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for constrained minimization problems. Taking into account this case, Levitin and
Polyak [17] strengthened the concept of Tykhonov well-posedness by requiring the
existence and uniqueness of minimizers, and the convergence of every generalized
minimizing sequence to the unique minimizer, which is called Levitin and Polyak
(for short, LP) well-posedness. In terms of the recent literature on the research of LP
well-posedness for variational inequalities, most researchers mainly focus on the in-
troduction of various kinds of LP well-posedness for different variational inequalities,
the establishment of metric characterizations for LP well-posed variational inequal-
ities, the necessary and sufficient conditions of LP well-posedness for variational
inequalities, and the links of LP well-posedness between variational inequalities and
their related problems, for instance, minimization problems, fixed pointed prob-
lems, inclusion problems, etc. There have been a large number of results involving
Tykhonov well-posedness, LP well-posedness and their generalizations for minimiza-
tion problems. For details, we refer the readers to [1, 3–6,9–12,15–20,24,27–30].

In 2008, Fang, Huang and Yao [10] considered and studied the well-posedness
of a mixed variational inequality in a real Hilbert space H, which includes as a
special case the classical variational inequality, and derived some results for the
well-posedness of such a mixed variational inequality, the corresponding inclusion
problem and the corresponding fixed-point problem. Subsequently, Ceng and Yao [6]
extended the concept of well-posedness to a generalized mixed variational inequality
in H, which includes as a special case the mixed variational inequality, and gave
some characterizations of its well-posedness. Under suitable conditions, the authors
[6] proved that the well-posedness of the generalized mixed variational inequality is
equivalent both to the well-posedness of the corresponding inclusion problem and
to the corresponding fixed-point problem, and derived some conditions under which
the generalized mixed variational inequality is well-posed. Recently, some authors
made the further extension and development on the concept of well-posedness; see
e.g., [3–5,12,27] and the references therein.

Furthermore, Hu and Huang [11] considered the LP well-posedness of a gen-
eral variational inequality in Rn. They derived some characterizations of the LP
well-posedness by considering the size of LP approximating solution sets of general
variational inequalities. They also proved that the LP well-posedness of a general
variational inequality is closely related to the LP well-posedness of a minimization
problem and a fixed point problem. Finally, they proved that under suitable condi-
tions, the LP well-posedness of a general variational inequality is equivalent to the
uniqueness and existence of its solutions.

Let X be a real reflexive Banach space. In 2012, Li and Xia [20] extended the
notion of LP well-posedness to a generalized mixed variational inequality in X, and
gave some characterizations of its LP well-posedness. Under suitable conditions,
they proved that the LP well-posedness of a generalized mixed variational inequality
is closely related to the LP well-posedness of a corresponding inclusion problem and
a corresponding fixed point problem, and derived some conditions under which a
generalized mixed variational inequality is LP well-posed. However, it is worth
emphasizing that in their results, there is the compactness requirement for set-
valued mapping F : X → 2X

∗
in the generalized mixed variational inequality, that

is, F : X → 2X
∗
is compact-valued. Meantime, we note that there is no result for
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the LP well-posedness of a noncompact generalized mixed variational inequality.
Therefore, it is worth studying implementable results for the LP well-posedness of
a noncompact generalized mixed variational inequality.

Motivated and inspired by the research work going on this field, we extend the
notion of LP well-posedness to a noncompact generalized mixed variational inequal-
ity in a real reflexive Banach space X, and give some characterizations of its LP
well-posedness. Under suitable conditions, we prove that the LP well-posedness of
a noncompact generalized mixed variational inequality is equivalent both to the LP
well-posedness of a corresponding inclusion problem and to the LP well-posedness of
a corresponding fixed point problem. Finally, we also derive some conditions under
which a noncompact generalized mixed variational inequality is LP well-posed. It
is worth pointing out that there is no compactness assumption in our results. Our
results improve, extend and develop the early and recent ones announced by some
others, e.g., Ceng and Yao [6] and Li and Xia [20]. For recent related results, we
refer readers [7, 23,25] and the references therein.

2. Preliminaries

Let X be a real reflexive Banach space with its dual X∗ and K be a nonempty,
closed and convex subset of X. Let F : X → 2X

∗
be a set-valued mapping, and

ϕ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous functional.
Denote by domϕ the efficient domain of ϕ, i.e.,

domϕ = {x ∈ X : ϕ(x) < +∞}.

In this paper, we always assume that domϕ ∩ K ̸= ∅. Consider the following
generalized mixed variational inequality associated with (F, ϕ,K):

GMVI(F, ϕ,K) : find x ∈ K such that for some u ∈ F (x),
⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K.

It is easy to see that the GMVI(F, ϕ,K) is equivalent to the following inclusion
problem associated with F + ∂(ϕ+ δK):

IP(F + ∂(ϕ+ δK),K) : find x ∈ K such that 0 ∈ F (x) + ∂(ϕ+ δK)(x),

where δK denotes the indicator function associated with K (i.e., δK(x) = 0 if x ∈ K
and +∞ otherwise) and ∂(ϕ + δK)(x) denotes the subdifferential of the convex
function ϕ+ δk at x.

If F is the subdifferential of a finite-valued convex continuous function f defined
on X, then the problem GMVI(F, ϕ,K) reduces to the following nondifferentiable
convex optimization problem:

minx∈X{f(x) + φ(x)}.

Furthermore, the usual GMVI(F, ϕ,K) formulation admits various modifications
and extensions which also can be in principle applied to economic equilibrium prob-
lems. For example(see [14] and the references therein), we consider a market struc-
ture with perfect competition. The model deals in n commodities. Then, given a
price vector p ∈ Rn

+, we can define the value E(p) of the excess demand mapping

E : Rn
+ → 2R

n
, which is multiv-alued in general. Traditionally, a vector p∗ ∈ Rn
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is said to be an equilibrium price vector if it solves the following complementarity
problem:

p∗ ≥ 0, ∃q∗ ∈ E(p∗) : q∗ ≤ 0, ⟨p∗, q∗⟩ = 0.

or equivalently, the following variational inequality: find p∗ ≥ 0 such that

∃q∗ ∈ E(p∗) : ⟨−q∗, p− p∗⟩ ≥ 0, ∀p ≥ 0.

We now specialize our model from this very general one. First, we suppose that
each price of a commodity which is involved in the market structure has a lower
positive bound and may have an upper bound. It follows that the feasible prices
are assumed to be contained in the box constrained set

K =
n∏

i=1

Ki, Ki = {t ∈ R : 0 < τi ≤ t ≤ ςi ≤ +∞}, i = 1, 2, . . . , n.

Next, as usual, the excess demand mapping is represented as follows:

E(p) = D(p)− S(p)

where D and S are the demand and supply mappings, respectively. We suppose
that the demand mapping is single-valued and set G = −D. Then, the problem of
finding an equilibrium price can be formulated as follows: find p∗ ∈ K such that

∃s∗ ∈ S(p∗), ⟨G(p∗), p− p∗⟩+ ⟨s∗, p− p∗⟩ ≥ 0, ∀p ∈ K.

Under some suitable conditions, this problem can be reduced to GMVI(F, ϕ,K).
Now, we give some useful propositions and definitions.

