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The author discovered a product on V al∞(V ) [4] and a Fourier type transform
([3], [7].) In the recent preprint [26] Faifman and Wannerer found a simpler
approach to the Fourier type transform on valuations.

Bernig and Fu [20] discovered a convolution on convex valuations. The Fourier
type transform intertwines product and convolution [7].

The algebra V al∞(V ) equipped either with product or convolution is a commu-
tative associative graded algebra with a unit. The Fourier transform establishes
an isomorphism between these two algebras.

These two algebras satisfy a hard Lefschetz type theorem. In some special
cases it was proved by the author [3], [5], [7] and Bernig and Bröcker [15]. In
the very recent preprint [23] Bernig, Kotrbatý, and Wannerer proved a rather
general hard Lefschetz type theorem on the language of convolution previously
conjectured by Kotrbatý [34].

Furthermore recently Kotrbatý [34] formulated a general conjecture on Hodge-
Riemann bilinear relations for valuations on the language of convolution. He
proved it in a special case. In the above mentioned recent preprint [23] by Bernig,
Kotrbatý, and Wannerer this conjecture was fully proved; this preprint is based
on another important special case of the conjecture proved by Kotrbatý and
Wannerer [36].

3 Valuations and these structures on them found a number of non-trivial appli-
cations. Theory of valuations has traditionally strong connections to integral
geometry, see e.g. [32]. The above mentioned structures on convex valuations
greatly enriched these connections and started to play a central role in various
problems of integral geometry [16], [21], [22], [27].

The Hodge-Riemann bilinear relations in valuations formulated on the lan-
guage of convolution imply the classical Alexandrov-Fenchel inequality for con-
vex bodies [34]. In some cases the Hodge-Riemann bilinear relations can also be
formulated on the language of product on valuations [34], [35], and they imply
new inequalities for mixed volumes [10], [35].

Some of the recent developments in valuations theory found deep connections
to pseudo-Riemannian geometry [12], [17], [18], [19].

4 While valuations were originally introduced in convex geometry partly motivated
by the needs of integral geometry, in the last two decades there were attempts to
generalize the valuations theory beyond convexity. Thus the space of valuations
was introduced by the author on arbitrary smooth manifold as the space of finitely
additive measures of a special form on sufficiently ’nice’ subsets of a manifold, see
[6] and references therein. This space retains several properties of the classical
space of valuations on convex sets, in particular the product on valuations makes
sense in this generality [13]

In a different direction, the notion of a valuation on various classes of functions
was introduced and investigated [24], [25], [33], [37].

This paper can be considered as another attempt to extend the valuations
theory beyond convexity. A description of its main results will be given in the
next section.
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5 Acknowledgements. I am very grateful to J. Bernstein who suggested in 2001
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2. Main results

1 Let F be a non-Achimedean local field. Let V be an n-dimensional vector space
over F (see Section 3 for a reminder on definitions and basic properties). In
Section 8 we introduce the main objects of this paper: a complex vector space
V al∞(V ) whose elements are called smooth valuations, and a complex vector
space V al(V ) whose elements are called continuous valuations. The former space
has no topology, while the latter is a Banach space. Both spaces are infinite
dimensional provided n > 1, and V al∞(V ) is a dense subspace of V al(V ).

2.1. Remark. For the reader familiar with the classical theory of convex val-
uations, the notations V al∞(V ) and V al(V ) might be misleading. Both are
analogous to even valuations rather than arbitrary ones. Moreover the definition
of V al(V ) is closer not to the definition of continuous even convex valuations,
but rather to Klain continuous even convex valuations in the sense of Bernig and
Faifman [17].

Nevertheless we will keep this notion for the sake of simplicity.

2 By definition both above spaces are graded:

V al∞(V ) = ⊕n
i=0V al

∞
i (V ),

and similarly
V al(V ) = ⊕n

i=0V ali(V ).

Here V al∞0 (V ) = V al0(V ) = C, while V al∞n (V ) = V aln(V ) is the 1-dimensional
complex vector space of C-valued Lebesgue measures on V . All other spaces
V al∞i (V ), V ali(V ) are infinite dimensional (for n > 1).

The space V al∞i (V ) was first defined in [11], Section 2, (see also Section 8
below) as the image of certain intertwining integral between spaces of smooth
sections of certain GL(V )-equivariant complex line bundles over Grassmannians
over F; in the convex case this intertwining integral coincides with the well known
cosine transform. It was shown in [11] that this image is an irreducible GL(V )-
module. This definition is motivated by the analogy with the result from the
same paper [11], Section 1, in the convex case that the image of the corresponding
intertwining integral can naturally be identified with the space of even smooth
i-homogeneous convex valuations via the Klain imbedding ([31], Theorem 3.1;
see also [9]). Note that in the case of convex valuations the irreducibility of the
space of valuations of given degree of homogeneity and parity (even or odd) was
previously proved by the author [2].

The space V ali(V ) is defined in Section 8 as the closure of V al∞(V ) in the
space of continuous sections of the appropriate complex line bundle over a Grass-
mannian.
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3 Let X,Y be finite dimensional vector spaces over F. In Section 12 we define the
exterior product as a bilinear map

⊠ : V al(X)× V al∞(Y ) −→ V al(X × Y )

which is continuous with respect to the first argument. The exterior product on
valuations on convex sets was defined in [4] by the author.

Note that the exterior product of smooth valuations does not have to be
smooth.

2.2. Example. 1) Let 1 ∈ V al0(V ) = C. We will denote this element also by χ
or χX to keep the analogy with the classical (convex) case where it corresponds
to the Euler characteristic. Then

χX ⊠ χY = χX×Y .

2) Let µX , µY be Lebesgue measures on X,Y respectively. Then µX ⊠ µY is the
product measure in the usual sense.

4 Let F : X −→ Y be a linear map of finite dimensional vector spaces over F. We
construct the pull-back map

F ∗ : V al(Y ) −→ V al(X)

which is a continuous linear map of Banach spaces. The pull-back map on convex
valuations was introduced by the author in [7].

2.3. Example. F ∗(χY ) = χX .

If F is injective then F ∗ preserves the class of smooth valuations, see Theo-
rem 9.1(4). In general it is not true. The main properties of the pull-back are
summarized in Theorem 9.1.

5 Let D(V ) = V aln(V ) denote the 1-dimensional complex vector space of C-valued
Lebesgue measures on V , n = dimV . In Section 10 we construct an analogue of
the Fourier transform

F : V al(V ) −→ V al(V ∨)⊗D(V ),

where V ∨ is the dual space of V . F is an isomorphism of Banach spaces com-
muting with the action of GL(V ). It induces an isomorphism on the spaces of
smooth valuations. Our construction is a straightforward generalization of the
construction in [3] for even convex valuations.

We show (Theorem 18.1) that for smooth valuations φ, ψ one has

Fφ⊠ Fψ = F(φ⊠ ψ).

For convex valuations this formula was recently proved in [26].
6 For a linear map F : X −→ Y we define in Section 11 the push-forward map

F∗ : V al(X)⊗D(X)∗ −→ V al(Y )⊗D(Y )∗

which is a continuous linear map of Banach spaces. By the definition

F∗ = F ◦ (F∨)∗ ◦ F−1,

where F∨ : Y ∨ −→ X∨ is the dual map. For convex valuations the push-forward
was defined in [7].
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7 In Section 14 we define product on the space of smooth valuations V al∞(V ) as
follows

φ · ψ := ∆∗(φ⊠ ψ),

where ∆: V ↪→ V × V is the diagonal imbedding, i.e. ∆(v) = (v, v). It is shown
that equipped with this product, V al∞(V ) is a commutative associative algebra
with a unit (equal to χV ). It is graded:

V al∞i (V ) · V al∞j (V ) ⊂ V al∞i+j(V ).

Denote n := dimV . V al∞(V ) satisfies Poincaré duality: the bilinear map given
by the product

V al∞i (V )× V al∞n−i(V ) −→ V al∞n (V ) = D(V )

is a perfect pairing, i.e. for any 0 6= φ ∈ V al∞i (V ) there exists ψ ∈ V al∞n−i(V )
such that φ · ψ 6= 0.

The product on convex valuations was introduced by the author [4].
8 In Section 17 it is shown that the algebra of smooth valuations V al∞(V ) satisfies

a version of hard Lefschetz theorem. To state it, let us denote by V1 ∈ V al∞1 (V )
the only (up to a proportionality) element invariant under a maximal compact
subgroup GLn(O) of GLn(F) ' GL(V ). Let 0 ≤ i < n/2. Then the map
V al∞i (V ) −→ V al∞n−i(V ) given by

φ 7→ φ · (V1)n−2i

is an isomorphism.
The proof of this theorem uses properties of the Radon transform on Grass-

mannians over F due to Petrov and Chernov [38].
9 In Section 19 we introduce a convolution

∗ : (V al∞(V )⊗D(V )∗)× (V al∞(V )⊗D(V )∗) −→ V al∞(V )⊗D(V )∗

by φ∗ψ = a∗(φ⊠ψ), where a : V×V −→ V is the addition map, i.e. a(x, y) = x+y.
By Proposition 19.2 the convolution is related to the product and the Fourier

transform by the formula

Fφ ∗ Fψ = F(φ · ψ).

Convolution also satisfies Poincaré duality and hard Lefschetz type theorem
(Theorem 19.3).

On convex valuations the convolution was introduced by Bernig and Fu [20].
10 An interesting open question is to establish for V al∞(V ) the Hodge-Riemann

bilinear relations similar to [34] (see also [36], [23]).

3. Reminder on local fields

1 In this section we collect a few basic well known facts on local fields sufficient for
this paper. We refer to [43], Ch. 1, for details.

By definition, a local field is a topological locally compact non-discrete field.
There is a classification of such fields: they are precisely R,C,Fq((t)), and finite
extensions of the fields of p-adic numbers Qp. Here Fq denotes the finite field with
q elements, and Fq((t)) denotes the field of formal Laurent power series. The first
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two examples, namely R,C, are called Archimedean, while all others are called
non-Archimedean local fields.

2 Let F be a non-Archimedean local field. It has a unique maximal compact subring
O ⊂ F. For example if F = Fq((t)) then O = F[[t]] is the ring of all Taylor power
series. If F = Qp then O = Zp is the ring p-adic integers.

The field of fractions of O equals F.
3 O has a unique maximal ideal m ⊂ O. For example for F = Fp((t)) the ideal m

is generated by t, while for F = Qp the ideal m is generated by p.
The quotient k := O/m is necessarily a finite field; it is called the residue field

of F.
4 There exists a unique multiplicative norm

| · | : F −→ R≥0

such that

|x| = 1 ∀x ∈ O\m,

|x| = 1

|k|i
∀x ∈ mi\mi+1,where i ≥ 1.

where |k| denotes the cardinality of the residue field. Multiplicativity means that
|x · y| = |x| · |y| for any x, y ∈ F.

This norm satisfies the strengthened triangle inequality

|x+ y| ≤ max{|x|, |y|}.
5 The norm | · | has the following property. Let µ be a Lebesgue measure on F (µ

exists and is unique up to a proportionality). Let x ∈ F. Then
µ(x ·A) = |x|µ(A)

for any compact subset A ⊂ F.

4. Lattices over non-Archimedean local fields

1 In this section F denotes a non-Archimedean local field, and O ⊂ F its ring of
integers. In this section we review, mostly following [43], a few well known facts
on finite dimensional F-vector spaces and lattices in them.

A proof of the following result can be found in [40], Thm. 3.2, Ch. 1.

4.1. Theorem. Let V be an n-dimensional Hausdorff topological vector space
over the local field F. Let v1, . . . , vn be its basis. Then the map Fn −→ V given
by

(x1, . . . , xn) 7→ x1v1 + · · ·+ xnvn
is an isomorphism of topological vector spaces when the source space is equipped
with the product topology.

2 Let V be an n-dimensional Hausdorff topological vector space over the local field
F.

4.2. Definition. A lattice L in V is a compact open O-submodule of V .

4.3. Lemma. Let L ⊂ V be a lattice. Let E ⊂ V be a vector subspace. Then
E ∩ L is a lattice in E, and L/E ∩ L is a lattice in V/E.
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Proof. This immediately follows from Definition 4.2. □
4.4. Theorem ([43], Ch. II, §2, Thm. 1). Let L ⊂ V be a lattice.
(i) Then V has a basis v1, . . . , vn such that L = Ov1 ⊕ · · · ⊕Ovn. In particular L
is a free module of rank n.
(ii) Moreover if {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V be a sequence of linear
subspaces such that dimVi = i. Then the above vectors v1, . . . , vn can be chosen
so that v1, . . . , vi is a basis of Vi for any i.

4.5. Remark. In the assumptions of part (ii) of the last theorem, one clearly has
for each i

L ∩ Vi = Ov1 ⊕ · · · ⊕ Ovi.

3 Given a lattice L ⊂ V . Denote by GL(L) the subgroup

GL(L) := {T ∈ GL(V )|T (L) = L}.

4.6. Proposition. Let L ⊂ V be a lattice. The natural action of the group
GL(L) ' GLn(O) on the Grassmannian GrVi is transitive.

Proof. We may and will assume that V = Fn, L = On. Let e1, . . . , en ∈ Fn be
the standard basis. Let E0 := span{e1, . . . , ei} ∈ GrVi . Let E ∈ GrVi . We have
to show that there exists T ∈ GLn(O) such that T (E0) = E.

By Lemma 4.3 and Theorem 4.4 there exists a basis v1, . . . , vi of E such that

E ∩ On = Ov1 ⊕ · · · ⊕ Ovi.
Similarly there exists a basis v̄i+1, . . . , v̄n of V/E such that

L/L ∩ E = Ov̄i+1 ⊕ · · · ⊕ Ov̄n.
Let us choose vi ∈ L, j = i+1, . . . , n, such that vj ≡ v̄jmod(E). It is easy to see
that On = Ov1 ⊕ · · · ⊕ Ovn.

