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(I) All the sections K ∩H(ξ) have constant equal principal moments of inertia
IK∩H(ξ)(l) =

∫
K∩H(ξ)

dist2(l, v)dv with respect to the lines l passing through the

center of mass of the sections.
(A) All the sections K ∩H(ξ) have equal area.
(P ) All the sections K ∩H(ξ) have equal perimeter.
(S) The surface areas cut off from the boundary of K by each plane H(ξ) are

equal in every direction ξ.
Croft, Falconer and Guy ask if any two of these constraints imply that the body

must be a ball. They point out that Ulam’s problem is equivalent to Problem
(V, I) in their formulation (see [21, Thm 1] for a proof of this fact). Of course, the
questions can be posed in any dimension d ≥ 3 and additional conditions can be
added to the list, for example:

(H) The distance from H(ξ) to the origin is positive and independent of ξ.
The answer to Ulam’s problem (V, I) when d ≥ 3 and δ = 1/2 has been shown

to be negative in [20], but it was known to be positive when K = −K [10, 22] (see
also [15, 11]). Problem (V,A) also has a negative answer when δ = 1/2, and (A, I),
(A,P ) have a positive answer in the class of bodies of revolution for all densities
[1].

For the two-dimensional version of Ulam’s problem, Auerbach [2] found coun-
terexamples in the case δ = 1/2. For some specific densities less than 1/2, Bracho,
Montejano and Oliveros [5] proved that the answer is affirmative, while Wegner
[25, 26] has found counterexamples for other densities. In general, the question is
open.

What happens if we impose three conditions rather than two? In this paper we
consider the (V, I,H) and the (V,A,H) problems:

Problem 1.1. Let K be a convex body in Rd, d ≥ 3, with density δ ∈ (0, 1). If
both the body of centers and the Dupin floating body K[δ] of K are Euclidean balls,
does it follow that K is a Euclidean ball?

Problem 1.2. Let K be a convex body in Rd, d ≥ 3, with density δ ∈ (0, 1). If
the Dupin floating body K[δ] of K is a Euclidean ball, and the areas of the sections
K ∩H(ξ) are constants independent of ξ, does it follow that K is a Euclidean ball?

In dimension 2, the answer to both problems is known to be affirmative, in fact
conditions (V,H) and (A,H) are enough to conclude that K is a disc [4, 13]. In

dimensions 3 and higher, both problems are open. Kurusa and Ódor also proved
that the answer to Problem 1.1 is affirmative under an additional normalization
condition: Denoting the unit Euclidean ball by B, they show that if vold(K) =
vold(B), K[δ] = B[δ] and Sδ(K) = Sδ(B), then K = B. We improve their result by
showing that the last hypothesis is not needed.

Theorem 1.3. Let K be a convex body in Rd, d ≥ 3 with density δ ∈ (0, 1/2). If
vold(K) = vold(B) and K[δ] = B[δ], then K = B.

We also give an affirmative answer to Problem 1.1 in dimension 4 in the class of
bodies of revolution, for any density δ ∈ (0, 1/2).
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Theorem 1.4. Let K ⊂ R4 be a convex body of revolution with C1 boundary and
density δ ∈ (0, 1/2), such that its body of centers Sδ and its Dupin floating body are
concentric Euclidean balls, with center at the center of mass of K. Then K is a
Euclidean ball.

Similarly, one can show that Problem 1.2 also has an affirmative answer in the
same class of bodies.

Theorem 1.5. Let K be a convex body of revolution in R4 with C1 boundary, center
of mass at the origin and containing the Euclidean ball of radius t centered at the
origin in its interior. Let {H(ξ)}ξ∈S3 be the collection of hyperplanes tangent to
this ball, such that K satisfies conditions (V,A) for this collection. Then K is a
Euclidean ball.

In the proofs of Theorems 1.4 and 1.5 we rewrite the hypotheses as a system of
nonlinear ODEs with a Cauchy type condition at infinity. To obtain the affirmative
answer, we show the asymptotical instability of the system. The proof of Theorem
1.5 is almost identical to the one of Theorem 1.4.

2. Notation and auxiliary results

A convex body K ⊂ Rd, d ≥ 2, is a convex compact set with non-empty interior
intK. Given ξ ∈ Sd−1 we denote by ξ⊥ = {p ∈ Rd : p · ξ = 0} the the subspace
orthogonal to ξ, where p · ξ = p1ξ1 + · · · + pdξd is the usual inner product in Rd.
The center of mass of a convex body L ⊂ Rd will be denoted by C(L),

C(L) = 1

vold(L)

∫
L

xdx.

We say that a hyperplane H is the supporting hyperplane of a convex body L if
L ∩H 6= ∅, but intL ∩H = ∅.

For d ≥ 2 we denote by Sd−1 the unit sphere in Rd centered at the origin, and
by Bd

2(r) the Euclidean ball in Rd with center at the origin and radius r. We will
write B for Bd

2(1) when the dimension is clear. We will denote by κd the volume of
Bd

2(1) and by σd−1 the surface area of Sd−1.
Let K ⊂ Rd be a convex body and let δ ∈ (0, 1) be fixed. Given a direction

ξ ∈ Sd−1 and t = t(ξ) ∈ R, we call a hyperplane

(2.1) H(ξ) = Ht(ξ) = {p ∈ Rd : p · ξ = t},

the cutting hyperplane of K (or the water surface) in the direction ξ, if

(2.2)
vold(K ∩H−(ξ))

vold(K)
= δ, H−(ξ) = {p ∈ Rd : p · ξ ≤ t(ξ)}.

We recall several facts and definitions from fluid mechanics; see [20], [21], [9, Ch.
XXIV] or [27].

Definition 2.1. Let δ ∈ (0, 1), let ξ ∈ Sd−1, and let C(ξ) = Cδ(ξ) be the center of
mass of the submerged part K ∩H−(ξ) satisfying (2.2). A convex body K floats in
equilibrium in every orientation ξ ∈ Sd−1 at the level δ if (2.2) holds and the line
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ℓ(ξ) connecting C(K) with Cδ(ξ) is orthogonal to the “free water surface” H(ξ), i.e.,
the line ℓ(ξ) is “vertical” (parallel to ξ).

Definition 2.2. The geometric locus of {Cδ(ξ) : ξ ∈ Sd−1} is called the surface
of centers S = Sδ, or the surface of buoyancy. The body of centers Kδ is the body
whose surface is Sδ.

In order to obtain analytic expressions equivalent to conditions (V, I, A), we need
to introduce the concepts of characteristic points of a family of hyperplanes and of
moments of inertia.

Definition 2.3. For d ≥ 2, let Q be a set of hyperplanes in Rd, so that for each
ξ ∈ Sd−1, there is a unique corresponding hyperplane H = H(ξ) ∈ Q orthogonal to
ξ. Let H ∈ Q and let Γ be a (d − 2)-dimensional subspace parallel to H. Assume
also that for any sequence {Hk}∞k=1 ⊆ Q parallel to Γ and converging to H, the
limit ΠΓ(H) = limk→∞H ∩Hk exists. A point e ∈ H is termed the characteristic
point of Q relative to H if, for any Γ and {Hk}∞k=1 as above, e belongs to ΠΓ(H).

