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∂Ω of class C1, ν is the unit outer normal to the boundary and σ is a positive real
value. The notation |·| stands for the norm in R. For a later use we denote

(1.5) U = {(u, y) ∈ U ; (u, y) satisfies (1.2), (1.3)},
so that we deal with minimizing J(u, y) for all pairs (u, y) ∈ U . Since

(1.6) β(r) = ∂j(r) for all r ∈ RN

it follows that β : RN → RN is maximal monotone (and possibly multivalued), that
is,

(1.7) (η − η) · (r − r) ≥ 0, for any r, r ∈ RN , where η ∈ β(r), η ∈ β(r),

and

(1.8) R(I + β) = RN

where I is the identity operator and R is the range. Here, r ·ω is the scalar product
in RN .

It should be remarked that the state equation (1.2) may be viewed as an elliptic
equation in divergence form with a discontinuous diffusion term β, in which the
jumps have been filled in, actually providing the multivalued function β. This is the
reason for which we see the equation as a singular one.

On the other hand, the state equation (1.2) may have not a solution for each u,
such that the optimal control problem can be considered as being singular in the
sense of Lions (see [7]).

By j∗ : RN → R we denote the conjugate of j defined by

(1.9) j∗(ω) = sup
r∈RN

(r · ω − j(r)),

which, in virtue of (1.1), is convex and continuous. Without loss of generality we
may assume that

(1.10) j(r) ≥ 0 for all r ∈ R, j(0) = 0,

because one can redefine j(r) as j(r)− j(0)− η · r, with η ∈ β(0). So, by (1.10) we
deduce that

(1.11) j∗(ω) ≥ 0 for all ω ∈ RN .

The functions j and j∗ satisfy the Legendre-Fenchel relations,

(1.12) j(r) + j∗(ω)− r · ω ≥ 0 for all r, ω ∈ RN ,

(1.13) j(r) + j∗(ω)− r · ω = 0 if and only if ω ∈ ∂j(r).

Also, we recall that

(1.14) ∂j∗(ω) = (∂j)−1(ω) for all ω ∈ RN ,

(see e.g., [4], p. 8).
This kind of minimization problem is relevant in several problems occurring in

applied sciences and physics, since particular β can model various physical phenom-
ena. Steady state nonlinear diffusion processes in fluids, heat transfer or population
dynamics can be controlled by manipulating sources u in order to obtain certain
concentrations, temperatures or densities y. Besides stationary diffusion processes,
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we refer to phenomena related to the equilibrium of continuous media, material sci-
ence, strength of materials. A domain where this problem has a particular relevance
is the image denoising variational technique. In the latter case, yo represents the
blurred image and y is the denoised image obtained by the action of the control u.
The less p is, the better denoising result is obtained, because a smaller value of p
serves to the aim of a better image edges preserving of (see e.g., [2]). This justifies
the interest in problem (P ) for p > 1, but close to 1. The special case p = 1 which
corresponds to a bounded variation flow technique in image denoising is ruled out
by the hypothesis (1.1). This case was investigated in [3], but the results obtained
in the current paper cannot be deduced from those exposed in [3].

The paper is structured as follows. After providing some properties of the func-
tions j, j∗ and of the graph β, the proof of a least a solution to problem (P ) is given
in Section 2.2. The calculus of the first order conditions of optimality directly in
problem (P ), and consequently a gradient-type algorithm for the numerical compu-
tation of the optimality conditions, would formally involve the directional derivative
of β, which in our case does not exist. A possibility to avoid this inconvenient is
to work instead with the subdifferentials of j and j∗. This suggests to introduce
an approximating control problem (Pε) involving these functions, in Section 2.3. A
result guaranteeing the convergence of the approximating problem to the exact one
is proved further and the computation of the approximating optimality conditions
in Section 2.4 will end the theoretical results of the paper. Finally, a gradient-type
algorithm to compute the the approximating optimality conditions is sketched.

2. Main results

2.1. Preliminaries. Let (u, y) ∈ U. Then, y ∈W 1,p(Ω) since the norm ∥∇y∥Lp(Ω)+

∥y∥L2(Ω) is equivalent with the usual norm ∥y∥W 1,p(Ω) for all p > 1 (see [6], p. 286,

Remark 15). By the Rellich–Kondrachov embedding inequalities ([6], p. 285) we
have

W 1,p(Ω) ⊂ Lq(Ω), q ∈ [1, q∗), q∗ =
pN

N − p
, for N > p(2.1)

W 1,p(Ω) ⊂ Lq(Ω), q ∈ [p,+∞), for N = p

W 1,p(Ω) ⊂ C(Ω), for N < p,

with compact injections. We define q′ in the following way

(2.2) q′ = 2 if q ≥ 2 and q′ =

(
1− 1

q

)−1

if 1 < q < 2

and this choice will be explained later.