Then define T : Fn −→ Fn by T (ej) = vj , j = 1, . . . , n. Clearly T (E0) = E and
T (On) = On, i.e. T ∈ GLn(O). □

4

4.7. Proposition. Let L ⊂ V be a lattice. Let F0 : W ↪→ V be an injective linear
map of vector spaces. There exists a neighborhood U of F0 in Hom(W,V ) such
that any F ∈ U is also injective and

F−1(Im(F ) ∩ L) = F−1
0 (Im(F0) ∩ L).

Proof. We may and will assume that V = Fn and L = On. Let us define a norm
on Fn by

||(x1, . . . , xn)|| = max
i

|xi|.

Clearly

||x+ y|| ≤ max{||x||, ||y||},
||λ · x|| = |λ| · ||x||.

Then
On = {x ∈ Fn| ||x|| ≤ 1}

is the unit ball of this norm.
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By Lemma 4.3 we may also assume that

Im(F0) = span{e1, . . . , ei},
where e1, . . . , en ∈ Fn is the standard basis. Let w1, . . . , wi ∈W be the basis such
that F0(wj) = ej for 1 ≤ j ≤ i.

Then clearly

F−1
0 (Im(F0) ∩ L) = {

i∑
j=1

xjwj | max
1≤j≤i

|xj | ≤ 1}.

Define U := {F ∈ Hom(W,Fn)| ||F (wj) − ej || < 1 ∀1 ≤ j ≤ i}. Let F ∈ U .
The vectors F (w1), . . . , F (wi) are linearly independent since these are vectors
with coordinates from O, and their reduction modulo the maximal ideal m of
O are the first i vectors of the standard basis of (O/m)n. It follows that F is
injective.

Now it remains to show that

F−1(Im(F ) ∩ L) = {
i∑

j=1

xjwj | max
1≤j≤i

|xj | ≤ 1}.

Equivalently, one has to show that for x1, . . . , xi ∈ F the inequality

||F (x1w1 + · · ·+ xiwi)|| ≤ 1(4.1)

holds if and only if max1≤j≤i{|xj |} ≤ 1.
The ’if’ part follows since ||Fwj || ≤ max{||Fwj − ej ||, ||ej ||} = 1 for any 1 ≤

j ≤ i.
Conversely, let us assume that (4.1) holds. Without loss of generality we may

assume that |x1| = max1≤j≤i{|xj |}. Let us denote θj = F (wj) − ej , 1 ≤ j ≤ i.
Then ||θj || < 1. We have

1 ≥ |x1| · ||(e1 + θ1) +

i∑
j=1

xj
x1

(ej + θj)|| =

|x1| · ||(1,
x2
x1
, . . . ,

xi
x1
, 0, . . . , 0) + (θ1 +

i∑
j=2

xj
x1
θj)||.

Since |xj

x1
| ≤ 1 the norm of the first summand equals 1, while the norm of the

second summand (in the parenthesis) is strictly less then 1. Hence the norm of
their sum is equal to 1. Thus we get 1 ≥ |x1| · 1 = |x1|. □

5. Lebesgue measures on vector spaces

1 In this section we assume that all vector spaces are finite dimensional over a local
field F, either Archimedean or not. For such a vector space V we denote by D(V )
throughout the article the (one-dimensional) complex vector space of C-valued
Lebesgue measures on V .

Let σ : V −→ W be a surjective linear map between such vector spaces. Let
K = Ker(σ). We are going to construct a linear isomorphism

σ̃ : D(K)⊗D(W )−̃→D(V ).(5.1)
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Let µK ∈ D(K), µW ∈ D(W ). Since measures are linear functionals on compactly
supported continuous functions, define for any φ ∈ Cc(V )∫

φ(v)dσ̃(µK ⊗ µW ) :=

∫
w∈W

dµW (w)

∫
k∈σ−1(w)

φ(k)dµK(k),(5.2)

where we identify the measure µK on K with its (arbitrary) translate to the
parallel affine subspace σ−1(w).

An equivalent description is as follows. Let us choose a splitting V = K ⊕ L.
Then

σ|L : L −→W

is an isomorphism. Set µL := (σ|−1
L )∗µW . Then it is easy to see that

σ(µK ⊗ µW ) = µK ⊠ µL,

where ⊠ denotes the usual product measure.
2 Let X∨ denote the dual space of a vector space X. The goal of this paragraph is

to construct a canonical isomorphism

D(X)∗−̃→D(X∨).(5.3)

Since
HomC(D(X)∗, D(X∨)) ' D(X)⊗D(X∨),

it suffices to construct a canonical non-zero element in D(X)⊗D(X∨).
For a lattice Λ ⊂ X let us define the dual lattice in X∨

Λ∨ := {f ∈ X∨| f(Λ) ⊂ O}.
It is easy to see that Λ∨ is a lattice in X∨.

5.1. Lemma. Let µ ∈ D(X) be a non-vanishing (C-valued) Lebesgue measure on
X. Then there is a unique Lebesgue measure on X∨ denoted by µ−1 such that for
any lattice Λ ⊂ X one has

µ−1(Λ∨) =
1

µ(Λ)
.(5.4)

Proof. Let us fix a lattice Λ ⊂ X. We can obviously construct a unique µ−1

such that (5.4) is satisfied for this Λ. It remains to show that (5.4) is satisfied

for any other lattice Λ̃. For there exists g ∈ GL(X) such that Λ̃ = g(Λ). Then

Λ̃∨ = (g∨)−1Λ∨, where g∨ is the dual map of g. Then we have

µ−1(Λ̃∨) = µ−1((g∨)−1Λ∨) =

| det g∨|−1µ−1(Λ∨) =
1

| det g|µ(Λ)
=

1

µ(Λ̃)

□

Let us now construct the promised non-zero element of D(X) ⊗ D(X∨). Fix
an arbitrary C-valued non-vanishing Lebesgue measure µ ∈ D(X). Define the
element to be

µ⊗ µ−1 ∈ D(X)⊗D(X∨).

The following claim is now obvious.
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5.2. Claim. The element µ ⊗ µ−1 is independent of µ. It is GL(X)-invariant
under the natural action of this group on D(X)⊗D(X∨).

Now we can explicitly describe the isomorphism (5.3). Fix a non-vanishing µ ∈
D(X). There is a unique element µ∨ ∈ D(X)∗ such that µ∨(µ) = 1. The the
isomorphism (5.3) maps µ∨ 7→ µ−1. It is easy to see that this map is independent
of µ.

Very often, by the abuse of notation, we will write in this paper

D(X)∗ = D(X∨)

meaning the isomorphism (5.3).

6. Reminder on analytic manifolds over local fields

1 The goal of this section is to review very briefly the notion of analytic manifold
over a non-Archimedean local field F. For more details we refer to [41], part II.

The theory of analytic manifolds over such a field is similar to the theory of
real analytic manifolds, at least at the basic level needed for this paper. The main
examples of analytic manifolds to keep in mind for the purposes of this paper are
the Grassmannians of linear i-dimensional subspaces in Fn and, more generally,
the manifolds of partial flags in Fn. All the material of this section is well known.

2 Let U ⊂ Fn be an open subset. A function f : U −→ F is called analytic if any
point a ∈ U has a ball centered at a in which f can be represented by a series
which absolutely converges in this ball.

Let F = (F1, . . . , Fm) be a map F : U ⊂ Fn −→ Fm. F is called analytic if
every Fi is analytic.

Composition of analytic maps is analytic ([41], part II, Ch. II, Theorem 2).
For an analytic map F its Jacobian is defined as usual

J(F ) =

(
∂Fi

∂xj

)
.

Thus J(F ) is an m× n matrix whose entries are analytic functions.
3 For an analytic map

F : U ⊂ Fn −→ Fn

a version of the inverse function theorem holds (see [41], part II, Ch. III, §9).
Namely assume that at a point a ∈ U

det(J(F )a) 6= 0.

Then there exists an open neighborhood V of a such that F (V ) ⊂ Fn is open,
F |V : V −→ F (V ) is a homeomorphism, and F−1 : F (V ) −→ V is an analytic
map.

It is easy to see that the inverse function theorem implies in the usual way
the implicit function theorem for analytic functions. It is formulated in the usual
way and we leave it to the reader. The implicit function theorem will be used in
this paper in the proof of Lemma 17.2.

4 A topological space X is an analytic manifold if it admits an open covering {Uα},
homeomorphisms

φα : Uα −→ Vα,
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where Vα ⊂ Fn are open subsets such that the transition maps

φα|Uα∩Uβ
◦ φ−1

β |ϕβ(Uα∩Uβ)

are analytic for any α, β.
One can define analytic maps between analytic manifolds in the obvious way.

5 A topological group G which is also an analytic manifold is called a Lie group if
(a) the product map G×G −→ G given by (x, y) 7→ x · y is analytic;
(b) the inverse map G −→ G given by x 7→ x−1 is analytic.

Basic examples of Lie groups are GLn(F), GLn(O). Another example is the
subgroup of GLn(F) stabilizing the given partial flag:

G =



A1 ∗ . . . ∗
0 A2 . . . ∗

0 0
. . . ∗

0 0 . . . As


 ,

where A1, A2, . . . , As are invertible square matrices. Thus G is the subgroup of
invertible block upper triangular matrices.

6 Let G be a Lie group. Let H ⊂ G be a subgroup which is an analytic submanifold
(this notion is naturally defined). Then H is also a Lie group which is called a
Lie subgroup of G (see [41], part II, Ch. IV, §2.3).

6.1. Theorem ([41], part II, Ch. IV, §5). Let G be a Lie group. Let H ⊂ G be its
Lie subgroup. Then G/H has a unique structure of analytic manifold such that
the natural map G −→ G/H is analytic and has surjective differential at every
point.

This theorem implies immediately that the Grassmannians and, more generally,
partial flag spaces are analytic manifolds.

7 Let us discuss now integration over analytic manifolds over a non-Archimedean
local field F. Let us start with integration in Fn.

Let dx denote the Lebesgue measure on Fn normalized so that its value on On

equals 1. Let U, V ⊂ Fn be compact open subsets. Let

f : V −→ C

be a continuous function. Let F : U−̃→V be an analytic homeomorphism such
that F−1 is also analytic. Then there is the following change of variables formula
(see [30], §7.4) ∫

V
f(y)dy =

∫
U
f(F (x))| det J(F )x|dx.(6.1)

8 Let us define the complex line bundle |ωX | over X called the line bundle of
densities. We will see that its continuous sections can be integrated over X.
Let us fix charts {(Uα, φα)} be an atlas of charts on X. Consider the transition
functions

Fαβ := φα|Uα∩Uβ
◦ φ−1

β |Uα∩Uβ
: φβ(Uα ∩ Uβ)−̃→φα(Uα ∩ Uβ).
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Choose the trivial line bundle Uα×C over each Uα and identify them over pairwise
intersections Uα ∩ Uβ as follows

(x, z) ∼ (x, |J(Fαβ)ϕβ(x)| · z).

9 Let us assume in addition that X is compact. Then continuous sections of |ωX |
can be integrated over X by patching together local integrations over subsets of
Fn. More precisely let us fix a finite atlas of charts {(Uα, φα)} on X. There exits
a subordinate partition of unity {ψα} (see e.g. [39], Theorem 2.13), namely there
exist continuous functions ψα : Uα −→ R≥0 with supp(ψα) ⊂ Uα and such that∑

α

ψα = 1.

Let ω be a continuous section over X of the line bundle |ωX |. Then

ω =
∑
α

ψα · ω.

Clearly supp(ψα · ω) ⊂ Uα. Then
∫
Uα
ψα · ω is well defined since (Uα, φα) is a

chart. Then one defines ∫
X
ω :=

∑
α

∫
α
ψα · ω.

This number is independent of the atlas of charts and the subordinate partition
of unity.

7. Representations of the group GLn(O)

1 In this section we summarize a few known results on representations of the group
GLn(O) in the space of complex valued functions on Grassmannians GrF

n

k . No
result of this section is novel.

Let F be non-Archimedean local field. Let O ⊂ F be its ring of integers.
The group GLn(O) is compact and acts transitively on the Grassmannian GrF

n

k .

Hence there is a unique probability (Haar) measure µHaar onGr
Fn

k invariant under
this group. By the general representation theory of compact groups the represen-
tation of GLn(O) in L2(GrF

n

k ) is unitary and has a dense subspace which is an
orthogonal countable direct sum of irreducible representations. The irreducible
representations are necessarily finite dimensional.

2 Each irreducible representation of GLn(O) enters L2(GrF
n

k ) with multiplicity at
most 1. For char(F) = 0 this was proven first in [29], Corollary 3.2, in general in
[14].

3 The linear subspace C∞(GrF
n

k ) of locally constant (called smooth) functions is

GLn(O)-invariant and dense in L2(GrF
n

k ).

Every finite dimensional GLn(O)-invariant subspace of L2(GrF
n

k ) is contained

in C∞(GrF
n

k ); moreover the representation of GLn(O) in this subspace factorized
via a quotient of GLn(O) by finite index subgroup. The last two statements
follow from the fact that, as a topological group, GLn(O) is a pro-finite group
(i.e. inverse limit of finite groups).
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8. Space of valuations

1 Let V be an n-dimensional vector space over a local field F. We introduce the
main object of study V al(V ) = ⊕n

k=0V alk(V ) which is a vector space over C
and is an analogue of even and Klain continuous valuations on convex sets in the
terminology of [17], Section 3.

We define V al∞0 (V ) := C and V al∞n (V ) := D(V ), the latter is the (1-dimensional)
space of complex valued Lebesgue measures on V . Let now 1 ≤ k ≤ n − 1. We
are going to define in this section V al∞k (V ).