We remark that by writing that a sequence of hyperplanes {Hk}∞k=1, Hk =
Htk(ξk), converges to H(ξ) = Ht(ξ) as k → ∞ if ξk → ξ, tk → t.

Olovjanischnikoff [19] proved the equivalence between the constant volume con-
dition (V ) and the fact that the characteristic points of the collection of cutting
hyperplanes are exactly the centers of mass of the sections of K by these hyper-
planes. A proof of this result can be found in [20, Theorem 3].

Theorem 2.4. Let d ≥ 3, let K ⊂ Rd be a convex body, and let δ ∈ (0, 1). The
characteristic points of the family of cutting hyperplanes {H(ξ) : ξ ∈ Sd−1} for which
equation (2.2) holds are the centers of mass of the sections {K ∩H(ξ) : ξ ∈ Sd−1}.

Conversely, if the characteristic points of the family of hyperplanes {H(ξ) : ξ ∈
Sd−1} intersecting the interior of K and corresponding to the sections {K ∩H(ξ) :
ξ ∈ Sd−1} coincide with the centers of mass of these sections, then the function

ξ 7→ vold(K∩H−(ξ))
vold(K) is constant on Sd−1 and the constant is equal to some δ ∈ (0, 1).

Next, we recall the notion of moment of inertia, [27, p. 553]. Let d ≥ 3, let
δ ∈ (0, 1), and let ξ ∈ Sd−1 be any direction. Consider a convex body K and an
affine (d − 1)-dimensional subspace H(ξ) defined by (2.1) such that (2.2) holds.
Choose any (d−2)-dimensional affine subspace l ⊂ H(ξ) passing through the center
of mass C(K ∩ H(ξ)), and let η1, . . . , ηd−2, ηd−1 be an orthonormal basis of ξ⊥ =
{p ∈ Rd : p · ξ = 0} such that

(2.3) l = C(K ∩H(ξ)) + span(η1, . . . , ηd−2), H(ξ) = C(K ∩H(ξ)) + ξ⊥.

Definition 2.5. The moment of inertia IK∩H(ξ)(l) of K ∩H(ξ) with respect to l is
defined as

(2.4) IK∩H(ξ)(l) =

∫
K∩H(ξ)

dist2(l, v)dv =

∫
K∩H(ξ)−C(K∩H(ξ))

(u · ηd−1)
2 du,

where dist(l, v) = min
{u∈l}

|u− v|.
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Ulam’s problem can now be restated as problem (V, I). A proof of this fact can
be found in [21, Thm. 1].

Theorem 2.6. Let d ≥ 3, let K be a convex body and let δ ∈ (0, 1). If K floats in
equilibrium at the level δ in every orientation, then ∀ξ ∈ Sd−1 the cutting sections
K∩H(ξ) have equal moments of inertia IK∩H(ξ)(l) for all (d−2)-dimensional affine
subspace l ⊂ H(ξ) passing through the center of mass C(K ∩H(ξ)).

Conversely, if C(S) = C(K) and for every cutting hyperplane H(ξ), ξ ∈ Sd−1, the
cutting section K∩H(ξ) have equal principal moments of inertia, then a C1-smooth
body K floats in equilibrium in every orientation at the level δ.

Finally, we recall the notion of Dupin floating body. The floating body K[δ] of K
was introduced by C. Dupin in 1822 [8].

Definition 2.7. A non-empty convex set K[δ] is the Dupin floating body of K if

each supporting hyperplane H(ξ) of K[δ], ξ ∈ Sd−1, cuts off a set K ∩ H−(ξ) of
fixed volume satisfying (2.2).

We remark that K[δ] does not necessarily exist for every convex K, (see [14] or
[16], Chapter 5), but if K has a sufficiently smooth boundary and δ > 0 is small
enough (as is the case under our assumptions), then K[δ] exists [14, Satz 2]. We
refer the reader to [3] and [23] for further information about convex floating bodies.

3. Proof of Theorem 1.3

We assume that (B)δ = Kδ and vold(K) = vold(B). Then, for each ξ ∈ Sd−1, we
have

(3.1) δ =
vold(K ∩ {x · ξ ≥ t})

vold(K)
=

vold(B ∩ {x · ξ ≥ t})
vold(B)

,

where t ∈ (0,+∞) is independent of ξ. We also assume that µ is the uniform
probability measure on Sd−1. As in [13] we write∫

Sd−1

vold(K ∩ {x · ξ ≥ t})dµ(ξ) =
∫

K\tB

dx

∫
{ξ∈Sd−1: ξ· x

|x|≥
t
|x|}

dµ(ξ) =

(3.2) σd−2

∫
K\tB

dx

1∫
t
|x|

(1− y2)
d−3
2 dy =

σd−2

∫
Sd−1

dµ(θ)

ρK(θ)∫
t

rd−1dr

1∫
t
r

(1− y2)
d−3
2 dy.
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Here, in the last equality, we passed to polar coordinates in the outer integral. Now
we consider the auxiliary function f(x) defined for x ≥ td as

f(x) = σd−2

x1/d∫
t

rd−1dr

1∫
t
r

(1− y2)
d−3
2 dy.

Observe that f is convex, i.e., f ′′(x) ≥ 0. Indeed,

f ′(x) =
σd−2

d
x

1
d
−1x

d−1
d

1∫
t

x1/d

(1− y2)
d−3
2 dy =

σd−2

d

1∫
t

x1/d

(1− y2)
d−3
2 dy

and

f ′′(x) = t
σd−2

d2
x−

1
d
−1

(
1−

(
t2

x2/d

)) d−3
2

≥ 0.

We now write equation (3.2) in terms of f and the radial function ρK of K as a
function on the unit sphere, and apply Jensen’s inequality,∫

Sd−1

vold(K ∩ {x · ξ ≥ t})dµ(ξ) =
∫

Sd−1

f(ρdK(θ))dµ(θ)

≥ f

 ∫
Sd−1

ρdK(θ)dµ(θ)

 .

Since vold(K) = vold(B), by (3.1) we have

f(1) =

∫
Sd−1

f(ρdB(θ))dµ(θ) =

∫
Sd−1

f(ρdK(θ))dµ(θ) ≥

f

 ∫
Sd−1

ρdK(θ)dµ(θ)

 = f(1).

The equality in Jensen’s inequality implies that ρK is constant or f is linear. But
f is not a linear function, hence ρK = const, as we wanted to show. □

4. Bodies of Revolution

Let d ≥ 3. We follow the notation from [17], [18]. We will consider bodies of
revolution

Kf = {x ∈ Rd : x22 + x23 + · · ·+ x2d ≤ f2(x1)}
obtained by rotation of a smooth concave function supported on [−R1, R2] about
the x1-axis.

Let Ls(ξ) = L(s, h, ξ) = sξ + h be a linear function with slope s > 0, and let

H(Ls) = {x ∈ Rd : xd = Ls(x1)}
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be the corresponding hyperplane. Let a(s) = −h′(s) be the x1-coordinate of the
point of tangency of H(Ls) with the floating body of Kf which is Bd

2(r). We will
assume that a(0) = 0.