Proposition 2.1. Let K be a nonempty, closed and convex subset of X, F : X →
2X

∗
be a nonempty set-valued mapping, and ϕ : X → R∪{+∞} be a proper, convex

and lower semicontinuous functional. Then the following conclusions are equivalent:

(i) x solves GMVI(F, ϕ,K);
(ii) x solves IP(F + ∂(ϕ+ δK),K).

Definition 2.2. A nonempty set-valued mapping F : X → 2X
∗
is said to be

monotone, if for all x, y ∈ X,u ∈ F (x) and v ∈ F (y)

⟨u− v, x− y⟩ ≥ 0.

Definition 2.3. Let X and Y be two topological spaces, and F : X → 2Y be a
set-valued mapping.

(i) F is said to upper semicontinuous (u.s.c.) at x ∈ X if for any neighborhood
V of F (x), there exists a neighborhood U of x such that F (y) ⊂ V ∀y ∈ U .
If F is u.s.c. at each point of X, we say that F is u.s.c. on X.

(ii) F is said to be closed (resp. open) if the set Gr(F ) = {(x, y) ∈ X × Y : y ∈
F (x)} is closed (resp. open) in X × Y .

Definition 2.4 (see also [22], [21]). Let X,Y be two Banach spaces, and F : X →
2Y be a nonempty set-valued mapping. Then F is said to be locally bounded if for
each x ∈ X, there exists a neighborhood of x and a constant ℓ > 0 such that, for
each z in this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ.
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Let A,B be nonempty subsets of a normed vector space (X, ∥ · ∥). The Hausdorff
metric H(·, ·) between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)},

where e(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B ∥a − b∥. Note that [19] if A
and B are compact subsets in X, then for each a ∈ A there exists b ∈ B such that

∥a− b∥ ≤ H(A,B).

Definition 2.5 (see [6]). A nonempty set-valued mapping F : X → 2X
∗
is said to

be

(i) H-hemicontinuous, if for any x, y ∈ X, the function t 7→ H(F (x + t(y −
x), F (x)) from [0, 1] into R+ = [0,+∞) is continuous at 0+ where H(·, ·) is
the Hausdorff metric defined on CB(X∗).

(ii) H-uniformly continuous, if for all ϵ > 0 there exists δ > 0 such that for all
x, y ∈ X with ∥x − y∥ < δ, one has H(F (x), F (y)) < ϵ where H(·, ·) is the
Hausdorff metric defined on CB(X∗).

Definition 2.6 (see [13]). Let A be a nonempty subset of X. The measure of
noncompactness µ of the set A is defined by

µ(A) = inf{ϵ > 0 : A ⊂
n∪

i=1

Ai, diamAi < ϵ, i = 1, 2, ..., n},

where diam means the diameter of a set.

Motivated and inspired by Lemma 2.2 in [6], we present the following proposition.

Proposition 2.7. Let K be a nonempty, closed and convex subset of X, F : X →
2X

∗
be a weakly closed set-valued mapping which is locally bounded and monotone,

and let ϕ : X → R ∪ {+∞} be a proper and convex functional. Then for a given
x ∈ K, the following statements are equivalent:

(i) there exists u ∈ F (x) such that ⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K;
(ii) ⟨v, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K, v ∈ F (y).

Proof. Suppose that for some u ∈ F (x),

⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K.

Since F is monotone, one has

⟨u− v, x− y⟩ ≥ 0, ∀y ∈ K, v ∈ F (y),

and hence

⟨v, x− y⟩+ ϕ(x)− ϕ(y) ≤ ⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K, v ∈ F (y).

Consequently,

⟨v, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K, v ∈ F (y).

Conversely, suppose that the last inequality is valid. Given any y ∈ K we define
yt = ty+(1− t)x for all t ∈ (0, 1). Since K is a nonempty, closed and convex subset,



480 L. C. CENG, F. Q. XIA, AND J. C. YAO

we have yt ∈ K for all t ∈ (0, 1). Replacing y by yt in the left-hand side of the last
inequality, one derives for each vt ∈ F (yt),

0 ≥ ⟨vt, x− yt⟩+ ϕ(x)− ϕ(yt)

= ⟨vt, x− (ty + (1− t)x)⟩+ ϕ(x)− ϕ(ty + (1− t)x)

≥ ⟨vt, t(x− y)⟩+ ϕ(x)− tϕ(y)− (1− t)ϕ(x)

= t[⟨vt, x− y⟩+ ϕ(x)− ϕ(y)],

which hence implies that

⟨vt, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀vt ∈ F (yt), t ∈ (0, 1).

Since F is locally bounded, there exists a neighborhood of x and a constant ℓ > 0
such that, for each z in this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since
yt → x as t → 0, for t sufficiently small ∥vt∥ ≤ ℓ; hence, from the reflexivity of X we
may assume, without loss of generality, that vt → u ∈ Y in the weak∗ topology of
X∗. Note that the reflexivity of X implies that the weak topology of X∗ coincides
with the weak∗ topology of X∗. Thus, we know that vt → u ∈ Y in the weak
topology of X∗. Since F has weakly closed graph, yt → x and vt → u ∈ Y weakly,
we have u ∈ F (x) and

⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K.

This completes the proof. □

3. Levitin-Polyak Well-Posedness of GMVI(F, ϕ,K)

In this section, we extend the concepts of Levitin-Polyak well-posedness to the
noncompact generalized mixed variational inequality and establish its metric char-
acterizations. In the sequel, we always denote by → and ⇀ the strong convergence
and weak convergence, respectively. Let α : X → [0,+∞) be a given continuous
functional with α(tz) = tpα(z), ∀t ≥ 0 and ∀z ∈ X, where p > 1, and let X,K,F, ϕ
be defined as in the previous section.

Definition 3.1. A sequence {xn} ⊂ X is called a LP α-approximating sequence
for GMVI(F, ϕ,K), if there exist wn ∈ X with wn → 0 and 0 < ϵn → 0 such that
xn + wn ∈ K for all n ∈ N, and there exists un ∈ F (xn) such that

xn ∈ domϕ, ⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) ≤ α(xn − y) + ϵn, ∀y ∈ K,n ∈ N.

If α1(z) ≥ α2(z) ≥ 0 ∀z ∈ X, then every LP α2-approximating sequence is LP α1-
approximating. When α(z) = 0 ∀z ∈ X, we say that {xn} is a LP approximating
sequence for GMVI(F, ϕ,K).

Definition 3.2. We say that GMVI(F, ϕ,K) is strongly (resp. weakly) LP α-
well-posed if GMVI(F, ϕ,K) has a unique solution and every LP α-approximating
sequence converges strongly (resp. weakly) to the unique solution. In the sequel,
strong (resp. weak) LP 0-well-posedness is always known as strong (resp. weak)
LP well-posedness. If α1(z) ≥ α2(z) ≥ 0 ∀z ∈ X, then strong (resp. weak) LP
α1-well-posedness implies strong (resp. weak) LP α2-well-posedness.
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Definition 3.3. We say that GMVI(F, ϕ,K) is strongly (resp. weakly) LP α-well-
posed in the generalized sense if GMVI(F, ϕ,K) has nonempty solution set S and
every LP α-approximating sequence has a subsequence which converges strongly
(resp. weakly) to some point of S. In the sequel, strong (resp. weak) LP 0-
well-posedness in the generalized sense is always known as strong (resp. weak) LP
well-posedness in the generalized sense. If α1(z) ≥ α2(z) ≥ 0 ∀z ∈ X, then strong
(resp. weak) LP α1-well-posedness in the generalized sense implies strong (resp.
weak) LP α2-well-posedness in the generalized sense.