2 Let us start with an elementary construction. Given two vector spaces X and Y
of equal (finite) dimension over the local field F. Define a map linear with respect
to the second variable

T : HomF(X,Y )×D(Y ) −→ D(X).(8.1)

Let F ∈ HomF(X,Y ), µ ∈ D(Y ). There exists a unique Lebesgue measure ν on
X such that for some (equivalently, any) compact subset A ⊂ X with non-empty
interior one has ν(A) = µ(F (A)). Define T (F, µ) := ν.

8.1. Claim. (1) The map T is linear with respect to the second argument.
(2) If F is invertible then T (F, µ) = (F−1)∗(µ), where G∗ denotes the push-
forward of measures under a map G. Otherwise T (F, µ) = 0.
(3) The map T is jointly continuous.

A proof is left to the reader.
3 Let LV

k −→ GrVk be the complex line bundle whose fiber over E ∈ GrVk is equal
to the 1-dimensional space of complex valued Lebesgue measures on E.

Let |ωV
n−k| −→ GrVn−k denote the line bundle of densities on Gr

V
n−k as defined in

Section 6. Its continuous global sections can be integrated over the Grassmannian
GrVn−k.

Let us denote by M′
n−k −→ GrVn−k the line bundle whose fiber over F ∈ GrVn−k

is equal to the space of complex valued Lebesgue measures on V/F . Set finally
MV

n−k := M′
n−k ⊗ |ωV

n−k|. All the line bundles LV
n−k, |ωV

n−k|,M′
n−k,MV

n−k are
GL(V )-equivariant in a natural way.

A section of any of the above vector bundles is called smooth if its stabilizer in
GL(V ) is an open subgroup. More generally a vector in a continuous representa-
tion of GL(V ) is called smooth if its stabilizer is open. It is easy to see that any
function on GrVi is smooth in this sense if and only if it is locally constant.

4 Let us define the GLn(V )-equivariant operator between spaces of smooth sections

D : C∞(GrVn−k,MV
n−k) −→ C∞(GrVk ,LV

k )(8.2)

as follows. For F ∈ GrVn−k and E ∈ GrVk define pE,F : E −→ V/F the natural

map. Given a section ξ ∈ C∞(GrVn−k,MV
n−k), define for any E ∈ GrVk

D(ξ)(E) =

∫
F∈GrVn−k

T (pE,F , ξ(F )),(8.3)

where T is the map from paragraph 2. Note that

T (pE,F , ξ(F )) ∈ D(E)⊗ |ωV
n−k|

∣∣
F
.
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Hence the integral belongs to D(E).
Let us reformulate the definition of D. Given a k-dimensional subspace E.

The set of F ∈ GrVn−k intersecting E non-transversally, or equivalently pE,F is
non-invertible, has zero measure in the Grassmannian. Ignoring this subset we
have

D(ξ)(E) =

∫
F∈GrVn−k

(pE,F )
−1
∗ ξ(F ).(8.4)

8.2. Proposition. (1) The operator D is GL(V )-equivariant. It extends uniquely
by continuity to the space of continuous sections. Then it maps continuous sec-
tions to continuous, smooth to smooth.
(2) The image of D on the space of smooth sections is an irreducible subspace.

Part (1) follows from Claim 8.1(3). Part (2) was proved in [11], Theorem 2.1;
see also [28], Corollary 1.3, for a more general statement.

8.3. Definition. Let us denote by V al∞k (V ) the image of D on smooth vectors.

5 Let us define the space of continuous valuations.

8.4. Definition. The space of continuous valuations V alk(V ) is the closure of
V al∞k (V ) in C∞(GrVk ,LV

k ).

V alk(V ) is a GL(V )-invariant subspace and is (topologically) irreducible, i.e.
has no invariant closed proper subspaces.

6 Let us fix a lattice Λ ⊂ V . Since the action of GL(Λ) on GrVk is transitive,
there exist unique (up to a proportionality) non-zero GL(Λ)-invariant continuous
sections of MV

n−k and of LV
k (which are obviously smooth). It is easy to see that D

applied to the former is a non-zero multiple of the latter. We call such a GL(Λ)-
invariant section a spherical vector. We have the following easy characterization
of V al∞k (V ), V alk(V ).

8.5. Lemma. V al∞k (V ) (resp. V alk(V )) is the only irreducible GL(V )-submodule

of C∞(GrVk ,LV
k ) (resp. C(Gr

V
k ,LV

k )) containing a spherical vector.

Proof. Let us prove the non-smooth case, the smooth one is very similar. Assume
that T ⊂ C(GrVk ,LV

k ) is another closed irreducible GL(V )-submodule containing
the spherical vector. Then T ∩ V alk(V ) also has these properties. It is non-zero
since contains the spherical vector. But T∩V alk(V ) ⊂ V alk(V ). Since V alk(V ) is
GL(V )-irreducible, it follows that T ∩ V alk(V ) = V alk(V ). Hence V alk(V ) ⊂ T .
Hence V alk(V ) = T . □

8.6.Remark. In fact a stronger characterization holds: V al∞k (V ) (resp. V alk(V ))

is the only irreducible GL(V )-submodule of C∞(GrVk ,LV
k ) (resp. C(GrVk ,LV

k )).
This statement is a special case of [28], Theorem 1.2.

9. Pull-back on valuations

1 Let F be a non-Archimedean local field. The goal of this section is to construct
an operation of pull-back on valuations. More precisely we will prove
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9.1. Theorem. Let X and Y be finite dimensional vector spaces over F. For any
linear map F : X −→ Y there exists a canonical continuous linear map

F ∗ : V al(Y ) −→ V al(X)

which is called the pull-back map and satisfies the following properties:
(1) F ∗ preserves degree of homogeneity, i.e. F ∗(V alk(Y )) ⊂ V alk(X);
(2) (F ◦G)∗ = G∗ ◦ F ∗;
(3) Id∗ = Id;
(4) If F is injective then F ∗ preserves the subspace of smooth valuations, i.e.
F ∗(V al∞(Y )) ⊂ V al∞(X).

Proof of this theorem occupies the rest of this section.
2 The map F ∗ on valuations of degree 0 is just the identity map of C.
3 Let F : X −→ Y be a linear map and dimX = dimY = n. The the pullback
F ∗ : V aln(Y ) −→ V aln(X) is the map F ∗ : D(Y ) −→ D(X) given, by definition,
by

F ∗(µ) = T (F, µ),

where T is the map from Claim 8.1.
4 Let F : Xn −→ Y m be a linear map. Let us define first the pull-back map

F ∗ : D(Y ) −→ C(GrXm,LX
m).

If m > n then F ∗ = 0 by the definition. Assume that m ≤ n. For µ ∈ D(Y ) and
any E ∈ GrXm set

(F ∗µ)(E) := T (F |E , µ).
The continuity of T with respect to the first variable implies that F ∗µ is contin-
uous.

5

9.2. Lemma. (1) One has F ∗(D(Y )) ⊂ V alm(X).
(2) The linear span of valuations of the form F ∗µ over all possible linear maps
F : X −→ Y and µ ∈ D(Y ) is dense in V alm(X).

Proof. Proof of (1). If F (X) 6= Y then F ∗(D(Y )) = 0. Thus let us assume that
F (X) = Y . We will identify Y with X/Ker(F ) in the natural way.

Let us fix µ ∈ D(X/Ker(F )). Recall that m = dim(X/Ker(F )). Let us chose
a smooth section µ̃ of the line bundle M′

n−m over GrXn−m such that its value
at Ker(F ) is equal to µ. (Recall that the fiber of M′

n−m over any subspace E
is equal to D(X/E).) Let us choose a sequence of smooth measures {ρa} on
GrXn−m which weakly converges to the δ-measure supported at {Ker(F )}. Then
ρa ⊗ µ̃ ∈ C∞(GrXn−m,MX

n−m). Applying to it operator D from (8.2) we get

D(ρa ⊗ µ̃) ∈ V al∞m (X).

When a −→ ∞ the latter section converges to F ∗µ in C(GrXk ,LX
k ), hence F ∗µ ∈

V alm(X).
Proof of (2). It is clear that the linear span of valuations of the form F ∗µ

is a GL(X)-invariant subspace of V alm(X). Since the latter space is GL(X)-
irreducible by Proposition 8.2, the result follows. □
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The constructed map F ∗ : D(Y ) −→ V aldimY (X) is called pull back on densi-
ties.

6 The following corollary will be used later.

9.3. Corollary. Let X be a compact metrizable space. Let m be a complex valued
Borel measure on X . Let

T : X −→ Hom(X,Y )

be a continuous map when X,Y are finite dimensional vector spaces over F. Let
µ ∈ D(Y ). Then ∫

X
[T (x)]∗(µ)dm(x)

belongs to V aldimY (X).

Proof. By Claim 8.1 the map X −→ C(GrXdimY ,LX
dimY ) given by the expression

under the last integral x 7→ [T (x)]∗(µ) is continuous. By Lemma 9.2 the expres-
sion under the integral [T (x)]∗(µ) belongs to V al(X). Since V al(X) is complete
(it is a Banach space), the integral is well defined as a limit of Riemann sums. □

7 Given a linear map F : X −→ Y . First let us define an auxiliary linear map, also
denoted by F ∗ by the abuse of notation,

F ∗ : C(GrYk ,LY
k ) −→ C(GrXk ,LX

k )(9.1)

as follows. Let f ∈ C(GrYk ,LY
k ). For any subspace E ∈ GrXk let us define

(F ∗f)(E) =

{
T (F |E , f(F (E))) if dimF (E) = k

0 otherwise
.(9.2)

9.4. Proposition. F ∗f is a continuous section of LX
k .

We will need the following elementary lemma whose proof is easy and is left to
the reader. For vector spaces K,X we denote by Inj(K,X) the space of linear
imbeddings K ↪→ X.

9.5. Lemma. Let K be a k-dimensional vector space. Let f be a not necessarily
continuous section of LX

k over GrXk . Then f is continuous if and only if the map
Inj(K,X) −→ D(K) given by h 7→ h∗f is continuous.

Proof of Proposition 9.4. Fix a k-dimensional vector space K. By Lemma 9.5 we
have to show that h 7→ h∗(F ∗f) is a continuous map Inj(K,X) −→ D(K). It
easily follows from the definition that h∗(F ∗f) = (F ◦ h)∗f . The continuity of
h 7→ (F ◦ h)∗f follows from the continuity of f and Lemma 9.5. □

8

9.6. Proposition. The map F ∗ in (9.1) is continuous.

Proof. Let us fix an open bounded subset C ⊂ X which contains the origin. The
topology on C(GrXk ,LX

k ) is given by the norm

||g|| := sup
E∈GrXk

|
∫
E∩C

g(E)|.
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Fix an open bounded subset K ⊂ Y such that F (C) ⊂ K. Then we have

||F ∗f || = sup
E∈GrXk , dimF (E)=k

|
∫
F (E∩C)

f(F (E))| ≤

sup
E∈GrXk , dimF (E)=k

|
∫
F (E)∩K

f(F (E))| ≤ ||f ||.

□
9 Let W

G−→ X
F−→ Y be linear maps. The equality (F ◦ G)∗ = G∗ ◦ F ∗ follows

directly from the definition of the pull-back.
10

9.7. Proposition. One has

F ∗(V alk(Y )) ⊂ V alk(X).

9.8. Definition. The restriction of F ∗ to V al(Y ) is called the pull-back map on
valuations.

Proof of Proposition 9.7. By the continuity of F ∗ it suffices to show that
F ∗(V al∞k (Y )) ⊂ V alk(X). One has to show that for any ξ ∈ C∞(GrYn−k,MY

n−k)
one has F ∗(Dξ) ∈ V alk(X) where D was defined in (8.3). Let us choose a fi-
nite open covering of GrYn−k with a trivialization of the bundle MY

n−k over each
of its subsets. Let us choose a partition of unity subordinate to this covering
(see Section 6, paragraph 9). These choices reduce the problem to the follow-
ing one. Given a complex valued Borel measure m on GrYn−k, a continuous map

T : GrYn−k −→ Hom(Y,Fk), and a density µ ∈ D(Fk), then

D(ξ) =

∫
GrYn−k

[T (x)]∗(µ)dm(x).

Then F ∗(D(ξ)) =
∫
GrYn−k

(T (x) ◦ F )∗(µ)dm(x). The latter expression belongs to

V alk(X) by Corollary 9.3. □
This completes the construction of the pull-back F ∗ on valuations and finishes

the proof of Theorem 9.1. In the next paragraph we prove a continuity property
of the pull-back map.

11 Let us prove now part (4) of Theorem 9.1. Namely let us assume that F : X −→ Y
is injective. Let us show that F ∗(V al∞(Y )) ⊂ V al∞(X). We may and will assume
that X ⊂ Y . Let us choose a splitting Y = X⊕Z. It induces a groups imbedding
GL(X) ↪→ GL(Y ) given by g 7→ (g, IdZ). Clearly any GL(Y )-smooth vector is
GL(X)-smooth. The result follows.

12

9.9. Proposition. The map Hom(X,Y ) × C(GrYi ,LY
i ) −→ C(GrXi ,LX

i ) given
by (F, f) 7→ F ∗f is jointly continuous.

Proof. It it well known (and easily follows from the Banach-Steinhauss theorem)
that any separately continuous map

T ×A −→ B,
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where T is a metric space and A,B are Banach spaces, and the operator is linear
with respect to the second argument, is jointly continuous.

Hence is suffices to show that our map is separately continuous. By Claim 9.6
it suffices to show that if ξ ∈ C(GrYi ,LY

i ) is fixed then the map Hom(X,Y ) −→
C(GrXi ,LX

i ) given by F 7→ F ∗ξ is continuous. Let us prove the continuity of this
map at certain fixed F0 ∈ Hom(X,Y ).

