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ABSTRACT. In the last two decades a number of structures on the classical space
of translation invariant valuations on convex bodies were discovered, e.g. product,
convolution, a Fourier type transform. In this paper a non-Archimedean analogue
of the space of such (even) valuations with similar structures is constructed. It is
shown that, like in the classical case, the new space equipped with either product
or convolution satisfies Poincaré duality and hard Lefschetz theorem.

1. INTRODUCTION

1 Theory of valuations on convex bodies (or convex valuations, for brevity) is a
classical area of convex geometry, see e.g. [9] and [42], Ch. 6. By definition,
valuations are finitely additive measures on the class of all convex compact subsets
of a finite dimensional real vector space. In the last two decades a number of new
structures on the space of smooth translation invariant convex valuations have
been discovered.

The goal of this paper is to imitate this space of (even) valuations and the
known structures on it in the new context of vector spaces over non-Archimedean
local fields. Note that in this case we do not have an interpretation of valuations
as measures on something. We just construct a new space carrying structures
with formally similar properties. Nevertheless most of the constructions in this
paper are motivated by the usual valuations theory.

2 For these reasons let us say briefly a few words on the valuations theory on
convex subsets of real vector spaces and structures on them. Here we emphasize
mostly formal aspects of the theory relevant to this paper. Let V be a finite
dimensional real vector space of dimension n. Let Val®> (V') denote the space of
smooth translation invariant valuations on convex compact subsets of V' (see e.g.
[4] or the lecture notes [8] for the definitions). This space has a natural grading,
called McMullen’s decomposition

Val®(V) = @ Val®(V).

Valg®(V) and Valy? (V) are 1-dimensional, while all other summands are infinite
dimensional.
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The author discovered a product on Val®> (V') [4] and a Fourier type transform
([3], [7].) In the recent preprint [26] Faifman and Wannerer found a simpler
approach to the Fourier type transform on valuations.

Bernig and Fu [20] discovered a convolution on convex valuations. The Fourier
type transform intertwines product and convolution [7].

The algebra Val®> (V') equipped either with product or convolution is a commu-
tative associative graded algebra with a unit. The Fourier transform establishes
an isomorphism between these two algebras.

These two algebras satisfy a hard Lefschetz type theorem. In some special
cases it was proved by the author [3], [5], [7] and Bernig and Brocker [15]. In
the very recent preprint [23] Bernig, Kotrbaty, and Wannerer proved a rather
general hard Lefschetz type theorem on the language of convolution previously
conjectured by Kotrbaty [34].

Furthermore recently Kotrbaty [34] formulated a general conjecture on Hodge-
Riemann bilinear relations for valuations on the language of convolution. He
proved it in a special case. In the above mentioned recent preprint [23] by Bernig,
Kotrbaty, and Wannerer this conjecture was fully proved; this preprint is based
on another important special case of the conjecture proved by Kotrbaty and
Wannerer [36].

3 Valuations and these structures on them found a number of non-trivial appli-
cations. Theory of valuations has traditionally strong connections to integral
geometry, see e.g. [32]. The above mentioned structures on convex valuations
greatly enriched these connections and started to play a central role in various
problems of integral geometry [16], [21], [22], [27].

The Hodge-Riemann bilinear relations in valuations formulated on the lan-
guage of convolution imply the classical Alexandrov-Fenchel inequality for con-
vex bodies [34]. In some cases the Hodge-Riemann bilinear relations can also be
formulated on the language of product on valuations [34], [35], and they imply
new inequalities for mixed volumes [10], [35].

Some of the recent developments in valuations theory found deep connections
to pseudo-Riemannian geometry [12], [17], [18], [19].

4 While valuations were originally introduced in convex geometry partly motivated
by the needs of integral geometry, in the last two decades there were attempts to
generalize the valuations theory beyond convexity. Thus the space of valuations
was introduced by the author on arbitrary smooth manifold as the space of finitely
additive measures of a special form on sufficiently 'nice’ subsets of a manifold, see
[6] and references therein. This space retains several properties of the classical
space of valuations on convex sets, in particular the product on valuations makes
sense in this generality [13]

In a different direction, the notion of a valuation on various classes of functions
was introduced and investigated [24], [25], [33], [37].

This paper can be considered as another attempt to extend the valuations
theory beyond convexity. A description of its main results will be given in the
next section.
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2. MAIN RESULTS

1 Let F be a non-Achimedean local field. Let V be an n-dimensional vector space
over [ (see Section 3 for a reminder on definitions and basic properties). In
Section 8 we introduce the main objects of this paper: a complex vector space
Val>® (V) whose elements are called smooth valuations, and a complex vector
space Val(V') whose elements are called continuous valuations. The former space
has no topology, while the latter is a Banach space. Both spaces are infinite
dimensional provided n > 1, and Val® (V) is a dense subspace of Val(V).

2.1. Remark. For the reader familiar with the classical theory of convex val-
uations, the notations Val*(V) and Val(V) might be misleading. Both are
analogous to even valuations rather than arbitrary ones. Moreover the definition
of Val(V) is closer not to the definition of continuous even convex valuations,
but rather to Klain continuous even convex valuations in the sense of Bernig and
Faifman [17].

Nevertheless we will keep this notion for the sake of simplicity.

2 By definition both above spaces are graded:
Val® (V) = @i gVal®(V),

and similarly

Val(V) = @i yVal;y(V).
Here Valg®(V) = Valp(V) = C, while Val;?(V) = Val,(V) is the 1-dimensional
complex vector space of C-valued Lebesgue measures on V. All other spaces
Val3*(V),Val;(V) are infinite dimensional (for n > 1).

The space Val{°(V') was first defined in [11], Section 2, (see also Section 8
below) as the image of certain intertwining integral between spaces of smooth
sections of certain GL(V')-equivariant complex line bundles over Grassmannians
over [F; in the convex case this intertwining integral coincides with the well known
cosine transform. It was shown in [11] that this image is an irreducible GL(V)-
module. This definition is motivated by the analogy with the result from the
same paper [11], Section 1, in the convex case that the image of the corresponding
intertwining integral can naturally be identified with the space of even smooth
i-homogeneous convex valuations via the Klain imbedding ([31], Theorem 3.1;
see also [9]). Note that in the case of convex valuations the irreducibility of the
space of valuations of given degree of homogeneity and parity (even or odd) was
previously proved by the author [2].

The space Val;(V) is defined in Section 8 as the closure of Val®> (V) in the
space of continuous sections of the appropriate complex line bundle over a Grass-
mannian.
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3 Let X, Y be finite dimensional vector spaces over F. In Section 12 we define the
exterior product as a bilinear map

K: Val(X) x Val*(Y) — Val(X xY)

which is continuous with respect to the first argument. The exterior product on
valuations on convex sets was defined in [4] by the author.

Note that the exterior product of smooth valuations does not have to be
smooth.

2.2. Example. 1) Let 1 € Valp(V) = C. We will denote this element also by x
or xx to keep the analogy with the classical (convex) case where it corresponds
to the Euler characteristic. Then

xx M xy = xxxvy-

2) Let ux,uy be Lebesgue measures on X,Y respectively. Then px X uy is the
product measure in the usual sense.

4 Let F': X — Y be a linear map of finite dimensional vector spaces over F. We
construct the pull-back map

F*:Val(Y) — Val(X)
which is a continuous linear map of Banach spaces. The pull-back map on convex
valuations was introduced by the author in [7].
2.3. Example. F*(xy) = xx-

If F' is injective then F™* preserves the class of smooth valuations, see Theo-
rem 9.1(4). In general it is not true. The main properties of the pull-back are
summarized in Theorem 9.1.

5 Let D(V) = Val,(V) denote the 1-dimensional complex vector space of C-valued
Lebesgue measures on V, n = dim V. In Section 10 we construct an analogue of
the Fourier transform

F: Val(V) — Val(VY) @ D(V),

where V'V is the dual space of V. F is an isomorphism of Banach spaces com-
muting with the action of GL(V). It induces an isomorphism on the spaces of
smooth valuations. Our construction is a straightforward generalization of the
construction in [3] for even convex valuations.

We show (Theorem 18.1) that for smooth valuations ¢, one has

Fo ) Fyp = F(¢p K ).
For convex valuations this formula was recently proved in [26].
6 For a linear map F': X — Y we define in Section 11 the push-forward map

Fo: Val(X)® D(X)" — Val(Y)® D(Y)*
which is a continuous linear map of Banach spaces. By the definition
F,=Fo (FY)* oF L,

where FV: YV — XV is the dual map. For convex valuations the push-forward
was defined in [7].
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In Section 14 we define product on the space of smooth valuations Val> (V) as
follows

¢ = Ao K ),
where A: V — V x V is the diagonal imbedding, i.e. A(v) = (v,v). It is shown
that equipped with this product, Val®> (V') is a commutative associative algebra
with a unit (equal to xy ). It is graded:

Val(V) - Val®(V) € Valg (V).

Denote n := dim V. Val®> (V) satisfies Poincaré duality: the bilinear map given
by the product

Val® (V) x Val® (V) — Val®(V) = D(V)

is a perfect pairing, i.e. for any 0 # ¢ € Val?*(V) there exists ¢ € Valy° (V)
such that ¢ -1 #£ 0.
The product on convex valuations was introduced by the author [4].

In Section 17 it is shown that the algebra of smooth valuations Val> (V') satisfies
a version of hard Lefschetz theorem. To state it, let us denote by Vi € Valf* (V)
the only (up to a proportionality) element invariant under a maximal compact
subgroup GL,(O) of GL,(F) ~ GL(V). Let 0 < i < n/2. Then the map
Val*(V) — Val® (V) given by

P g (V)"

is an isomorphism.

The proof of this theorem uses properties of the Radon transform on Grass-
mannians over F due to Petrov and Chernov [38].
In Section 19 we introduce a convolution

x: (Val™ (V)@ D(V)*) x (Val®(V) @ D(V)*) — Val®(V) @ D(V)*

by ¢x) = a. (X)), where a: VxV — V is the addition map, i.e. a(x,y) = x+y.
By Proposition 19.2 the convolution is related to the product and the Fourier
transform by the formula

Fo «Fyp =F(¢ - ).
Convolution also satisfies Poincaré duality and hard Lefschetz type theorem
(Theorem 19.3).
On convex valuations the convolution was introduced by Bernig and Fu [20].
An interesting open question is to establish for Val® (V) the Hodge-Riemann
bilinear relations similar to [34] (see also [36], [23]).

3. REMINDER ON LOCAL FIELDS

In this section we collect a few basic well known facts on local fields sufficient for
this paper. We refer to [43], Ch. 1, for details.

By definition, a local field is a topological locally compact non-discrete field.
There is a classification of such fields: they are precisely R, C,F,((t)), and finite
extensions of the fields of p-adic numbers Q,. Here F, denotes the finite field with
q elements, and F,((t)) denotes the field of formal Laurent power series. The first
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two examples, namely R, C, are called Archimedean, while all others are called
non-Archimedean local fields.

2 Let F be a non-Archimedean local field. It has a unique maximal compact subring
O C F. For example if F = F,((t)) then O = F[[t]] is the ring of all Taylor power
series. If F = Q, then O = Z,, is the ring p-adic integers.

The field of fractions of O equals F.

3 O has a unique maximal ideal m C O. For example for F = F,((¢)) the ideal m
is generated by t, while for F = Q,, the ideal m is generated by p.