We remark that for each given s > 0, there are two parallel hyperplanes H(Ls)
tangent to Bd

2(r), see Figure 1. In this paper, we will mostly refer to the upper
hyperplane. The considerations related to the lower one will be very similar.

xd

x1

−R1 R2

Bd
2
(r)

f

−f

Ls,1(ξ) = sξ + h1, h1 > 0

Ls,2(ξ) = sξ + h2, h2 = −h1 < 0

Figure 1. The two parallel hyperplanes

Denote by lj the (d− 2)-dimensional planes, j = 2, . . . , d− 1,

l1 = {x ∈ Rd : x ∈ K ∩ Ls, x1 = a(s)}, lj = {x ∈ Rd : x ∈ K ∩ Ls, xj = 0}.
Let −x = −x(s) and y = y(s) be the first coordinates of the points of intersection
of ±f and Ls, i.e.,

(4.1) f(y(s)) = sy(s) + h(s), −f(−x(s)) = −sx(s) + h(s);

see Figure 2. We remark that, although the notation and Figure 2 seem to suggest
that x(s), y(s) are positive functions, in fact it is possible for them to be negative
for certain values of s.

xd

x1

Ls

(−x,−f(−x))

(y, f(y))

−x
yh(s)

f

−f

−R1 R2

Figure 2. The body of revolution.



1140 M. A. ALFONSECA, D. RYABOGIN, A. STANCU, AND V. YASKIN

It is not hard to compute that the center of mass of the section CK∩H(Ls), where
H(Ls) satisfies (2.2), has coordinates given by

CK∩H(Ls) = {(−h′(s), 0, . . . , 0, Ls(−h′(s))) ∈ Rd : s ∈ [0,∞)},(4.2)

see [20, Lemma 1]. Therefore, using Theorems 2.4 and 2.6, conditions (V,A, I) can
be restated for bodies of revolution by means of the next two Lemmas.

Lemma 4.1 ([20, Lemma 2]). The condition C(K ∩ H(Ls)) = (a, 0, . . . , 0, Ls(a))
reads as

(4.3)

y(s)∫
−x(s)

(ξ − a)(f2(ξ)− L2
s(ξ))

d−2
2 dξ = 0.

The conditions that the second moments of inertia Ij of K ∩H(Ls) with respect
to lj are constant read as

(4.4) I1 = κd−2(1 + s2)
3
2

y(s)∫
−x(s)

(ξ − a)2(f2(ξ)− L2
s(ξ))

d−2
2 dξ = c,

(4.5) Ij =
√
1 + s2 γd−2

y(s)∫
−x(s)

(f2(ξ)− L2
s(ξ))

d
2 dξ = c,

where

γd−2 =

∫
Bd−2

2 (1)

y2j dy, j = 2, . . . , d− 1.

We remark that

γd−2 =
1

d− 2

∫
Bd−2

2 (1)

|y|2dy =
1

d− 2

∫
Sd−3

dσ

1∫
0

r2+d−3dr =
σd−3

d(d− 2)
.

In particular, if d = 4, then γ2 =
π
4 .

The analytic form of condition (A) for bodies of revolution is as follows (see [18]):

Lemma 4.2. The (d − 1)-dimensional volume of the intersection Kf ∩ H(Ls) is
constant for all s if and only if

(4.6)

∫ y(s)

x(s)
(f2(ξ)− L2

s(ξ))
d−2
2 dξ =

c̃√
1 + s2

,

where c̃ is an absolute constant.

Proof. Fix s > 0. Let us define the (d − 1)-dimensional hyperplanes Hξ = {x ∈
Rd : x1 = ξ}, where ξ ∈ (−x(s), y(s)). The slice (Kf ∩ H(Ls)) ∩ Hξ for each t ∈
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(−x(s), y(s)) is a (d−2)-dimensional Euclidean ball with radius r =
√
f2(ξ)− L2

s(ξ).
Therefore,

(4.7) vold−1(Kf ∩H(Ls)) = κd−2

√
1 + s2

∫ y(s)

−x(s)
(f2(ξ)− L2

s(ξ))
(d−2)/2dξ.

Since the latter does not depend on s, (4.6) follows. □

5. Proof of Theorem 1.4

5.1. The system of 3 dependent equations. Using Theorem 2.6 and Lemma
4.1, we see that if K floats in equilibrium at the level δ ∈ (0, 12), then f , x, y, a and
h must satisfy the following system of 3 integral equations,

(5.1)



y(s)∫
−x(s)

(ξ + h′(s))(f2(ξ)− L2(ξ))dξ = 0,

π(1 + s2)
3
2

y(s)∫
−x(s)

(ξ + h′(s))2(f2(ξ)− L2(ξ))dξ = c,

π
4

√
1 + s2

y(s)∫
−x(s)

(f2(ξ)− L2(ξ))2dξ = c,

where h(0) = h0 ≥ 0 is given, and from now on we will write L instead of Ls.
The constant c is the same for the second and third equations and its value is
4π
15 (R

2 − r2)
5
2 (see Appendix, Section 7.1).

It is clear that Euclidean balls float in equilibrium in every direction. If K =
B4

2(R) and Kδ = B4
2(r), r ∈ (0, R), then the corresponding functions

(5.2) f(ξ) = fo(ξ) ≡
√

R2 − ξ2,

(5.3) h(s) = ho(s) ≡ r
√
1 + s2, a(s) = ao(s) ≡ − rs√

1 + s2
,

and

(5.4) x(s) = xo(s) ≡
sr +

√
R2 − r2√

1 + s2
, y(s) = yo(s) ≡

−sr +
√
R2 − r2√

1 + s2
,

satisfy (5.1).
In [20, Lemmas 2-4], it was shown that the third equation in system (5.1) depends

on the first two. Since we are assuming that the floating body of K is a Euclidean
ball of radius r > 0, we have that h(s) = r

√
1 + s2. Thus, we have a system of two

equations with the unknown variables f , x and y. However, these three variables
are not independent, since they are related by (4.1). The system reads as

(5.5)


y(s)∫

−x(s)

(ξ + h′(s))(f2(ξ)− L2(ξ))dξ = 0,

π(1 + s2)
3
2

y(s)∫
−x(s)

(ξ + h′(s))2(f2(ξ)− L2(ξ))dξ = c.
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In the Appendix, sections 7.2 and 7.3, we show that this system can be reduced to
a system of first order ODEs,

(5.6)

{
−h′′y′ (y + h′)2(sy + h)− h′′x′ (−x+ h′)2(−sx+ h) = P (s, x, y)

y′ (y + h′)3(sy + h) + x′(−x+ h′)3(−sx+ h) = Q(s, x, y).

In sections 7.2 and 7.3, we also compute the exact expressions for P and Q, (7.9) and
(7.12). Here, we write them with the additional assumption that r = 1, omitting
the argument s in x(s), y(s) and a(s).