Let us fix a lattice L ⊂ X. It suffices to show that for any ε > 0 there is a
neighborhood of F0 in Hom(X,Y ) such that for any F from this neighborhood

sup
E∈GrXi

∣∣ ∫
E∩L

(F ∗ξ)(E)−
∫
E∩L

(F ∗
0 ξ)(E)

∣∣ < ε.(9.3)

It suffices to prove this statement locally, i.e. to prove that any E0 ∈ GrXi has a
neighborhood UE0 ⊂ GrXi , and there is a neighborhood VE0 of F0 in Hom(X,Y )
such that

sup
E∈UE0

∣∣ ∫
E∩L

(F ∗ξ)(E)−
∫
E∩L

(F ∗
0 ξ)(E)

∣∣ < ε for any F ∈ VE0 .(9.4)

Indeed then we could choose a finite subcovering {UEα} of GrXi . Then for any
F ∈ ∩αVα one had (9.3).

Thus let us fix E0 ∈ GrXi .

Case 1. Let us assume that dimF0(E0) = i. By Theorem 4.4(i) there exists a
linear isomorphism H0 : Fi−̃→E0 such that H0(Oi) = E0 ∩ L. It suffices to show
that for any ε > 0 there exists a neighborhood X of H0 in Hom(Fi, X) and a
neighborhood V of F0 in Hom(X,Y ) such that for any H ∈ X and any F ∈ V
one has∣∣ ∫

H−1(Im(H)∩L)
(F ◦H)∗ξ −

∫
H−1(Im(H)∩L)

(F0 ◦H)∗ξ
∣∣ < ε.

Note that H−1
0 (Im(H0) ∩ L) = Oi. Then we can choose the neighborhood X of

H0 as in Proposition 4.7, i.e. so that

H−1(Im(H) ∩ L) = Oi for all H ∈ X .

Hence one has to show that∣∣ ∫
Oi

(F ◦H)∗ξ −
∫
Oi

(F0 ◦H)∗ξ
∣∣ < ε.

But this is clear from the definition of topology on LX
i .

Case 2. Let us assume that dimF0(E0) < i. By Theorem 4.4 and Remark 4.5
there is an isomorphism H0 : Fi−̃→E0 such that H0(Oi) = E0 ∩ L and

H0(Ok × {0i−k}) = (KerF0) ∩ E0 ∩ L,

where k := dim((KerF0)∩E0). It suffices to show that for any ε > 0 there exists a
neighborhood X of H0 in Hom(Fi, X) and a neighborhood V of F0 in Hom(X,Y )
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such that for any H ∈ X and any F ∈ V one has∣∣ ∫
H−1(Im(H)∩L)

(F ◦H)∗ξ
∣∣ < ε.(9.5)

Note that H−1
0 (Im(H0)∩L) = Oi. By Proposition 4.7 H0 has a neighborhood

X ⊂ Hom(Fi, X) so that

H−1(Im(H) ∩ L) = Oi for all H ∈ X ,
Hence (9.5) is equivalent to say that there exists a neighbourhood X of H0 and
V of F0 such that∣∣ ∫

Oi

(F ◦H)∗ξ
∣∣ < ε for any H ∈ X , F ∈ V .(9.6)

It suffices to show that given the linear map g0 : Fi −→ Y such that rk(g) < i
then there is a neighborhood U ⊂ Hom(Fi, Y ) of g0 such that∣∣ ∫

Oi

g∗ξ
∣∣ < ε ∀g ∈ U .

We leave to the reader this simple and elementary estimate. □

10. Construction of Fourier transform on valuations

1 Let F be a local field. In this section we construct a GL(V )-equivariant isomor-
phism between spaces of valuations on a vector space V and its dual.

We denote by V ∨ (rather than V ∗) the dual space of V . Nevertheless we will
keep ∗ to denote duals of one dimensional spaces (thus D(V )∗ denotes the dual
space of the space D(V ) of C-valued Lebesgue measures on V ).

For a vector subspace E ⊂ V let us denote by E⊥ ⊂ V ∨ its annihilator
defined by

E⊥ := {f ∈ V ∨| f(E) = 0}.
This induces a GL(V )-equivariant homeomorphism

GrVi
⊥

−̃→GrV
∨

n−i.

2 Recall that the fiber of the line bundle LV
i over E ∈ GrVi is equal, by the defini-

tion, to the space D(E) of complex valued Lebesgue measures on E. We are going

to construct a GL(V )-equivariant homeomorphism ai : LV
i −→ LV ∨

n−i ⊗ D(V ∨)∗

such that the diagram

is commutative and the map a is linear on fibers of the bundles (the vertical
arrows are the obvious bundle projections).

Fix a linear subspace E ⊂ V . Note that canonically the dual space E∨ =
V ∨/E⊥. We have the isomorphisms from Section 5:

(10.1)

D(E)−̃→D(E∨)∗−̃→D(V ∨/E⊥)∗−̃→(D(V ∨)⊗D(E⊥)∗)∗−̃→D(E⊥)⊗D(V ∨)∗.
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This defines the required map a on the fiber D(E) over E.
3 By taking sections of the bundles in the diagram from paragraph 2 we get a
GL(V )-equivariant isomorphism of Banach spaces

F : C(GrVi ,Li)−̃→C(GrV
∨

n−i,Ln−i ⊗D(V ∨)∗).(10.2)

10.1. Remark. For i = 0 the Fourier transform is the obvious isomorphism

F : C −→ D(V ∨)⊗D(V ∨)∗.

For i = n = dimV the Fourier transform is the obvious isomorphism

F : D(V ) −→ V al0(V
∨)︸ ︷︷ ︸

C

⊗D(V ∨)∗.

By Lemma 8.5 both the target and the source spaces of the map F in (10.2)
contain a unique irreducible subspace which contains a non-zero GL(Λ)-invariant
vector for some (equivalently, any) lattice Λ ⊂ V . Hence F induces GL(V )-
equivariant isomorphisms

F : V ali(V )−̃→V aln−i(V
∨)⊗D(V ∨)∗,(10.3)

F : V al∞i (V )−̃→V al∞n−i(V
∨)⊗D(V ∨)∗,(10.4)

when the first one is an isomorphism of Banach spaces.
4 We have the following Plancherel type inversion formula.

10.2. Theorem. The composition

C(GrVi ,LV
i )

FV−→ C(GrV
∨

n−i,LV ∨
n−i)⊗D(V ∨)∗

FV ∨⊗Id
−→(

C(GrVi ,LV
i )⊗D(V )∗

)
⊗D(V ∨)∗ = C(GrVi ,LV

i )

is the identity map.

Proof. First, taking the annihilator ⊥ twice is the identity map on GrVi . Next,
for E ∈ GrVi the composition of the following isomorphisms is the identity map
of D(E)

D(E)−̃→D(E∨)∗−̃→(D(V ∨/E⊥))∗−̃→D(E⊥)⊗D(V ∨)∗−̃→
D((E⊥)∨)∗ ⊗D(V ∨)∗−̃→D(V/E)∗ ⊗D(V ∨)∗−̃→ (D(E)⊗D(V )∗)⊗D(V ∨)∗−̃→

D(E).

Hence an−i ◦ ai = Id.
The two simplest examples of computation of the Fourier transform of valuations
are as follows. Let µ ∈ D(X) = V aldimX(V ). Then

F(µ) = χX∨ ⊗ µ.(10.5)

The Fourier transform of the Euler characteristic χX ∈ V al0(X) can also be
easily computed. Let us fix a non-vanishing Lebesgue measure volX ∈ D(X).
Let vol−1

X ∈ D(X)∗ ' D(X∨) be the inverse Lebesgue measure. Then

F(χX) = vol−1
X ⊗ vol(X).(10.6)

□
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11. Push-forward on valuations

1 Let F : X −→ Y be a linear map. We will define a continuous linear map

F∗ : V al(X)⊗D(X)∗ −→ V al(Y )⊗D(Y )∗(11.1)

called the push-forward map and describe it more explicitly in the two cases of
injective and surjective maps.

Let us define first the push-forward

F∗ : C(Gr
X
k ,LX

k ⊗D(X)∗) −→ C(GrYk−dimX+dimY ,LY
k ⊗D(Y )∗)

as follows. We have the dual map F∨ : Y ∨ −→ X∨. Define

F∗ := FY ◦ (F∨)∗ ◦ F−1
X ,(11.2)

where FX ,FY are the Fourier transforms on X,Y respectively.

11.1. Lemma. F∗ is a continuous map

C(GrXk ,LX
k ⊗D(X)∗) −→ C(GrYk−dimX+dimY ,LY

k−dimX+dimY ⊗D(Y )∗).

This easily follows from the properties of pull-back and Fourier transform. It
is clear that

F∗(V alk(X)⊗D(X)∗) ⊂ V alk−dimX+dimY (Y )⊗D(Y )∗.

Hence F∗ can also be considered as the map (11.1).
2 Let us describe the push-forward map when F : X −→ Y is an imbedding. The

description is contained in Propositions 11.2 and 11.3 below.
We will identify X with its image in Y . Denote c := dimY − dimX the

codimension of X.
Let ξ ∈ C(GrXk ,LX

k ⊗ D(X)∗). Let E ∈ GrYk+c. We are going to describe
(F∗ξ)(E). We will consider two cases: Y 6= E +X and Y = E +X.

11.2. Proposition. Assume Y 6= E +X. Then (F∗ξ)(E) = 0.

Proof. Let us introduce a notation. For a linear subspace L ⊂ V consider the
isomorphism

αL,V : D(L)−̃→D(L⊥)⊗D(V ∨)∗(11.3)

which is the composition of natural isomorphisms (10.1) with E replaced with L:

D(L)−̃→D(L∨)∗−̃→D(V ∨/L⊥)∗−̃→(D(V ∨)⊗D(L⊥)∗)∗−̃→D(L⊥)⊗D(V ∨)∗.

We have

(F∗ξ)(E) =
(
(FY ◦ F∨∗ ◦ F−1

X )(ξ)
)
(E) = αE⊥,Y ∨

(
((F∨∗ ◦ F−1

X )(ξ))(E⊥)
)
.(11.4)

We have to show that the last expression vanishes. It suffices to show that
Ker(F∨ : E⊥ −→ X∨) 6= 0. By duality this is equivalent to

Ker(X −→ (E⊥)∨)) 6= 0.

But (E⊥)∨ = Y/(E⊥)⊥ = Y/E. Hence equivalently we have

Ker(X −→ Y/E) 6= 0,

where the map is the composition of the natural maps X −→ Y −→ Y/E. This
is equivalent to our assumption Y 6= E +X. □
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3 Assume now that Y = E + X. Denote E0 = E ∩ X. Then dimE0 = k. The
natural map E −→ Y/X induces the isomorphism

E/E0−̃→Y/X.(11.5)

11.3. Proposition. Assume that Y = E +X. Then (F∗ξ)(E) equals the image
of ξ(E0) ∈ D(E0)⊗D(X)∗ under the composition of natural isomorphisms from
Section 5

D(E0)⊗D(X)∗−̃→D(E0)⊗D(Y/X)⊗D(Y )∗−̃→
D(E0)⊗D(E/E0)⊗D(Y )∗−̃→D(E)⊗D(Y )∗,

where in the second isomorphism we used the isomorphism (11.5).

Proof. We can choose a decomposition

Y = Z ⊕ E0 ⊕ E1(11.6)

such that

E = E0 ⊕ E1, X = Z ⊕ E0.

By (11.4) we have

(F∗ξ)(E) = αE⊥,Y ∨

(
((F∨∗ ◦ F−1

X )(ξ))(E⊥)
)
.(11.7)

Recall that αE⊥,Y ∨ : D(E⊥)−̃→D(E) ⊗ D(Y )∗. Using decomposition (11.6) we

clearly have E⊥ = Z∨. Under this identification we have

αE⊥,Y ∨ : D(Z∨) −→ D(E)⊗D(Y )∗.

The dual map F∨ is the natural projection Z∨ ⊕ E∨
0 ⊕ E∨

1 −→ Z∨ ⊕ E∨
0 . The

subspace E⊥ = Z∨ is mapped identically under these identifications. Hence it
follows

((F∨∗ ◦ F−1
X )(ξ))(E⊥) =

(
F∨∗(F−1

X ξ)
)
(Z∨) = (F−1

X ξ)(Z∨) = α−1
Z∨,X∨(ξ(E0)),

where αZ∨,X∨ : D(Z∨) −→ D(E0)⊗D(X)∗. Substituting this into (11.7) we get

(F∗ξ)(E) =
(
αE⊥,Y ∨ ◦ α−1

Z∨,X∨

)
(ξ(E0)).

The map αE⊥,Y ∨ ◦ α−1
Z∨,X∨ : D(E0) ⊗ D(X)∗ −→ D(E) ⊗ D(Y )∗ coincides with

the claimed one. □
4

11.4. Proposition. Let us assume that a linear map F : X −→ Y is onto. Then
push-forward of a smooth valuation is smooth:

F∗(V al
∞(X)⊗D(X)∗) ⊂ V al∞(Y )⊗D(Y )∗.

Proof. Recall that F∗ = FY ◦ (F∨)∗ ◦F−1
X . Since F∨ is an imbedding, (F∨)∗ maps

smooth valuations to smooth ones by Theorem 9.1(4). By Section 3, paragraph 3,
F is an isomorphism between spaces of smooth valuations. The result follows. □

5 In this paragraph we will describe explicitly the push-forward map when F : X −→
Y is onto. Denote K := Ker(F ). Clearly X/K ' Y .
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11.5. Proposition. Let F : X −→ Y is onto. Let ξ ∈ C(GrXk ,LX
k ⊗ D(X)∗).

Let E ∈ GrXk−dimX+dimY with k ≥ dimX − dimY . Denote Ẽ := F−1(E). Then

(F∗ξ)(E) is equal to the image of ξ(Ẽ) under the composition of natural isomor-
phisms

D(Ẽ)⊗D(X)∗−̃→D(E)⊗D(K)⊗D(X)∗

−̃→D(E)⊗D(K)⊗D(K)∗ ⊗D(Y )∗−̃→D(E)⊗D(Y )∗,

where we used isomorphism Ẽ/K ' E.