The quotient k := O/m is necessarily a finite field; it is called the residue field
of F.
4 There exists a unique multiplicative norm

‘ . |: F— RZO
such that
|| =1 Vo € O\m,

|| Vo € m"\m" ™!, where i > 1.

1
k[
where |k| denotes the cardinality of the residue field. Multiplicativity means that
|z - y| = |z| - |y| for any x,y € F.

This norm satisfies the strengthened triangle inequality
o+ y] < max{lal, o]}

5 The norm | - | has the following property. Let u be a Lebesgue measure on F (pu
exists and is unique up to a proportionality). Let « € F. Then

p(zw - A) = [z[pn(A)
for any compact subset A C F.

4. LATTICES OVER NON-ARCHIMEDEAN LOCAL FIELDS

1 In this section F denotes a non-Archimedean local field, and O C F its ring of
integers. In this section we review, mostly following [43], a few well known facts
on finite dimensional F-vector spaces and lattices in them.

A proof of the following result can be found in [40], Thm. 3.2, Ch. 1.

4.1. Theorem. Let V be an n-dimensional Hausdorff topological vector space
over the local field F. Let vy, ..., v, be its basis. Then the map F* — V given
by

(X1, . oymy) = 2101 + -+ Tpop
is an isomorphism of topological vector spaces when the source space is equipped
with the product topology.

2 Let V be an n-dimensional Hausdorff topological vector space over the local field
F.

4.2. Definition. A lattice L in V is a compact open O-submodule of V.

4.3. Lemma. Let L C V be a lattice. Let E C V be a vector subspace. Then
ENL s alattice in E, and L/E N L is a lattice in V/E.
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Proof. This immediately follows from Definition 4.2. 0

4.4. Theorem ([43], Ch. II, §2, Thm. 1). Let L C V be a lattice.

(i) Then V' has a basis v1,...,v, such that L = Qv & ---® Ovy,. In particular L
is a free module of rank n.

(ii) Moreover if {0} = Vo C V4 C -+ C Vo1 C Vy, =V be a sequence of linear
subspaces such that dimV; = ¢. Then the above vectors vi,...,v, can be chosen
so that v1,...,v; is a basis of V; for any 1.

4.5. Remark. In the assumptions of part (ii) of the last theorem, one clearly has
for each i
LNV, =0v®---® Ov,.

Given a lattice L C V. Denote by GL(L) the subgroup
GL(L) :={T € GL(V)|T(L) = L}.

4.6. Proposition. Let L C V be a lattice. The natural action of the group
GL(L) ~ GL,(O) on the Grassmannian Gr) is transitive.

Proof. We may and will assume that V = F", L = O". Let e1,...,e, € F” be
the standard basis. Let Fy := span{ei,...,e;} € G’I“ZV. Let E € GT‘ZV. We have
to show that there exists T' € GL,(O) such that T(Ep) = E.

By Lemma 4.3 and Theorem 4.4 there exists a basis vy, ...,v; of F such that

ENO"=0v@--- @ Ov.
Similarly there exists a basis v;41,..., 0, of V/E such that
L/ILNE =004 ® @ Ov,.

Let us choose v; € L, j =i+ 1,...,n, such that v; = v;mod(E). It is easy to see
that O" = Qv & - - - B Owvy,.

Then define T': F* — F" by T'(e;) = v;, j = 1,...,n. Clearly T(Ey) = E and
T(O") =0" ie. T € GL,(O). O

4.7. Proposition. Let L C V be a lattice. Let Fo: W — V' be an injective linear
map of vector spaces. There exists a neighborhood U of Fy in Hom(W, V') such
that any F € U is also injective and

F~YIm(F)NL) = Fy*(Im(Fp) N L).

Proof. We may and will assume that V =F" and L = O™. Let us define a norm
on F" by

|(z1, ..., 20)]| :mlaxlmﬂ.
Clearly
|z + y[| < max{]|z[|, |y},
A~ z|[ = [A] - []=]]-
Then

O"={z eF"| |z| <1}
is the unit ball of this norm.
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By Lemma 4.3 we may also assume that
Im(Fy) = span{ey, ..., e},

where eq, ..., e, € F" is the standard basis. Let w1, ...,w; € W be the basis such
that F()(wj) =e€j for 1 <j <i.
Then clearly

Fy '(Im(Fo) N L) = {>_ wjw;| max |z;| <1}.

— 1<j<i

]:
Define U := {F € Hom(W,F")| ||F(w;) —ej|| <1V1 <j<i}. Let F eU.
The vectors F(wy),..., F(w;) are linearly independent since these are vectors

with coordinates from O, and their reduction modulo the maximal ideal m of
O are the first 7 vectors of the standard basis of (O/m)". It follows that F' is
injective.

Now it remains to show that

“HIm(F)NL) = {Zx]wj] max, ]ajj\ <1}
7=1
Equivalently, one has to show that for z1,...,x; € F the inequality

(4.1) || F(ziwy + - -« + zjw;)|| <1

holds if and only if max;<;j<;{|z;|} < 1.

The ’if” part follows since ||Fw;|| < max{||Fw; — e;||,|lej||} =1 for any 1 <
J <.

Conversely, let us assume that (4.1) holds. Without loss of generality we may
assume that |z1| = maxi<j<;{|z;|}. Let us denote §; = F(w;) —e;, 1 < j <.
Then ||6;]| < 1. We have

12‘.%1’ 61+91 —|—Z 6;4‘9

x T; T
|21 ] - |y(1,£,...,—,0,...,0)+(91+249j)”
T = 1

1
Since |%| < 1 the norm of the first summand equals 1, while the norm of the

second summand (in the parenthesis) is strictly less then 1. Hence the norm of
their sum is equal to 1. Thus we get 1 > |z1] - 1 = |z1]. O

5. LEBESGUE MEASURES ON VECTOR SPACES

1 In this section we assume that all vector spaces are finite dimensional over a local
field T, either Archimedean or not. For such a vector space V' we denote by D(V')
throughout the article the (one-dimensional) complex vector space of C-valued
Lebesgue measures on V.

Let 0: V — W be a surjective linear map between such vector spaces. Let
K = Ker(o). We are going to construct a linear isomorphism

(5.1) &: D(K) @ D(W)—=D(V).
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Let ug € D(K), uw € D(W). Since measures are linear functionals on compactly
supported continuous functions, define for any ¢ € C.(V)

62 [ oo )= [ duriw) | o OB

w
where we identify the measure pux on K with its (arbitrary) translate to the
parallel affine subspace o~ (w).

An equivalent description is as follows. Let us choose a splitting V = K @ L.
Then
olp: L —W

is an isomorphism. Set py, := (0| ')«puw. Then it is easy to see that

o(px @ pw) = i Xy,
where X denotes the usual product measure.
2 Let XV denote the dual space of a vector space X. The goal of this paragraph is
to construct a canonical isomorphism

(5.3) D(X)*—=D(X").
Since
Home(D(X)", D(X")) ~ D(X) & D(X"),
it suffices to construct a canonical non-zero element in D(X) ® D(XV).
For a lattice A C X let us define the dual lattice in XV

A :={f e XY|f(A) C O}
It is easy to see that AV is a lattice in XV.

5.1. Lemma. Let € D(X) be a non-vanishing (C-valued) Lebesgue measure on
X. Then there is a unique Lebesgue measure on X" denoted by = such that for
any lattice A C X one has

1
5.4 pHAY) = ——.
(54) (W) =
Proof. Let us fix a lattice A C X. We can obviously construct a unique p~
such that (5.4) is satisfied for this A. It remains to show that (5.4) is satisfied
for any other lattice A. For there exists g € GL(X) such that A = g(A). Then
AV = (g)"'AY, where gV is the dual map of g. Then we have
pTHAY) =N () TAY) =
1 1
det ¢Vt H(AY) = = —
At T A = et gln®) ~ ()

1

g

Let us now construct the promised non-zero element of D(X) ® D(XV). Fix
an arbitrary C-valued non-vanishing Lebesgue measure p € D(X). Define the
element to be

pop e D(X)® D(XVY).

The following claim is now obvious.
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5.2. Claim. The element p ® p~' is independent of p. It is GL(X)-invariant
under the natural action of this group on D(X)® D(XV).

Now we can explicitly describe the isomorphism (5.3). Fix a non-vanishing p €
D(X). There is a unique element p¥ € D(X)* such that uY(u) = 1. The the
isomorphism (5.3) maps ¥ +— 1. It is easy to see that this map is independent
of u.

Very often, by the abuse of notation, we will write in this paper

D(X)* = D(XV)

meaning the isomorphism (5.3).

6. REMINDER ON ANALYTIC MANIFOLDS OVER LOCAL FIELDS

1 The goal of this section is to review very briefly the notion of analytic manifold
over a non-Archimedean local field F. For more details we refer to [41], part II.
The theory of analytic manifolds over such a field is similar to the theory of
real analytic manifolds, at least at the basic level needed for this paper. The main
examples of analytic manifolds to keep in mind for the purposes of this paper are
the Grassmannians of linear i¢-dimensional subspaces in F” and, more generally,
the manifolds of partial flags in F™. All the material of this section is well known.
2 Let U C F™ be an open subset. A function f: U — F is called analytic if any
point a € U has a ball centered at a in which f can be represented by a series
which absolutely converges in this ball.
Let F' = (Fy,...,Fy) be amap F: U C F* — F™. F is called analytic if
every F; is analytic.
Composition of analytic maps is analytic ([41], part II, Ch. II, Theorem 2).
For an analytic map F' its Jacobian is defined as usual

- (%)

Thus J(F') is an m x n matrix whose entries are analytic functions.
3 For an analytic map

F:UCF'—TF"
a version of the inverse function theorem holds (see [41], part II, Ch. III, §9).
Namely assume that at a point a € U

det(J(F)q) 2 0.

Then there exists an open neighborhood V' of a such that F(V) C F" is open,
Fly:V — F(V) is a homeomorphism, and F~!: F(V) — V is an analytic
map.

It is easy to see that the inverse function theorem implies in the usual way
the implicit function theorem for analytic functions. It is formulated in the usual
way and we leave it to the reader. The implicit function theorem will be used in
this paper in the proof of Lemma 17.2.

4 A topological space X is an analytic manifold if it admits an open covering {U, },
homeomorphisms

Ga: Uy — Vg,
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where V,, C F" are open subsets such that the transition maps

¢O¢|UOZOU¢3 © gbgl |¢/3(UO¢QU,3)

are analytic for any «, .
One can define analytic maps between analytic manifolds in the obvious way.
5 A topological group G which is also an analytic manifold is called a Lie group if
(a) the product map G x G — G given by (x,y) — x - y is analytic;
(b) the inverse map G — G given by x — z~! is analytic.
Basic examples of Lie groups are GL,(F),GL,(O). Another example is the
subgroup of GL,(IF) stabilizing the given partial flag:

Al * Ce *
0 A2 . *
G= . ;
0 0 .. *
0] 0 |...|As
where Aq, Ao, ..., As are invertible square matrices. Thus G is the subgroup of

invertible block upper triangular matrices.

6 Let G be a Lie group. Let H C G be a subgroup which is an analytic submanifold
(this notion is naturally defined). Then H is also a Lie group which is called a
Lie subgroup of G (see [41], part II, Ch. IV, §2.3).

6.1. Theorem ([41], part IT, Ch. IV, §5). Let G be a Lie group. Let H C G be its
Lie subgroup. Then G/H has a unique structure of analytic manifold such that
the natural map G — G/H is analytic and has surjective differential at every
point.