Lemma 2.1. Let us assume (1.1) and (1.10). Then we have

(2.3) C3 |ω|p
′

N + C0
3 ≤ j∗(ω) ≤ C4 |ω|p

′

N + C0
4 , for all ω ∈ RN , C3 > 0,

(2.4) |η|N ≤ C5 |r|p−1
N + C0

5 , η ∈ ∂j(r), for all r ∈ RN ,

(2.5) |χ|N ≤ C6 |ω|p
′−1

N + C0
6 , χ ∈ ∂j∗(ω) for all ω ∈ RN .
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Proof. We recall that j(r) ≤ C2 |r|pN + C0
2 and write

j∗(ω) ≥ r · ω − j(r), for any r ∈ RN .

We apply this relation for r = ρ |ω|
p′
p

N sign ω, and ω ̸= 0, with ρ a constant such that

0 < ρ < C2
− 1

p−1 . Here, sign ω = ω
|ω|N

for ω ̸= 0 and sign 0 = {ω ∈ RN ; |ω|N ≤ 1}.
We get

j∗(ω) ≥ ρ |ω|p
′

N − C2ρ
p |ω|p

′

N − C0
2 = ρ(1− ρp−1C2) |ω|p

′

N − C0
2

= C3 |ω|p
′

N + C0
3 , C3 > 0.

Similarly, we have for any ω ∈ RN ,

j∗(ω) = sup
r∈RN

(ω · r − j(r)) ≤ sup
r∈RN

(ω · r − C1 |r|pN − C0
1 )

=
1

C
1

p−1

1

|ω|p
′

N

(
1

p
1

p−1

− 1

p
p

p−1

)
− C0

1 = C4 |ω|p
′

N + C0
4 .

We took into account that the supremum is reached at |r|N = |ω|
1

p−1

N (pC1)
− 1

p−1 .
In order to prove (2.4), we write that

j(r)− j(θ) ≤ η · (r − θ), for any θ ∈ RN , η ∈ β(r)

and set θ = λ η
|η|N

. We get

j(r) + λ |η|N ≤ η · r + C2λ
p + C0

2 ,

whence

(2.6) λ |η|N ≤ |η|N |r|N + C2λ
p +

∣∣C0
2

∣∣+ ∣∣C1 |r|pN + C0
1

∣∣ .
Let |r|N > 1 and consider (2.6) for λ = 2 |r|N . It follows that

|η|N ≤ (C2 + C1) |r|p−1
N +

∣∣C0
2

∣∣+ ∣∣C0
1

∣∣
|r|N

≤ C5 |r|p−1
N + C0

5 .

If |r|N ≤ 1 we consider (2.6) for λ = 2. We get |η|N ≤ C1
5 . Finally, (2.5)

is deduced by applying the above arguments for j∗ and recalling that
∂j∗(ω) = β−1(ω). □

We introduce the space

(2.7) V = {z ∈ H1(Ω);

∫
Ω
z(x)dx = 0}

with the norm

(2.8) |||z||| = ∥∇z∥(L2(Ω))N ,

which is equivalent with the norm ∥z∥H1(Ω) (see [6], p. 286).

Now, let us consider the boundary value problem

−∆z = u in Ω,(2.9)

∇z · ν = 0 on ∂Ω,
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where u ∈ Lq′(Ω) and
∫
Ω u(x)dx = 0, q′ ≥ 2. One can easily see that (2.9) has a

unique solution z ∈ V, which satisfies the estimate

(2.10) c ∥z∥H1(Ω) ≤ |||z||| ≤ ∥u∥L2(Ω) .

2.2. Existence for problem (P ). Let y ∈ L2(Ω), such that ∇y ∈ (Lp(Ω))N. Then,

by Lemma 2.1, it follows that ξ ∈ (Lp′(Ω))N , if ξ(x) ∈ β(∇y(x)), a.e. x ∈ Ω.

Definition 2.2. Let q′ defined as in (2.2) and let u ∈ Lq′(Ω). We call a solution to
(1.2) a function y ∈ L2(Ω), such that ∇y ∈ (Lp(Ω))N , which satisfies

(2.11)

∫
Ω
ξ(x) · ∇ψ(x)dx =

∫
Ω
u(x)ψ(x)dx,

for all ψ ∈ L2(Ω) with ∇ψ ∈ (Lp(Ω))N , and some ξ(x) ∈ β(∇y(x)), a.e. x ∈ Ω.

It is obvious by Lemma 2.1 that ξ ∈ (Lp′(Ω))N and so the left-hand side in (2.11)
makes sense. Also, by (1.1) it follows that j(∇y) ∈ L1(Ω) and by (1.13) we get that
j∗(ξ) ∈ L1(Ω).

We note that ψ belonging to the spaces indicated in (2.11) is in fact in U, hence
it is also in Lq(Ω), with q defined in (2.1).