Proof. Let us choose a splitting X = K ⊕ Y . Then F∨ : Y ∨ −→ K∨ ⊕ Y ∨ is the
obvious imbedding y 7→ (0, y). Also Ẽ = K ⊕E. We will identify the annihilator
E⊥ of E in Y ∨ with its image in X∨ and denote in the same way by the abuse
of notation.

We have

(F∗ξ)(E) =
(
(FY ◦ F∨∗ ◦ F−1

X )(ξ)
)
(E) = αE⊥,Y ∨

(
((F∨∗ ◦ F−1

X )(ξ))(E⊥)
)
=

αE⊥,Y ∨

(
(F−1

X ξ)(E⊥)
)
= αE⊥,Y ∨

(
α−1
E⊥,X∨(ξ(E))

)
=

(αE⊥,Y ∨ ◦ α−1
E⊥,X∨)(ξ(E)),

where we recall that

αE⊥,X∨ : D(E⊥)−̃→D(Ẽ)⊗D(X)∗,

αE⊥,Y ∨ : D(E⊥)−̃→D(E)⊗D(Y )∗.

It is easy to see that the map αE⊥,Y ∨ ◦ α−1
E⊥,X∨ coincides with the map from the

proposition. □

12. Exterior product on valuations

1 The goal of this section is to construct a bilinear map for any two finite dimen-
sional vector spaces X and Y over F

⊠ : V ali(X)× V al∞j (Y ) −→ V ali+j(X × Y )

which is GL(X)×GL(Y )-equivariant. The map is continuous with respect to the
first variable in the case of non-Archimedean F.

This map will be constructed as a restriction to valuations of a bilinear map

⊠ : C(GrXi ,Li)× V al∞j (Y ) −→ C(GrX×Y
i+j ,LX×Y

i+j ).(12.1)

2 First let us construct the map (12.1) in the special case V al∞j (Y ) = D(Y ). In
this case we need to construct a continuous bilinear map

⊠ : C(GrXi ,Li)⊗D(Y ) −→ C(GrX×Y
i+dimY ,L

X×Y
i+dimY ).(12.2)

This map is essentially the push-forward map for the obvious imbedding

F : X ↪→ X × Y

given by F (x) = (x, 0). Indeed the push-forward map for this imbedding, as
defined in Section 11, is a continuous linear map

F∗ : C(Gr
X
i ,LX

i )⊗D(X)∗ −→ C(GrX×Y
i+dimY ,L

X×Y
i+dimY )⊗D(X × Y )∗.
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Since D(X × Y )∗ = D(X)∗ ⊗D(Y )∗ we get the required map (12.2) by twisting
all spaces by D(X × Y ).

Exterior product of φ ∈ C(GrXi ,Li), µ ∈ D(Y ) is denoted by φ⊠ µ. Thus

φ⊠ µ = (F∗ ⊗ IdD(X×Y ))(φ⊗ µ).(12.3)

3

12.1. Lemma. Let T : X −→ Z be a linear map. Let µ ∈ D(Z), ν ∈ D(W ).
Then

(T ∗µ)⊠ ν = (T × IdW )∗(µ⊠ ν).

In particular both sides belong to V al(X ×W )

Proof. If T is not onto then both sides vanish. Thus let us assume that T is onto.
Fix a linear subspace E ⊂ X ×W with dimE = dimZ + dimW . We have to
show that

((T ∗µ)⊠ ν) (E) = ((T × Id)∗(µ⊠ ν)) (E).

Both sides are continuous in E. Hence it suffices to assume that E is generic.
Denote E0 := E ∩X. For generic E the maps (T × IdW )|E : E −→ Z ×W and
TE0 : E0 −→ Z are isomorphisms. The lemma follows from the commutativity of
the following diagram

The last statement follows from Proposition 9.7. □
4 To construct the map (12.1) in general, first we will construct,using the construc-

tion from paragraph 2, a bilinear map

⊠̃ : C(GrXi ,LX
i )× C∞(GrYn−j ,MY

n−j) −→ C(GrX×Y
i+j ,LX×Y

i+j ),(12.4)

which is continuous with respect to the first variable, where the bundle MY
n−j

was defined in Section 8.1, paragraph 3.
Let ξ be a section of MY

n−j . Recall that for any F ∈ GrYj one has ξ(F ) ∈
D(Y/F ) ⊗ |ωY

n−j |
∣∣
F
, where |ωY

n−j |
∣∣
F

is the line bundle of densities over GrYn−j .
Then by the construction of paragraph 2

φ⊠ ξ(F ) ∈ C(Gr
X×(Y/F )
i+j ,LX×(Y/F )

i+j )⊗ |ωY
n−j |

∣∣
F
.

Let us define

φ⊠̃ξ :=
∫
F∈GrYn−j

(IdX × pF )
∗(φ⊠ ξ(F )) ∈ C(GrX×Y

i+j ,LX×Y
i+j ),(12.5)

where pF : Y −→ Y/F is the canonical projection. Note that for the expression
under the integral one has

(IdX × pF )
∗(φ⊠ ξ(F )) ∈ C(GrX×Y

i+j ,LX×Y
i+j )⊗ |ωY

n−j |
∣∣
F
.

We will prove the following
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12.2. Claim. The integral in (12.5) is
(1) well defined;
(2) linear with respect to φ and ξ;
(3) continuous with respect to φ.

5 Proof of Claim 12.2. Let us fix a smooth positive measure ν0 on GrYn−j . Then

we can write uniquely ξ = ξ̃ ⊗ ν0 where ξ̃(F ) ∈ D(Y/F ), and ξ̃ is a continuous
section. Then

(IdX × pF )
∗(φ⊠ ξ(F )) = (IdX × pF )

∗(φ⊠ ξ̃(F )) · ν0,

and φ⊠̃ξ =
∫
GrYn−j

(IdX × pF )
∗(φ⊠ ξ̃(F ))dν0(F ), where

(IdX × pF )
∗(φ⊠ ξ̃(F )) ∈ C(GrX×Y

i+j ,LX×Y
i+j ).

It suffices to show that the map C(GrXi ,LX
i ) × GrYn−j −→ C(GrX×Y

i+j ,LX×Y
i+j )

given by

(φ, F ) 7→ (IdX × pF )
∗(φ⊠ ξ̃(F ))(12.6)

is continuous. For let us fix F0 ∈ GrYn−j . It has a neighborhood U ⊂ GrYn−j over

which there is a trivialization of the vector bundle whose fiber over F is Y/F , thus

this bundle is isomorphic to U × Fj . Under this identification ξ̃ : U −→ D(Fj)

is a continuous map. Hence the map (φ, F ) 7→ φ ⊠ ξ̃(F ) is a continuous map

C(GrXi ,LX
i )× U −→ C(GrX×Fj

i+j ,LX×Fj

i+j ) by paragraph 2.

Under the above trivialization the map pF becomes a linear map Y −→ Fj

which we denote in the same way; it depends continuously on F . By Proposition
9.9 the expression under the integral (12.5) is jointly continuous with respect to
(φ, F ). Hence parts (1), (3) follow. Part (2) is obvious. square

6

12.3. Lemma.
Let us restrict the map ⊠̃ given by (12.5) to V ali(X)× C∞(GrYj ,MY

n−j).

(1) This restriction takes values in V ali+j(X × Y ). Hence we get a bilinear map

V ali(X)× C∞(GrYj ,MY
n−j) −→ V ali+j(X × Y )(12.7)

which is continuous with respect to the first variable.
(2) The map (12.7) uniquely factorizes via V ali(X) × V al∞j (Y ). Thus we get a
bilinear map

⊠ : V ali(X)× V al∞j (Y ) −→ V ali+j(X × Y )

which is continuous with respect to the first variable; it is called the exterior
product on valuations and is denoted by (φ1, φ2) 7→ φ1 ⊠ φ2.

Proof. Part (1) follows from Lemma 12.1 and the construction of the map (12.4).
Let us prove part (2). For any linear map T : X −→ Z, dimZ = i, and any

µ ∈ D(Z) the pull-back T ∗µ ∈ V ali(X) by Lemma 9.2(1). The linear span of
valuations of this form is dense in V ali(X) by Lemma 9.2(2). Hence it suffices to

show that for any ξ ∈ C(GrYn−j ,MY
n−j) the expression T ∗µ⊠̃ξ depends only on

D(ξ), where D was defined in (8.3). Let us fix a positive smooth measure ν0 on



1114 SEMYON ALESKER

GrYn−j . Then we can write uniquely ξ = ξ̃ · ν0 where ξ̃ is a smooth section of the

line bundle M′
n−j whose fiber over F ∈ GrYn−j is equal to D(Y/F ).

We have

T ∗µ⊠̃ξ =
∫
GrYn−j

(IdX × pF )
∗(T ∗µ⊠ ξ(F )) =∫

GrYn−j

(IdX × pF )
∗(T ∗µ⊠ ξ̃(F ))dν0

Lemma 12.1
=∫

GrYn−j

(IdX × pF )
∗ ◦ (T × Id)∗(µ⊠ ξ̃(F )fν0)

Thm 9.1(2)
=∫

GrYn−j

(T × pF )
∗(µ⊠ ξ̃(F ))dν0.

Since µ⊠ ξ̃(F ) ∈ D(X × (Y/F )) then by Lemma 9.2 the last expression belongs
to V ali+j(X × Y ) . □

7 Let us generalize Lemma 12.1 as follows.

12.4. Proposition. Let T : X −→ Z be a linear map. Let W be another vector
space. Let ω ∈ V ali(Z), ξ ∈ V al∞j (W ). Then

T ∗ω ⊠ ξ = (T × IdW )∗(ω ⊠ ξ).

Proof. Since the pull-back T ∗ : V ali(Z) −→ V ali(X) is continuous by Theorem
9.1 and the exterior product is continuous by Lemma 12.3(2), Lemma 9.2(2)
implies that we may assume that

ω = S∗µ,

where S : Z −→ Fi is a linear map and µ ∈ D(Fi). We can represent ξ in the
form

ξ =

∫
F∈Gr

p∗F ζ(F ),

where pF : W −→W/F is the quotient map to F , ζ is a smooth section of the line
bundleM′

n−j over Grassmannian GrWn−j whose fiber over F isD(W/F ) tensorized

with the fiber of the line bundle of densities on GrWn−j .
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We have

T ∗ω ⊠ ξ
(12.5)
=∫

F∈Gr
(Id× pF )

∗(T ∗ω ⊠ ζ(F )) =

∫
F∈Gr

(Id× pF )
∗(T ∗S∗µ⊠ ζ(F ))

Lemma 12.1
=∫

F∈Gr
(Id× pF )

∗(ST × Id)∗(µ⊠ ζ(F ))
Thm 9.1(2)

=∫
F∈Gr

(ST × pF )
∗(µ⊠ ζ(F ))

Thm 9.1
=∫

F∈Gr
(T × Id)∗(Id× pF )

∗(S × Id)∗(µ⊠ ζ(F ))
Lemma 12.1

=

(T × Id)∗
∫
F∈Gr

(Id× pF )
∗(ω ⊠ ζ(F ))

(12.5)
=

(T × Id)∗(ω ⊠ ξ).

□
8

12.5. Lemma. Let X,Y, Z be finite dimensional F-vector spaces. Then the two
maps

V al∞(X)× V al(Y )× V al∞(Z) −→ V al(X × Y × Z)

given respectively by

(φ, ψ, ξ) 7→ (φ⊠ ψ)⊠ ξ,

(φ, ψ, ξ) 7→ φ⊠ (ψ ⊠ ξ)

coincide with each other.

Proof. Step 1. Both maps are 3-linear and continuous with respect to ψ. By
Lemma 9.2(2) linear combinations of valuations of the form T ∗µ, where µ is a
Lebesgue measure, are dense in V al(Y ). Thus it suffices to assume that ψ = T ∗µ
where T : Y −→W , µ ∈ D(W ).

Step 2. Let us assume that ψ = T ∗µ. Applying twice Proposition 12.4 we have

(φ⊠ T ∗µ)⊠ ξ = ((Id× T )∗(φ⊠ µ))⊠ ξ =

(Id× T × Id)∗((φ⊠ µ)⊠ ξ).

Similarly

φ⊠ (T ∗µ⊠ ξ) = (Id× T × Id)∗(φ⊠ (µ⊠ ξ)).

Hence it remains to show that (φ⊠ µ)⊠ ξ = φ⊠ (µ⊠ ξ).
Step 3. Thus let us assume that ψ = µ is a density, in particular is a smooth

valuation. Let us denote x := dimX, z := dimZ. Since φ and ξ are smooth
valuations they can be presented as

φ =

∫
GrXx−i

p∗F (ψ(F )), ξ =

∫
GrZz−j

q∗Eν(E),



1116 SEMYON ALESKER

where pF : X −→ X/F, qE : Z −→ Z/E are the natural quotient maps, and ψ
and ν are smooth sections of the line bundles MX

x−i over Gr
X
x−i and MZ

z−i over

GrZz−i respectively. Then using Proposition 12.4 several times we get

φ⊠ (µ⊠ ξ) =

∫
F∈GrXx−i

p∗F (ψ(F ))⊠
(
µ⊠

∫
E∈GrZz−i

q∗E(ν(E))

)
=

∫
F∈GrXx−i

p∗F (ψ(F ))⊠
(∫

E∈GrZz−i

(µ⊠ q∗E(ν(E)))

)
Prop. 12.4

=

∫
F∈GrXx−i

p∗F (ψ(F ))⊠
(∫

E∈GrZz−i

(IdY ⊠ qE)
∗ (µ⊠ ν(E))

)
Prop. 12.4

=

∫
E∈GrZz−i

(IdX × (IdY × qE))
∗

(∫
F∈GrXx−i

p∗F (ψ(F ))⊠ (µ⊠ ν(E))

)
Prop. 12.4

=∫
E∈GrZz−i

∫
F∈GrXx−i

(IdX × IdY × qE)
∗

◦(pF × (IdY × IdZ))
∗ (ψ(F )⊠ (µ⊠ ν(E)))

Thm 9.1
=∫

E∈GrZz−i

∫
F∈GrXx−i

(pF × IdY × qE)
∗ (ψ(F )⊠ (µ⊠ ν(E))) .

