 2−kP ) is the Sierpinski triangle.

For other P 6∈ VG(Rn) one may obtain other fractal-like objects.

Another useful fact about the class of λ-vertex generated polytopes is that it has
good covering properties. This should not come as a surprise, as the definition of
the class itself is that |V (P )| copies of (1 − λ)P form a cover for P . Recall the
notion of covering numbers.

Definition 6.3 (Covering numbers). Let K and T be convex bodies in Rn, The
Covering number N(K,T ) of K by T is defined as follows:

N(K,T ) := min

{
N ∈ N | ∃x1, . . . , xN ∈ Rn : K ⊆

N∪
i=1

xi + T

}
.

The results of this paper imply a simple covering estimate for the rich class
of vertex generated polytopes, which is in the spirit of Maurey’s lemma. Below
Tp(X) refers to the type-p constant of the Banach space X, for definitions see e.g.
[2, Chapter 5].

Lemma 6.4 (Maurey’s lemma, [9, Lemma 2]). Let X be a space with type p, and
unit ball T . Let m be an integer and assume that P is the convex hull of m points
in T . Then for any integer k

N(P, 2k−1/qTp(X)T ) ≤ mk

where q is the conjugate of p, that is 1/p+ 1/q = 1.

The proof of Maurey’s lemma uses averages of the vertices of the polytope. In the
case of vertex generated-polytopes, we can similarly provide a net using weighted
averages (indeed, this is almost the definition of vertex generated).

Recall that λ(P ) = sup{λ : P = (1−λ)P+λV (P )}, and denote a(P ) = 1−λ(P ).

Proposition 6.5. If P ⊆ Rn is a polytope with m vertices then for any k ∈ N,

N
(
P, a(P )kP

)
≤ mk.

Proof. Set a := a(P ). In the same spirit of the proof of Proposition 6.1, we note
that for any k ∈ N, we have

P = aP + (1− a)V (P ) = akP + (1− a)
k−1∑
i=0

aiV (P ).

As the number of points in
∑k−1

i=0 aiV (P ) is at mostmk, we get the desired result. □
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Note that on the one hand, by (1.1), it holds for any polytope P ⊆ Rn with m
vertices that

N

(
P,

(
n

n+ 1

)k

P

)
≤ mk.

On the other hand, for a vertex generated polytope P ∈ VG(Rn) (in particular, for
any zonotope P ), we get the superior estimates N(P, 2−kP ) ≤ mk.

Also note that we have the volume lower bound

N(P, 2−kP ) ≥ vol(P )

vol(2−kP )
= 2nk = (2n)k.

Since, by Lemma 2.1, for a vertex generated polytope we have m ≥ 2n, with equality
precisely when P is a parallelopiped, the proposition can be interpreted as the fact
that when the number of vertices of the vertex generated polytope is not much
larger that 2n, the volume lower bound is close to being an equality.

7. Some concluding remarks

Let us describe yet another angle from which to approach vertex generated-
polytopes. Motivated by studying Brunn-Minkowski type inequalities for sums of
boundaries [1], the following theorem for n-dimensional polytopes was shown in [7]).
We recently discovered that a more general result was proved in [6].

Theorem 7.1. Let n ≥ 1. For any polytope P ⊆ Rn it holds that

P =
∂⌈n

2
⌉P + ∂⌊n

2
⌋P

2
.

Here for a polytope P ⊆ Rn, we denoted the union of its k-dimensional faces by
∂kP . Moreover, we showed that if 2P = ∂kP + ∂n−kP for some k ∈ {0, . . . , bn/2c}
then 2P = ∂mP + ∂n−mP for all k ≤ m ≤ bn/2c.

This allows to define, for every polytope, its “critical dimension” k∗(P ) which
is the smallest k for which 2P = ∂kP + ∂n−kP . Theorem 7.1 guarantees that k∗

exists and is at most bn/2c, see again [7]. A simplex ∆n ⊂ Rn is an example of
a polytope with largest possible critical dimension, k∗(∆) = bn/2c. The class of
vertex generated-polytopes is precisely the class of polytopes for which the critical
dimension is k∗ = 0.

Remark 7.2. It is worth mentioning that the λ-parameter we introduced to mea-
sure closeness of a polytope to being vertex generated does not have a similar
straightforward analogue for the class of polytopes for which P = 1

2(∂
kP +∂n−kP ),

0 < k < n. Indeed, asking for an identity of the form P = λ∂kP + (1− λ)∂n−kP to
hold, for some 1/2 6= λ, already fails for say P = [−1, 1]n the unit cube. In other
words, for the cube P , we have that P = λ∂kP+(1−λ)∂n−kP for a given 0 < k < n
if and only if λ = 1

2 . Indeed, assume without loss of generality that λ > 1
2 , and let

us show that 0 /∈ λ∂kP + (1 − λ)∂n−kP . Assume this statement is false, so there
exist x ∈ ∂kP and y ∈ ∂n−kP such that λx + (1 − λ)y = 0, because x ∈ ∂P there
exist 1 ≤ i ≤ n such that |〈x, ei〉| = 1, so without loss of generality assume that
〈x, e1〉 = 1, this means that

(1− λ)〈y, e1〉 = 〈0, e1〉 − λ〈x, e1〉
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and hence

〈y, e1〉 = 0− λ

1− λ
〈x, e1〉 < −1,

which is a contradiction as y ∈ [−1, 1]n.