We explain now the motivation of the choice of q′. We have ψ ∈ Lq(Ω) and

u ∈ Lq′(Ω) so that the integral on the right-hand side in (2.11) makes sense if q′ is
the conjugate of q. However, in order to prove existence in (P ) it will be required
that u be necessarily in L2(Ω) (see the estimate (2.16) in the next theorem). This
is verified for q ≤ 2 when the conjugate q′ ≥ 2. But, if q > 2 it is not sufficient to
consider exactly its conjugate as exponent of u, and so we have to choose q′ ≥ 2.

Later, for simplicity, we shall not indicate the function arguments in the integrals.

Theorem 2.3. Let yo ∈ L2(Ω), q and q′ given in (2.1)-(2.2). Then, problem (P )
has at least a solution (u∗, y∗).

Proof. It is clear that d = inf
(u,y)∈U

J(u, y) exists and it is nonnegative because

J(u, y) ≥ 0. We take a minimizing sequence, {un, yn}n ∈ U , that is un ∈ Lq′(Ω),
yn ∈ L2(Ω), ∇yn ∈ (Lp(Ω))N , such that

−∇ · ξn = un in Ω,(2.12)

ξn · ν = 0 on ∂Ω,

where ξn(x) ∈ β(∇yn(x)) a.e. x ∈ Ω, and

(2.13)

∫
Ω
undx = 0.

The minimizing sequence satisfies for all n ≥ 1 the inequalities

(2.14) d ≤ J(un, yn) =

∫
Ω

(
|un(x)|q

′

q′
+
σ

2
(yn(x)− yo(x))

2

)
dx ≤ d+

1

n
,

and it is clear that {un}n≥1 and {yn}n≥1 lie in bounded subsets of Lq′(Ω) and L2(Ω),
respectively. In particular, un ∈ L2(Ω), since q′ ≥ 2.
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Since yn is a solution to (2.12) it also follows by Definition 2.2 that

ξn ∈ (Lp′(Ω))N , ξn ∈ β(∇yn) a.e., j(∇yn) ∈ L1(Ω), j∗(ξn) ∈ L1(Ω), while by (2.11)

(2.15)

∫
Ω
ξn · ∇ψdx =

∫
Ω
unψdx, for all ψ ∈ L2(Ω), with ∇ψ ∈ (Lp(Ω))N .

Thus, we can take ψ = yn in (2.15), getting

(2.16)

∫
Ω
ξn · ∇yndx =

∫
Ω
unyndx ≤ ∥un∥L2(Ω) ∥yn∥L2(Ω) ≤ C.

By C we denote constants independent of n. By (1.13) we can write

(2.17)

∫
Ω
(j(∇yn) + j∗(ξn)dx =

∫
Ω
ξn · ∇yndx ≤ C.

Using (2.17) and hypotheses (1.1) and (2.3), we obtain that {∇yn}n lies in a bounded

subset of (Lp(Ω))N and {ξn}n is in a bounded subset of (Lp′(Ω))N . Thus, we can
select a subsequence of {un, yn}n, denoted still by the subscript n, and get, as
n→ ∞, that

un → u∗ weakly in Lq′(Ω),

yn → y∗ weakly in L2(Ω),

∇yn → ∇y∗ weakly in (Lp(Ω))N ,

ξn → ξ∗ weakly in (Lp′(Ω))N ,

−∇ · ξn → ζ∗ weakly in Lq′(Ω).

Hence, (u∗, y∗) ∈ U . Since yn ∈W 1,p(Ω) we get by (2.1) that

yn → y∗ strongly in Lq(Ω),

and, therefore,

unyn → u∗y∗ weakly in L1(Ω),

∫
Ω
undx→

∫
Ω
u∗dx = 0.

Passing to the limit in (2.17) as n → ∞, we obtain on the basis of the lower
semicontinuity of convex integrands and positiveness of j and j∗ that

j(∇y∗) ∈ L1(Ω), j∗(ξ∗) ∈ L1(Ω).

We pass to the limit in (2.15) and get that∫
Ω
ξ∗ · ∇ψdx =

∫
Ω
u∗ψdx, for all ψ ∈ U,

which, in particular, is true also for ψ = y∗ ∈ U . This means that y∗ is a solution
in the sense of distributions (that is in the sense of Definition 2.2) to

−∇ · ξ∗ = u∗ in Ω,

ξ∗ · ν = 0 on ∂Ω,

and these equations are satisfied also a.e. because ξ∗ ∈ (Lp′(Ω))N . Going back to
(2.16), we see that

lim sup
n→∞

∫
Ω
ξn · ∇yndx =

∫
Ω
u∗y∗dx =

∫
Ω
ξ∗ · ∇y∗dx.
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It follows (see [4], p. 39) that ξ∗ ∈ β(∇y∗) a.e. on Ω, and so ζ∗ ∈ ∇ · β(∇y∗) a.e.
on Ω and ζ∗ ∈ Lq′(Ω). Thus, (u∗, y∗) ∈ U . Finally, we can pass to the limit in (2.14)
and obtain that J(u∗, y∗) = d, which proves that (P ) has at least a solution. □

We give next an equivalent result to Theorem 2.3.