Since the exterior product on Lebesgue measures is associative we have

φ⊠ (µ⊠ ξ) =∫
E∈GrZz−i

∫
F∈GrXx−i

(pF × IdY × qE)
∗ ((ψ(F )⊠ µ)⊠ ν(E))

Thm 9.1
=∫

E∈GrZz−i

∫
F∈GrXx−i

(pF × IdY × IdZ)
∗

◦((IdX × IdY )× qE)
∗ ((ψ(F )⊠ µ)⊠ ν(E))

Prop. 12.4
=∫

E∈GrZz−i

∫
F∈GrXx−i

(pF × IdY × IdZ)
∗ ((ψ(F )⊠ µ)⊠ q∗Eν(E)) =

∫
F∈GrXx−i

(pF × IdY × IdZ)
∗

(
(ψ(F )⊠ µ)⊠

∫
E∈GrZz−i

q∗Eν(E)

)
=∫

F∈GrXx−i

((pF × IdY )× IdZ)
∗ ((ψ(F )⊠ µ)⊠ ξ)

Prop. 12.4
=(∫

F∈GrXx−i

(pF × IdY )
∗(ψ(F )⊠ µ)

)
⊠ ξ

Prop. 12.4
=(∫

F∈GrXx−i

p∗Fψ(F )⊠ µ

)
⊠ ξ = (φ⊠ µ)⊠ ξ.

□
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9 Let us prove the following identity.

12.6. Proposition. Let χX ∈ V al0(X), χY ∈ V al0(Y ) be the unit valuations
(Euler characteristics). Then χX ⊠ χY = χX⊕Y .

Proof. Let pX : X −→ {0}, pY : Y −→ {0} be the obvious maps to the zero-
space. Then formally χX = p∗Xχ0, χY = p∗Y χ0, where χ0 ∈ V al0({0}) is the
Euler characteristic on {0}. Then

χX ⊠ χY = p∗Xχ0 ⊠ p∗Y χ0
Lemma 12.1

=

(IdX × pY )
∗(p∗Xχ0 ⊠ χ0)

Lemma 12.1
=

(IdX × pY )
∗ ◦ (pX × IdY )

∗(χ0 ⊠ χ0)
Thm 9.1(2)

=

(pX × pY )
∗(χ0 ⊠ χ0) = (pX × pY )

∗(χ0) = χX⊕Y .

□

13. Product on smooth valuations

Let ∆: V −→ V × V denote the diagonal imbedding, i.e. ∆(v) = (v, v). Let
φ ∈ V al(V ), ψ ∈ V al∞(V ) be smooth valuations. Define their product

V al(V )× V al∞(V ) −→ V al(V )

by φ · ψ := ∆∗(φ ⊠ ψ). The product is a bilinear map continuous with respect to
the first valuation when the second one is fixed.

13.1. Lemma. Product of smooth valuations is smooth.

Proof. The product map V al(V ) ⊗ V al∞(V ) −→ V al(V ) is GL(V )-equivariant.
Hence it maps smooth vectors to smooth ones. □

Thus we got a product on smooth valuations V al∞(V )×V al∞(V ) −→ V al∞(V ).

13.2. Theorem. Equipped with the above product, V al∞(V ) is a commutative as-
sociative algebra with unit 1 ∈ V al0(V ) = C. It is graded, namely V al∞i (V ) ·
V al∞j (V ) ⊂ V al∞i+j(V ).

Proof. Let us prove commutativity. Let us denote by σ : V × V −→ V × V the
involution σ(x, y) = (y, x). Then we have

ψ · φ = ∆∗(ψ ⊠ φ) = ∆∗(σ∗(φ⊠ ψ)) =

(∆∗ ◦ σ∗)(φ⊠ ψ)
Thm 9.1(2)

= (σ ◦∆)∗(φ⊠ ψ) = ∆∗(φ⊠ ψ),

where in the last equality we used that σ ◦∆ = ∆.
Let us prove associativity. We have

(φ · ψ) · ξ = ∆∗((φ · ψ)⊠ ξ) =

∆∗(∆∗(φ⊠ ψ)⊠ ξ)
Prop. 12.4

=

∆∗(∆× IdV )
∗((φ⊠ ψ)⊠ ξ)

Thm 9.1(2)
=

((∆× IdV ) ◦∆)∗((φ⊠ ψ)⊠ ξ).
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It is easy to see that (∆× IdV ) ◦∆ = ∆3 where ∆3 : V −→ V × V × V is given by
∆3(v) = (v, v, v). Thus

(φ · ψ) · ξ = ∆3((φ⊠ ψ)⊠ ξ).

Similarly
φ · (ψ · ξ) = ∆3(φ⊠ (ψ ⊠ ξ)).

But (φ⊠ ψ)⊠ ξ = φ⊠ (ψ ⊠ ξ) by Lemma 12.5.
The rest of properties are trivial. □

14. Product on smooth valuations

Let ∆: V −→ V × V denote the diagonal imbedding, i.e. ∆(v) = (v, v). Let
φ ∈ V al(V ), ψ ∈ V al∞(V ) be smooth valuations. Define their product

V al(V )× V al∞(V ) −→ V al(V )

by φ · ψ := ∆∗(φ ⊠ ψ). The product is a bilinear map continuous with respect to
the first valuation when the second one is fixed.

14.1. Lemma. Product of smooth valuations is smooth.

Proof. The product map V al(V ) ⊗ V al∞(V ) −→ V al(V ) is GL(V )-equivariant.
Hence it maps smooth vectors to smooth ones. □

Thus we got a product on smooth valuations V al∞(V )×V al∞(V ) −→ V al∞(V ).

14.2. Theorem. Equipped with the above product, V al∞(V ) is a commutative as-
sociative algebra with unit 1 ∈ V al0(V ) = C. It is graded, namely V al∞i (V ) ·
V al∞j (V ) ⊂ V al∞i+j(V ).

Proof. Let us prove commutativity. Let us denote by σ : V × V −→ V × V the
involution σ(x, y) = (y, x). Then we have

ψ · φ = ∆∗(ψ ⊠ φ) = ∆∗(σ∗(φ⊠ ψ)) =

(∆∗ ◦ σ∗)(φ⊠ ψ)
Thm 9.1(2)

= (σ ◦∆)∗(φ⊠ ψ) = ∆∗(φ⊠ ψ),

where in the last equality we used that σ ◦∆ = ∆.
Let us prove associativity. We have

(φ · ψ) · ξ = ∆∗((φ · ψ)⊠ ξ) =

∆∗(∆∗(φ⊠ ψ)⊠ ξ)
Prop. 12.4

=

∆∗(∆× IdV )
∗((φ⊠ ψ)⊠ ξ)

Thm 9.1(2)
=

((∆× IdV ) ◦∆)∗((φ⊠ ψ)⊠ ξ).

It is easy to see that (∆× IdV ) ◦∆ = ∆3 where ∆3 : V −→ V × V × V is given by
∆3(v) = (v, v, v). Thus

(φ · ψ) · ξ = ∆3((φ⊠ ψ)⊠ ξ).

Similarly
φ · (ψ · ξ) = ∆3(φ⊠ (ψ ⊠ ξ)).
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But (φ⊠ ψ)⊠ ξ = φ⊠ (ψ ⊠ ξ) by Lemma 12.5.
The rest of properties are trivial. □

15. Poincaré duality for valuations

1 The main result of this section is

15.1. Theorem. For any 0 ≤ i ≤ n the bilinear form given by the product on
valuations

V ali(V )× V al∞n−i(V ) −→ V aln(V )

is a non-degenerate pairing, i.e. for any φ ∈ V ali(V ) there exists ψ ∈ V al∞n−i(V )
such that φ · ψ 6= 0.

2 To prove the theorem, let us observe that the subspace

{φ ∈ V ali(V )| φ · ψ = 0 ∀ψ ∈ V al∞n−i(V )}
is a GL(V )-invariant closed subspace. By the irreducibility property (Proposition
8.2(2)) it suffices to show that it is non-zero. This follows from the following
slightly more general lemma which also will be needed later on.

15.2. Lemma. Let i, j ≥ 0 be such that i+ j ≤ n. Let φ = D(f), ψ = D(g) where
f ∈ C∞(GrVn−i,MV

n−i) and g ∈ C∞(GrVn−j ,MV
n−j) (see Section 8, paragraph 4

for the definition of the operator D) be non-negative sections, both not identically
0. Then φ · ψ 6= 0 and for any E ∈ GrVi+j one has (φ · ψ)(E) ≥ 0.

Proof. For F ∈ GrVn−i we denote by pF : V −→ V/E the quotient map, and

similarly for L ∈ GrVn−j we denote by qL : V −→ V/L the quotient map. We have

φ⊠ ψ =

∫
F∈GrVn−i

p∗F f(F )⊠
∫
L∈GrVn−j

q∗Lg(F ) =∫
F∈GrVn−i

(
p∗F f(F )⊠

∫
L∈GrVn−j

q∗Lg(F )

)
Prop. 12.4

=

∫
F∈GrVn−i

(pF × IdV )
∗

(
f(F )⊠

∫
L∈GrVn−j

q∗Lg(F )

)
Prop. 12.4

=∫
F∈GrVn−i

∫
L∈GrVn−j

(pF × IdV )
∗ ◦ (IdV × qL)

∗(f(F )⊠ g(F ))
Thm 9.1(2)

=∫
F∈GrVn−i

∫
L∈GrVn−j

(pF × qL)
∗(f(F )⊠ g(F )).

Let ∆: V −→ V × V be the diagonal imbedding, i.e. ∆(v) = (v, v). Let E ∈
GrVi+j . Since φ · ψ = ∆∗(φ⊠ ψ) we have

(φ · ψ)(E) =

∫
F∈GrVn−i

∫
L∈GrVn−j

(pE,F×L)
∗(f(F )⊠ g(L)) ∈ D(E),(15.1)

where pE,F×L : E −→ V/F × V/L is the map v 7→ (pF (v), qL(v)) with pF , pL
being the natural quotient maps. The integrand is non-negative. There is E
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such that the integrand is strictly positive for a pair (F,L). Hence the integral is
positive. □

3 Below we will use the last lemma to show that powers of certain valuation from
V al∞1 (V ) do not vanish.

Let V be a finite dimensional vector space over a non-Archimedean local field F.
Let us fix a lattice Λ ⊂ V . Let GL(Λ) denote the subgroup of GL(V ) consisting
of such transformations T such that T (Λ) = Λ. Thus GL(Λ) ' GLn(O).

Let V1 ∈ V al∞1 (V ) be a GL(Λ)-invariant non-zero valuation. Such a valuation
is unique up to a proportionality. We normalize V1 so that its restriction to any
line l ⊂ V is the only Lebesgue measure whose value on the set l ∩ Λ is equal to
1. This characterizes V1 uniquely.

15.3. Proposition. For any 1 ≤ k ≤ n and any E ∈ GrVk one has (V k
1 )(E) > 0.

In particular V k
1 6= 0 for any 1 ≤ k ≤ n.

Proof. Let us prove it by induction in k. For k = 1 this is clear. Assume
(V k−1

1 )(L) > 0 for any L ∈ GrVk−1. This valuation is GLn(O)-invariant and

hence can be presented as V k−1
1 = D(g) where g is GLn(O)-invariant section

of MV
n−k+1. g must be positive since (V k−1

1 )(L) > 0 for any L ∈ GrVk−1. Also
V1 = D(f) where f is GLn(O)-invariant. Hence f > 0. Hence by Lemma 15.2

and GLn(O)-invariance the valuation V1 ·V k−1
1 = V k

1 satisfies the conclusion. □

16. Integral transforms on Grassmannians

1 First let us discuss the Radon transform. Let us fix a lattice Λ ⊂ V . Let
0 ≤ p < q ≤ n− 1. Define the Radon transform

Rpq : C
∞(GrVq ) −→ C∞(GrVp )

as follows

(Rpqf)(E) =

∫
GrEp

f(F )dνE(F ),

where the integration is over the manifold of p-subspaces F contained in E with re-
spect to the only probability Haar measure νF which is invariant under all GL(Λ)-
transformations preserving E. Clearly the operator Rpq is GL(Λ)-equivariant.

16.1. Theorem ([38]). If p + q = n then Rpq : C
∞(GrVq ) −→ C∞(GrVp ) is an

isomorphism.

We immediately get

16.2. Corollary. If p + q = n then the representations of GLn(O) in C∞(GrVp )

and in C∞(GrVq ) are isomorphic.

2 The goal of this paragraph is to explicitly describe the operator D from Section
8, paragraph 4. For any linear subspace M ⊂ V let us denote by µM the only
Lebesgue measure on M whose value on M ∩Λ is equal to 1. In particular µV is
the Lebesgue measure on V such that µ(Λ) = 1. Let us denote by µM the only
Lebesgue measure on V/M whose value on Λ/(M ∩ Λ) ⊂ V/M is equal to 1.

This induces a GL(Λ)-invariant trivialization of the bundle LV
i . The GL(Λ)-

invariant Haar probability measure on Grassmannians induces GL(Λ)-invariant
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trivialization of the line bundle of densities. Hence we get GL(Λ)-invariant trivi-
alization of the line bundles MV

n−i. Under these identifications the operator D is
an operator on functions

Di : C
∞(GrVn−i) −→ C∞(GrVi ),(16.1)

where we put subscript i in Di for convenience. Clearly Di commutes with GL(Λ).
To describe Di more explicitly let us introduce a notation.
Let M,N ⊂ V be linear subspaces of complementary dimension. Let us define

s(M,N) := µV ((M ∩ Λ) + (N ∩ Λ)).(16.2)

Clearly

0 ≤ s(M,N) ≤ 1.