Remark 3.4. It is easy to see that the above Definitions 3.1, 3.2 and 3.3 extend
the Definitions 3.1, 3.2 and 3.3 in [20], respectively. When X is a real Hilbert space,
K = X and wn ≡ 0, Definitions 3.2 and 3.3 in [20] reduce to the Definitions 3.2
and 3.3 in [10], respectively. When X = Rn, α ≡ 0, ϕ = δK and F is single-valued,
Definitions 3.2 and 3.3 reduce to the Definitions 3.3 and 3.4 of [11], respectively.

To derive the metric characterizations of LP α-well-posedness, we consider the
following LP α-approximating solution set of GMVI(F, ϕ,K):

Ωα(ϵ) ={x ∈ domϕ : d(x,K) ≤ ϵ, and there exists u ∈ F (x) such that

∀y ∈ K, ⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ α(x− y) + ϵ}, ∀ϵ ≥ 0.

Theorem 3.5. Let K be a nonempty, closed and convex subset of X, F : X → 2X
∗

be a weakly closed set-valued mapping which is locally bounded and monotone, and
let ϕ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous functional.
Then GMVI(F, ϕ,K) is strongly LP α-well-posed if and only if

(3.1) Ωα(ϵ) ̸= ∅, ∀ϵ > 0 and diam(Ωα(ϵ)) → 0 as ϵ → 0.

Proof. Suppose that GMVI(F, ϕ,K) is strongly LP α-well-posed and x∗ ∈ K is the
unique solution of GMVI(F, ϕ,K). It is obvious that x∗ ∈ Ωα(ϵ). If diam(Ωα(ϵ)) ̸→
0 as ϵ → 0, then there exist constant l > 0 and sequences {ϵn} ⊂ R+ with ϵn → 0,

and {x(1)n }, {x(2)n } with x
(1)
n , x

(2)
n ∈ Ωα(ϵn) such that

(3.2) ∥x(1)n − x(2)n ∥ > l, ∀n ∈ N.

Since x
(1)
n , x

(2)
n ∈ Ωα(ϵn), for x

(1)
n we have

d(x(1)n ,K) ≤ ϵn < ϵn +
1

n
,

and there exists un ∈ F (x
(1)
n ) such that

⟨un, x(1)n − y⟩+ ϕ(x(1)n )− ϕ(y) ≤ α(x(1)n − y) + ϵn, ∀y ∈ K.

Since K is closed and convex, then there exists x̄
(1)
n ∈ K such that ∥x(1)n − x̄

(1)
n ∥ <

ϵn + 1
n . Putting wn = x̄

(1)
n − x

(1)
n , we have wn + x

(1)
n = x̄

(1)
n ∈ K and ∥wn∥ =

∥x(1)n − x̄
(1)
n ∥ → 0. This implies that wn → 0. Thus, {x(1)n } is a LP approximating

sequence for GMVI(F, ϕ,K). By the similar argument, we obtain that {x(2)n } is a
LP approximating sequence for GMVI(F, ϕ,K). So they have to converge strongly
to the unique solution of GMVI(F, ϕ,K), a contradiction to (3.2).
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Conversely, suppose that the conclusion (3.1) holds. Let {xn} ⊂ X be a LP α-
approximating sequence for GMVI(F, ϕ,K). Then there exists wn ∈ X with wn → 0
such that xn + wn ∈ K, and there exist 0 < ϵ′n → 0 and un ∈ F (xn) such that

(3.3) xn ∈ domϕ, ⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) ≤ α(xn − y) + ϵ′n, ∀y ∈ K,n ∈ N.

Since xn + wn ∈ K, then there exists x̄n ∈ K such that xn + wn = x̄n. It is easy
to see that d(xn,K) ≤ ∥xn − x̄n∥ = ∥wn∥ → 0. Set ϵn = max{ϵ′n, ∥wn∥}, it follows
that xn ∈ Ωα(ϵn). From (3.1), we deduce that {xn} is a Cauchy sequence and so it
converges strongly to a point x̄ ∈ K. Since F is monotone, ϕ is lower semicontinuous
and α is continuous, it follows from (3.3) that for any y ∈ K, v ∈ F (y),

(3.4)

⟨v, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ lim inf
n→∞

{⟨un, xn − y⟩+ ϕ(xn)− ϕ(y)}

≤ lim inf
n→∞

{α(xn − y) + ϵ′n}

= α(x̄− y).

For any y ∈ K, put yt = x̄ + t(y − x̄) for all t ∈ (0, 1). Since K is a nonempty,
closed and convex subset, we have yt ∈ K for all t ∈ (0, 1). Then

⟨vt, x̄− yt⟩+ ϕ(x̄)− ϕ(yt) ≤ α(x̄− yt), ∀vt ∈ F (yt).

Since ϕ is convex, from the properties of α we get

t[⟨vt, x̄− y⟩+ ϕ(x̄)− ϕ(y)] ≤ tpα(x̄− y), ∀vt ∈ F (yt), y ∈ K;

that is,

(3.5) ⟨vt, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ tp−1α(x̄− y), ∀vt ∈ F (yt), y ∈ K,

where p > 1. Since F is locally bounded, there exists a neighborhood of x̄ and a
constant ℓ > 0 such that, for each z in this neighborhood and u ∈ F (z), we have
∥u∥ ≤ ℓ. Since yt → x̄ as t → 0, for t sufficiently small ∥vt∥ ≤ ℓ; hence, from the
reflexivity of X we may assume, without loss of generality, that vt → u ∈ X∗ in
the weak∗ topology of X∗. Note that the reflexivity of X implies that the weak
topology of X∗ coincides with the weak∗ topology of X∗. Thus, we know that
vt → u ∈ X∗ in the weak topology of X∗. Since F has weakly closed graph, yt → x̄
and vt → u ∈ X∗ weakly, we have u ∈ F (x̄) and

⟨u, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ 0, ∀y ∈ K

(due to (3.5)). Therefore, x̄ solves GMVI(F, ϕ,K).
To complete the proof, we need only to prove that GMVI(F, ϕ,K) has a unique

solution. Assume by contradiction that GMVI(F, ϕ,K) has two distinct solutions
x1 and x2 in K. Then it is easy to see that x1, x2 ∈ Ωα(ϵ) for all ϵ > 0 and

0 < ∥x1 − x2∥ ≤ diam(Ωα(ϵ)) → 0,

a contradiction to (3.1). The proof is complete. □
Theorem 3.6. Let K be a nonempty, closed and convex subset of X, F : X → 2X

∗

be a nonempty, weakly closed and locally bounded set-valued mapping, and let ϕ :
X → R ∪ {+∞} be a proper, convex and lower semicontinuous functional. Then
GMVI(F, ϕ,K) is strongly LP α-well-posed in the generalized sense if and only if

(3.6) Ωα(ϵ) ̸= ∅, ∀ϵ > 0 and µ(Ωα(ϵ)) → 0 as ϵ → 0.
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Proof. Suppose that GMVI(F, ϕ,K) is strongly LP α-well-posed in the generalized
sense. Let S be the solution set of GMVI(F, ϕ,K). Then S is nonempty and com-
pact. Indeed, let {xn} be any sequence in S. Then {xn} is a LP α-approximating
sequence for GMVI(F, ϕ,K). Since GMVI(F, ϕ,K) is strongly LP α-well-posed in
the generalized sense, {xn} has a subsequence which converges strongly to some
point of S. Thus S is compact. It is obvious that ∅ ̸= S ⊂ Ωα(ϵ) for all ϵ > 0. Now
we show that

µ(Ωα(ϵ)) → 0 as ϵ → 0.