This theorem implies immediately that the Grassmannians and, more generally,
partial flag spaces are analytic manifolds.
7 Let us discuss now integration over analytic manifolds over a non-Archimedean
local field F. Let us start with integration in F".
Let dx denote the Lebesgue measure on F” normalized so that its value on O™
equals 1. Let U,V C F™ be compact open subsets. Let

f:V—C

be a continuous function. Let F': U—=V be an analytic homeomorphism such
that F~! is also analytic. Then there is the following change of variables formula

(see [30], §7.4)

(6.1) /V fy)dy = /U F(F ()| det J(F),|da.

8 Let us define the complex line bundle |wx| over X called the line bundle of
densities. We will see that its continuous sections can be integrated over X.
Let us fix charts {(Ua, ¢a)} be an atlas of charts on X. Consider the transition
functions

Fap = Galvanus © 05 ' varvs : 05(Ua N Us)——¢a(Ua N Up).
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Choose the trivial line bundle U, x C over each U, and identify them over pairwise
intersections U, N Ug as follows

(:c,z) ~ (.’L’, |J(Fa5)¢5(x)‘ ’ Z).

9 Let us assume in addition that X is compact. Then continuous sections of |wx|
can be integrated over X by patching together local integrations over subsets of
F™. More precisely let us fix a finite atlas of charts {(Uy, ¢4)} on X. There exits
a subordinate partition of unity {1} (see e.g. [39], Theorem 2.13), namely there
exist continuous functions v, : Uy, — R> with supp(¢,) C U, and such that

w1
«
Let w be a continuous section over X of the line bundle |wx|. Then

w:ZdJa-w.

Clearly supp(1q - w) C U,. Then fUa o - w is well defined since (Uy, o) is a

chart. Then one defines
w = Py + W.
L2

This number is independent of the atlas of charts and the subordinate partition
of unity.

7. REPRESENTATIONS OF THE GROUP GL,(O)

1 In this section we summarize a few known results on representations of the group
GL,(0) in the space of complex valued functions on Grassmannians Gry . No
result of this section is novel.

Let F be non-Archimedean local field. Let O C F be its ring of integers.
The group GL,(O) is compact and acts transitively on the Grassmannian Grkn.
Hence there is a unique probability (Haar) measure fi 744, o0 Gr{" invariant under
this group. By the general representation theory of compact groups the represen-
tation of GL,(0) in L*(Grf") is unitary and has a dense subspace which is an
orthogonal countable direct sum of irreducible representations. The irreducible
representations are necessarily finite dimensional.

2 Each irreducible representation of GL, (O) enters L*(Grf") with multiplicity at
most 1. For char(F) = 0 this was proven first in [29], Corollary 3.2, in general in
[14].

3 The linear subspace C*°(Gry") of locally constant (called smooth) functions is
GL,(O)-invariant and dense in L?(Gry").

Every finite dimensional GL,,(O)-invariant subspace of L*(Gry ") is contained
in C*(GrE"); moreover the representation of GL,(O) in this subspace factorized
via a quotient of GL,(O) by finite index subgroup. The last two statements
follow from the fact that, as a topological group, GL,(O) is a pro-finite group
(i.e. inverse limit of finite groups).
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8. SPACE OF VALUATIONS

1 Let V be an n-dimensional vector space over a local field F. We introduce the
main object of study Val(V) = ®}_,Valx(V) which is a vector space over C
and is an analogue of even and Klain continuous valuations on convex sets in the
terminology of [17], Section 3.

We define Val5®(V) := C and Val° (V) := D(V), the latter is the (1-dimensional)
space of complex valued Lebesgue measures on V. Let now 1 < k <n—1. We
are going to define in this section Valp*(V).

2 Let us start with an elementary construction. Given two vector spaces X and Y
of equal (finite) dimension over the local field F. Define a map linear with respect
to the second variable

(8.1) T: Homp(X,Y) x D(Y) — D(X).

Let F' € Homp(X,Y ), € D(Y). There exists a unique Lebesgue measure v on
X such that for some (equivalently, any) compact subset A C X with non-empty
interior one has v(A) = u(F(A)). Define T(F, ) :=v.

8.1. Claim. (1) The map T is linear with respect to the second argument.

(2) If F is invertible then T(F,u) = (F~1).(u), where G, denotes the push-
forward of measures under a map G. Otherwise T (F,u) = 0.

(3) The map T is jointly continuous.

A proof is left to the reader.

3 Let EZ — Gr,‘; be the complex line bundle whose fiber over E € G’I”X is equal
to the 1-dimensional space of complex valued Lebesgue measures on F.

Let |w) | — GrY_, denote the line bundle of densities on GrY_, as defined in
Section 6. Its continuous global sections can be integrated over the Grassmannian
Grv‘; I

Let us denote by M;_ B GT‘X_ ;. the line bundle whose fiber over F' € Gr:{_ i
is equal to the space of complex valued Lebesgue measures on V/F. Set finally
MY =M @ wY |. All the line bundles £V , |wV [, M! , MY . are
GL(V)-equivariant in a natural way.

A section of any of the above vector bundles is called smooth if its stabilizer in
GL(V) is an open subgroup. More generally a vector in a continuous representa-
tion of GL(V) is called smooth if its stabilizer is open. It is easy to see that any
function on Gr) is smooth in this sense if and only if it is locally constant.

4 Let us define the GL, (V')-equivariant operator between spaces of smooth sections

(8.2) D: C®(GrY MY ) — Cc>=(Gr), L))

as follows. For F € erfk and F € G’I“X define pg p: E — V/F the natural
map. Given a section & € COO(GTX_k,MX_k), define for any F € Gr,‘;

(83) DEOE) = [ TerEF),
FEG’TT‘LC,c
where 7 is the map from paragraph 2. Note that
T(pe.r &(F)) € D(E) ® |wy 4|
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Hence the integral belongs to D(E).

Let us reformulate the definition of D. Given a k-dimensional subspace FE.
The set of F' € erfk intersecting £/ non-transversally, or equivalently pg r is
non-invertible, has zero measure in the Grassmannian. Ignoring this subset we
have

(8.4) DOE = [ ).

8.2. Proposition. (1) The operator D is GL(V')-equivariant. It extends uniquely
by continuity to the space of continuous sections. Then it maps continuous sec-
tions to continuous, smooth to smooth.

(2) The image of D on the space of smooth sections is an irreducible subspace.

Part (1) follows from Claim 8.1(3). Part (2) was proved in [11], Theorem 2.1;
see also [28], Corollary 1.3, for a more general statement.

8.3. Definition. Let us denote by Val°(V') the image of D on smooth vectors.
5 Let us define the space of continuous valuations.

8.4. Definition. The space of continuous valuations Vali(V) is the closure of
Valge(V) in C=(GrY, LY).

Vali(V) is a GL(V)-invariant subspace and is (topologically) irreducible, i.e.
has no invariant closed proper subspaces.

6 Let us fix a lattice A C V. Since the action of GL(A) on Gr} is transitive,
there exist unique (up to a proportionality) non-zero G L(A)-invariant continuous
sections of MY _, and of £} (which are obviously smooth). It is easy to see that D
applied to the former is a non-zero multiple of the latter. We call such a GL(A)-
invariant section a spherical vector. We have the following easy characterization
of Val*(V), Valy(V).

8.5. Lemma. Val*(V) (resp. Valy(V')) is the only irreducible GL(V')-submodule
of C=®(GrY,LY) (resp. C(Gr) ,L})) containing a spherical vector.

Proof. Let us prove the non-smooth case, the smooth one is very similar. Assume
that T C C (Gr,‘c/, EX) is another closed irreducible GL(V')-submodule containing
the spherical vector. Then T'N Vali (V) also has these properties. It is non-zero
since contains the spherical vector. But TNValg (V) C Vali(V). Since Valg (V) is
GL(V)-irreducible, it follows that T'NValx (V) = Valg (V). Hence Vali (V) C T.
Hence Val,(V)=T. O

8.6. Remark. In fact a stronger characterization holds: Valp®(V') (resp. Vali(V))
is the only irreducible GL(V)-submodule of C*°(Gry, L)) (resp. C(Gr}),L))).
This statement is a special case of [28], Theorem 1.2.

9. PULL-BACK ON VALUATIONS

1 Let F be a non-Archimedean local field. The goal of this section is to construct
an operation of pull-back on valuations. More precisely we will prove
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9.1. Theorem. Let X and Y be finite dimensional vector spaces over F. For any
linear map F: X — Y there exists a canonical continuous linear map

F*: Val(Y) — Val(X)

which is called the pull-back map and satisfies the following properties:

(1) F* preserves degree of homogeneity, i.e. F*(Vali(Y)) C Valg(X);

(2) (FoG)" =G*o F*;

(3) Id* = Id;

(4) If F is injective then F* preserves the subspace of smooth valuations, i.e.
F*(Val>*(Y)) C Val™(X).

Proof of this theorem occupies the rest of this section.
The map F* on valuations of degree 0 is just the identity map of C.
Let F': X — Y be a linear map and dim X = dimY = n. The the pullback
F*:Val,(Y) — Val,(X) is the map F*: D(Y) — D(X) given, by definition,
by
F(u) = T(F, p),

where T is the map from Claim 8.1.
Let F: X™ — Y™ be a linear map. Let us define first the pull-back map

F*: D(Y) — C(GrX, £X).

If m > n then F* = 0 by the definition. Assume that m <n. For u € D(Y) and
any E € GrX set

(F*u)(E) :=T(Fleg, p)-
The continuity of T with respect to the first variable implies that F™*u is contin-
uous.

9.2. Lemma. (1) One has F*(D(Y)) C Valy,(X).
(2) The linear span of valuations of the form F*u over all possible linear maps
F: X —Y and p € D(Y) is dense in Valy,(X).

Proof. Proof of (1). If FI(X) # Y then F*(D(Y)) = 0. Thus let us assume that
F(X) =Y. We will identify Y with X/Ker(F') in the natural way.

Let us fix u € D(X/Ker(F)). Recall that m = dim(X/Ker(F')). Let us chose
a smooth section fi of the line bundle M/, = over GrX such that its value
at Ker(F) is equal to u. (Recall that the fiber of M/ _  over any subspace E
is equal to D(X/E).) Let us choose a sequence of smooth measures {p,} on
Gr:X_,. which weakly converges to the d-measure supported at {Ker(F)}. Then

Pa @ i € C®(GrX_  MX ). Applying to it operator D from (8.2) we get
D(pa @ 1) € Valy (X).
When ¢ — oo the latter section converges to F*u in C’(Gr?, Ef), hence F*u €
Val,(X).
Proof of (2). It is clear that the linear span of valuations of the form F*pu

is a GL(X)-invariant subspace of Val,,(X). Since the latter space is GL(X)-
irreducible by Proposition 8.2, the result follows. ]
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The constructed map F*: D(Y) — Valgimy (X) is called pull back on densi-
ties.
6 The following corollary will be used later.

9.3. Corollary. Let X be a compact metrizable space. Let m be a complex valued
Borel measure on X. Let
T: X — Hom(X,Y)

be a continuous map when X,Y are finite dimensional vector spaces over F. Let
we D). Then

J @ an)
belongs to Valgimy (X).