It is easy to see that

s(M,N) = µM (N ∩ Λ) = µN (M ∩ Λ).(16.3)

Also obviously for any T ∈ GL(Λ) one has

s(TM, TN) = s(M,N).(16.4)

The next claim easily follows by unwinding the definitions.

16.3. Claim. The operator Di from (16.1) is equal to

(Dif)(M) =

∫
GrVn−i

s(M,N)f(N)dµn−i,Haar(N),

where µn−i,Haar is the GL(Λ)-invariant Haar probability measure on GrVn−i.

3 Consider the Hermitian product of functions on Grassmannians using the Haar
measures on them. Using the symmentry in the definition of s(M,N) we easily
have the following adjointness property

16.4. Claim. For any f ∈ C∞(GrVn−i), g ∈ C∞(GrVi ) one has

(Dif, g) = (f,Dn−ig).

Proof. This immediately follows from the definition (16.2) of s(M,N) which is
clearly symmetric with respect to M and N . □

4 Below in Section 17 we will need the following

16.5. Proposition. One has

Ker(Dn−i ◦Ri,n−i) = Ker(Di),

where all the operators are considered between spaces of C∞-smooth functions on
appropriate Grassmannians.

Proof. Claim 16.4 and the discussion of representations of GLn(O) in the space
of functions on Grassmannians (see Section 7) imply that

Ker(Di) = (ImDn−i)
⊥,

and hence

C∞(GrVn−i) = Ker(Di)⊕ Im(Dn−i).
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It follows that Di maps Im(Dn−i) isomorphically to Im(Di). By Corollary 16.2
C∞(GrVi ) is isomorphic to C∞(GrVn−i) as GLn(O)-modules. The last two facts

and the multiplicity freeness of C∞(GrVp ) as GLn(O)-module (see Section 7,
paragraph 2) imply that Ker(Di) ' Ker(Dn−i) as GLn(O)-modules. This and
Theorem 16.1 imply that Ker(Dn−i ◦Ri,n−i) = Ker(Di). □

17. Hard Lefschetz theorem

1 Let V be a finite dimensional vector space over a non-Archimedean local field F.
Let us fix a lattice Λ ⊂ V . Let GL(Λ) denote the subgroup of GL(V ) consisting
of such transformations T such that T (Λ) = Λ. Thus GL(Λ) ' GLn(O).

Let us denote by V1 ∈ V al∞1 (V ) the GL(Λ)-invariant non-zero valuation from
Section 15. The main result of this section is

17.1. Theorem. Let 0 ≤ i < n/2. The operator of multiplication by V n−2i
1

V al∞i (V ) −→ V al∞n−i(V )

is an isomorphism of vector spaces.

2 The proof of the last theorem occupies the rest of this section. Let φ ∈ V al∞i (V )
take the form

φ(E) =

∫
GrVn−i

p∗E,F (f(F )) for all E ∈ Gri(V ),(17.1)

where f ∈ C∞(GrVn−i,MV
n−i), and pE,F : E −→ V/F is the natural map.

Let k ≤ n − i. By Proposition 15.3 V k
1 6= 0 and is clearly GL(Λ)-invariant.

Hence it can be presented as

V k
1 (E) =

∫
GrVn−k

p∗E,L(g(L)),

where g ∈ C∞(GrVn−k,MV
n−k) is GL(Λ)-invariant.

It will be helpful to make some identifications induced by the lattice Λ ⊂ V .
The choice of Λ induces a probability Haar measure µp,Haar on each Grassmannian

GrVp and hence a trivialization of the linear bundle of densities. It also induces

trivialization of the line bundles MV
p ,LV

q as follows. By the definition, the fiber

of MV
p over a subspace H ∈ GrVp is the space of Lebesgue measures D(V/H).

Let us choose the (only) Lebesgue measure µH on V/H such that its value on
the lattice Λ/(Λ ∩H) ⊂ V/H is equal to 1. Then the sections f, g get identified
with continuous functions on appropriate Grassmannians which will be denoted
by f̂ , ĝ.

Similarly we trivialize the line bundle LV
q over GrVq by choosing in each fiber

Lq|G the Lebesgue measure µG on G which is equal to 1 on the lattice Λ∩G ⊂ G.
For a linear subspace E ⊂ V let us denote by volE the Lebesgue measure on

E such that volE(E ∩ Λ) = 1.

17.2. Lemma. Assume that a valuation φ is given by (17.1). Then one has

φ · V k
1 = cn,i,k(Di+k ◦Rn−i−k,n−i)(f̂),

where cn,i,k > 0 is a constant.
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Proof. By (15.1) we have for any E ∈ GrVi+k

(φ · V k
1 )(E) =

(∫
F∈GrVn−i

∫
L∈GrVn−k

((pF × pL)
∗(f ⊠ g)) (E)

)
volE ,(17.2)

where pF : V −→ V/F and pL : V −→ V/L are the natural maps, and here we
denote by pF × pL the obvious map V −→ V/F × V/L (this is different from
our previous convention according to which it would be the map V × V −→
V/F × V/L).

Let us rewrite the integrand in the right hand side of (17.2) in terms of f̂ , ĝ.
We can factorize uniquely the map pF × pL : V −→ V/F × V/L as

V
pF∩L−→ V/(F ∩ L) pF×pL−→ V/F × V/L.

The pairs (F,L) ∈ GrVn−i ×GrVn−k which are transversal to each other form an
open subset of full measure. Hence below we will consider only pair of transversal
subspaces. In this case the map

pF × pL : V/(F ∩ L) −→ V/F × V/L

is an isomorphism.
With the above identifications we have

((pF × pL)
∗(f ⊠ g)) (E) =

f̂(F ) · (µF ⊠ µL)((pF × pL)(Λ ∩ E)) · volE =

f̂(F ) · (µF ⊠ µL)((pF × pL)(Λ ∩ E))

(µF ⊠ µL)((pF × pL)(Λ))
[(µF ⊠ µL)((pF × pL)(Λ))] · volE =

f̂(F ) · µF∩L(pF∩L(Λ ∩ E))

µF∩L(pF∩L(Λ))
[(µF ⊠ µL)((pF × pL)(Λ))] · volE =

f̂(F ) · µF∩L(pF∩L(Λ ∩ E)) [(µF ⊠ µL)((pF × pL)(Λ))] · volE ,

where the third equality follows from the fact that linear isomorphisms (pF × pL
in this case) preserve the ratio of Lebesgue measures of sets; the last equality
follows from the definition of µF∩L. To abbreviate, let us denote

c(F,L) := (µF ⊠ µL)((pF × pL)(Λ)),(17.3)

s(F ∩ L,E) := µF∩L(pF∩L(Λ ∩ E)).(17.4)

Clearly

0 ≤ c(F,L), s(F ∩ L,E) ≤ 1

and c(F,L) > 0 if F and L are transversal. Also obviously s(F ∩ L,E) depends
only on F ∩ L and not on F and L separately.

Let us consider the compact metrizable topological space

W := {(F,L,W ) ∈ GrVn−i ×GrVn−k ×GrVn−i−k| W ⊂ F ∩ L}.

17.3. Claim. W has a structure of an analytic manifold (see Section 6) such
that the natural projections W −→ GrVn−i, Gr

V
n−k, Gr

V
n−i−k are analytic, and the

natural action GL(V )×W −→ W is an analytic map.
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Proof. Consider the partial flag manifolds

Z1 = {(F,W ) ∈ GrVn−i ×GrVn−i−k|W ⊂ F},
Z2 := {(L,W ) ∈ GrVn−k ×GrVn−i−k|W ⊂ L}.

Z1, Z2 are analytic manifolds by Section 6, paragraph 5. We have the natural
analytic map

T : Z1 × Z2 −→ (GrVn−i−k)
2

given by ((F,W1), (L,W2))
T7→ (W1,W2). Its differential is onto at every point.

Let ∆ ⊂ (GrVn−i−k)
2 be the diagonal submanifold. The implicit function theorem

(see Section 6, paragraph 3) implies that W = T−1(∆) is an analytic submanifold
of Z1 × Z2. The claimed properties of W follow easily. □

Let us continue proving Lemma 17.2. Clearly if (F,L,W ) ∈ W and if F,L
are transversal then W = F ∩ L. Hence the natural map W −→ GrVn−i ×GrVn−k
forgetting W is an isomorphism between open subsets of full measure where E
and F are transversal.

Let m be the push-forward under the inverse map of the product of the Haar
probability measures (with respect to the natural action of GL(Λ)) on GrVn−i and

GrVn−k with subsequent extension by 0 to the whole W. Clearly m is a GL(Λ)-
invariant probability measure whose value on any open subset of W is positive
(the action of GL(Λ) is diagonal). Then we can rewrite

(φ · V k
1 )(E) =

∫
(F,L,W )∈W

f̂(F )c(F,L)s(W,E)dm

Let us consider the analytic manifold

X := {(F,W ) ∈ GrVn−i ×GrVn−i−k| W ⊂ F}
and the natural GL(Λ)-equivariant map τ : W −→ X given by τ(F,L,W ) =
(F,W ), where GL(Λ) acts diagonally. Let m̃ := τ∗(c ·m) denote the push-forward
of the measure c ·m. Clearly m̃ is GL(Λ)-invariant and positive (Haar) measure
on the GL(Λ)-homogeneous space X . Then

(φ · V k
1 )(E) =

(∫
(F,W )∈X

f̂(F )s(W,E)dm̃

)
volE =

cn,i,k

(∫
W∈GrVn−i−k

dWs(W,E)

∫
F⊃W

dF f̂(F )

)
volE ,

where cn,i,k > 0 is a constant, the inner integral is taken with respect to the
set of all subspaces F containing W which can be identified with the Grassman-

nian Gr
V/W
k . The measures dF, dW on the corresponding Grassmannians are the

GL(Λ)-invariant probability Haar measures.

The inner integral
∫
F⊃W dF f̂(F ) is the Radon transform (Rn−i−k,n−if̂)(W ).

Thus we get in this notation

(φ · V k
1 )(E) = cn,i,k

(∫
W∈GrVn−i−k

(Rn−i−k,n−if̂)(W ) · s(W,E)dW

)
volE .(17.5)
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By Claim 16.3 the last expression is equal to cn,i,k(Di+k(Rn−i−k,n−if̂))(E) where
cn,i,k > 0. Lemma 17.2 is proven.
Let us finish the proof of Theorem 17.1. Let us assume now that i < n/2. Let
k = n− 2i. Choice of lattice Λ ⊂ V induced a trivialization of the line bundle Li

over GrVi . Indeed recall that the fiber of Li over E ∈ Li is Li|E = D(E). But
D(E) = C · volE . Hence we will identify in this paragraph the space V al∞i (V )
with a subspace of locally constant C-valued functions on GrVi .

Let φ ∈ V al∞i (V ). By Lemma 17.2 we have

φ · V n−2i
1 = cn,i(Dn−i ◦Ri,n−i)(f̂), cn,i > 0.

By the definition, V al∞n−i(V ) = Im(Dn−i). But since Ri,n−i : C
∞(GrVn−i) −→

C∞(GrVi ) is an isomorphism by Theorem 16.1, it follows that Im(Dn−i◦Ri,n−i) =

Im(Dn−i) = V al∞n−i(V ). Hence the operator of multiplication by V n−2i
1 is onto

on smooth valuations.
It remains to show that the later operator is injective on smooth valuations.

Let us assume that

φ · V n−2i
1 = 0,(17.6)

and let φ = Di(f̂). It suffices to show that f̂ ∈ Ker(Di).

Assumption (17.6) implies that f̂ ∈ Ker(Dn−i ◦ Ri,n−i). But by Proposition
16.5 the latter kernel is equal to Ker(Di). Theorem is proved. □

18. Fourier transform commutes with exterior product

1 In this section we fix a non-Archimedean local field. All vector spaces X,Y, Z, ...
will be over this field. The main result if this section is

18.1.Theorem. Let X,Y be finite dimensional vector spaces. Let φ ∈ V al(X), ψ ∈
V al∞(Y ). Then

F(φ⊠ ψ) = F(φ)⊠ F(ψ).

18.2. Remark. For convex valuations an analogue of this result was conjectured
by the author in [8] and proved recently by Faifman and Wannerer [26].

We will need two lemmas to prove Theorem 18.1.
2 Let X and Y = X ⊕ Z be finite dimensional vector spaces over the given non-

Archimedean local field. Fix a positive Lebesgue measure volZ ∈ D(Z). Let
vol−1

Z ∈ D(Z)∗ = D(Z∨) be the corresponding Lebesgue measure on Z∨ as
defined in Lemma 5.1.

18.3. Lemma. Let F : X ↪→ X ⊕ Z be the obvious imbedding given by F (x) =
(x, 0). Let φ0 ∈ V al(X), µ ∈ D(X)∗. Then

F∗(φ0 ⊗ µ) = (φ0 ⊠ volZ)⊗ (µ⊗ vol−1
Z ).

Proof. We may assume that µ = vol−1
X , where volX is a non-vanishing Lebesgue

measure on X. By 12.3 we have

φ0 ⊠ volZ = (F∗ ⊗ IdD(X⊕Z))((φ0 ⊗ vol−1
X )⊗ (volX ⊗ volZ)) =

F∗φ⊗ (volX ⊗ volZ).
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This is equivalent to the required equality. □
3

18.4. Lemma. Let a vector space X be a direct sum X = Z⊕Z1. Let p : X −→ Z
be the obvious projection. Let µZ ∈ D(Z). Then

F(p∗µZ) = (χZ∨ ⊠ vol−1
Z1

)⊗ (µZ ⊗ volZ1),

where volZ1 is an arbitrary non-vanishing Lebesgue measure on Z1, and vol
−1
Z1

∈
D(Z∨

1 ) is the inverse Lebesque measure on Z∨
1 defined in Lemma 5.1.