Corollary 2.4. Under the hypotheses of Theorem 2.3, the minimization problem

(P̃ ) min
(u,y,z)∈Ũ

(∫
Ω

(
|u(x)|q

′

q′
+
σ

2
(y(x)− yo(x))

2

)
dx

)
,

where

(Ũ) Ũ = {(u, y, z); (u, y) ∈ U , z ∈ V, β(∇y(x)) ∋ ∇z(x) a.e. on Ω},
has at least a solution (u∗, y∗, z∗).

Proof. The proof is led on the basis of all arguments in Theorem 2.3. The minimizing
sequence should satisfy in addition β(∇yn) ∋ ∇zn a.e on Ω, where zn ∈ V turns
out to be the unique solution to

−∆zn = un in Ω,(2.18)

∇zn · ν = 0 on ∂Ω,

satisfying c ∥zn∥H1(Ω) ≤ ∥un∥L2(Ω) . Since, in Theorem 2.3, in particular, un → u∗

weakly in L2(Ω), then we get that zn → z∗ weakly in H1(Ω), as n → ∞. Writing
the weak form of (2.18) and passing to the limit we obtain that (u∗, z∗) satisfy (2.9).

Moreover,
∫
Ω zndx→

∫
Ω z

∗dx, and so (u∗, y∗, z∗) ∈ Ũ . □

2.3. The approximating problem. As we explained at the beginning, in order to
compute the optimality conditions in a rigorous way we shall consider the following
approximating control problem involving a differentiable cost functional,

(P̃ε)

min
(u,y,z)∈U1

{∫
Ω

(
|u|q

′

q′
+
σ

2
(y − yo)

2

)
dx

+
1

ε

∫
Ω
(j(∇y) + j∗(∇z)−∇y · ∇z)dx

}
where ε > 0 and

U1 =

{
(u, y, z); (u, y) ∈ U,

∫
Ω
udx = 0, z ∈ H1(Ω),(2.19)

j(∇y) ∈ L1(Ω), j∗(∇z) ∈ L1(Ω), ∇y · ∇z ∈ L1(Ω),

−∆z = u on Ω, ∇z · ν = 0 on ∂Ω,

∫
Ω
zdx = 0

}
.

This problem has also the main advantage of involving a linear state system instead
of that nonlinear in problem (P ). The motivation of the choice of the second integral
term in the cost functional relies on the Legendre-Fenchel relations. First, this term
is nonnegative due to (1.12) and secondly if this is (close to) 0, then it would imply

that ∇z ∈ β(∇y) a.e. Loosely speaking it means that (P̃ε) approximates (P ) in an
appropriate way. This will be rigorously proved in Theorem 2.6.
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Now, if (u, y, z) ∈ U1 we have

(2.20)

∫
Ω
∇y · ∇zdx =

∫
∂Ω
y∇z · νdσ −

∫
Ω
y∆zdx =

∫
Ω
uydx.

Therefore, problem (P̃ε) is equivalent with the following one

(Pε) min
(u,y,z)∈U1

Jε(u, y, z),

with

(2.21)

Jε(u, y, z) =

∫
Ω

(
|u|q

′

q′
+
σ

2
(y − yo)

2

)
dx

+
1

ε

∫
Ω
(j(∇y) + j∗(∇z)− uy)dx.

For each u ∈ L2(Ω), the function z ∈ V is the unique solution to (2.9), as explained
before.

Theorem 2.5. Let yo ∈ L2(Ω) and let q and q′ be as in (2.1), (2.2). Then, problem
(Pε) has at least a solution (u∗ε, y

∗
ε , z

∗
ε ).

Proof. The functional Jε(u, y, z) is nonnegative, because the second integral in (P̃ε)
is nonnegative by the first Legendre-Fenchel relation (1.12). Then, there exists the
infimum dε and taking a minimizing sequence {un, yn, zn}n we have

(2.22) dε ≤ Jε(un, yn, zn) ≤ dε +
1

n
, for n ≥ 1,

where un ∈ Lq′(Ω),
∫
Ω undx = 0, yn ∈ L2(Ω), ∇yn ∈ (Lp(Ω))N , zn ∈ H1(Ω),∫

Ω zndx = 0, j(∇yn) ∈ L1(Ω), j(∇zn) ∈ L1(Ω), ∇yn · ∇zn ∈ L1(Ω), and zn is the
solution to

−∆zn = un in Ω,(2.23)

∇zn · ν = 0 on ∂Ω.