Proof. By Claim 8.1 the map X — C(Gr{ v, L3 ) given by the expression
under the last integral « — [T'(z)]*(u) is continuous. By Lemma 9.2 the expres-
sion under the integral [T'(z)]*(u) belongs to Val(X). Since Val(X) is complete
(it is a Banach space), the integral is well defined as a limit of Riemann sums. [J

7 Given a linear map F': X — Y. First let us define an auxiliary linear map, also
denoted by F* by the abuse of notation,

(9.1) F*: C(Gry, LY) — C(Gri¥, L)
as follows. Let f € C(Gr),L)). For any subspace E € GriX let us define

(9.2) (F*f)(E):{ T(F\E,JS(F(E)» otheirfwise dim F(E) =k

e . . . . X
9.4. Proposition. F*f is a continuous section of L;; .

We will need the following elementary lemma whose proof is easy and is left to
the reader. For vector spaces K, X we denote by Inj(K,X) the space of linear
imbeddings K — X.

9.5. Lemma. Let K be a k-dimensional vector space. Let f be a not necessarily
continuous section of Ei( over G’ri(. Then f is continuous if and only if the map
Inj(K,X) — D(K) given by h — h*f is continuous.

Proof of Proposition 9.4. Fix a k-dimensional vector space K. By Lemma 9.5 we
have to show that h +— h*(F*f) is a continuous map Inj(K,X) — D(K). It
easily follows from the definition that h*(F*f) = (F o h)*f. The continuity of
h+— (F o h)*f follows from the continuity of f and Lemma 9.5. O

9.6. Proposition. The map F* in (9.1) is continuous.

Proof. Let us fix an open bounded subset C C X which contains the origin. The
topology on C(Gri¥, LX) is given by the norm

llg|| := sup | g(E)].
EEG"ri( ENC
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Fix an open bounded subset K C Y such that F(C) C K. Then we have

IFfll=  sw | / FF(B))| <
EEGrX dim F(E)= F(ENC)

sup |/ B < £l
EeGr¥,dim F(E

O

Let W -% X -5 v be linear maps. The equality (F o G)* = G* o F* follows
directly from the definition of the pull-back.

9.7. Proposition. One has
F*(Val(Y)) C Valp(X).

9.8. Definition. The restriction of F* to Val(Y') is called the pull-back map on
valuations.

Proof of Proposition 9.7. By the continuity of F* it suffices to show that
F*(Val®(Y)) C Valg(X). One has to show that for any £ € C®(GrY_, MY )
one has F*(DE) € Valg(X) where D was defined in (8.3). Let us choose a fi-
nite open covering of Grz;k with a trivialization of the bundle M}; ;. over each
of its subsets. Let us choose a partition of unity subordinate to this covering
(see Section 6, paragraph 9). These choices reduce the problem to the follow-
ing one. Given a complex valued Borel measure m on Gr}f_ > @ continuous map

T:GrY , — Hom(Y,F*), and a density u € D(F"), then

D(E) = / [T(@)]* (1) dm(z).

Gr}lf b
Then F*(D fGr F)*(u)dm(x). The latter expression belongs to
Valp(X) by Corollary 9. 3 O

This completes the construction of the pull-back F* on valuations and finishes

the proof of Theorem 9.1. In the next paragraph we prove a continuity property
of the pull-back map.
Let us prove now part (4) of Theorem 9.1. Namely let us assume that F': X — Y
is injective. Let us show that F*(Val®>(Y)) C Val*(X). We may and will assume
that X C Y. Let us choose a splitting Y = X @ Z. It induces a groups imbedding
GL(X) < GL(Y) given by g — (g,1dz). Clearly any GL(Y )-smooth vector is
GL(X)-smooth. The result follows.

9.9. Proposition. The map Hom(X,Y) x C(Gr},LY) — C(GrX, LX) given
by (F, f) — F*f is jointly continuous.

Proof. 1t it well known (and easily follows from the Banach-Steinhauss theorem)
that any separately continuous map

TxA— B,
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where T is a metric space and A, B are Banach spaces, and the operator is linear
with respect to the second argument, is jointly continuous.

Hence is suffices to show that our map is separately continuous. By Claim 9.6
it suffices to show that if & € C(Gr}, L)) is fixed then the map Hom(X,Y) —
C (Gr;-x , £;-X ) given by F' — F*¢ is continuous. Let us prove the continuity of this
map at certain fixed Fy € Hom(X,Y).

Let us fix a lattice L C X. It suffices to show that for any € > 0 there is a
neighborhood of Fy in Hom(X,Y') such that for any F' from this neighborhood

(9.3 s | [ mom - [ (meow) <e

EGGTZ.X

It suffices to prove this statement locally, i.e. to prove that any Ey € Grl-X has a
neighborhood Ug, C Gri¥, and there is a neighborhood Vg, of Fy in Hom(X,Y)
such that

(9.4) sup | / (F*¢)(FE) — / (F3&)(E)| < e for any F € Vg,.
EeUp, JENL ENL

Indeed then we could choose a finite subcovering {Ug, } of GrX. Then for any
F € NyV4 one had (9.3).
Thus let us fix Ey € GT'Z-X .

Case 1. Let us assume that dim Fy(Ep) = i. By Theorem 4.4(i) there exists a
linear isomorphism Hy: Fi—Ej such that Ho(O%) = Ey N L. Tt suffices to show
that for any e > 0 there exists a neighborhood X of Hy in Hom(F!, X) and a
neighborhood V of Fy in Hom(X,Y') such that for any H € X and any F € V
one has

y/ (FOH)*g/ (Foo H)*¢| <e.
H=1(Im(H)NL) H=1(Im(H)NL)

Note that Hy '(Im(Hp) N L) = O'. Then we can choose the neighborhood X of
Hj as in Proposition 4.7, i.e. so that

H'(Im(H)NL)=0O"forall H € X.

Hence one has to show that
| [ Fomye- [ (Romye|<e.
ot ot
But this is clear from the definition of topology on Ef( .

Case 2. Let us assume that dim Fy(FEp) < i. By Theorem 4.4 and Remark 4.5
there is an isomorphism Hy: F*— Fj such that Hy(O") = Ey N L and

Ho(OF x {0;_1}) = (KerFy) N Eg N L,

where k := dim((KerFp)N Ep). It suffices to show that for any € > 0 there exists a
neighborhood X of Hy in Hom(F*, X) and a neighborhood V of Fy in Hom(X,Y')
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such that for any H € X and any F' € V one has

(9.5) | / (FoH)*¢| <e.
H-Y(Im(H)NL)

Note that Hy *(Im(Hy) N L) = O'. By Proposition 4.7 Hy has a neighborhood
X C Hom(F%, X) so that

H'(Im(H)NL)=0O"for all H € X,

Hence (9.5) is equivalent to say that there exists a neighbourhood & of Hy and
V of Fy such that

(9.6) | | (FoH)¢|<cforany He X, FeV.
O

It suffices to show that given the linear map go: F* — Y such that 7k(g) < i
then there is a neighborhood U C Hom(F*,Y") of go such that

‘/ gl <e vgel.
(oL
We leave to the reader this simple and elementary estimate. g

10. CONSTRUCTION OF FOURIER TRANSFORM ON VALUATIONS

1 Let FF be a local field. In this section we construct a GL(V')-equivariant isomor-
phism between spaces of valuations on a vector space V' and its dual.

We denote by V'V (rather than V*) the dual space of V. Nevertheless we will
keep * to denote duals of one dimensional spaces (thus D(V)* denotes the dual
space of the space D(V') of C-valued Lebesgue measures on V).

For a vector subspace E C V let us denote by E+ C V'V its annihilator
defined by
Et={feVY| f(E) =0}
This induces a GL(V')-equivariant homeomorphism
GrY iGrX_Vi.
2 Recall that the fiber of the line bundle /JZV over F € GT’ZV is equal, by the defini-
tion, to the space D(E) of complex valued Lebesgue measures on E. We are going
to construct a GL(V)-equivariant homeomorphism a;: £/ — ET‘{L ® D(VV)*
such that the diagram
LY —“— Ll @ D(VV)*

! |

GrY -+ 5 GrY”,
is commutative and the map a is linear on fibers of the bundles (the vertical
arrows are the obvious bundle projections).
Fix a linear subspace E C V. Note that canonically the dual space EV =
VV/E*. We have the isomorphisms from Section 5:
(10.1)
D(E)-=D(EY)*~=D(VY/E*)*—=(D(VY) @ D(E*)*)*~+D(E*) @ D(VY)*.
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This defines the required map a on the fiber D(FE) over E.
3 By taking sections of the bundles in the diagram from paragraph 2 we get a
GL(V)-equivariant isomorphism of Banach spaces

(10.2) F: C(GrY, L:)—=C(GrY",, Ln_i © D(VV)*).

n—i>
10.1. Remark. For ¢ = 0 the Fourier transform is the obvious isomorphism
F:C— D(VY)® D(VY)*.
For i = n = dim V the Fourier transform is the obvious isomorphism
F: D(V) — Valo(VY) @ D(VY)*.
T

By Lemma 8.5 both the target and the source spaces of the map F in (10.2)
contain a unique irreducible subspace which contains a non-zero GL(A)-invariant
vector for some (equivalently, any) lattice A C V. Hence F induces GL(V)-
equivariant isomorphisms

(10.3) F: Val;(V)——Val,—;(VY) @ D(VY)*,
(10.4) F: Val®(V)—=Valy ,(VY) @ D(VY),
when the first one is an isomorphism of Banach spaces.

4 We have the following Plancherel type inversion formula.

10.2. Theorem. The composition

G £0) 55 e el o DYy S

(C(Gr{.LY)®D(V)*) @ D(VV) =C(Gr{ L)
is the identity map.
Proof. First, taking the annihilator L twice is the identity map on GTZV . Next,
for £ € GTZV the composition of the following isomorphisms is the identity map
of D(F)
D(E)-D(EY)*—=+(D(VY/E*))*~D(E+) @ D(VY)*—=»
D((E+)V)* @ D(VY)*—D(V/E)* @ D(VY)*— (D(E) ® D(V)*) ® D(V¥)*—
D(E)
Hence a,,_; o a; = Id.
The two simplest examples of computation of the Fourier transform of valuations
are as follows. Let p € D(X) = Valgim x (V). Then
(10.5) F(u) = xxv @ p.

The Fourier transform of the Euler characteristic xx € Valp(X) can also be
easily computed. Let us fix a non-vanishing Lebesgue measure volx € D(X).
Let voly' € D(X)* ~ D(XV) be the inverse Lebesgue measure. Then

(10.6) F(xx) = voly" @ vol(X).
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11. PUSH-FORWARD ON VALUATIONS

1 Let F': X — Y be a linear map. We will define a continuous linear map
(11.1) F.:Val(X)® D(X)" — Val(Y)® D(Y)"

called the push-forward map and describe it more explicitly in the two cases of
injective and surjective maps.
Let us define first the push-forward

Fe: C(Griy, Lip ® D(X)*) — C(GT]_gim x4dimy+ £k © D(Y)*)
as follows. We have the dual map FV: YV — XV. Define
(11.2) F.:=TFy o (FV)* o F,

where Fx,Fy are the Fourier transforms on X, Y respectively.
11.1. Lemma. F is a continuous map

C(Gri¥, L ® D(X)*) — C(Gr}_gim x+dim v+ Lh—dim x+dimy © D(¥Y)¥).

This easily follows from the properties of pull-back and Fourier transform. It
is clear that

F.(Valp(X) ® D(X)*) C Valg—dim x+dimy (Y) @ D(Y)*.