Observe that for every ϵ > 0,

H(Ωα(ϵ), S) = max{e(Ωα(ϵ), S), e(S,Ωα(ϵ))} = e(Ωα(ϵ), S).

Taking into account the compactness of S, we get

µ(Ωα(ϵ)) ≤ 2H(Ωα(ϵ), S) + µ(S) = 2e(Ωα(ϵ), S).

To prove (3.6), it is sufficient to show that

e(Ωα(ϵ), S) → 0 as ϵ → 0.

Indeed, if e(Ωα(ϵ), S) ̸→ 0 as ϵ → 0, then there exist l > 0 and {ϵn} ⊂ R+ with
ϵn → 0, and xn ∈ Ωα(ϵn) such that

(3.7) xn ̸∈ S +B(0, l), ∀n ∈ N,

where B(0, l) is the closed ball centered at 0 with radius l. By the definition of
Ωα(ϵn), we know d(xn,K) ≤ ϵn < ϵn + 1

n , and there exists un ∈ F (xn) such that

⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) ≤ α(xn − y) + ϵn, ∀y ∈ K.

Thus, there exists x̄n ∈ K such that ∥x̄n − xn∥ < ϵn + 1
n . Let wn = x̄n − xn, then

we have wn + xn ∈ K with wn → 0. So {xn} is a LP α-approximating sequence for
GMVI(F, ϕ,K). Since GMVI(F, ϕ,K) is strongly LP α-well-posed in the generalized
sense, there exists a subsequence {xnk

} of {xn} which converges strongly to some
point of S. This contradicts (3.7) and so

e(Ωα(ϵ), S) → 0 as ϵ → 0.

Conversely, assume that (3.6) holds. We first show that Ωα(ϵ) is closed for all
ϵ > 0. Let {xn} ⊂ Ωα(ϵ) with xn → x. Then there exists un ∈ F (xn) such that
d(xn,K) ≤ ϵ and

(3.8) ⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) ≤ α(xn − y) + ϵ, ∀y ∈ K,n ∈ N.

Since F is locally bounded, there exists a neighborhood of x and a constant ℓ > 0
such that, for each z in this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since
xn → x as n → ∞, for n sufficiently large ∥un∥ ≤ ℓ; hence, from the reflexivity
of X we may assume, without loss of generality, that un → u ∈ X∗ in the weak∗

topology of X∗. Note that the reflexivity of X implies that the weak topology of X∗

coincides with the weak∗ topology of X∗. Thus, we know that un → u ∈ X∗ in the
weak topology of X∗. Since F has weakly closed graph, xn → x and un → u ∈ X∗

weakly, we have u ∈ F (x) and

⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ α(x− y) + ϵ, ∀y ∈ K
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(due to (3.8)). It is easy to see d(x,K) ≤ ϵ. This shows that x ∈ Ωα(ϵ) and so
Ωα(ϵ) is nonempty closed for all ϵ > 0. Observe that

S =
∩
ϵ>0

Ωα(ϵ).

Since µ(Ωα(ϵ)) → 0, the theorem in page 412 of [13] can be applied and one con-
cludes that S is nonempty and compact with

e(Ωα(ϵ), S) = H(Ωα(ϵ), S) → 0.

Let {x̂n} ⊂ X be a LP α-approximating sequence for GMVI(F, ϕ,K). Then there
exists wn ∈ X with wn → 0 such that x̂n + wn ∈ K, and there exist ûn ∈ F (x̂n)
and 0 < ϵ′n → 0 such that

⟨ûn, x̂n − y⟩+ ϕ(x̂n)− ϕ(y) ≤ α(x̂n − y) + ϵ′n, ∀y ∈ K,n ∈ N.

Since x̂n + wn ∈ K, then there exists x̄n ∈ K such that x̂n + wn = x̄n. It follows
that

d(x̂n,K) ≤ ∥x̂n − x̄n∥ = ∥wn∥ → 0.

Set ϵn = max{∥wn∥, ϵ′n}, we get x̂n ∈ Ωα(ϵn). From (3.6) and the definition of
Ωα(ϵn), we have

d(x̂n, S) ≤ e(Ωα(ϵn), S) → 0.

Since S is compact, there exists pn ∈ S such that

∥pn − x̂n∥ = d(x̂n, S) → 0.

Again from the compactness of S, there exists a subsequence {pnk
} of {pn} which

converges strongly to p̄ ∈ S. Hence the corresponding subsequence {x̂nk
} of {x̂n}

converges strongly to p̄ ∈ S. Therefore, GMVI(F, ϕ,K) is strongly LP α-well-posed
in the generalized sense. The proof is complete. □

Remark 3.7. Theorems 3.5 and 3.6 improve, extend and develop Theorems 3.1 and
3.2 in [20] to a great extent because we drop the compactness, H-hemicontinuity
and upper semicontinuity of F .

4. Links with Levitin-Polyak Well-Posedness of Inclusion Problems

In this section, we shall show that the Levitin-Polyak well-posedness of a noncom-
pact generalized mixed variational inequality is closely related to the Levitin-Polyak
well-posedness of an inclusion problem. Let A : X → 2X

∗
be a set-valued mapping.

The inclusion problem associated with (A,K) is defined by

IP(A,K) : find x ∈ K such that 0 ∈ A(x).

Definition 4.1 (see [20]). A sequence {xn} ⊂ X is called a LP approximating
sequence for IP(A,K) if there exists wn ∈ X with wn → 0 such that xn + wn ∈ K
and d(0, A(xn)) → 0 as n → ∞, or equivalently, there exists yn ∈ A(xn) such that
∥yn∥ → 0 as n → ∞.
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Definition 4.2 (see [20]). We say that IP(A,K) is strongly (resp. weakly) LP well-
posed if it has a unique solution and every LP approximating sequence converges
strongly (resp. weakly) to the unique solution of IP(A,K). IP(A,K) is said to be
strongly (resp. weakly) LP well-posed in the generalized sense if the solution set S
of IP(A,K) is nonempty and every LP approximating sequence has a subsequence
which converges strongly (resp. weakly) to a point of S.

Remark 4.3. When X is a Hilbert space, K = X and wn ≡ 0, Definitions 4.1 and
4.2 reduce to the Definitions 4.1 and 4.2 in [10], respectively.

Theorem 4.4. Let K be a nonempty, closed and convex subset of X, F : X → 2X
∗

be a weakly closed set-valued mapping which is locally bounded and monotone, and
let ϕ : X → R∪{+∞} be a proper, convex and lower semicontinuous functional. If
GMVI(F, ϕ,K) is strongly (resp. weakly) LP well-posed, then IP(F +∂(ϕ+ δK),K)
is strongly (resp. weakly) LP well-posed.