Moreover, ∫
Ω

(
|un|q

′

q′
+
σ

2
(yn − yo)

2

)
dx ≤ Jε(un, yn, zn) ≤ dε + 1

and recalling that q′ ≥ 2 it follows that {un}n and {yn}n are bounded in Lq′(Ω)
and L2(Ω), respectively. Since the first integral in (Pε) is nonnegative we can write

1

ε

∫
Ω
(j(∇yn) + j∗(∇zn))dx ≤ 1

ε

∫
Ω
unyndx+ dε + 1(2.24)

≤ 1

ε
∥un∥L2(Ω) ∥yn∥L2(Ω) + dε + 1 ≤ Cε,
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with Cε independent of n. Hence we can select a subsequence n→ ∞, such that

un → u∗ε weakly in Lq′(Ω),

yn → y∗ε weakly in L2(Ω) and strongly in Lq(Ω),

∇yn → ∇y∗ε weakly in (Lp(Ω))N ,

unyn → u∗εy
∗
ε weakly in L1(Ω),∫

Ω undx →
∫
Ω u

∗
εdx = 0.

By (2.23) and (2.10) it follows that {zn}n is bounded in H1(Ω) and so

zn → z∗ε weakly in H1(Ω), and

∫
Ω
z∗εdx = 0.

Moreover, by (2.3) it follows that {∇zn}n is in a bounded subset of (Lp′(Ω))N and
so on a subsequence

∇zn → ∇z∗ε weakly in (Lp′(Ω))N .

By (2.23)

(2.25)

∫
Ω
zn · ∇ψdx =

∫
Ω
unψdx, for all ψ ∈ L2(Ω), with ∇ψ ∈ (Lp(Ω))N ,

we get at limit∫
Ω
z∗ε · ∇ψdx =

∫
Ω
u∗εψdx, for all ψ ∈ L2(Ω), with ∇ψ ∈ (Lp(Ω))N ,

which can be equivalently written in the sense of distributions as

−∆z∗ε = u∗ε in Ω,(2.26)

∇z∗ε · ν = 0 on ∂Ω.

Using (2.20) we can write∫
Ω
∇yn · ∇zndx =

∫
Ω
unyndx→

∫
Ω
u∗εy

∗
εdx =

∫
Ω
∇y∗ε · ∇z∗εdx.

By passing to the limit in (2.24) and (2.22) we obtain that j(∇y∗ε) and j∗(∇z∗ε )
are in L1(Ω), and that Jε(u

∗
ε, y

∗
ε , z

∗
ε ) = dε, respectively. Thus, we have proved that

(u∗ε, y
∗
ε , z

∗
ε ) ∈ U1 and that it is a solution for (Pε). □

Theorem 2.6. Let and q and q′ be as in (2.1), (2.2) and let (u∗ε, y
∗
ε , z

∗
ε ) be optimal

for problem (Pε). Then,

u∗ε → ũ weakly in Lq′(Ω),

y∗ε → ỹ weakly in L2(Ω) and strongly in Lq(Ω),

∇y∗ε → ∇ỹ weakly in (Lp(Ω))N ,

z∗ε → z̃ weakly in V.

Moreover, (ũ, ỹ, z̃) is optimal in (P̃ ) and (ũ, ỹ) is optimal in (P ).
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Proof. Let (u∗ε, y
∗
ε , z

∗
ε ) be optimal in (Pε), that is

Jε(u
∗
ε, y

∗
ε , z

∗
ε ) ≤ Jε(u, y, z) for all (y, y, z) ∈ U1.

Then, using (2.21), we write∫
Ω

(
|u∗ε|

q′

q′
+
σ

2
(y∗ε − yo)

2

)
dx+

1

ε

∫
Ω
(j(∇y∗ε) + j∗(∇z∗ε )− u∗εy

∗
ε)dx(2.27)

≤
∫
Ω

(
|u|q

′

q′
+
σ

2
(y − yo)

2

)
dx+

1

ε

∫
Ω
(j(∇y) + j∗(∇z)−∇y · ∇z)dx,

for all (u, y, z) ∈ U1. For the last term on the right-hand side, on the second line,
we have already used (2.20).

Let (u∗, y∗, z∗) be an optimal pair in (P̃ ), that is u∗ ∈ Lq′(Ω), y∗ ∈ L2(Ω), ∇y∗ ∈
(Lp(Ω))N , (u∗, y∗) satisfies (1.2) and

∫
Ωu

∗dx = 0. Also, ∇z∗ ∈ β(∇y∗) a.e. on Ω
and so z∗ ∈ V is the unique solution to (2.9) corresponding to u∗. Then, ∇z∗ ∈
(Lp′(Ω))N , j(∇y∗), j∗(∇z∗) ∈ L1(Ω). Let us set in (2.27) u = u∗, y = y∗, and
z = z∗. This triplet is in U1.

It follows that the last integral on the right-hand side in (2.27) vanishes due to
(2.20) and the remainder is bounded by a constant independent of ε,

(2.28)

∫
Ω

(
|u∗ε|

q′

q′
+
σ

2
(y∗ε − yo)

2

)
dx+

1

ε

∫
Ω
(j(∇y∗ε) + j∗(∇z∗ε )− u∗εy

∗
ε)dx

≤
∫
Ω

(
|u∗|q

′

q′
+
σ

2
(y∗ − yo)

2

)
dx.