Hence F, can also be considered as the map (11.1).
2 Let us describe the push-forward map when F': X — Y is an imbedding. The
description is contained in Propositions 11.2 and 11.3 below.
We will identify X with its image in Y. Denote ¢ := dimY — dim X the
codimension of X.
Let £ € C(Grif, L ® D(X)*). Let E € Grz;rc. We are going to describe
(F&)(F). We will consider two cases: Y # F+ X and Y = E+ X.

11.2. Proposition. Assume Y # E + X. Then (F.§)(E) = 0.

Proof. Let us introduce a notation. For a linear subspace L C V consider the
isomorphism

(11.3) apy: D(L)—D(L*Y) @ D(VY)*

which is the composition of natural isomorphisms (10.1) with E replaced with L:
D(L)—=»D(LV)*~=»D(VV/L*)*—=(D(VY) ® D(L*)*)*—D(L*) @ D(VY)*.

We have
AUE)(E) = ((Fy o F** o F)(€)) (B) = oy ((FY 0 FR)(©)(ED))

We have to show that the last expression vanishes. It suffices to show that
Ker(FV: E+ — XV) # 0. By duality this is equivalent to

Ker(X — (EY)Y)) #0.
But (E+)Y = Y/(E+)* = Y/E. Hence equivalently we have
Ker(X — Y/E) #0,

where the map is the composition of the natural maps X — Y — Y/E. This
is equivalent to our assumption Y # F + X. O
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3 Assume now that Y = F + X. Denote Eg = ENX. Then dim Ey = k. The
natural map £ — Y/X induces the isomorphism

(11.5) E/Ey—Y/X.
11.3. Proposition. Assume that Y = E+ X. Then (F.£)(E) equals the image

of £(Ep) € D(Ey) @ D(X)* under the composition of natural isomorphisms from
Section 5

D(Ey) ® D(X)"—D(Ey) @ D(Y/X)2 D(Y)"—
D(Ey) ® D(E/Ey) @ D(Y)*—D(E)® D(Y)",
where in the second isomorphism we used the isomorphism (11.5).
Proof. We can choose a decomposition
(11.6) Y=2®FE®E;
such that
E=Ey® E, X=2Z®E,.
By (11.4) we have

(11.7) (FE(E) = apeyv ((FY* o FR)(E)(EY)).
Recall that ap. yv: D(E+)—=+D(E) ® D(Y)*. Using decomposition (11.6) we

clearly have E+ = ZV. Under this identification we have
apLyv: D(ZY) — D(E) ® D(Y)*.

The dual map FV is the natural projection Z¥ @ Eyj ® EY — Z¥ @ Ej. The
subspace E+ = ZV is mapped identically under these identifications. Hence it
follows

(FY* o Fx)()(ET) = (FY*(FY'€)) (2Y) = (FX'E)(ZY) = azl xv (£(E0)),
where azv xv: D(ZY) — D(Ep) ® D(X)*. Substituting this into (11.7) we get

(FE(E) = (aps yvoazh v ) (€(Fo)).

The map agi yv o o@i v D(Ey) ® D(X)* — D(E) ® D(Y)* coincides with
the claimed one. O
4

11.4. Proposition. Let us assume that a linear map F': X — Y is onto. Then
push-forward of a smooth valuation is smooth:
F,(Val>*(X)® D(X)*) C Val™(Y)® D(Y)*.

Proof. Recall that F, = Fy o (FV)*oF'. Since F" is an imbedding, (F")* maps
smooth valuations to smooth ones by Theorem 9.1(4). By Section 3, paragraph 3,
[F is an isomorphism between spaces of smooth valuations. The result follows. [

5 In this paragraph we will describe explicitly the push-forward map when F: X —
Y is onto. Denote K := Ker(F). Clearly X/K ~ Y.
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11.5. Proposition. Let F: X — Y is onto. Let & € C(Gri¥, L¥ @ D(X)*).
Let E € Gry_gim x1dimy With k> dim X —dimY. Denote E := F~Y(E). Then

(FLE)(E) is equal to the image of £(E) under the composition of natural isomor-
phisms

D(F)® D(X)"—D(F)® D(K)® D(X)*
—D(E)® D(K)® D(K)*®@ D(Y)*—D(F)® D(Y)*,
where we used isomorphism E/K ~ F.
Proof. Let us choose a splitting X = K ®Y. Then FV: YV — KY @Y is the
obvious imbedding y — (0,y). Also £ = K & E. We will identify the annihilator
E+ of E in YV with its image in XV and denote in the same way by the abuse

of notation.
We have

(F)(E) = ((Fy o FY* o F')(€)) (E) = apu yv (((FV* ° F}l)(é))(EL)) =
aptyv (FFOED) = apryy (ap! o (€(B)
(aptyvoagl v )E(E)),
where we recall that
apL xv: D(EY)—D(E) ® D(X)*,
apLyv: D(ET)—D(E)® D(Y)*.

It is easy to see that the map api yv o agi v coincides with the map from the
proposition. ]

12. EXTERIOR PRODUCT ON VALUATIONS

1 The goal of this section is to construct a bilinear map for any two finite dimen-
sional vector spaces X and Y over F

R: Vali(X) x Val®(Y) — Valiy (X x Y)

which is GL(X) x GL(Y )-equivariant. The map is continuous with respect to the
first variable in the case of non-Archimedean F.
This map will be constructed as a restriction to valuations of a bilinear map

(12.1) K: C(Gri¥, Li) x Val*(Y) — C(Gr{3Y, L),
2 First let us construct the map (12.1) in the special case Val3*(Y) = D(Y). In
this case we need to construct a continuous bilinear map

(12.2) X: C(Gr¥, L) @ D(Y) — C(Gri st v LX)

This map is essentially the push-forward map for the obvious imbedding
F: X —>XXxY

given by F'(z) = (x,0). Indeed the push-forward map for this imbedding, as
defined in Section 11, is a continuous linear map

Fo: C(Gr¥, LX) @ D(X)* — C(Griih, v LX) ® D(X x V)™,
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Since D(X x Y)* = D(X)* ® D(Y)* we get the required map (12.2) by twisting
all spaces by D(X x Y).
Exterior product of ¢ € C(GrX, L;),n € D(Y) is denoted by ¢ X p. Thus

(12.3) PR p = (Fi @ Idp(xxy)) (¢ ® p).
3
12.1. Lemma. Let T: X — Z be a linear map. Let u € D(Z), v € D(W).
Then
(T*p) Ry = (T x Idw)* (p K v).
In particular both sides belong to Val(X x W)

Proof. If T is not onto then both sides vanish. Thus let us assume that T is onto.
Fix a linear subspace £ C X x W with dim F = dim Z 4+ dim W. We have to
show that

(T*p) W) (B) = (T x 1d)*(n R v)) (E).

Both sides are continuous in F. Hence it suffices to assume that E is generic.
Denote Ey := E N X. For generic E the maps (T' x Idw)|g: E — Z x W and
Tg,: Eo — Z are isomorphisms. The lemma follows from the commutativity of
the following diagram

Al * e *
00| | =
0|0 |...|A
The last statement follows from Proposition 9.7. O

4 To construct the map (12.1) in general, first we will construct,using the construc-
tion from paragraph 2, a bilinear map

(12.4)  ®: C(Gri*, L) x C™(Gry_j, M) — C(GriixY LAY,

which is continuous with respect to the first variable, where the bundle foj
was defined in Section 8.1, paragraph 3.
Let ¢ be a section of MY .. Recall that for any F € Gr}/ one has ¢(F) €

D(Y/F) ® |wY_ jHF, where \wn jHF is the line bundle of densities over Gr}f_j
Then by the construction of paragraph 2

SR E(F) € C(GrX V) pXXY/F)y oY

ity 7ty n— JHF

Let us define

(25) o [ (s xpe (0B ER) € OGS L),

where prp: Y — Y/F is the canonical projection. Note that for the expression
under the integral one has

(Idx x pp)* (¢ KE(F)) € C(GrisY LX) @ lwy |

We will prove the following
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12.2. Claim. The integral in (12.5) is
(1) well defined;

(2) linear with respect to ¢ and &;

(3) continuous with respect to ¢.

5 Proof of Claim 12.2. Let us fix a smooth positive measure vy on Gr}{_j. Then

we can write uniquely & = £ ® vy where £(F) € D(Y/F), and € is a continuous
section. Then

(Idx x pr)* (¢ KE(F)) = (Idx x pr)* (¢ RE(F)) - o,
and pRE = Jery (Idx x pp)* (¢ K £(F))dvy(F), where

J

(Idx x pr)"(¢RE(F)) € C(GrisY, L5,

X pX Y XXY pXXY
It suffices to show that the map C(Gr;*,L;") x Gr,_; — C(Griy;", L")
given by
(12.6) (¢, F) v (Idx x pp)* (¢ WE(F))

is continuous. For let us fix Fy € Grz;j. It has a neighborhood U C Gr;:j over
which there is a trivialization of the vector bundle whose fiber over F'is Y/F, thus
this bundle is isomorphic to ¢ x F/. Under this identification §: U — D(F7)
is a continuous map. Hence the map (¢, F) — ¢ K {(F) is a continuous map
C(Gr¥, LX) xU — C(Grﬁiw,ﬁfiﬁw) by paragraph 2. |

Under the above trivialization the map pr becomes a linear map ¥ —
which we denote in the same way; it depends continuously on F'. By Proposition
9.9 the expression under the integral (12.5) is jointly continuous with respect to
(¢, F'). Hence parts (1), (3) follow. Part (2) is obvious. square

12.3. Lemma. B
Let us restrict the map W given by (12.5) to Val;(X) x C'OO(GT}/,ME_J-).
(1) This restriction takes values in Val;j(X xY). Hence we get a bilinear map

(12.7) Vali(X) x C™(Gr) ,M)_;) — Valiy;(X x Y)
which is continuous with respect to the first variable.

(2) The map (12.7) uniquely factorizes via Val;(X) x Val3*(Y). Thus we get a
bilinear map

X: Vali(X) x Val*(Y) — Valij(X xY)

which is continuous with respect to the first variable; it is called the exterior
product on valuations and is denoted by (¢1, P2) — ¢1 X ¢a.

Proof. Part (1) follows from Lemma 12.1 and the construction of the map (12.4).

Let us prove part (2). For any linear map 7: X — Z, dim Z = ¢, and any
w € D(Z) the pull-back T*p € Val;(X) by Lemma 9.2(1). The linear span of
valuations of this form is dense in Val;(X) by Lemma 9.2(2). Hence it suffices to
show that for any & € C (er_j, MZ_j) the expression T*ui¢ depends only on
D(&), where D was defined in (8.3). Let us fix a positive smooth measure vy on
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Gr}f_ ;- Then we can write uniquely § = € - vy where € is a smooth section of the

line bundle ./\/(;l_j whose fiber over F' € GTX_J» is equal to D(Y/F).
We have

T* ¢ = Ly (Idx x pp)*(T"pRE(F)) =

Lemma 12.1

/G Y (Idx x pp)*(T*p R E(F))dv ne
/ (Idx x pr)* o (T x Id)*(uRE(F) fu) Thm 9.1(2)
GrY

n—j

L, @y (um&E)am,

Since X E(F) € D(X x (Y/F)) then by Lemma 9.2 the last expression belongs
to Vali+j(X X Y) . O

7 Let us generalize Lemma 12.1 as follows.

12.4. Proposition. Let T: X — Z be a linear map. Let W be another vector
space. Let w € Val;(Z), § € Val3*(W). Then

T*wRE = (T x Idw)* (wRE).