(5.7) P (s, x, y) =

3

2(1 + s2)
7
2

(
(y − a)2 − (x+ a)2

)
+

2s

(1 + s2)3
(
(y − a)3 + (x+ a)2

)
+

1 + 4s2

4(1 + s2)
5
2

(
(y − a)4 − (x+ a)4

)
,

(5.8) Q(s, x, y) =

3a′

(
s

4

(
(y − a)4 − (x+ a)4

)
+

1

3(1 + s2)
1
2

(
(y − a)3 + (x+ a)3

))
−

−1

5

(
(y − a)5 + (x+ a)5

)
+

3c

2π

1− 4s2

(1 + s2)
7
2

,

where the value of c is

(5.9) c =
4π

15
(R2 − 1)

5
2 ,

see (7.2). In short, system (5.6) has the form{
y′A+ x′B = P

y′C + x′D = Q.

Since h′′(s) = 1
(1+s2)3/2

6= 0 for all s > 0, the determinant

(5.10) D = AD −BC =

(y + h′)2(sy + h)(−x+ h′)2(−sx+ h)h′′((−x+ h′ − (y + h′))

= −(y + h′)2(sy + h)(−x+ h′)2(−sx+ h)h′′(x+ y)

will be zero only when one of the factors of

(y + h′)(sy + h)(−x+ h′)(−sx+ h)(x+ y)

is zero. Let us consider s > 0 such that

(5.11) y + h′ 6= 0, sy + h 6= 0, −x+ h′ 6= 0, −sx+ h 6= 0, x+ y 6= 0.

Observe that for finite s, the terms y+h′, −x+h′ and x+y in (5.11) are nonzero.
Indeed, only when the hyperplane H(Ls) is perpendicular to the axis of revolution
x1 it is possible to have −x(s) = y(s) = a(s), (recall that −h′(s) = a(s) is the x1
coordinate of the point of tangency of Ls with the floating body). The term sy+ h
is zero only for a negative value s∗∗, but it is never zero for positive s if we consider
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the upper hyperplane in Figure 3. On the other hand, the term −sx(s) + h can be
zero for a single finite value s∗ > 0.

x4

x1

−x(s∗) y(s∗∗)

−x(s∗∗) y(s∗)

Figure 3. Slopes s∗ and s∗∗

Lemma 5.1. We introduce new variables

(5.12) α =
√
1 + s2(y − a), β =

√
1 + s2(x+ a),

provided y ≥ a and −x ≤ a (see Figure 4 for the geometric meaning of α, β) Then
system (5.6) has the following form

(5.13)



α2(sα+ 1)α′ + β2(−sβ + 1)β′ =

− 1
1+s2

(
α2−β2

2 + α4−β4

4

)
α3(sα+ 1)α′ − β3(−sβ + 1)β′ =

1
1+s2

(
(4s2 − 1)

(
α5+β5−2(R2−1)

5
2

5

)
+ 5s

4 (α
4 − β4)

)
.

Proof. We start with the first equation in our system (5.6). It reads as

a′
(
y′(y − a)2(sy + h) + x′(x+ a)2(−sx+ h)

)
= P (s, x, y),

where P (s, x, y) is defined in (7.10), and for convenience we are setting r = 1 in the
expression for P . Using (5.12) we have

y − a =
α√

1 + s2
, x+ a =

β√
1 + s2

,

sy + h = s(y − a) + sa+ h =
sα√
1 + s2

+ sa+ h =

(5.14)
sα√
1 + s2

+
1√

1 + s2
,

−sx+ h = −s(x+ a) + sa+ h = − sβ√
1 + s2

+ sa+ h =
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x4

x1y−x a
α

β

Figure 4. Geometric meaning of α, β

(5.15) − sβ√
1 + s2

+
1√

1 + s2
.

After these substitutions, our first equation in (5.6) is

a′
(
y′
(

α2

1 + s2

)(
sα+ 1√
1 + s2

)
+ x′

(
β2

1 + s2

)(
−sβ + 1√
1 + s2

))
=

3

2(1 + s2)
7
2

(
α2

1 + s2
− β2

1 + s2

)
+

2s

(1 + s2)3

(
α3

(1 + s2)
3
2

+
β3

(1 + s2)
3
2

)
+

1 + 4s2

4(1 + s2)
5
2

(
α4

(1 + s2)2
− β4

(1 + s2)2

)
.

Since

a′ = − 1

(1 + s2)
3
2

,

we can cancel (1 + s2)3 in both parts of our equation to get

(5.16) −
(
y′α2(sα+ 1) + x′β2(−sβ + 1)

)
=

3

2(1 + s2)
3
2

(α2 − β2) +
2s

(1 + s2)
3
2

(α3 + β3) +
1 + 4s2

4(1 + s2)
3
2

(α4 − β4).

To finish the computations related to the first equation, it remains to express y′, x′

via α′ and β′. We have

α′ =
s√

1 + s2
(y − a) +

√
1 + s2 y′ − a′

√
1 + s2.
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Hence,

y′ =
α′ + a′

√
1 + s2 − s(y−a)√

1+s2√
1 + s2

=
α′ − 1

1+s2
− sα

1+s2√
1 + s2

=
(1 + s2)α′ − (sα+ 1)

(1 + s2)
3
2

.

Similarly,

β′ =
s√

1 + s2
(x+ a) +

√
1 + s2 x′ + a′

√
1 + s2 =

s

1 + s2
β +

√
1 + s2x′ − 1

1 + s2
,

i.e.,

x′ =
β′ + 1

1+s2
− sβ

1+s2√
1 + s2

=
(1 + s2)β′ + (−sβ + 1)

(1 + s2)
3
2

.

Substituting into (5.16), we have

−
(
(1 + s2)α′ − (sα+ 1)

)
α2(sα+ 1)−

(
(1 + s2)β′ + (−sβ + 1)

)
β2(−sβ + 1)

=
3

2
(α2 − β2) + 2s(α3 + β3) +

1 + 4s2

4
(α4 − β4),

or, in other words,

(5.17) (1 + s2)α2(sα+ 1)α′ + (1 + s2)β2(−sβ + 1)β′

= α2(sα+ 1)2 − β2(−sβ + 1)2 − 3

2
(α2 − β2)− 2s(α3 + β3)− 1 + 4s2

4
(α4 − β4).

We can simplify (5.17) even further, by writing the first two terms on the right
hand as

α2(sα+ 1)2 − β2(−sβ + 1)2 = α2(s2α2 + 2sα+ 1)− β2(s2β2 − 2sβ + 1)

= s2(α4 − β4) + 2s(α3 + β3) + α2 − β2.

Thus, our first equation in (5.13) is

(1 + s2)α2(sα+ 1)α′ + (1 + s2)β2(−sβ + 1)β′ = −α2 − β2

2
− α4 − β4

4
.

Now we consider the second equation in (5.13), where the right hand side Q is
defined in (5.6). Using our change of variables (5.12), we have

Q(s, x, y) = − 3

(1 + s2)
3
2

(
s

4
· α4 − β4

(1 + s2)2
+

1

3(1 + s2)
1
2

· α3 + β3

(1 + s2)
3
2

)
−

−1

5
· α5 + β5

(1 + s2)
5
2

+
3c

2π

1− 4s2

(1 + s2)
7
2

.