This allows us to use similar arguments as in Theorem 2.5 to deduce that on a
subsequence {ε→ 0} we have

u∗ε → ũ weakly in Lq′(Ω),

y∗ε → ỹ weakly in L2(Ω) and strongly in Lq(Ω),

∇y∗ε → ∇ỹ weakly in (Lp(Ω))N ,

z∗ε → z̃ weakly in H1(Ω),

∇z∗ε → ∇z̃ weakly in (Lp′(Ω))N ,

u∗εy
∗
ε → ũỹ weakly in L1(Ω),∫

Ω u
∗
εdx →

∫
Ω
ũdx = 0,

∫
Ω
z∗εdx→

∫
Ω
z̃dx = 0,

and (ũ, z̃) satisfies (2.9). Moreover, by (2.28), the sequence

ζε =
1

ε

∫
Ω
(j(∇y∗ε) + j∗(∇z∗ε )− u∗εy

∗
ε)dx

is bounded by a constant, hence, using (2.20), we can write

0 ≤
∫
Ω
(j(∇y∗ε) + j∗(∇z∗ε )−∇y∗ε · ∇z∗ε )dx = εζε.
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By passing to the limit as ε→ 0 we get

0 ≤
∫
Ω
(j(∇ỹ) + j∗(∇z̃)− ũỹ)dx ≤ lim

ε→0

∫
Ω
(j(∇y∗ε) + j∗(∇z∗ε )− u∗εy

∗
ε)dx

= lim
ε→0

∫
Ω
(j(∇y∗ε) + j∗(∇z∗ε )−∇y∗ε · ∇z∗ε )dx = 0.

This implies that∫
Ω
(j(∇ỹ) + j∗(∇z̃)− ũỹ)dx =

∫
Ω
(j(∇ỹ) + j∗(∇z̃)−∇ỹ · ∇z̃)dx = 0.

Since the integrand in the last integral is nonnegative it follows that j(∇ỹ)+j∗(∇z̃)−
∇ỹ · ∇z̃ = 0 a.e. on Ω, leading to the conclusion that ∇z̃ ∈ β(∇ỹ) a.e. on Ω. The
equality of the two integrals above was based on (2.20) because by passing to the
limit in (2.9) written for (z∗ε , u

∗
ε) it follows that the limit z̃ is the solution to

−∆z̃ = ũ in Ω, ∇z̃ · ν = 0 on ∂Ω.

Hence, it turns out that (ũ, ỹ) satisfies (1.2) and (ũ, ỹ, z̃) ∈ U1. Returning to (2.28),∫
Ω

(
|u∗ε|

q′

q′
+
σ

2
(y∗ε − yo)

2

)
dx ≤ Jε(u

∗
ε, y

∗
ε , z

∗
ε ) ≤

∫
Ω

(
|u∗|q

′

q′
+
σ

2
(y∗ − yo)

2

)
dx

we pass to the limit as ε→ 0 and obtain∫
Ω

(
|ũ|q

′

q′
+
σ

2
(ỹ − yo)

2

)
dx ≤

∫
Ω

(
|u∗|q

′

q′
+
σ

2
(y∗ − yo)

2

)
dx,

which proves that (ũ, ỹ, z̃) is an optimal pair in (P̃ ). Since (ũ, ỹ) satisfies (1.2) too,
it follows that (ũ, ỹ) is optimal in (P ). □

2.4. Optimality conditions for the approximating problem.

Let (u∗ε, y
∗
ε , z

∗
ε ) ∈ U1 be an optimal pair in (Pε) and let λ be a real value. We

take v and Y as follows

(2.29) v ∈ Lq′(Ω),

∫
Ω
vdx = 0, Y ∈ L2(Ω), ∇Y ∈ (Lp(Ω))N ,

and define
uλε = u∗ε + λv, yλε = y∗ε + λY.

Then, problem

−∆zλε = uλε in Ω,

∇zλε · ν = 0 on ∂Ω

has a unique solution and we deduce that

Z = lim
λ→0

zλε − z∗ε
λ

weakly in H1(Ω)

is the unique solution to the problem

−∆Z = v in Ω,(2.30)

∇Z · ν = 0 on ∂Ω.
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Proposition 2.7. Let q′ ≥ 2. Let (u∗ε, y
∗
ε , z

∗
ε ) be an optimal pair for problem (Pε),

and assume that there exists χ∗
ε ∈ (L2(Ω))N , such that χ∗

ε ∈ β−1(∇z∗ε ) a.e. in Ω.
Then, there is a constant C∗

ε such that

(2.31) |u∗ε|
q′−2 u∗ε =

1

ε
y∗ε − pε + C∗

ε ,

where pε, y
∗
ε and z∗ε are the solutions to

∆pε ∈ 1

ε
∇ · β−1(∇z∗ε ) in Ω,(2.32)

∇pε · ν ∈ 1

ε
β−1(∇z∗ε ) · ν on ∂Ω,

−∇ · β(∇y∗ε) + λε(y∗ε − yo) ∋ u∗ε in Ω,(2.33)

β(∇y∗ε) · ν ∋ 0 on ∂Ω,

−∆z∗ε = u∗ε in Ω,(2.34)

∇z∗ε · ν = 0 on ∂Ω.