Proof. Since the pull-back T*: Val;(Z) — Val;(X) is continuous by Theorem
9.1 and the exterior product is continuous by Lemma 12.3(2), Lemma 9.2(2)
implies that we may assume that

w=S5"p,

where S: Z — F' is a linear map and pu € D(F?). We can represent ¢ in the
form

£ = prC(F),

FeGr

where pp: W — W/F is the quotient map to F', ¢ is a smooth section of the line
bundle M, _; over Grassmannian Gariv. ; whose fiber over F'is D(W/F) tensorized

with the fiber of the line bundle of densities on GTZV_ e
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We have
T x ¢ 12V

/ (Id x pp) (T"wB((F)) = | (Idx pp)"(T"S"uB (F)) "=
FeGr FeGr

/ (Id x pp)*(ST x Idy* (R ¢(F)) 2
FeGr

/ (ST x pr)*(uR¢(F)) T2t
FeGr

/ (TXId)*(IprF)*(SXId)*(ugg(F)) Lemrgam.l
FeGr

(T x Id)* /FEG (Id x pr)*(wR C(F)) "2

(T x Id)*(w K ).

12.5. Lemma. Let X,Y,Z be finite dimensional F-vector spaces. Then the two
maps
Val™(X) x Val(Y) x Val*(Z) — Val(X xY x Z)

given respectively by

(¢,9,€) = (W) K&,
(6, 4,8) = oW (P KE)

coincide with each other.

Proof. Step 1. Both maps are 3-linear and continuous with respect to ¢. By
Lemma 9.2(2) linear combinations of valuations of the form 7%y, where p is a
Lebesgue measure, are dense in Val(Y). Thus it suffices to assume that ¢ = T*pu
where T: Y — W, p € D(W).

Step 2. Let us assume that ) = T*u. Applying twice Proposition 12.4 we have

(PRT ) RE=(IdxT) (¢RI p)) WE =
(Id x T x Id)*((¢ B po) K €).

Similarly
GR(T* R E) = (Id x T x 1d)*(¢ B (1K €)).

Hence it remains to show that (¢ X p) K& =X (LXK E).

Step 3. Thus let us assume that ¢ = p is a density, in particular is a smooth
valuation. Let us denote x := dim X, z := dim Z. Since ¢ and ¢ are smooth
valuations they can be presented as

¢ = pr(¥(F)), £ = .QEV(E)a

b'e z
Grst . GrZﬂ

T—1
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where pp: X — X/F, qg: Z — Z/FE are the natural quotient maps, and

and v are smooth sections of the line bundles Mf ; over er ; and MZZ ; over

GTZZ_i respectively. Then using Proposition 12.4 several times we get
o8 (e - pW(F»&(m/ ) >=
FEer i EGGrz i

/ prp(Y(F)) K (/ (WX (v ) Prop. 12.4
FGGT‘w EEG’!’Z

[

p?(ll)(F))@(/EEG (Idy ®qp)" (nRv(E )PTOP 12.4

i

/}7'6er

(Idx x (Idy % qp))* ( [ LI

GGTx

i —1

Prop 12.4

/EGGrz

[

/ / IdX X Idy X qE)
EEGT FEGTI

i

7

o(pr x (Idy x Idz))* (b(F) B (nRu(E))) ="

/ / (pr % Idy x qz)* ($(F) 8 (4 R v(E)).
EeGr?_, JFeGrX_

1

Since the exterior product on Lebesgue measures is associative we have
PR (pKE) =

/ / pF x Idy x QE) ((T/J(F) X ,u) X V(E)) Thrgg,l
EeGrZ_, JFeGrX

[

/ / pF X Idy X Idz)
EEGT FEGT;C

i

o((Idx x Idy) x qu)" ($(F) ¥ u) Kv(E))

/ / (o x Idy x Idz)* ((F) B p) B gy (E)) =
EcGr? FeGr

/FEGTI

Pro;tL 124

(pr x Idy x Idz)"* <(¢(F) X 1) @/EEG i q}u(E)) —

7

[ ety x ) (@ B ) "
FGGrz

[

([
(.

(pr x Idy)*(Y(F) &m) X¢ e

p;w<F>®u) XE=(pNMpu)XE.

7
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9 Let us prove the following identity.

12.6. Proposition. Let xx € Valy(X), xy € Valo(Y) be the unit valuations
(Euler characteristics). Then xx X xy = Xxav -

Proof. Let px: X — {0}, py: Y — {0} be the obvious maps to the zero-
space. Then formally xx = pxo0, Xy = Pyx0, where xo € Valg({0}) is the
Euler characteristic on {0}. Then

Lemma 12.1
xx M xy = pxxo X pyxo =

%/ % L 12.1
(Idx % py)*(Pixo B xo) O 2

. . Thm 9.1(2
(Idx x py)* o (px x Idy)"(xo X xo) L9102

(px X py)"(xo X xo0) = (px X py)*(X0) = XxaV-

13. PRODUCT ON SMOOTH VALUATIONS

Let A: V. — V x V denote the diagonal imbedding, i.e. A(v) = (v,v). Let
¢ € Val(V), € Val>® (V) be smooth valuations. Define their product

Val(V) x Val® (V) — Val(V)

by ¢ -1 = A*(¢ X ). The product is a bilinear map continuous with respect to
the first valuation when the second one is fixed.

13.1. Lemma. Product of smooth valuations is smooth.

Proof. The product map Val(V) @ Val>*(V) — Val(V) is GL(V)-equivariant.
Hence it maps smooth vectors to smooth ones. ]

Thus we got a product on smooth valuations Val>® (V) x Val>® (V) — Val>®(V).

13.2. Theorem. Equipped with the above product, Val® (V') is a commutative as-
sociative algebra with unit 1 € Valg(V) = C. It is graded, namely Val*(V) -
Val;-x’(V) C Valﬁj(V).

Proof. Let us prove commutativity. Let us denote by o: V x V. — V x V the
involution o(z,y) = (y,x). Then we have

Vep=AWRG) = Ao (¢ R ) =
(A" oo (eRy) " (o AV (e R ) = A% R ),

where in the last equality we used that 0 o A = A.
Let us prove associativity. We have

(¢-1)- &= A*((¢- ) KE) =
A*<A*(¢ < w) &5) Propil2‘4

A*(A x Idy)* (R y) =g T2
(A x Idy) o A)((p R ) B E).
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It is easy to see that (A x Idy)o A = Az where Ag: V — V x V x V is given by
As(v) = (v,v,v). Thus

(¢-¢) &= A3((¢ WyY) KE).
Similarly
¢ (Y-§) =A3(p K (Y RE)).
But (p X ¢)RE =K (v KE) by Lemma 12.5.
The rest of properties are trivial. O

14. PRODUCT ON SMOOTH VALUATIONS

Let A: V. — V x V denote the diagonal imbedding, i.e. A(v) = (v,v). Let
¢ € Val(V), € Val®> (V) be smooth valuations. Define their product

Val(V) x Val®™ (V) — Val(V)

by ¢ -1 := A*(¢ K 1)). The product is a bilinear map continuous with respect to
the first valuation when the second one is fixed.

14.1. Lemma. Product of smooth valuations is smooth.

Proof. The product map Val(V) @ Val>*(V) — Val(V) is GL(V)-equivariant.
Hence it maps smooth vectors to smooth ones. O

Thus we got a product on smooth valuations Val® (V) x Val>* (V) — Val>® (V).

14.2. Theorem. Equipped with the above product, Val®> (V') is a commutative as-
sociative algebra with unit 1 € Valg(V) = C. It is graded, namely Val*(V) -
Valz*(V) C Valy (V).

Proof. Let us prove commutativity. Let us denote by o: V x V — V x V the
involution o(z,y) = (y,x). Then we have

Vep=AWREG) = A% (o* (¢ R ) =
(A" oo (eRy) "I (60 A) (9B Y) = AT (R ),

where in the last equality we used that 0 o A = A.
Let us prove associativity. We have

(@-¢)-E=A(¢-¥)KE) =
A*(A*<¢|E¢) @{) PTO];IQA
AY(A X Idy)*((¢ W) KE)

((Ax Idv) o A)* (¢ W y) KE).

It is easy to see that (A x Idy) o A = Ag where Ag: V — V x V x V is given by
As(v) = (v,v,v). Thus

Thm 9.1(2)

(@) &= As((¢e W) KE).
Similarly
¢ (&) =A3(d W (Y KE)).
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But (¢ X)) K& =¢X (¢ XE) by Lemma 12.5.
The rest of properties are trivial. O

15. POINCARE DUALITY FOR VALUATIONS
1 The main result of this section is

15.1. Theorem. For any 0 < ¢ < n the bilinear form given by the product on
valuations

Val;(V) x Val;? ;(V) — Val,(V)
is a non-degenerate pairing, i.e. for any ¢ € Val;(V') there exists ¢ € Val® ,(V)
such that ¢ - # 0.

To prove the theorem, let us observe that the subspace
{p e Vali(V)| ¢4 =0V € ValyZ;(V)}

is a GL(V)-invariant closed subspace. By the irreducibility property (Proposition
8.2(2)) it suffices to show that it is non-zero. This follows from the following
slightly more general lemma which also will be needed later on.

15.2. Lemma. Leti,j > 0 be such that i+j < n. Let ¢ = D(f), v = D(g) where
f € C=GrY MV ) and g € C®(GrY MZ_]-) (see Section 8, paragraph 4

n—i’ n—i n—j’
for the definition of the operator D) be non-negative sections, both not identically

0. Then ¢ -1 # 0 and for any E € GTHJ one has (¢ - ¥)(E) > 0.

Proof. For F € Grn , we denote by pp: V. — V/E the quotient map, and
similarly for L € Gr ; we denote by qr,: V. — V/L the quotient map. We have

SR = P f(F) B / gLg(F) =
FeGrY LEGTX_-

n—ia

/ / (pr x )" (F(F) K g(F)).
FeGrY_, JLeGrY_,

Let A: V. — V x V be the diagonal imbedding, i.e. A(v) = (v,v). Let E €
GTXH-. Since ¢ - 1» = A*(¢p X 1)) we have

W) @@= [ e UE) Eew) € D).

where pp pxr: E — V/F x V/L is the map v — (pr(v),qr(v)) with pp,pr
being the natural quotient maps. The integrand is non-negative. There is E
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such that the integrand is strictly positive for a pair (F, L). Hence the integral is
positive. O

3 Below we will use the last lemma to show that powers of certain valuation from
Val$° (V) do not vanish.

Let V be a finite dimensional vector space over a non-Archimedean local field F.
Let us fix a lattice A C V. Let GL(A) denote the subgroup of GL(V') consisting
of such transformations T" such that T'(A) = A. Thus GL(A) ~ GL,(O).

Let Vi € Val$° (V') be a GL(A)-invariant non-zero valuation. Such a valuation
is unique up to a proportionality. We normalize V] so that its restriction to any
line I C V is the only Lebesgue measure whose value on the set [ N A is equal to
1. This characterizes Vi uniquely.