For the left hand side, using (5.14) and (5.15) we have

(y − a)3(sy + h)y′ − (x+ a)3(−sx+ h)x′

=
α3

(1 + s2)
3
2

· sα+ 1√
1 + s2

y′ − β3

(1 + s2)
3
2

· −sβ + 1√
1 + s2

x′

=
α3

(1 + s2)2
· (sα+ 1) · (1 + s2)α′ − (sα+ 1)

(1 + s2)
3
2

−
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− β3

(1 + s2)2
· (−sβ + 1) · (1 + s2)β′ + (−sβ + 1)

(1 + s2)
3
2

.

We multiply both parts of the resulting equation by (1 + s2)
7
2 , obtaining

α3(sα+ 1)
(
(1 + s2)α′ − (sα+ 1)

)
− β3(−sβ + 1)

(
(1 + s2)β′ + (−sβ + 1)

)
=

(5.18) −3s

4
(α4 − β4)− (α3 + β3)− 1 + s2

5
· (α5 + β5) +

3c

2π
(1− 4s2),

where c is defined in (5.9). We further simplify the left hand side of (5.18),

α3(sα+ 1)(1 + s2)α′ − β3(−sβ + 1)(1 + s2)β′ − α3(sα+ 1)2 − β3(−sβ + 1)2 =

α3(sα+1)(1+s2)α′−β3(−sβ+1)(1+s2)β′−s2(α5+β5)−2s(α4−β4)− (α3+β3).

This yields

α3(sα+ 1)(1 + s2)α′ − β3(−sβ + 1)(1 + s2)β′ =

4s2 − 1

5
(α5 + β5) +

5s

4
(α4 − β4) +

3c

2π
(1− 4s2).

This is the second equation in (5.13). □

Our goal is to prove that system (5.13) has a unique solution

(5.19) α(s) = β(s) =
√
R2 − 1

for all s ∈ R. We will show at first that (5.19) holds in the neighborhood of infinity,
i.e., there exists so > 0 such that (5.19) holds for s ≥ so. This will be a consequence
of several lemmas proved below.

x4

x1

x4 = sx1 +
√

1 + s2

x1 = −1

O

γ(s)

Figure 5. Angle between the lines x1 = −1 and x4 = sx1 +
√
1 + s2
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Lemma 5.2. Denote

(5.20) u(s) = α(s)5 + β(s)5 − 2(R2 − 1)
5
2 , v(s) = α(s)2 − β(s)2.

Then, there exists so > 0 and constants c, C > 0 such that

(5.21) |u(s)| ≤ C ∀s ≥ so.

and

(5.22) |v(s)| ≤ c

s
∀s ≥ so.

Proof. By (5.12) both functions α and β are bounded. Hence, (5.21) holds. To
show (5.22), we let γ(s) = π

2 − arctan s be the angle between the lines x1 = −1 and

x4 = sx1 +
√
1 + s2, see Figure 5. Then (5.22) follows if we put ṽ(γ(s)) = v(s) and

use ṽ(0) = 0 to see that |ṽ(γ)| ≤ cγ in a neighborhood of γ = 0. □

Lemma 5.3. Let u and v be defined by (5.20). Assume that there exists so > 0 and
positive constants c1, c2 and c3 such that

(5.23) u′(s)sign(u(s)) ≥ c1

(
|u(s)|
s

− |v(s)|
s2

)
∀s ≥ so,

(5.24) |v′(s)| ≤ c2
|u(s)|+ |v(s)|

s2
∀s ≥ so,

and

(5.25) |u(s)| ≤ c3
s
|v(s)| ∀s ≥ so.

Then α(s) = β(s) =
√
R2 − 1 holds for all s ≥ so.

Proof. We claim at first that α ≡ β or v ≡ 0 for all s ≥ so. Indeed, if this is not
the case, then there is s1 ≥ so where v(s1) 6= 0. We take a maximal interval (s2, s3)
containing s1 where v(s) is not zero. Then, for this interval, (5.25) and (5.24) yield

|v′(s)| ≤ c

s2
|v(s)|.

Hence,

(ln |v|)′ ≥ − c

s2
,

and integrating this inequality from s2 to s, with s < s3, we see that

(5.26) ln |v(s)| − ln |v(s2)| ≥
1

s
− 1

s2
.

Since v(s) tends to zero when s tends to s3, the left hand side of the previous
inequality tends to −∞, while the right hand side is bounded. Hence, if v is not
identically zero, then v(s) 6= 0 for every s > so. Now, using the same argument and
inequality (5.26) with so instead of s2, we obtain that v(s) is separated from zero
for s > so, which contradicts (5.22). Thus, we conclude that v(s) = 0 for all s ≥ so.

We substitute |v(s)| = 0 into (5.23) to have

u′sign(u) ≥ c|u|
s

.
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Therefore, u′ and u have the same sign, and so if u is non-zero at s0, then it is
non-zero for all s ≥ s0. Thus we can divide both sides of the inequality above by
u, then integrate to obtain ln |u| ≥ c ln s + C, which shows that |u| is unbounded.

This contradicts (5.21), so |u(s)| = 0 for s ≥ so, and α(s) = β(s) =
√
R2 − 1 for

these values of s. □

s = s∗s = ∞

O

Step 1

s

O

Step 2

s

sO

Step 3

Figure 6. Extending the solution to the whole sphere.

Observe that we have reduced the problem of finding the solution of system (5.13)
with Cauchy-type condition at infinity to a usual Cauchy problem for this system.
Indeed, since (5.19) holds for s ≥ s0, we can take any s1 ≥ so and look for a solution
of (5.13) in the neighborhood of s1. This process can be continued until we reach
the chord with slope s∗, corresponding to the line such that −s∗x(s∗) + h = 0. At
this point, the determinant (5.10) of system (5.6) becomes zero. Since α and β
satisfying (5.19) are the only solution of (5.13) for all s > s∗, the boundary of Kf

for the corresponding values of s is a sphere, see Figure 6, Step 1.
In order to define the rest of the boundary, we now consider a chord with positive

slope s < s∗, and solve the system using that the left end of this chord lies on the
sphere, which means that α(s) =

√
R2 − 1 for this s (see Figure 6, Step 2). Plugging

α =
√
R2 − 1 in the first equation of system (5.13), we obtain the following first

order differential equation for β,

β2(−sβ + 1)β′ = − 1

1 + s2

(
α2 − β2

2
+

α4 − β4

4

)
.

Using equality (5.15) we see that the coefficient (−sβ + 1) of β′ is not zero, since
we are taking a value of s < s∗, for which sx(s) + h 6= 0. Hence, by the classical
theory of ordinary differential equations, this equation has a unique solution, which
must be the constant solution β(s) =

√
R2 − 1. Thus, we have extended the range

of s where α(s) = β(s) =
√
R2 − 1 are the only solutions beyond the value s∗.

By the symmetry of bodies of revolution, we can now repeat this process using
the bottom hyperplanes (as in Figure 1 with h2 < 0) instead of the top ones. This
allows us, in a finite number of steps, to finish defining the boundary at all points,
see Figure 6, Step 3. Since all chords tangent to the unit disc centered at the origin
and inscribed in Kf ∩ {x ∈ R4 : x2 = x3 = 0} have the same length, by the results

of [4] and [13] we obtain that f(t) =
√
R2 − t2 for all t ∈ [−R,R]. Thus, K is a

Euclidean ball.
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It remains to prove (5.23), (5.24) and (5.25). This will be done in the next two
lemmas.