Proof. Let x∗ be the unique solution of GMVI(F, ϕ,K). Then, by Proposition 2.1
we know that x∗ is also the unique solution of IP(F +∂(ϕ+ δK),K). Let {xn} be a
LP approximating sequence for IP(F + ∂(ϕ + δK),K). Then, there exists wn ∈ X
with wn → 0 such that xn + wn ∈ K, and there exists yn ∈ F (xn) + ∂(ϕ+ δK)(xn)
such that ∥yn∥ → 0 as n → ∞. It is easy to see that {xn} ⊂ K and there exists
un ∈ F (xn) such that

(4.1) ϕ(y)− ϕ(xn) ≥ ⟨yn − un, y − xn⟩, ∀y ∈ K.

We claim that {xn} is bounded. Indeed, if {xn} is unbounded, without loss of
generality, we may assume that ∥xn∥ → +∞. Let

tn =
1

∥xn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1] and zn ⇀ z( ̸= x∗). Since
x∗, xn ∈ K, this together with tn ∈ (0, 1] yields that zn ∈ K and so z ∈ K. For any
y ∈ K, v ∈ F (y),

(4.2)

⟨v, z − y⟩ = ⟨v, z − zn⟩+ ⟨v, zn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − y⟩+ (1− tn)⟨v, x∗ − y⟩.

Since x∗ is the unique solution of GMVI(F, ϕ,K), there exists u∗ ∈ F (x∗) such that

(4.3) ⟨u∗, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ 0, ∀y ∈ K.

Since F is monotone, we have

(4.4) ⟨v, x∗ − y⟩ ≤ ⟨u∗, x∗ − y⟩, ⟨v, xn − y⟩ ≤ ⟨un, xn − y⟩.
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Note that ϕ is convex. Hence it follows from (4.1)-(4.4) that

(4.5)

⟨v, z − y⟩ ≤ ⟨v, z − zn⟩+ tnϕ(y)− tnϕ(xn)

+ tn⟨yn, xn − y⟩+ (1− tn)(ϕ(y)− ϕ(x∗))

= ⟨v, z − zn⟩+ ϕ(y)− [tnϕ(xn) + (1− tn)ϕ(x
∗)] +

⟨yn, xn − y⟩
∥xn − x∗∥

≤ ⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) +
⟨yn, xn − y⟩
∥xn − x∗∥

, ∀y ∈ K.

Since ∥yn∥ → 0, it follows from (4.5) that for any y ∈ K, v ∈ F (y),

⟨v, z − y⟩ ≤ lim inf
n→∞

{
⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) +

⟨yn, xn − y⟩
∥xn − x∗∥

}
≤ ϕ(y)− ϕ(z).

This together with Proposition 2.7 yields that z solves GMVI(F, ϕ,K), a contradic-
tion. Thus, {xn} is bounded.

Suppose that GMVI(F, ϕ,K) is strongly LP well-posed. Let {xnk
} be any sub-

sequence of {xn} such that xnk
→ x̄ as k → ∞. Clearly x̄ ∈ K. Since F is locally

bounded, there exists a neighborhood of x̄ and a constant ℓ > 0 such that, for each
z in this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since xnk

→ x̄ as k → ∞,
for k sufficiently large ∥unk

∥ ≤ ℓ; hence, from the reflexivity of X we may assume,
without loss of generality, that unk

→ u ∈ X∗ in the weak∗ topology of X∗. Note
that the reflexivity of X implies that the weak topology of X∗ coincides with the
weak∗ topology of X∗. Thus, we know that unk

→ u ∈ X∗ in the weak topology of
X∗. Since F has weakly closed graph, xnk

→ x̄ and unk
→ u ∈ X∗ weakly, we have

u ∈ F (x̄) and

⟨u, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ 0, ∀y ∈ K

(due to (4.1)). Therefore, x̄ solves GMVI(F, ϕ,K). Since GMVI(F, ϕ,K) has a
unique solution x∗, we get x̄ = x∗. This means that xn → x∗ as n → ∞. Therefore,
IP(F + ∂(ϕ+ δK),K) is strongly LP well-posed.

Suppose that GMVI(F, ϕ,K) is weakly LP well-posed. Let {xnk
} be any subse-

quence of {xn} such that xnk
⇀ x̄ as k → ∞. Clearly x̄ ∈ K. It follows from (4.1)

that

ϕ(y)− ϕ(xnk
) ≥ ⟨ynk

− unk
, y − xnk

⟩, ∀y ∈ K.

Since F is monotone, ϕ is convex and lower semicontinuous, and ∥yn∥ → 0, we have

(4.6)

⟨v, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ lim inf
k→∞

{⟨v, xnk
− y⟩+ ϕ(xnk

)− ϕ(y)}

≤ lim inf
k→∞

{⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y)}

≤ lim inf
k→∞

⟨ynk
, xnk

− y⟩ = 0, ∀y ∈ K, v ∈ F (y).

This together with Proposition 2.7, implies that x̄ solves GMVI(F, ϕ,K). Since
GMVI(F, ϕ,K) has a unique solution x∗, we get x̄ = x∗. Thus xn ⇀ x∗ and so
IP(F + ∂(ϕ+ δK),K) is weakly LP well-posed. The proof is complete. □

Theorem 4.5. Let K be a nonempty, closed and convex subset of X, F : X →
2X

∗
be a weakly closed set-valued mapping which is locally bounded and monotone,

and let ϕ : X → R ∪ {+∞} be a proper, convex and differentiable functional. If
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IP(F +∂(ϕ+ δK),K) is strongly (resp. weakly) LP well-posed, then GMVI(F, ϕ,K)
is strongly (resp. weakly) LP well-posed.

Proof. Let x∗ be the unique solution of IP(F +∂(ϕ+δK),K). Then, by Proposition
2.1 we know that x∗ is also the unique solution of GMVI(F, ϕ,K). Let {xn} be a LP
approximating sequence for GMVI(F, ϕ,K). Then there exist wn ∈ X with wn → 0
and 0 < ϵn → 0 such that xn + wn ∈ K, and there exists un ∈ F (xn) satisfying

(4.7) ϕ(xn) ≤ ϕ(y) + ⟨un, y − xn⟩+ ϵn, ∀y ∈ K,n ∈ N.

We claim that {xn} is bounded. Indeed, if {xn} is unbounded, without loss of
generality, we may assume that ∥xn∥ → +∞. Let

tn =
1

∥xn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1] and zn ⇀ z( ̸= x∗). Since
x∗, xn ∈ K, this together with tn ∈ (0, 1] yields that zn ∈ K and so z ∈ K. For any
y ∈ K, v ∈ F (y),

(4.8)

⟨v, z − y⟩ = ⟨v, z − zn⟩+ ⟨v, zn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − y⟩+ (1− tn)⟨v, x∗ − y⟩.

Since x∗ is the unique solution of GMVI(F, ϕ,K), there exists u∗ ∈ F (x∗) such that

(4.9) ⟨u∗, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ 0, ∀y ∈ K.

Since F is monotone, we have

(4.10) ⟨v, x∗ − y⟩ ≤ ⟨u∗, x∗ − y⟩, ⟨v, xn − y⟩ ≤ ⟨un, xn − y⟩.