Proof. We have

F(p∗µZ) = p∨∗ (FµZ)
(10.5)
=

p∨∗ (χZ∨ ⊗ µZ)
Lemma 18.3

=

(χZ∨ ⊠ vol−1
Z1

)⊗ (µZ ⊗ volZ1).

□
4 Let us prove a special case of Theorem 18.1.

18.5. Lemma. Let µX ∈ D(X), ψ ∈ V al(Y ). Then

F(µX ⊠ ψ) = F(µX)⊠ F(ψ).

Proof. Since both sides are linear and continuous with respect to ψ ∈ V al(Y ),
we may and will assume that

ψ = p∗µM ,

where Y =M ⊕L, p : Y −→M is the obvious projection, µM ∈ D(M). Then we
have

F(µX ⊠ p∗µM )
Lemma 12.1

= F((IdX × p)∗(µX ⊠ µM )) =

(IdX∨ × p∨)∗(F(µX ⊠ µM ))
(10.5)
=

(IdX∨ × p∨)∗(χX∨⊕M∨ ⊗ (µX ⊠ µM )).

By Lemma 18.3 we can continue

F(µX ⊠ p∗µM ) = (χX∨⊕M∨ ⊗ vol−1
L )⊗ ((µX ⊠ µM )⊗ volL).(18.1)

One the other hand we have

F(µX)⊠ F(p∗µM )
(10.5)
=

(χX∨ ⊗ µX)⊠ F(p∗µM )
Lemma18.4

=

(χX∨ ⊗ µX)⊠
(
(χM∨ ⊠ vol−1

L )⊗ (µM ⊗ volL)
)
=

(χX∨ ⊠ χM∨ ⊠ vol−1
L )⊗ (µX ⊗ µM ⊗ volL)

Prop. 12.6
=

(χX∨⊕M∨ ⊗ vol−1
L )⊗ ((µX ⊠ µM )⊗ volL)

(18.1)
=

F(µX ⊠ p∗µM ).

□
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5 Proof of Theorem 18.1. It suffices to assume that φ = p∗Mµ where pM : X −→
X/M, µ ∈ D(X/M). Since ψ is smooth, it can be presented in the form ψ =∫
N∈GrYn−j

p∗Nν(N), where pN : Y −→ Y/N is the quotient map. Then we have

F(φ⊠ ψ) = F(p∗Mµ⊠
∫
GrYn−j

p∗Nν(N))
Lemma 12.1

=

F

(
(pM × IdY )

∗(µ⊠
∫
GrYn−j

p∗Nν(N))

)
=∫

GrYn−j

F ((pM × IdY )
∗(µ⊠ p∗Nν(N)))

Lemma 12.1
=∫

GrYn−j

F (((pM × IdY )
∗ ◦ (IdX × pN )∗) (µ⊠ ν(N)))

Thm 9.1(2)
=∫

GrYn−j

F ((pM × pN )∗(µ⊠ ν(N))) =∫
GrYn−j

(p∨M × p∨N )∗(F(µ⊠ ν(M)))
Lemma 18.5

=∫
GrYn−j

(p∨M × p∨N )∗(F(µ)⊠ F(ν(N)))
(10.5)
=∫

GrYn−j

(p∨M × p∨N )∗
(
(χ(X/M)∨ ⊗ µ)⊠ (χ(Y/N)∨ ⊗ ν(N))

) Prop. 12.6
=

Let us choose splittings

X =M ⊕M1, Y = N ⊕N1.

Then by Lemma 18.3 the expression under the integral in the last expression is
equal to:

(χM∨
1 ×N∨

1
⊠ vol−1

M×N )⊗ (µ⊗ ν(N))⊗ volM×N
Prop. 12.6

=

(χM∨
1
⊠ vol−1

M )⊠ (χN∨
1
⊠ vol−1

N )⊗ (µ⊗ volM )⊗ (ν(N)⊗ volN )
Lemma 18.4

=

Fφ⊠
(
(χN∨

1
⊠ vol−1

N )⊗ (ν(N)⊗ volN )
)
Lemma 18.4

=

F(φ)⊠ F(p∗Nν(N)).

Hence after integrating we get

F(φ⊠ ψ) =

∫
N∈GrYn−j

F(φ)⊠ F(p∗Nν(N)) = F(φ)⊠ F(ψ).

□
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19. Convolution on smooth valuations

1 The goal of this section is to define a convolution on valuations and prove its
basic properties. First not that if

φ ∈ V al∞(X)⊗D(X)∗, ψ ∈ V al∞(Y )⊗D(Y )∗

then φ⊠ψ is well defined as an element of V al(X ×Y )⊗D(X ×Y )∗ = V al(X ×
Y )⊗D(X)∗ ⊗D(Y )∗.

Let a : V × V −→ V be the addition map, i.e. a(x, y) = x + y. Let us define
the convolution

∗ : (V al∞(V )⊗D(V )∗)× (V al∞(V )⊗D(V )∗) −→ V al∞(V )⊗D(V )∗

by

φ ∗ ψ := a∗(φ⊠ ψ).(19.1)

19.1. Proposition. Convolution of smooth valuations is smooth

Proof. Indeed the convolution can be considered as a linear map

∗ : (V al∞(V )⊗D(V )∗)⊗ (V al∞(V )⊗D(V )∗) −→ V al∞(V )⊗D(V )∗.

Evidently is commutes with the natural action of the group GL(V ). Hence smooth
vectors are mapped into smooth ones. □

2

19.2. Proposition. Let φ, ψ ∈ V al∞(V ). Then

Fφ ∗ Fψ = F(φ · ψ).
Proof. Let a : V ∨ × V ∨ −→ V ∨ denote the addition map. Then the dual map

a∨ : V −→ V × V

is the diagonal map, i.e. a(v) = (v, v). Then by definition of the convolution,
push-forward, and the product we have

Fφ ∗ Fψ = a∗(Fφ⊠ Fψ) Thm 18.1
= a∗(F(φ⊠ ψ)) = F

(
(a∨)∗(φ⊠ ψ)

)
=

F(φ · ψ).
□

3 Let volV ∈ D(V ) be a non-zero Lebesgue measure on V . We denote by vol−1
V ∈

D(V )∗ the element of the dual space of D(V ) whose value on volV is equal to 1.
Note that volV ⊗ vol−1

V ∈ D(V )⊗D(V )∗ is independent of a choice of volV .
Denote n := dimV .

19.3. Theorem. 1) V al∞(V ) ⊗ D(V )∗ equipped with the convolution is a com-
mutative associative algebra with the unit element volV ⊗ vol−1

V .
2)

(V al∞n−i(V )⊗D(V )∗) ∗ (V al∞n−j(V )⊗D(V )∗) ⊂ V al∞n−i−j(V )⊗D(V )∗.

3) The Poincaré duality is satisfied: the bilinear map

V al∞i (V )⊗D(V )∗ × V al∞n−i(V )⊗D(V )∗ −→ V al0(V )⊗D(V )∗ = D(V )∗
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given by (φ, ψ) 7→ φ ∗ ψ is a perfect pairing, i.e. for any for non-zero φ ∈
V al∞i (V )⊗D(V )∗ there is φ ∈ V al∞n−i(V )⊗D(V )∗ such that φ ∗ ψ 6= 0.
4) The hard Lefschetz type result is true: Let us fix a lattice Λ ⊂ V . This
induces an isomorphism D(V )∗ ' C. Let Vn−1 ∈ V aln−1(V ) be the only (up to
a proportionality) GL(Λ)-invariant element. Let n/2 < i ≤ n. Then the linear
map

V al∞i (V )⊗D(V )∗ −→ V al∞n−i ⊗D(V )∗

given by φ 7→ φ ∗ Vn−1 ∗ · · · ∗ Vn−1︸ ︷︷ ︸
2i−n

is an isomorphism.

Proof. Immediately follows from Proposition 19.2, the corresponding properties
of the product, and the obvious fact that F(V1) is proportional to Vn−1 (after the
appropriate identifications induced by the choice of lattice Λ ⊂ V are applied).

□

20. Valuations invariant under a subgroup

1 Convex valuations invariant under various subgroups of GLn(R) have a number
of interesting properties and found applications in integral geometry, see e.g. [3],
[16], [17], [21], [27]. For a compact subgroup G ⊂ GLn(R) the author showed [1]
that the space of G-invariant convex valuations is finite dimensional if and only if
G acts transitively on the unit sphere, and in this case all G-invariant valuations
are smooth [4]. Furthermore in this case the algebra V alG(Rn) of G-invariant
valuations equipped either with product or convolution satisfies Poincaré duality,
hard Lefschetz theorem, and Hodge-Riemann bilinear relations inherited from
V al∞(Rn).

It is well known that any compact subgroup G ⊂ GLn(F) is conjugated to a
subgroup of GLn(O). In particular any maximal compact subgroup of GLn(F) is
conjugated to GLn(O).

We will see below that in the non-Archimedean case there are a lot of compact
subgroups G ⊂ GL(V ) such that the subspace of G-invariant valuations is finite
dimensional and all such valuations are smooth.

2 Let V be an n-dimensional vector space over a non-Archimedean local field F. The
group GL(V ) has many subgroups which are simultaneously open and compact,
more precisely such subgroups form a basis of neighborhoods of In ∈ GL(V ).

20.1. Proposition. Let G ⊂ GL(V ) be an open and compact subgroup. Then the
space V alG(V ) of G-invariant valuations is finite dimensional and all its elements
are smooth, i.e.

V alG(V ) ⊂ V al∞(V ).

Proof. Orbits of any open subgroup of GL(V ) on GrVi are open. Indeed the
map GL(V ) −→ GrVi given by g 7→ g(E0) is a submersion for any E0 ∈ GrVi .
In particular G-orbits are open. Since GrVi is compact and different orbits are
disjoint, there are finitely many of them. By definition of a smooth valuation

V alG(V ) ⊂ V al∞(V ).

□
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3 Obviously

V alG(V ) = ⊕n
i=0V al

G
i (V ).

It is easy to see that (V alG(V ), ·) is a finite dimensional graded subalgebra of
(V al∞(V ), ·) satisfying Poincaré duality and hard Lefschetz theorem (with re-
spect to V1 ∈ V alG1 (V ) which is invariant under a maximal compact subgroup
containing G).

Similarly (V alG(V ) ⊗ D(V ), ∗) is a finite dimensional graded subalgebra of
(V al∞(V )⊗D(V ), ∗) satisfying Poincaré duality and hard Lefschetz (with respect
to Vn−1 which is invariant under a maximal compact subgroup containing G).
(Note that the compatibility with the grading is given by Theorem 19.3(2).)

The Fourier transform establishes an isomorphism of algebras

F : (V alG(V ), ·)−̃→(V alG(V ∨)⊗D(V ), ∗).

References

[1] S. Alesker, On P. McMullen’s conjecture on translation invariant valuations, Adv. Math. 155
(2000), 239–263.

[2] S. Alesker, Description of translation invariant valuations on convex sets with solution of P.
McMullen’s conjecture, Geom. Funct. Anal. 11 (2001), 244–272.

[3] S. Alesker, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily
invariant valuations, J. Differential Geom. 63 (2003), 63–95.

[4] S. Alesker, The multiplicative structure on continuous polynomial valuations, Geom. Funct.
Anal. 14 (2004), 1–26.

[5] S. Alesker, Hard Lefschetz theorem for valuations and related questions of integral geometry,
Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1850, Springer, Berlin,
2004, pp. 9–20.

[6] S. Alesker, Theory of valuations on manifolds: a survey. Geom, Funct. Anal. 17 (2007), 1321–
1341.

[7] S. Alesker, A Fourier-type transform on translation-invariant valuations on convex sets, Israel
J. Math. 181 (2011), 189–294.

[8] S. Alesker, New structures on valuations and applications, Integral geometry and valuations,
Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2014, pp. 1–45.
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[15] A. Bernig and L. Bröcker, Valuations on manifolds and Rumin cohomology, J. Differential
Geom. 75 (2007), 433–457.

[16] A. Bernig, Algebraic integral geometry, Global Differential Geometry, Springer Proc. Math.,
17, Springer, Heidelberg, 2012, pp. 107–145.

[17] A. Bernig and D. Faifman, Valuation theory of indefinite orthogonal groups, J. Funct. Anal.
273 (2017), 2167–2247.



NON-ARCHIMEDEAN ANALOGUE OF THE SPACE OF VALUATIONS ON CONVEX SETS1131

[18] A. Bernig, D. Faifman and G. Solanes, Uniqueness of curvature measures in pseudo-
Riemannian geometry, J. Geom. Anal. 31 (2021), 11819–11848.

[19] A. Bernig, D. Faifman and G. Solanes, Curvature measures of pseudo-Riemannian manifolds,
J. Reine Angew. Math. 788 (2022), 77–127.

[20] A. Bernig, J. Fu and H. G. Joseph, Convolution of convex valuations, Geom. Dedicata 123
(2006), 153–169.

[21] A. Bernig, J. Fu and H. G. Joseph, Hermitian integral geometry, Ann. of Math. (2) 173 (2011),
907–945.

[22] A. Bernig, J. Fu, H. G. Joseph and G. Solanes, Integral geometry of complex space forms,
Geom. Funct. Anal. 24 (2014), 403–492.
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[35] J. Kotrbatý and T. Wannerer, On mixed Hodge-Riemann relations for translation-invariant

valuations and Aleksandrov-Fenchel inequalities, Commun. Contemp. Math. 24 (2022): Paper
No. 2150049, 24 pp.
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