Lemma 5.4. Let u and v be defined by (5.20). Then there exists so > 0 such that
(5.23) and (5.24) hold.

Proof. We write our system (5.13) in the form{
α2(sα+ 1)α′ − β2(sβ − 1)β′ = − 1

s2
F1v

α3(sα+ 1)α′ + β3(sβ − 1)β′ = F2u+ 1
sF3v,

where Fj = Fj(u, v, s), j = 1, 2, 3, are positive functions, bounded from above and
below by positive constants, for large s.

Now we solve the system with respect to α′(sα+1) and β′(sβ− 1). By Cramer’s
rule, we obtain{

α′(sα+ 1) = 1
α2β2(α+β)

(
−β3 1

s2
F1v + β2

(
F2u+ 1

sF3v
))

β′(sβ − 1) = 1
α2β2(α+β)

(
α3 1

s2
F1v + α2

(
F2u+ 1

sF3v
))

.

Then,

u′ = 5α4α′ + 5β4β′ =
W1u

s
+

W2v

s2
,

where W1 is positive and bounded away from zero and infinity for large s, and W2

is bounded (may be negative). We also have

v′ = 2αα′ − 2ββ′.

Then

v′ = 2

(
αβ2

sα+ 1
− βα2

sβ − 1

)
F2u.

We can replace sα+ 1 by αs in the above expression, resulting in an extra term of
order c

s2
. Similarly, replace sβ − 1 by βs. Hence,

v′ =
Φ1u

s2
− 2

v

s
F2u+

Φ2v

s2
,

where Φ1 and Φ2 are bounded functions. Thus, our system is written in a simpler
form

(5.27)

{
u′(s) = W1(s)u(s)

s + W2(s)v(s)
s2

v′(s) = Φ1(s)u(s)
s2

− 2v
sF2(s)u(s) +

Φ2(s)v(s)
s2

.

Then, taking into account estimate (5.22) we obtain (5.23) and (5.24) as direct
consequences of the first and the second equations in (5.27) and the fact that W2, Φ1,
Φ2 and F2 are bounded functions, and W1 is positive and bounded from below. □

Lemma 5.5. Let u and v be defined by (5.20). Then there exists so > 0 such that
(5.25) holds, i.e.

|u(s)| ≤ c3
s
|v(s)| ∀s ≥ so.
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Proof. We will show that the statement of the lemma holds with c3 = c2/c1, where
c1 are c2 are the constants from (5.23) and (5.24). We will argue by contradiction.
Assume that for every s0 > 0 there exists s > s0 such that

|u(s)| > c3
s
|v(s)|.

Fix any number s1 satisfying the previous inequality. Denote M = c3
s1
. Then for all

s2 > s1 there is s3 > s2 such that

(5.28) |u(s3)| ≥ M |v(s3)|.
We will further assume that

(5.29) s2 > s1 +
2s1(s1 + 1)

c3
.

Take any s3 satisfying (5.28). By continuity of u and v there is s4 > s3 such that

|u(s)| ≥ M

2
|v(s)|

for all s ∈ [s3, s4].
We use (5.23) and (5.24) to obtain

(5.30)

u′(s)sign(u(s)) ≥ c1|u(s)|
s − c1|v(s)|

s2
≥ c1

(
1
s −

2s1
c3s2

)
|u(s)|

|v′(s)| ≤ c2

(
1
s2

+ 2s1
c3s2

)
|u(s)|,

for all s ∈ [s3, s4]. This implies that u′ and u have the same sign and

|v′(s)| ≤
c2

(
1
s2

+ 2s1
c3s2

)
c1

(
1
s −

2s1
c3s2

) |u′(s)|,

for all s ∈ [s3, s4].
Observe that by (5.29) we have

c2

(
1
s2

+ 2s1
c3s2

)
c1

(
1
s −

2s1
c3s2

) = c3
1 + 2s1

c3

s− 2s1
c3

≤ c3
1 + 2s1

c3

s1 +
2s21
c3

=
c3
s1

= M,

since s > s2.
Thus,

|v′(s)| ≤ M |u′(s)|,
for all s ∈ [s3, s4]. Integrating the inequality

−M |u′(s)| ≤ v′(s) ≤ M |u′(s)|,
from s3 to s, and using (5.28), we obtain

|v(s)| ≤ M

∣∣∣∣∫ s

s3

|u′(t)|dt+ |u(s3)|
∣∣∣∣ .

As u′ and u have the same sign, this yields

(5.31) |v(s)| ≤ M |u(s)|
for all s ∈ [s3, s4].
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Since now |v(s4)| ≤ M |u(s4)|, we repeat this process to obtain the inequality
(5.31) for a larger interval [s3, s5], where s5 > s4. Eventually we obtain that (5.31)
holds for all s ≥ s3. However this is impossible due to the boundedness of u. Indeed,
from (5.23) we have

|u(s)|′ ≥ c1
s

(
1− M

s

)
|u(s)| ≥ c1

2s
|u(s)|,

for s large enough. Since u′ and u have the same sign, if u is non-zero at s3, then
it is also non-zero for all s ≥ s3. Thus we have

|u(s)|′

|u(s)|
≥ c1

2s
,

and therefore

ln |u(s)| ≥ c1
2
ln(s) + C,

which means that u is not bounded. This contradicts (5.21). Thus we have proven
(5.25). □

6. Proof of Theorem 1.5

6.1. The system of 2 equations. Using (4.3) and (4.6) from Lemmas 4.1 and
4.2, we see that if K satisfies conditions (V,A), then f , x, y, a and h must satisfy
the following system of 2 integral equations,

(6.1)


y(s)∫

−x(s)

(ξ + h′(s))(f2(ξ)− L2
s(ξ))dξ = 0,

y(s)∫
−x(s)

(f2(ξ)− L2
s(ξ))dξ = c̃√

1+s2
,

where h(0) = h0 ≥ 0 is given. Since the Euclidean ball K = Bd
2(R) satisfies

conditions (V,A,H), the functions f, h, x, y given by (5.2), (5.3), (5.4) satisfy (6.1).

Using (4.7) we see that and the value of the constant c̃ for the ball is 4
3

(
R2 − r2

)3/2
.

Without loss of generality we can put r = 1. We claim that differentiating the
equations in the system above with respect to s we obtain the following system

(6.2)

{
−h′′y′ (y − a)2(sy + h)− h′′x′ (x+ a)2(−sx+ h) = P (s, x, y)

y′
(
s(y − a)2 + y−a√

1+s2

)
+ x′

(
s(x+ a)2 − x+a√

1+s2

)
= Q̃(s, x, y),

where

(6.3) Q̃(s, x, y) = a′
(
s(y − a)2 +

y − a√
1 + s2

)
− a′

(
s(x+ a)2 − x+ a√

1 + s2

)
−
((y − a)3

3
+

(x+ a)3

3

)
+

s

(1 + s2)
3
2

((y − a)2

2
− (x+ a)2

2

)
+

c̃

2

1− 2s2

(1 + s2)
5
2

.