15.3. Proposition. For any 1 <k <n and any E € Gr} one has (VF)(E) > 0.
In particular Vlk #£0 forany 1 <k <n.

Proof. Let us prove it by induction in k. For k = 1 this is clear. Assume
(VE(L) > 0 for any L € Gr) . This valuation is GL,(O)-invariant and
hence can be presented as V! = D(g) where g is GL,(O)-invariant section
of M), ;. g must be positive since (VF1(L) > 0 for any L € Gry_,. Also
Vi = D(f) where f is GL,(O)-invariant. Hence f > 0. Hence by Lemma 15.2
and G L, (O)-invariance the valuation V; - V=1 = V[ satisfies the conclusion. [

16. INTEGRAL TRANSFORMS ON GRASSMANNIANS

1 First let us discuss the Radon transform. Let us fix a lattice A C V. Let
0 <p<q<n-—1. Define the Radon transform

Rpg: C™(Gr)) — C™(Gr)))
as follows
(Rpg f)(E) = - f(F)dvp(F),
Tp
where the integration is over the manifold of p-subspaces F' contained in E with re-

spect to the only probability Haar measure vr which is invariant under all GL(A)-
transformations preserving E. Clearly the operator Ry, is GL(A)-equivariant.

16.1. Theorem ([38]). If p + q = n then Ryg: C®(Gr)) — C®(Gr)) is an
isomorphism.

We immediately get

16.2. Corollary. If p+ g = n then the representations of GL,(O) in C’OO(GTX)
and in C"O(Gr;/) are isomorphic.

2 The goal of this paragraph is to explicitly describe the operator D from Section
8, paragraph 4. For any linear subspace M C V let us denote by p™ the only
Lebesgue measure on M whose value on M N A is equal to 1. In particular p" is
the Lebesgue measure on V' such that u(A) = 1. Let us denote by pys the only
Lebesgue measure on V/M whose value on A/(M NA) C V/M is equal to 1.

This induces a G L(A)-invariant trivialization of the bundle £. The GL(A)-
invariant Haar probability measure on Grassmannians induces G L(A)-invariant
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trivialization of the line bundle of densities. Hence we get GL(A)-invariant trivi-
alization of the line bundles MX—z‘- Under these identifications the operator D is
an operator on functions

(16.1) D;: C®(Gry_;) — C=(GrY),

where we put subscript ¢ in D; for convenience. Clearly D; commutes with GL(A).
To describe D; more explicitly let us introduce a notation.
Let M, N C V be linear subspaces of complementary dimension. Let us define

(16.2) s(M,N) := 1V (MO A)+ (NOA)).

Clearly
0<s(M,N)<1.

It is easy to see that

(16.3) S(M,N)=pupm(NNA)=punv(MNA).
Also obviously for any 7' € GL(A) one has
(16.4) s(TM,TN) = s(M, N).

The next claim easily follows by unwinding the definitions.

16.3. Claim. The operator D; from (16.1) is equal to

PO = [ SN Nt (V).

n—i

|4

where fin—; Haar 5 the GL(A)-invariant Haar probability measure on Gr, _,.

3 Consider the Hermitian product of functions on Grassmannians using the Haar
measures on them. Using the symmentry in the definition of s(M, N) we easily
have the following adjointness property

16.4. Claim. For any f € C®(GrY_.),g € C>°(GrY) one has
(Dif,9) = (f, Dn—ig)-

Proof. This immediately follows from the definition (16.2) of s(M, N) which is
clearly symmetric with respect to M and N. O

4 Below in Section 17 we will need the following
16.5. Proposition. One has
Ker(Dy—jo Rin—) = Ker(D;),

where all the operators are considered between spaces of C°-smooth functions on
appropriate Grassmannians.

Proof. Claim 16.4 and the discussion of representations of GL,(O) in the space
of functions on Grassmannians (see Section 7) imply that

Ker(D;) = (ImDy )",

and hence
C>®(GrY_ ) = Ker(D;) ® Im(Dp_s).
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It follows that D; maps Im(D,,—;) isomorphically to Im(D;). By Corollary 16.2
C>(Gr}') is isomorphic to C®(GrY_.) as GL,(O)-modules. The last two facts
and the multiplicity freeness of C*°(Gr)) as GL,(O)-module (see Section 7,
paragraph 2) imply that Ker(D;) ~ Ker(D,—;) as GL,(O)-modules. This and
Theorem 16.1 imply that Ker(Dy—; o Rin—i) = Ker(D;). O

17. HARD LEFSCHETZ THEOREM

1 Let V be a finite dimensional vector space over a non-Archimedean local field F.
Let us fix a lattice A C V. Let GL(A) denote the subgroup of GL(V') consisting
of such transformations 7" such that T'(A) = A. Thus GL(A) ~ GL,(O).

Let us denote by Vi € Val{®(V) the GL(A)-invariant non-zero valuation from
Section 15. The main result of this section is

17.1. Theorem. Let 0 <i < n/2. The operator of multiplication by Vln_%
Val* (V) — Val;2 (V)
is an isomorphism of vector spaces.

2 The proof of the last theorem occupies the rest of this section. Let ¢ € Val*(V)
take the form

(17.1) ¢(E):/GV Py r(F(F)) for all E € Gry(V),

where f € C®(GrY ., MY ), and pg r: E — V/F is the natural map.
Let k < n —i. By Proposition 15.3 V}* # 0 and is clearly GL(A)-invariant.

Hence it can be presented as
ViE) = [ | phalo),
GrY_,,

where g € C*°(GrY_,, MY ) is GL(A)-invariant.

It will be helpful to make some identifications induced by the lattice A C V.
The choice of A induces a probability Haar measure ji) gqqr 00 each Grassmannian
Gr}o/ and hence a trivialization of the linear bundle of densities. It also induces
trivialization of the line bundles ./\/l]‘g/ , £}I/ as follows. By the definition, the fiber
of MX over a subspace H ¢ GT’X is the space of Lebesgue measures D(V/H).
Let us choose the (only) Lebesgue measure pg on V/H such that its value on
the lattice A/(AN H) C V/H is equal to 1. Then the sections f, g get identified
with continuous functions on appropriate Grassmannians which will be denoted
by f,g.

Similarly we trivialize the line bundle El‘l/ over Gr(‘]/ by choosing in each fiber
L4|c the Lebesgue measure 1 on G which is equal to 1 on the lattice ANG C G.

For a linear subspace 2 C V let us denote by volg the Lebesgue measure on
E such that volg(ENA) =1.

17.2. Lemma. Assume that a valuation ¢ is given by (17.1). Then one has
¢ VIF = nin(Disr 0 Ruipni)(f),

where ¢, ;1 > 0 is a constant.
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Proof. By (15.1) we have for any E € Gr),,

(17.2) (6 VI)(B) = </FG o, (B <E>> vol,

where pp: V. — V/F and pr: V — V/L are the natural maps, and here we
denote by pp x pr the obvious map V. — V/F x V/L (this is different from
our previous convention according to which it would be the map V x V —
V/F x V/L).

Let us rewrite the integrand in the right hand side of (17.2) in terms of f , 3.
We can factorize uniquely the map pp X pr.: V. — V/F x V/L as

VL v/ (FNL) "R V/IF < VL.

The pairs (F, L) € GTX_i X Gr;/_  Which are transversal to each other form an
open subset of full measure. Hence below we will consider only pair of transversal
subspaces. In this case the map

pr Xpr: V/(FNL) — V/FxV/L

is an isomorphism.
With the above identifications we have

((pr xpL)*(fXg)) (F) =

FE) - (pr B pr)((pr x pr) (AN E)) - volg =

F(F). (pr R pp)((pr x prL)(ANE))
(nr R pr)((pr < pr)(A))

¢ HEAL(praL(A N E))
I et orra )

FE) - pra(prnn(A N E)) [(ur B pz)((pr % pr)(A))] - vol,

where the third equality follows from the fact that linear isomorphisms (pr X pr,
in this case) preserve the ratio of Lebesgue measures of sets; the last equality
follows from the definition of upnr. To abbreviate, let us denote

[(ur X pr)((pr X pr)(A))] - volg =

[(ur R pp)((pr x pr)(A))] - volg =

(17.3) o(F, L) == (up W pr)((pr x pr)(A)),
(17.4) S(FﬂL,E) = ,U,FQL(pFnL(AﬂE)).
Clearly

0<e(FL),s(FNL,E)<1
and c¢(F,L) > 0 if F' and L are transversal. Also obviously s(F N L, E') depends

only on F'N L and not on F' and L separately.
Let us consider the compact metrizable topological space

W= {(F,L,W)eGr) ,xGrY , xGr! . .| WcFnNL}.

17.3. Claim. W has a structure of an analytic manifold (see Section 6) such
that the natural projections W — GrY_. . GrY. o GT‘X_i_k are analytic, and the

n—ia’ n—

natural action GL(V) x W — W is an analytic map.
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Proof. Consider the partial flag manifolds
Zy={(F,W) € Gry_; x GrY_._|W C F},
Zo = {(L,W) € GrY . xGrY . ,|W cC L}.

Z1, Zo are analytic manifolds by Section 6, paragraph 5. We have the natural
analytic map
T: Zy x Zy — (Gr)_i_i)?

given by ((F,Wh), (L, W3)) KN (W1, Ws). Its differential is onto at every point.
Let A C (GrY_, ,)? be the diagonal submanifold. The implicit function theorem

(see Section 6, paragraph 3) implies that YW = T~!(A) is an analytic submanifold
of Z1 X Zy. The claimed properties of W follow easily. O

Let us continue proving Lemma 17.2. Clearly if (F,L,W) € W and if F,L
are transversal then W = F'N L. Hence the natural map W — GTT‘{%- X GTX—k
forgetting W is an isomorphism between open subsets of full measure where F
and F' are transversal.

Let m be the push-forward under the inverse map of the product of the Haar
probability measures (with respect to the natural action of GL(A)) on Gr)_, and
GrY . with subsequent extension by 0 to the whole W. Clearly m is a GL(A)-
invariant probability measure whose value on any open subset of W is positive
(the action of GL(A) is diagonal). Then we can rewrite

(6-VI)(E) = / F(F)e(F, L)s(W, E)dm

(F,L,W)ew

Let us consider the analytic manifold
X ={(F,W)eGr,_;xGry_,_,| WcCF}

and the natural GL(A)-equivariant map 7: W — X given by 7(F, L, W) =
(F, W), where GL(A) acts diagonally. Let m := 7.(c-m) denote the push-forward
of the measure ¢ - m. Clearly m is GL(A)-invariant and positive (Haar) measure
on the GL(A)-homogeneous space X. Then

(6 VI)(E) = ( /( s f<F>s<W,E>dm) volis =

Cnyik (/ dWS(W, E)/ de(F)) volg,
weaGrY Fow

n—i—k
where ¢, ;1 > 0 is a constant, the inner integral is taken with respect to the
set, of all subspaces F' containing W which can be identified with the Grassman-

/

nian GTX " The measures dF,dW on the corresponding Grassmannians are the
GL(A)-invariant probability Haar measures.
The inner integral [p . dF f(F) is the Radon transform (Rn,i,k,n,if)(W).
Thus we get in this notation
(176 - VIVE) = cnin ( / (Ro—i ki f)(W) - s(W, E)dW> volg.
weGrY

n—i—k
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By Claim 16.3 the last expression is equal to ¢, ; (Di+k(Rn_i_k7n_if))(E) where
Cnik > 0. Lemma 17.2 is proven.