Note that ϕ is convex. Hence it follows from (4.7)-(4.10) that

(4.11)

⟨v, z − y⟩ ≤ ⟨v, z − zn⟩+ tnϕ(y)− tnϕ(xn)

+ tnϵn + (1− tn)(ϕ(y)− ϕ(x∗))

= ⟨v, z − zn⟩+ ϕ(y)− [tnϕ(xn) + (1− tn)ϕ(x
∗)] +

ϵn
∥xn − x∗∥

≤ ⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) +
ϵn

∥xn − x∗∥
, ∀y ∈ K.

Since ϵn → 0, it follows from (4.11) that for any y ∈ K, v ∈ F (y),

⟨v, z − y⟩ ≤ lim inf
n→∞

{⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) +
ϵn

∥xn − x∗∥
} ≤ ϕ(y)− ϕ(z).

This together with Proposition 2.7 yields that z solves GMVI(F, ϕ,K), a contradic-
tion. Thus, {xn} is bounded.

Since xn + wn ∈ K, there exists x̄n ∈ K such that xn + wn = x̄n. Define
ϕ̃n : X → R ∪ {+∞} as follows:

ϕ̃n(y) = ϕ(y) + ⟨un, y − xn⟩, ∀y ∈ K,n ∈ N.

Since ϕ is proper, convex and differentiable, we know that ϕ̃n is proper, convex
and differentiable for all n ∈ N. It follows from Proposition 2.2.6 of [2] that ϕ̃n is
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Lipschitz continuous. Since ∥wn∥ = ∥x̄n − xn∥ → 0, then there exists 0 < δn → 0
such that

(4.12) ϕ̃n(x̄n)− ϕ̃n(xn) ≤ δn.

By (4.7) and (4.12), we have

ϕ̃n(x̄n) ≤ ϕ̃n(y) + δn + ϵn, ∀y ∈ K.

By Ekeland Theorem [8], there exists x̂n ∈ K such that

∥x̂n − x̄n∥ ≤
√

δn + ϵn,

and

ϕ̃n(x̂n) ≤ ϕ̃n(y) +
√
δn + ϵn∥y − x̂n∥, ∀y ∈ K.

Thus, x̂n minimizes the function ϕ̃n(·) +
√
δn + ϵn∥ · −x̂n∥. It follows that 0∗ ∈

∂(ϕ̃n(·) +
√
δn + ϵn∥ · −x̂n∥)(x̂n). That is,

0∗ ∈ ∂ϕ̃n(x̂n) +
√
δn + ϵnBX∗ .

So there exists

(4.13) x∗n ∈ ∂ϕ̃n(x̂n) = ∂ϕ(x̂n) + un

such that

∥x∗n∥ ≤
√

δn + ϵn.

Since ∥xn− x̄n∥ → 0 and ∥x̂n− x̄n∥ → 0, this implies that ∥x̂n−xn∥ ≤ ∥xn− x̄n∥+
∥x̂n − x̄n∥ → 0. From (4.13) and 0∗ ∈ ∂δk(x̂n), we have

x∗n − un ∈ ∂ϕ(x̂n) + ∂δk(x̂n) = ∂(ϕ+ δk)(x̂n),

which hence leads to

(4.14) ⟨un − x∗n, x̂n − y⟩+ ϕ(x̂n)− ϕ(y) ≤ 0, ∀y ∈ K.

Suppose that IP(F + ∂(ϕ+ δK),K) is strongly LP well-posed. Let {xnk
} be any

subsequence of {xn} such that xnk
→ x̄ as k → ∞. Clearly x̄ ∈ K. Since F is

locally bounded, there exists a neighborhood of x̄ and a constant ℓ > 0 such that,
for each z in this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since xnk

→ x̄ as
k → ∞, for k sufficiently large ∥unk

∥ ≤ ℓ; hence, from the reflexivity of X we may
assume, without loss of generality, that unk

→ u ∈ X∗ in the weak∗ topology of
X∗. Note that the reflexivity of X implies that the weak topology of X∗ coincides
with the weak∗ topology of X∗. Thus, we know that unk

→ u ∈ X∗ in the weak
topology of X∗. Since F has weakly closed graph, xnk

→ x̄ and unk
→ u ∈ X∗

weakly, we have u ∈ F (x̄). Note that ∥x̂n − xn∥ → 0 as n → ∞. Thus, we have
x̂nk

→ x̄ as k → ∞. Since unk
→ u ∈ X∗ weakly and x∗n → 0 as n → ∞, we obtain

that unk
− x∗nk

→ u weakly. Consequently, from (4.14) and the differentiability of
ϕ we deduce that

⟨u, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ 0, ∀y ∈ K.

Therefore, x̄ solves GMVI(F, ϕ,K). Since GMVI(F, ϕ,K) has a unique solution x∗,
we get x̄ = x∗. This means that xn → x∗ as n → ∞. Therefore, GMVI(F, ϕ,K) is
strongly LP well-posed.
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Suppose that IP(F + ∂(ϕ + δK),K) is weakly LP well-posed. Let {xnk
} be any

subsequence of {xn} such that xnk
⇀ x̄ as k → ∞. Clearly x̄ ∈ K. It follows from

(4.7) that

⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y) ≤ ϵnk

, ∀y ∈ K.

Since F is monotone, ϕ is convex and lower semicontinuous and ϵn → 0 as n → ∞,
we have

(4.15)

⟨v, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ lim inf
k→∞

{⟨v, xnk
− y⟩+ ϕ(xnk

)− ϕ(y)}

≤ lim inf
k→∞

{⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y)}

≤ lim inf
k→∞

ϵnk
= 0, ∀y ∈ K, v ∈ F (y).

This together with Proposition 2.7, implies that x̄ solves GMVI(F, ϕ,K). Since
GMVI(F, ϕ,K) has a unique solution x∗, we get x̄ = x∗. Thus xn ⇀ x∗ and so
GMVI(F, ϕ,K) is weakly LP well-posed. The proof is complete. □

Theorem 4.6. Let K be a nonempty, closed and convex subset of X, F : X →
2X

∗
be a nonempty set-valued mapping, and let ϕ : X → R ∪ {+∞} be a proper,

convex and lower semicontinuous functional. If GMVI(F, ϕ,K) is strongly (resp.
weakly) LP α-well-posed in the generalized sense with α(z) = 1

2∥z∥
2 ∀z ∈ X, then

IP(F + ∂(ϕ + δK),K) is strongly (resp. weakly) LP well-posed in the generalized
sense.

Proof. Let {xn} be a LP approximating sequence for IP(F + ∂(ϕ+ δK),K). Then
there exists yn ∈ F (xn) + ∂(ϕ+ δK)(xn) such that ∥yn∥ → 0. It is easy to see that
{xn} ⊂ K and there exists un ∈ F (xn) such that

ϕ(y)− ϕ(xn) ≥ ⟨yn − un, y − xn⟩, ∀y ∈ K.

Thus,

⟨un, xn−y⟩+ϕ(xn)−ϕ(y) ≤ ⟨yn, xn−y⟩ ≤ 1

2
∥xn−y∥2+ 1

2
∥yn∥2, ∀y ∈ K,n ∈ N.