Observe that system (6.2) is very similar to system (5.6). In fact, the first equa-
tions of the systems are exactly the same with P defined by (5.7). The second
equation is easily obtained by taking two derivatives of both sides of the second
equation in (6.1) and using (4.1) (see Appendix, Section 7.4 for computations).
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The rest of the proof follows almost verbatum the lines of the proof of Theorem
1.4. As in Lemma 5.1 we introduce new variables (5.12), provided y ≥ a and
−x ≤ a. Then we use (5.14) and (5.15) to see that system (6.2) has the following
form

(6.4)


α2(sα+ 1)α′ + β2(−sβ + 1)β′ =

− 1
1+s2

(
α2−β2

2 + α4−β4

4

)
α(sα+ 1)α′ − β3(−sβ + 1)β′ =

1
1+s2

(
(2s2−1)

3 (α3 + β3 − 2(R2 − 1)
3
2 ) + 3

2s(α
2 − β2)

)
.

Finally, to show that the only solution of our system is α(s) = β(s) =
√
R2 − 1,

we use the change of variables

(6.5) ũ(s) = α(s)3 + β(s)3 − 2(R2 − 1)
3
2 , ṽ(s) = α(s)2 − β(s)2,

similar to (5.20), and proceed as in Lemmas 5.2, 5.3, 5.4 and 5.5.

7. Appendix

7.1. Computation of the constant on the right-hand side of (5.1). We
compute the constant on the right-hand side of the last two equations in the case
of K = B4

2(R) and Kδ = B4
2(r), 0 < r < R. In this situation, the functions f , h, a,

x, and y are given by (5.2)-(5.4). In particular, x+ a = y − a and

(7.1) x+ a =

√
R2 − r2√
1 + s2

, y + x = 2

√
R2 − r2√
1 + s2

.

Since f2(ξ)− L2(ξ) = R2 − ξ2 − (sξ + h)2, we obtain

J2 =

y(s)∫
−x(s)

(ξ − a)2(f2(ξ)− L2(ξ))dξ =

y(s)∫
−x(s)

(ξ − a)2(R2 − ξ2 − (sξ + h)2)dξ.

Integrating by parts twice, we have that

J2 =
1

3

(ξ − a)3(R2 − ξ2 − (sξ + h)2)|y−x + 2

y(s)∫
−x(s)

(ξ − a)3((1 + s2)ξ + sh)dξ


=

1

6

(ξ − a)4((1 + s2)ξ + sh)|y−x −
y(s)∫

−x(s)

(ξ − a)4(1 + s2)dξ


=

1

6

(
(y − a)4((1 + s2)y + sh)− (x+ a)4(−(1 + s2)x+ sh)

− 1

5
(1 + s2)((y − a)5 + (x+ a)5)

)
.
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Since x+ a = y − a, this equals

1

6
(1 + s2)

(
y(y − a)4 + x(x+ a)4 − 1

5
((y − a)5 + (x+ a)5)

)
=

1

6
(1 + s2)

(
(x+ a)4(y + x)− 2

5
(x+ a)5

)
=

1

30
(1 + s2)(x+ a)4 (5(y + x)− 2(x+ a)) .

Finally, using (7.1) we obtain

J2 =
8

30(1 + s2)
3
2

(R2 − r2)
5
2 .

It follows that the desired constant in the right-hand side of the second equation in
(5.1) is

(7.2) c =
4π

15
(R2 − r2)

5
2 .

Similarly, using the fact that

R2 − ξ2 − (sξ + h)2 = −(1 + s2)(ξ + x)(ξ − y),

we have

J3 =

y(s)∫
−x(s)

(f2(ξ)− L2(ξ))2dξ = (1 + s2)2
y(s)∫

−x(s)

(ξ + x)2(ξ − y)2dξ.

Making the substitution ξ = η(y + x)− x we obtain

J3 =
1

30
(1 + s2)2(y + x)5 =

32

30

(R2 − r2)
5
2

(1 + s2)
1
2

.

Thus, the constant on the right-hand side of the third equation in (5.1) also has the
value given by (7.2).

7.2. The first equation in (5.5). Recall that a = −h′. We differentiate the first
equation with respect to s, obtaining

y(s)∫
−x(s)

(f2(ξ)− L2(ξ))dξ = − 2

a′

y(s)∫
−x(s)

(ξ − a)2(sξ + h(s))dξ.

Differentiating once again, we have

(a′)2
y(s)∫

−x(s)

(ξ − a)(sξ + h(s))dξ =

a′
(
−2a′I12 + I13 + y′(y − a)2(sy + h) + x′(x+ a)2(−sx+ h)

)
− a′′I11,
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where

I11 =

y(s)∫
−x(s)

(ξ − a)2(sξ + h(s))dξ, I12 =

y(s)∫
−x(s)

(ξ − a)(sξ + h(s))dξ,

I13 =

y∫
−x

(ξ − a)3dξ.

This yields

(7.3) 3(a′)2I12 + a′′I11 − a′I13

= a′
(
y′(y − a)2(sy + h) + x′(x+ a)2(−sx+ h))

)
.

We see that our first equation reads as

(7.4) a′
(
y′(y − a)2(sy + h) + x′(x+ a)2(−sx+ h))

)
= P (s, x, y, h),

where

(7.5) P (s, x, y, h) = 3(a′)2I12 + a′′I11 − a′I13

We compute the above integrals using integration by parts,

I11 =
(ξ − a(s))3

3
(sξ + h(s))|y(s)−x(s) −

s

3

y(s)∫
−x(s)

(ξ − a)3dξ

=
(y(s)− a(s))3

3
(sy(s) + h(s)) +

(x(s) + a(s))3

3
(−sx(s) + h(s))(7.6)

− s

12
((y(s)− a(s))4 − (x(s) + a(s))4).

Observe that in the case of Euclidean balls, we have

I11 =
1

12
(y − a)3(3s(y − x) + 8h+ 2sa)

=
2

3
(y − a)3r

(√
1 + s2 − s2√

1 + s2

)
=

2r

3

(R2 − r2)
3
2

(1 + s2)2
> 0.

We also compute

I12 =
(ξ − a)2

2
(sξ + h(s))

∣∣∣y
−x

− s
(ξ − a)3

6

∣∣∣y
−x

,

or

(7.7) I12 =
1

2

(
(y − a)2(sy + h)− (x+ a)2(−sx+ h)

)
− s

6

(
(y − a)3 + (x+ a)3

)
.

Finally,

(7.8) I13 =

∫ y

−x
(ξ − a)3 dξ =

1

4

(
(y − a)4 − (x+ a)4

)
.
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Now we substitute (7.6), (7.7) and (7.8) into (7.5), grouping terms with the same
powers of (y − a), (x+ a). Thus,

P = 3(a′)2I12 + a′′I11 − a′I13(7.9)

=
3

2
(a′)2

[
(y − a)2(sy + h)− (x+ a)2(−sx+ h)

]
+ (y − a)3

[
(a′′)

sy + h

3
− 3(a′)2

s

6

]
+ (x+ a)3

[
(a′′)

−sx+ h

3
− 3(a′)2

s

6

]
+
(
(y − a)4 − (x+ a)4

) [
(a′′)(− s

12
)− a′

4

]
.