Proof. Assume that (u∗ε, y
∗
ε , z

∗
ε ) is optimal in (Pε). Then, we have

Jε(u
∗
ε, y

∗
ε , z

∗
ε ) ≤ Jε(u

λ
ε , y

λ
ε , z

λ
ε ).

Using the form (2.21) for Jε, and making some calculations in the above inequality,
that is, subtracting the left-hand side term, dividing by λ and passing to the limit
as λ→ 0 we obtain

1

ε

∫
Ω

(
j′(∇y∗ε ;∇Y ) + (j∗)′(∇z∗ε ;∇Z)− u∗εY − vy∗ε

)
dx(2.35)

+

∫
Ω

(
|u∗ε|

q′−2 u∗εv + λ(y∗ε − yo)Y
)
≥ 0,

where

j′(w;W ) = lim
λ→0

j(w + λW )− j(w)

λ
is the directional derivative of j at w in direction W. A similar definition is for (j∗)′.
Passing from λ to −λ and repeating all computations we obtain that the left-hand
side in (2.35) is less or equal to zero, so that the final relation is

1

ε

∫
Ω

(
j′(∇y∗ε ;∇Y ) + (j∗)′(∇z∗ε ;∇Z)− u∗εY − vy∗ε

)
dx(2.36)

+

∫
Ω

(
|u∗ε|

q′−2 u∗εv + λ(y∗ε − yo)Y
)
= 0.

Now, we recall that ∫
Ω
j′(∇y∗ε ;∇Y )dx ≥

∫
Ω
ξ∗ε · ∇Y dx

for all ξ∗ε ∈ ∂j(∇y∗ε) a.e. on Ω, and similarly for (j∗)′ (see e.g., [4], p. 53), and so
the previous equality (2.36) implies

(2.37)

∫
Ω

(
1

ε
(ξ∗ε ·∇Y+χ∗

ε·∇Z−u∗εY−vy∗ε)+ |u∗ε|
q′−2 u∗εv+λ(y

∗
ε−yo)Y

)
dx ≤ 0,
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where χ∗
ε ∈ ∂j∗(∇z∗ε ) = β−1(∇z∗ε ) a.e. on Ω, by (1.14). Considering now the pair

(−v,−Y ) we get the converse inequality, so that, finally, we get

(2.38)

∫
Ω

(
1

ε
(ξ∗ε ·∇Y+χ∗

ε·∇Z−u∗εY−vy∗ε)+ |u∗ε|
q′−2 u∗εv+λ(y

∗
ε−yo)Y

)
dx = 0,

for any v and Y taken as in (2.29).
We introduce the adjoint problem (2.32) and assert that it has a unique solution

pε ∈ V, which satisfies the weak form

(2.39)

∫
Ω
∇pε · ∇ψdx =

1

ε

∫
Ω
χ∗
ε · ∇ψdσ for all ψ ∈ H1(Ω),

and some χ∗
ε ∈ β−1(∇z∗ε ) a.e. on Ω.

By (2.30) we get

(2.40)

∫
Ω
∇pε · ∇Zdx =

∫
Ω
vpεdx

and by (2.39), setting ψ = Z we obtain that

(2.41)
1

ε

∫
Ω
χ∗
ε · ∇Zdx =

∫
Ω
∇pε · ∇Zdx =

∫
Ω
vpεdx.

Therefore (2.38), (2.41) and (2.40) yield

(2.42)

∫
Ω

(
λ(y∗ε−yo)−

1

ε
∇·ξ∗ε−

1

ε
u∗ε

)
Y dx+

∫
Ω
v

(
|u∗ε|

q−2 u∗ε−
1

ε
y∗ε+pε

)
dx = 0

which is true for all Y and v. In particular, for v = 0 one has∫
Ω

(
λ(y∗ε − yo)−

1

ε
∇ · ξ∗ε −

1

ε
u∗ε

)
Y dx = 0, for all Y ∈ L2(Ω).

It turns out that y∗ε is the solution in the sense of distributions to the problem

−∇ · ξ∗ε + λε(y∗ε − yo) ∋ u∗ε, in Ω,(2.43)

ξ∗ε · ν = 0 on ∂Ω,

where ξ∗ε ∈ β(∇y∗ε) a.e. on Ω, which means in fact that y∗ε is the solution to (2.33).
Next, Y = 0 yields∫

Ω
v

(
|u∗ε|

q−2 u∗ε −
1

ε
y∗ε + pε

)
dx = 0, for all v ∈ Lq′(Ω), with

∫
Ω
vdx = 0.

This implies that |u∗ε|
q′−2 u∗ε − 1

εy
∗
ε + pε = C∗

ε , with C∗
ε a constant which may be

deduced from the condition
∫
Ω u

∗
εdx = 0.