This together with ∥yn∥ → 0 implies that {xn} is a LP α-approximating sequence for
GMVI(F, ϕ,K) with α(z) = 1

2∥z∥
2 ∀z ∈ X. Since GMVI(F, ϕ,K) is strongly (resp.

weakly) LP α-well-posed in the generalized sense with α(z) = 1
2∥z∥

2 ∀z ∈ X, {xn}
has a subsequence that converges strongly (resp. weakly) to some solution x∗ of
GMVI(F, ϕ,K). By Proposition 2.1, x∗ is also a solution of IP(F+∂(ϕ+δK),K) and
so IP(F +∂(ϕ+ δK),K) is strongly (resp. weakly) LP well-posed in the generalized
sense. The proof is complete. □

Theorem 4.7. Let K be a nonempty, closed and convex subset of X, F : X → 2X
∗

be a weakly closed set-valued mapping which is locally bounded and monotone, and
let ϕ : X → R∪ {+∞} be a proper, convex and differentiable functional. If IP(F +
∂(ϕ+δK),K) is strongly (resp. weakly) LP well-posed in the generalized sense, then
GMVI(F, ϕ,K) is strongly (resp. weakly) LP well-posed in the generalized sense.

Proof. The conclusion follows from similar arguments to those in the proof of The-
orem 4.5. □
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Remark 4.8. Theorems 4.4, 4.5, 4.6 and 4.7 improve, extend and develop Theorems
4.1-4.4 in [20] to a great extent because we drop the compactness, H-hemicontinuity,
and H-uniform continuity of F . In addition, if X is a Hilbert space, K = X and
F is a single valued mapping, Theorems 4.1-4.4 in [20] reduce to Theorems 4.1-4.4
of [10], respectively.

5. Links with Levitin-Polyak Well-Posedness of Fixed Point
Problems

In this section, we shall investigate the relations between the Levitin-Polyak well-
posedness of noncompact generalized mixed variational inequalities and the Levitin-
Polyak well-posedness of the corresponding fixed point problems. Let T : X → 2X

∗

be a set-valued mapping. The fixed point problem associated with (T,K) is defined
by

FP(T,K) : find x ∈ K such that x ∈ T (x).

Let U = {x ∈ X : ∥x∥ = 1} be the unit sphere. A Banach space X is said to be
(i) strictly convex if for any x, y ∈ U, x ̸= y ⇒ ∥x+y

2 ∥ < 1; (ii) smooth if the limit

limt→0
∥x+ty∥−∥x∥

t exists for all x, y ∈ U . The modulus of convexity of X is defined
by

δX(ϵ) = inf{1− ∥x+ y

2
∥ : x, y ∈ U, ∥x− y∥ ≥ ϵ},

and the modulus of smoothness of X is defined by

ρX(τ) = sup{1
2
(∥x+ y∥+ ∥x− y∥)− 1 : x ∈ U, ∥y∥ ≤ τ}.

In this section, we suppose that q > 1 and s > 1 are fixed numbers.

Definition 5.1. A Banach space X is said to be

(i) q-uniformly convex if there exists a constant c > 0 such that δX(ϵ) ≥ cϵq for
all ϵ ∈ (0, 2);

(ii) q-uniformly smooth if there exists a constant k > 0 such that ρX(τ) ≤ kτ q.

The generalized duality mapping Jq : X → 2X
∗
is defined by

Jq(x) = {jq(x) ∈ X∗ : ⟨jq(x), x⟩ = ∥x∥q, ∥jq(x)∥ = ∥x∥q−1}.

In particular, J = J2 is called the normalized duality mapping. It is well known
that Jq has the following properties: (a) Jq is bounded; (b) if X is smooth, then
Jq is single-valued; (c) if X is strictly convex, then Jq is one-to-one and strictly
monotone.

Lemma 5.2 (see [26]). Let X be a q-uniformly smooth Banach space. Then there
exists a constant Lq > 0 such that

∥Jq(x)− Jq(y)∥ ≤ Lq∥x− y∥q−1, ∀x, y ∈ X.

Lemma 5.3 (see [26]). Let X be a q-uniformly convex Banach space. Then there
exists a constant Kq > 0 such that

⟨Jq(x)− Jq(y), x− y⟩ ≥ Kq∥x− y∥q, ∀x, y ∈ X.
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Lemma 5.4 (see [9]). Let X be a q-uniformly convex Banach space and M : X →
2X

∗
be a maximal monotone operator. Then for every λ > 0, (Jq + λM)−1 is

well-defined and single-valued.

We denote Π ϕ
λ = (Jq + λ∂ϕ)−1. By the definition of Π ϕ

λ and Lemma 5.4, it is
easy to prove the following proposition.

Proposition 5.5. Let X be a q-uniformly convex Banach space, and K be a
nonempty, closed and convex subset of X, and F : X → 2X

∗
be a nonempty set-

valued mapping. Let ϕ : X → R ∪ {+∞} be a proper, convex and lower semicon-
tinuous functional. Then the following conclusions are equivalent:

(i) x solves GMVI(F, ϕ,K);
(ii) x solves the fixed-point problem

FP(Π ϕ+δk
λ (Jq − λF ),K) : find x ∈ K such that x ∈ Π ϕ+δk

λ (Jq(x)− λF (x)).

Definition 5.6. A sequence {xn} ⊂ X is called a LP approximating sequence for

FP(Π ϕ+δk
λ (Jq−λF ),K) if there exists wn ∈ X with wn → 0 such that xn+wn ∈ K,

and there exists un ∈ F (xn) such that yn = Π ϕ+δk
λ (Jq(xn) − λun), ∥xn − yn∥ → 0

as n → ∞, and limn→∞{⟨un, xn − yn⟩+ ϕ(xn)− ϕ(yn)} = 0.

Definition 5.7. We say that FP(Π ϕ+δk
λ (Jq − λF ),K) is strongly (resp. weakly)

LP well-posed if it has a unique solution and every LP approximating sequence for

FP(Π ϕ+δk
λ (Jq − λF ),K) converges strongly (resp. weakly) to the unique solution.

FP(Π ϕ+δk
λ (Jq − λF ),K) is said to be strongly (resp. weakly) LP well-posed in the

generalized sense if the solution set S of FP(Π ϕ+δk
λ (Jq − λF ),K) is nonempty and

every LP approximating sequence has a subsequence which converges strongly (resp.
weakly) to a point of S.

Theorem 5.8. Let X be a s-uniformly convex and q-uniformly smooth Banach
space and K be a nonempty, closed and convex subset of X. Let F : X → 2X

∗

be a weakly closed set-valued mapping which is locally bounded and monotone, and
ϕ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous functional.

If GMVI(F, ϕ,K) is strongly (resp. weakly) LP well-posed, then FP(Π ϕ+δK
λ (Jq −

λF ),K) is strongly (resp. weakly) LP well-posed, where λ > 0 is a constant.

Proof. Let x∗ be the unique solution of GMVI(F, ϕ,K). Then, by Proposition

5.5 we know that x∗ is also the unique solution of FP(Π ϕ+δK
λ (Jq − λF ),K). Let

{xn} be a LP approximating sequence for FP(Π ϕ+δK
λ (Jq − λF ),K). Then, there

exists wn ∈ X with wn → 0 such that xn + wn ∈ K, and there exists un ∈
F (xn) such that yn = Π ϕ+δk

λ (Jq(xn) − λun), ∥xn − yn∥ → 0 as n → ∞, and

limn→∞{⟨un, xn − yn⟩+ ϕ(xn)− ϕ(yn)} = 0. By the definition of Π ϕ+δK
λ , we get

Jq(xn)− Jq(yn)

λ
− un ∈ ∂(ϕ+ δK)(yn).