Since a′ = −r
(1+s2)3/2

and a′′ = 3rs
(1+s2)5/2

, the coefficient of the last term is

(a′′)(− s

12
)− a′

4
=

r

4(1 + s2)5/2
.

To simplify the first summand in (7.9), we rewrite

(y − a)2(sy + h) = (y − a)2(s(y − a) + as+ h),

(x+ a)2(−sx+ h) = (x+ a)2(−s(x+ a) + as+ h).

Then

P =
3

2
(a′)2

[
s(y − a)3 + (y − a)2(as+ h) + s(x+ a)3 − (x+ a)2(sa+ h)

]
+

sa′′

3
(y − a)4 + (y − a)3

[
a′′(as+ h)

3
− 3(a′)2

s

6

]
− sa′′

3
(x+ a)4 + (x+ a)3

[
a′′(as+ h)

3
− 3(a′)2

s

6

]
+

r

4(1 + s2)5/2
(
(y − a)4 − (x+ a)4

)
.

Grouping similar powers again, we have

P =
3

2
(a′)2(as+ h)

(
(y − a)2 − (x+ a)2

)
+

(
3s

2
(a′)2 +

a′′(as+ h)

3
− 3(a′)2

s

6

)(
(y − a)3 + (x+ a)3

)
+

(
r

4(1 + s2)5/2
+

sa′′

3

)(
(y − a)4 − (x+ a)4

)
.

Now we simplify the coefficients:

3

2
(a′)2(as+ h) =

3r3

2(1 + s2)7/2
,

s(a′)2 +
a′′(as+ h)

3
=

2r2s

(1 + s2)3
,

and
r

4(1 + s2)5/2
+

sa′′

3
=

r(1 + 4s2)

4(1 + s2)5/2
.
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The final expression for P is

(7.10) P (s, x, y) =
3r3

2(1 + s2)7/2
(
(y − a)2 − (x+ a)2

)
+

2r2s

(1 + s2)3
(
(y − a)3 + (x+ a)3

)
+

r(1 + 4s2)

4(1 + s2)5/2
(
(y − a)4 − (x+ a)4

)
.

7.3. The second equation in (5.5). We write it as

y(s)∫
−x(s)

(ξ − a)2(f2(ξ)− L2(ξ))dξ =
c

π(1 + s2)
3
2

.

We differentiate with respect to s and use h′ = −a and the first equation in (5.1)
to obtain

−2a′(s)

y(s)∫
−x(s)

(ξ − a)(f2(ξ)− L2(ξ))dξ − 2

y(s)∫
−x(s)

(ξ − a)2(sξ + h(s))(ξ + h′(s))dξ

= −2

y(s)∫
−x(s)

(ξ − a)2(sξ + h(s))(ξ + h′(s))dξ =

(
c

π(1 + s2)
3
2

)′

,

i.e.,
y(s)∫

−x(s)

(ξ − a)3(sξ + h(s))dξ = −

(
c

2π(1 + s2)
3
2

)′

.

We differentiate again to obtain

(7.11) (y − a)3(sy + h)y′ − (x+ a)3(−sx+ h)x′ = Q(s, x, y),

where

Q = 3a′
y∫

−x

(ξ − a)2(sξ + h)dξ −
y∫

−x

(ξ − a)4dξ −

(
c

2π(1 + s2)
3
2

)′′

= 3a′I11 −
1

5

(
(y − a)5 − (x+ a)5

)
+

3c

2π

(
1− 4s2

(1 + s2)7/2

)
.

By (7.6), this equals

3a′
[
(
(y(s)− a(s))3

3
(sy(s) + h(s)) +

(x(s) + a(s))3

3
(−sx(s) + h(s))

− s

12
((y(s)− a(s))4 − (x(s) + a(s))4)

]
− 1

5

(
(y − a)5 − (x+ a)5

)
+

3c

2π

(
1− 4s2

(1 + s2)7/2

)
.
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Using the expression for I11 given by (7.6), and once again the identities (y−a)2(sy+
h) = (y− a)2(s(y− a) + as+ h), (x+ a)2(−sx+ h) = (x+ a)2(−s(x+ a) + as+ h),
we group terms with the same powers and finally obtain

(7.12) Q =
3a′s

4

(
(y − a)4 − (x+ a)4

)
+

a′r

(1 + s2)
1
2

(
(y − a)3 + (x+ a)3

)
−1

5

(
(y − a)5 + (x+ a)5

)
+

3c

2π

1− 4s2

(1 + s2)
7
2

.

7.4. The second equation in (6.2). Differentiating the second equation in (6.1)
and using the fact that f(y(s)) = sy(s) + h(s),−f(−x(s)) = −sx(s) + h(s), we
obtain

y∫
x

(sξ − sa+ sa+ h)(ξ − a)dξ

= s

y∫
−x

(ξ − a)2dξ + (sa+ h)

y∫
−x

(ξ − a)dξ =
c̃s

2(1 + s2)
3
2

.

Taking the integrals in the left hand side we obtain

s
((y − a)3

3
+

(x+ a)3

3

)
+ (sa+ h)

((y − a)2

2
− (x+ a)2

2

)
=

c̃s

2(1 + s2)
3
2

.

Differentiating both parts once again and using the fact that h′ = −a, we have((y − a)3

3
+

(x+ a)3

3

)
+ s((y − a)2(y′ − a′) + (x+ a)2(x′ + a′))

+ sa′
((y − a)2

2
− (x+ a)2

2

)
+ (sa+ h)((y − a)(y′ − a′)− (x+ a)(x′ + a′))

=
c̃s

2(1 + s2)
3
2

.

Finally, using the fact that

sa+ h =
1√

1 + s2
, a′ = − 1

(1 + s2)
3
2

,

and rearranging the terms, we obtain

y′
(
s(y − a)2 +

y − a√
1 + s2

)
+ x′

(
s(x+ a)2 − x+ a√

1 + s2

)
= a′

(
s(y − a)2 +

y − a√
1 + s2

)
− a′

(
s(x+ a)2 − x+ a√

1 + s2

)
−
((y − a)3

3
+

(x+ a)3

3

)
+

s

(1 + s2)
3
2

((y − a)2

2
− (x+ a)2

2

)
+

c̃

2

1− 2s2

(1 + s2)
5
2

,

which is (6.3).
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[9] Ch. J. de La Vallée Poussin, Leçons De Mécanique Analytique, Vol II, Gauthier-Villars, 1924.
[10] K. J. Falconer, Applications of a result on spherical integration to the theory of convex sets,

Amer. Math. Monthly 90 (1983), 690–693.
[11] D. I. Florentin, C. Schütt, E. Werner and N. Zhang, Convex floating bodies in equilibrium,

Proc. Amer. Math. Soc. 150 (2022), 3037–3048.
[12] E. N. Gilbert, How things float, Amer. Math. Monthly 98 (1991), 201–216.
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