Let us finish the proof of Theorem 17.1. Let us assume now that i < n/2. Let
k = n — 2¢. Choice of lattice A C V induced a trivialization of the line bundle £;
over Gr). Indeed recall that the fiber of £; over E € £; is Li|p = D(E). But
D(E) = C - volg. Hence we will identify in this paragraph the space Val?>* (V)
with a subspace of locally constant C-valued functions on Ger .

Let ¢ € Val3*(V). By Lemma 17.2 we have

¢ V"2 = ¢ i(Dyi 0 Rin—i)(f), cni > 0.

By the definition, Val®® ,(V) = Im(Dp—;). But since R;,—;: C°(GrY_,) —
C*°(GrY) is an isomorphism by Theorem 16.1, it follows that Im(Dp—;0 R n—;) =
Im(Dy—;) = Val?® (V). Hence the operator of multiplication by V"~ is onto
on smooth valuations.

It remains to show that the later operator is injective on smooth valuations.

Let us assume that
—92;
(17.6) ¢ V2 =,
and let ¢ = D;(f). It suffices to show that f € Ker(D;).

Assumption (17.6) implies that f € Ker(Dy—i o R;,—i). But by Proposition
16.5 the latter kernel is equal to Ker(D;). Theorem is proved. O

18. FOURIER TRANSFORM COMMUTES WITH EXTERIOR PRODUCT

1 In this section we fix a non-Archimedean local field. All vector spaces X,Y, Z, ...
will be over this field. The main result if this section is

18.1. Theorem. Let X,Y be finite dimensional vector spaces. Let ¢ € Val(X), ¥ €
Val>*(Y). Then
FlpRv) =F(¢) MF(1)).

18.2. Remark. For convex valuations an analogue of this result was conjectured
by the author in [8] and proved recently by Faifman and Wannerer [26].

We will need two lemmas to prove Theorem 18.1.

2 Let X and Y = X & Z be finite dimensional vector spaces over the given non-
Archimedean local field. Fix a positive Lebesgue measure voly € D(Z). Let
Uolgl € D(Z)* = D(ZV) be the corresponding Lebesgue measure on Z" as
defined in Lemma 5.1.

18.3. Lemma. Let F: X — X @ Z be the obvious imbedding given by F(x) =
(2,0). Let ¢ € Val(X), p € D(X)*. Then

Fu(¢o © ) = (o B volz) ® (1@ voly").

Proof. We may assume that p = vol;(l, where volx is a non-vanishing Lebesgue
measure on X. By 12.3 we have

$o W voly = (Fi ® Idp(xez)) (o @ vol;(l) ® (volx ®volyz)) =
F.p® (UOZX ®U0lz).
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3

This is equivalent to the required equality. O

18.4. Lemma. Let a vector space X be a direct sum X = Z & Z,. Letp: X — Z
be the obvious projection. Let uy € D(Z). Then

Fp'uz) = (xzv X ’001211) ® (nz @wvolgz,),
where volz, is an arbitrary non-vanishing Lebesque measure on Z1, and volgll €
D(ZY) is the inverse Lebesque measure on Zy' defined in Lemma 5.1.

Proof. We have

. 10.5
F(p*nz) = p)(Fuz) (125)

Lemma 18.3
pl(Xzv ® puz) =

(xzv Bwol,!) @ (nz ® volz,).

Let us prove a special case of Theorem 18.1.
18.5. Lemma. Let ux € D(X), v € Val(Y). Then
Flux W¢) =F(ux) MF().

Proof. Since both sides are linear and continuous with respect to ¥ € Val(Y),
we may and will assume that

= p*/LMv
where Y = M @ L, p: Y — M is the obvious projection, py € D(M). Then we

have

RemmA R (1 x p)* (x B jua)) =

10.5
(Idxv x p¥)u(F(px B puar)) %

(Idxv x p")s(xxvemy @ (ux X par)).

By Lemma 18.3 we can continue

F(px X p*par)

(18.1)  F(ux ®Wp*un) = (xxvemv @volp") @ ((ux B par) © voly).

One the other hand we have

. 10.5
F(ux) XF(p*par) (25)

Lemmal8.4

(xxv @ px) WF(p™par)
(xxv ®px) X ((XMV X volzl) ® (par ® volL)) =

Prop. 126
(xxv X xav ®v0l21)®(,ux®uM®volL) 2

_ 18.1
(xxvenr ® volY) @ ((ux B juar) ® vol) "2V

F(ux X p*pnr).
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5 Proof of Theorem 18.1. It suffices to assume that ¢ = pj,u where pps: X —
X/M, p € D(X/M). Since v is smooth, it can be presented in the form ¢ =
Ineary PNV(N), where py: Y — Y/N is the quotient map. Then we have

n—j

F(¢ M) = F(pisp X/ § piv(N) Lemma 12.1

GTn,j

F <(pM X Idy)*(u@/c 5 p?vV(N))> =

/G v F((pM X Idy) (M &pNV(N))) emma 12.1
Y

|, Four x Tav) o (Tdx x o)) (um v =
[y TG xmrtumiany -

Lemma 18.5

|, @<k Fpmpn)

/G v _(pL X pio)«(F(p) RF(v(N))) (10.5)
/G v (pX/[ X pYV)* ((X(X/M)v X M) X (X(Y/N)v ® V(N))) Prop:, 12.6

Let us choose splittings
X=M&M,Y=No&N;.

Then by Lemma 18.3 the expression under the integral in the last expression is
equal to:

_ Prop. 12.6
(Xaryxvy Bvolih 3) @ (p@ v(N)) @ volyey =

(xary Bvoly}) B (xy Booly)) @ (1 volar) ® (V) ® voly) M2 154

Fo X ((Xva Kwoly') @ (v(N) ® volN)>
F(¢) WF(pyv(N)).

Lemma 18.4

Hence after integrating we get

F(¢R ) = / F(6) RF(piyr(N)) = F(¢) RF(1).

NGGT}L:].
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19. CONVOLUTION ON SMOOTH VALUATIONS

1 The goal of this section is to define a convolution on valuations and prove its
basic properties. First not that if

¢ € Val™(X) @ D(X)*, ¢ € Val™(Y) @ D(Y)*

then ¢ X9 is well defined as an element of Val(X xY)® D(X xY)* = Val(X x
Y)@ D(X)*® D(Y)*.

Let a: V x V. — V be the addition map, i.e. a(x,y) = x +y. Let us define
the convolution

x: (Val®(V)@ D(V)*) x (Val® (V)@ D(V)*) — Val®™ (V)@ D(V)*
by
(19.1) D * 1= ax(pX).
19.1. Proposition. Convolution of smooth valuations is smooth

Proof. Indeed the convolution can be considered as a linear map
x: (Val* (V)@ D(V)") @ (Val™(V)® D(V)*) — Val>™(V) @ D(V)*.

Evidently is commutes with the natural action of the group GL(V'). Hence smooth
vectors are mapped into smooth ones. O

19.2. Proposition. Let ¢,9 € Val> (V). Then
FoxFy =F(¢-1).

Proof. Let a: VYV x VYV — VV denote the addition map. Then the dual map
a’:V—VxV

is the diagonal map, i.e. a(v) = (v,v). Then by definition of the convolution,
push-forward, and the product we have

Fé + Fyp = a.(Fp KFy) a.(F(¢My)) =TF ((a") (¢ R ¢)) =
F(¢ - ).

Thm 181

g

3 Let voly € D(V) be a non-zero Lebesgue measure on V. We denote by vol‘_/1 €
D(V')* the element of the dual space of D(V') whose value on voly is equal to 1.
Note that voly ® vol‘_/1 € D(V)® D(V)* is independent of a choice of voly .

Denote n := dim V.

19.3. Theorem. 1) Val>*(V) ®@ D(V)* equipped with the convolution is a com-
mutative associative algebra with the unit element voly ® vol‘jl.

2)
(ValyZ;,(V)@ D(V)*) * (Valpy2 ;(V) @ D(V)*) C ValgZ,_;(V)® D(V)*.
3) The Poincaré duality is satisfied: the bilinear map
Val* (V)@ D(V)* x Val,? (V)@ D(V)* — Valg(V) @ D(V)* = D(V)*
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given by (¢,v) — ¢ x 1 is a perfect pairing, i.e. for any for non-zero ¢ €
Val* (V) ® D(V)* there is ¢ € Vale® (V) @ D(V)* such that ¢ =) # 0.
4) The hard Lefschetz type result is true: Let us fix a lattice A C V. This
induces an isomorphism D(V)* ~ C. Let V,,_1 € Val,—1(V) be the only (up to
a proportionality) GL(A)-invariant element. Let n/2 < i < n. Then the linear
map

Val*(V)®@ D(V)* — Valy?, @ D(V)*

given by ¢ — ¢ *x Vi1 x---xV,_1 is an isomorphism.

2i—n

Proof. Immediately follows from Proposition 19.2, the corresponding properties
of the product, and the obvious fact that F(V}) is proportional to V;,—; (after the
appropriate identifications induced by the choice of lattice A C V are applied).

O

20. VALUATIONS INVARIANT UNDER A SUBGROUP

Convex valuations invariant under various subgroups of GL,(R) have a number
of interesting properties and found applications in integral geometry, see e.g. [3],
[16], [17], [21], [27]. For a compact subgroup G C GL,(R) the author showed [1]
that the space of G-invariant convex valuations is finite dimensional if and only if
G acts transitively on the unit sphere, and in this case all G-invariant valuations
are smooth [4]. Furthermore in this case the algebra Val®(R™) of G-invariant
valuations equipped either with product or convolution satisfies Poincaré duality,
hard Lefschetz theorem, and Hodge-Riemann bilinear relations inherited from
Val>®(R™).

It is well known that any compact subgroup G C GL,(F) is conjugated to a
subgroup of GL,(0O). In particular any maximal compact subgroup of GL,,(F) is
conjugated to GL,(O).

We will see below that in the non-Archimedean case there are a lot of compact
subgroups G C GL(V') such that the subspace of G-invariant valuations is finite
dimensional and all such valuations are smooth.

Let V' be an n-dimensional vector space over a non-Archimedean local field F. The
group GL(V') has many subgroups which are simultaneously open and compact,
more precisely such subgroups form a basis of neighborhoods of I,, € GL(V).

20.1. Proposition. Let G C GL(V') be an open and compact subgroup. Then the
space Val® (V) of G-invariant valuations is finite dimensional and all its elements
are smooth, i.e.

Val® (V) c Val®(V).

Proof. Orbits of any open subgroup of GL(V') on GrZV are open. Indeed the
map GL(V) — Gr) given by g — g(Ej) is a submersion for any Ey € Gr})'.
In particular G-orbits are open. Since G’FZV is compact and different orbits are
disjoint, there are finitely many of them. By definition of a smooth valuation

Val®(V) c Val™®(V).
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3 Obviously
Val®(V) = @ ValS (V).

It is easy to see that (Val®(V),-) is a finite dimensional graded subalgebra of
(Val>(V),-) satisfying Poincaré duality and hard Lefschetz theorem (with re-
spect to V1 € Valf(V) which is invariant under a maximal compact subgroup
containing G).

Similarly (Val®(V) ® D(V),*) is a finite dimensional graded subalgebra of
(Val>*(V)®D(V), %) satisfying Poincaré duality and hard Lefschetz (with respect
to V,—1 which is invariant under a maximal compact subgroup containing G).
(Note that the compatibility with the grading is given by Theorem 19.3(2).)

The Fourier transform establishes an isomorphism of algebras

F: (Val®(V), ) == (Val®(VY) @ D(V),*).
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