When considering higher dimensional boundary parts instead of vertices, one can
improve the factor 1/(n+1) from (1.1) significantly. The fact that ∂P is connected,
together with a classical result of Fenchel, it follows that for every polytope P ⊆ Rn

P =
n− 1

n
P +

1

n
∂1P.

Indeed, Fenchel [8] showed that if a set A cannot be separated into two disconnected
parts by a hyperplane (which does not intersect A), then any point x ∈ conv(A)
can be written as the convex hull of n points from A. The rest of the proof is just
as we showed (1.1).

More generally, Bárány and Karasev showed [3, Corollary 2.4],

Proposition 7.3. Let P ⊆ Rn be a polytope. Then

P =
n− k

n− k + 1
P +

1

n− k + 1
∂kP.

It is worth mentioning that the Shapley-Folkman Lemma is also a generalization
of (1.1), by plugging in Ai = V (P ) and m = n+ 1.

Theorem 7.4 (Shapley-Folkman Lemma). Let A1, . . . Am ⊂ Rn, m ≥ n and let
x ∈

∑m
i=1 conv(Ai). Then there is some subset I = {i1, . . . , in} ⊆ {1, . . . ,m} such

that
x ∈

∑
i∈I

conv(Ai) +
∑
i ̸∈I

Ai.

We end this section with a proof of the fact that the only polytope in Rn for
which λ(P ) = 1/(n+ 1) is the simplex. This was first proved by Schneider in [10].

Proposition 7.5. For a polytope P ⊆ Rn, if λ(P ) = 1/(n+ 1) then P is an n-
dimensional simplex.

Proof. Assume λ(P ) = 1/(n + 1). Using (1.1), which implies that if the affine
dimension of P is d then λ(P ) ≥ 1/(d + 1), we see that P is not contained in any
affine hyperplane of Rn. For an n-dimensional simplex S with center of mass at the
origin, the set S \ ((1 − λ)S + λV (S)) is relatively easy to analyze. Indeed, it is
given by the intersection of S with (n+1) half-spaces. More precisely, assume that

S =
n+1∩
i=1

{x : 〈x, θi〉 ≤ ri}

with θi ∈ Sn−1. Then, since the center of mass is assumed to be the origin, for
the vertex vi opposite to the facet {x ∈ S : 〈x, θi〉 = ri} we have 〈vi, θi〉 = −nri.
Therefore if λ > 1/(n+ 1) we have

(1− λ)S + λvi = S ∩ {x : 〈x, θi〉 ≤ ri((1− λ)(1 + n)− n)}.
Letting r′i = ri(n− (1− λ)(1 + n)) ≥ 0 we thus have (see Figure 2)

T := S \ ∪i((1− λ)S + λvi) ⊆ ∩{x : 〈x,−θi〉 ≤ r′i} = −(n− (1− λ)(1 + n))S.
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Figure 2. Illustrating T , S and −λS (dashed) for two values of λ.
.

In particular, as λ → 1/(n + 1), this set converges to the point {0}. It is easy
to check (by translating S) that for a simplex with center of mass m(S) we have,
similarly,

S \ ∪i((1− λ)S + λvi) ⊆ −(n− (1− λ)(1 + n))S +m(S)(1− n+ (1− λ)(1 + n))

Again, as λ → 1/(n+ 1), this set converges to a point, namely m(S).
Given some polytope P that is not a simplex, consider the set of all simplices

with vertices that are a subset of V (P ). We pick λ > 1/(n + 1) close enough to
1/(n+ 1) so that the sets

T (S) := S \ ((1− λ)S + λV (S))

⊆ −(n− (1− λ)(1 + n))S +m(S)(1− n+ (1− λ)(1 + n))

do not intersect for any pair of simplices S1 and S2 which differ by only one vertex
(and so, have in particular different centers of mass). This is clearly possible by the
convergence of T (S) to m(S) which we have demonstrated.

Let x ∈ P . Then x belongs to two simplices with vertices in V (P ) that differ
by only one vertex. Indeed, x belongs to some simplex S (if it belongs to a lower
dimensional simplex, then the assertion is trivial). Consider any vertex v of P which
is not participating in S, and the ray emanating from v in direction x. This ray
intersects S at two points, one of which, x′, satisfies that x ∈ [x′, v]. Since x′ ∈ ∂S
it is in the convex hull of (n− 1) vertices of S, and along with v these span another
simplex S′ which includes x and differs from S by only one vertex. Therefore, x
cannot belong to both T (S) and T (S′). If x 6∈ T (S), say, then

x ∈ (1− λ)S + λV (S) ⊆ (1− λ)P + λV (P ),

as claimed (and similarly for S′). □
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