It remains to discuss the existence for the solutions to (2.32) and (2.33). In (2.32)
z∗ε is fixed in H1(Ω) (by Theorem 2.5) and by hypothesis the section χ∗

ε of β
−1(∇z∗ε )

is in (L2(Ω))N . Eq. (2.32) is equivalent with the following minimization problem

(2.44) min
p∈U2

Φ(p) =

∫
Ω

(
1

2
|∇p|2 − 1

ε
χ∗
ε · ∇p

)
dx,

where

(2.45) U2 =

{
p ∈ H1(Ω);

∫
Ω
pdx = 0

}
= V.
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Note that the functional Φ(p) has an infimum d since

− 4

ε2
∥χ∗

ε∥
2
(L2(Ω))N ≤ Φ(p)

and so a minimizing sequence satisfies

∥pn∥2H1(Ω) ≤ d+ 1 +
4

ε2
∥χ∗

ε∥
2
(L2(Ω))N .

Hence pn → p∗ weakly in V and so at limit Φ(p∗) = d.
As regards equation (2.33) where u∗ε is fixed in L2(Ω) we consider the minimiza-

tion problem

(2.46) min
y∈U3

Ψ(y) =

∫
Ω

(
j(∇y) + λε

(
1

2
y2 − yoy

)
− u∗εy

)
dx,

where

(2.47) U3 =
{
y ∈ L2(Ω); ∇y ∈ Lp(Ω)

}
.

It is obvious that a minimizing sequence {yn}n in bounded in L2(Ω), {∇yn}n is
bounded in (Lp(Ω))N , so that yn → y∗ strongly in Lq(Ω). Also, {j(∇yn)}n is
bounded in L1(Ω) and the weakly lower semicontinuity of j ensures the existence of
the minimum y∗. Then, taking a variation of y∗ along a direction ψ ∈ L2(Ω) with
∇ψ ∈ (Lp(Ω))N we obtain, by a similar calculus as before, the equation∫

Ω
(ξ∗ · ∇ψ + (λε(y∗ − yo)− u∗ε)ψ) dx = 0,

where ξ∗ ∈ β(∇y∗) a.e. on Ω, which is in fact the definition of the weak solution to
(2.33). □

We note that constant C∗
ε in (2.31) can be easier determined in the case when

q′ = 2, from the condition
∫
Ω u

∗
εdx = 0, that is

(2.48) C∗
ε =

1

meas(Ω)

∫
Ω

(
pε −

1

ε
y∗ε

)
dx.

In the case when q′ > 2, C∗
ε could be determined numerically.

Remark 2.8. Similarly, one can solve the problem

(P ) min
(u,y)∈U

(
J(u, y) =

∫
Ω

(
|u(x)|q

′

q′
+
σ

m
|y(x)− yo(x)|m

)
dx

)
subject to (1.2), where

U = {(u, y); u ∈ Lq′(Ω),

∫
Ω
u(x)dx = 0, y ∈ Lm(Ω), ∇y ∈ (Lp(Ω))N},

for q′ ≥ 2 and m ≥ 2. In this case, if (u, y) ∈ U , then y ∈ W 1,m(Ω), with m =
min{m, p}. A modification occurs in the first equation in (2.33) which becomes

−∇ · β(∇y∗ε) + λε |y∗ε − yo|m−2 (y∗ε − yo) ∋ u∗ε in Ω.
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Remark 2.9. We mention that relations (2.31)-(2.34) can be effectively used to
compute an approximating optimal state (u∗ε, y

∗
ε , z

∗
ε ) in (Pε) by an iterative steepest

descent gradient algorithm, similar with that one provided in [3] for another case.
According to the steepest descent formula (see [1]) we have iteratively (e.g., for
single-valued β and β−1)

pn+1 = pn + ρn
(
∆pn − 1

ε
β−1(∇zn)

)
,(2.49)

yn+1 = yn + ρn(∇ · β(∇yn)− ελ(yn − yobs) + un)(x1, x2),(2.50)

where n ∈ {0, ..., N} is the number of iterations. Relations (2.49) and (2.50) are
written relying on the fact that p and y are the solutions to problems (2.44) and
(2.46), respectively. A possible choice for the step ρn in (2.49) is given by

(2.51) Φ(pn + ρnwn) = min {Φ(pn + ρwn); ρ ≥ 0}

and similarly for ρn in (2.50) by replacing Φ by Ψ. Also, we add the relations

(2.52) un =
1

ε
yn − pn + Cn,

(2.53) zn+1 = zn + ρn(∆zn + un)

implied by (2.31) and (2.34). (We did not indicate the superscript ∗ and the sub-
script ε for the control and states.) For all equations, finite differences can be
written and the algorithm can be constructed in an iterative way, imposing finally
an appropriate stop criterion.

Acknowledgement

The author thanks the anonymous reviewer for his/her helpful observations.

References
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