It is easy to see that {yn} ⊂ K and

(5.1) ϕ(y)− ϕ(yn) ≥
⟨Jq(xn)− Jq(yn)

λ
− un, y − yn

⟩
, ∀y ∈ K,n ∈ N.
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We claim that {xn} is bounded. Indeed, if {xn} is unbounded, without loss of
generality, we may assume that ∥xn∥ → +∞. Let

tn =
1

∥xn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1] and zn ⇀ z( ̸= x∗). Since
x∗, xn ∈ K, this together with tn ∈ (0, 1] yields that zn ∈ K and so z ∈ K. For any
y ∈ K, v ∈ F (y),

(5.2)

⟨v, z − y⟩ = ⟨v, z − zn⟩+ ⟨v, zn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − y⟩+ (1− tn)⟨v, x∗ − y⟩.

Since x∗ is the unique solution of GMVI(F, ϕ,K), there exists u∗ ∈ F (x∗) such that

(5.3) ⟨u∗, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ 0, ∀y ∈ K.

Since F is monotone, we have

(5.4) ⟨v, x∗ − y⟩ ≤ ⟨u∗, x∗ − y⟩, ⟨v, xn − y⟩ ≤ ⟨un, xn − y⟩.
Note that ϕ is convex. Hence it follows from (5.1)-(5.4) that

(5.5)

⟨v, z − y⟩ ≤ ⟨v, z − zn⟩+ tn⟨un, yn − y + xn − yn⟩+ (1− tn)(ϕ(y)− ϕ(x∗))

≤ ⟨v, z − zn⟩+ tn

[
⟨un, xn − yn⟩+ ϕ(y)− ϕ(yn)

+
⟨Jq(xn)− Jq(yn)

λ
, yn − y

⟩]
+ (1− tn)(ϕ(y)− ϕ(x∗))

= ⟨v, z − zn⟩+ tn

[
⟨un, xn − yn⟩+ ϕ(y)− ϕ(xn) + ϕ(xn)− ϕ(yn)

+
⟨Jq(xn)− Jq(yn)

λ
, yn − y

⟩]
+ (1− tn)(ϕ(y)− ϕ(x∗))

= ⟨v, z − zn⟩+ ϕ(y)− [tnϕ(xn) + (1− tn)ϕ(x
∗)]

+ tn[⟨un, xn − yn⟩

+ ϕ(xn)− ϕ(yn)] +
⟨Jq(xn)− Jq(yn)

λ
, tn(yn − y)

⟩
≤ ⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) + tn[⟨un, xn − yn⟩+ ϕ(xn)− ϕ(yn)]

+
⟨Jq(xn)− Jq(yn)

λ
, tn(yn − y)

⟩
, ∀y ∈ K.

According to Lemma 5.2 and ∥xn − yn∥ → 0, we have

∥Jq(xn)− Jq(yn)∥ ≤ Lq∥xn − yn∥q−1 → 0

and

tn(yn − y) =
xn − x∗

∥xn − x∗∥
+ tn(yn − xn + x∗ − y).

Since limn→∞{⟨un, xn− yn⟩+ϕ(xn)−ϕ(yn)} = 0, it follows from (5.5) that for any
y ∈ K, v ∈ F (y),

⟨v, z − y⟩ ≤ lim sup
n→∞

{
⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) + tn[⟨un, xn − yn⟩
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+ ϕ(xn)− ϕ(yn)] +
1

λ
⟨Jq(xn)− Jq(yn), tn(yn − y)⟩

}
≤ ϕ(y)− ϕ(z).

This together with Proposition 2.7 yields that z solves GMVI(F, ϕ,K), a contradic-
tion. Thus, {xn} is bounded.

Suppose that GMVI(F, ϕ,K) is strongly LP well-posed. Let {xnk
} be any sub-

sequence of {xn} such that xnk
→ x̄ as k → ∞. Clearly x̄ ∈ K. Since F is locally

bounded, there exists a neighborhood of x̄ and a constant ℓ > 0 such that, for each
z in this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since xnk

→ x̄ as k → ∞,
for k sufficiently large ∥unk

∥ ≤ ℓ; hence, from the reflexivity of X we may assume,
without loss of generality, that unk

→ u ∈ X∗ in the weak∗ topology of X∗. Note
that the reflexivity of X implies that the weak topology of X∗ coincides with the
weak∗ topology of X∗. Thus, we know that unk

→ u ∈ X∗ in the weak topology of
X∗. Since F has weakly closed graph, xnk

→ x̄ and unk
→ u ∈ X∗ weakly, we have

u ∈ F (x̄). It follows from (5.1) that

(5.6) ⟨unk
, ynk

− y⟩+ ϕ(ynk
)− ϕ(y) ≤

⟨Jq(xnk
)− Jq(ynk

)

λ
, ynk

− y
⟩
, ∀y ∈ K.

Since ϕ is lower semicontinuous, xnk
→ x̄, ∥xn − yn∥ → 0 and unk

⇀ u, we have

⟨u, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ 0, ∀y ∈ K.

Therefore, x̄ solves GMVI(F, ϕ,K). Since GMVI(F, ϕ,K) has a unique solution x∗,

we get x̄ = x∗. This means that xn → x∗ as n → ∞. Therefore, FP(Π ϕ+δK
λ (Jq −

λF ),K) is strongly LP well-posed.
Suppose that GMVI(F, ϕ,K) is weakly LP well-posed. Let {xnk

} be any subse-
quence of {xn} such that xnk

⇀ x̄ as k → ∞. Clearly x̄ ∈ K. Since F is monotone,
ϕ is convex and lower semicontinuous, and ∥xn − yn∥ → 0, from (5.6) we have

(5.7)

⟨v, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ lim inf
k→∞

{⟨v, xnk
− y⟩+ ϕ(xnk

)− ϕ(y)}

≤ lim inf
k→∞

{⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y)}

≤ lim sup
k→∞

{⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y)}

= lim sup
k→∞

{⟨unk
, ynk

− y⟩+ ϕ(ynk
)− ϕ(y)

+ ⟨unk
, xnk

− ynk
⟩+ ϕ(xnk

)− ϕ(ynk
)}

≤ lim sup
k→∞

{⟨Jq(xnk
)− Jq(ynk

)

λ
, ynk

− y⟩

+ ⟨unk
, xnk

− ynk
⟩+ ϕ(xnk

)− ϕ(ynk
)
}

≤ 0, ∀y ∈ K, v ∈ F (y).

This together with Proposition 2.7, implies that x̄ solves GMVI(F, ϕ,K). Since
GMVI(F, ϕ,K) has a unique solution x∗, we get x̄ = x∗. Thus xn ⇀ x∗ and so

FP(Π ϕ+δK
λ (Jq − λF ),K) is weakly LP well-posed. The proof is complete. □

Theorem 5.9. Let X be a s-uniformly convex and q-uniformly smooth Banach
space and K be a nonempty, closed and convex subset of X. Let F : X → 2X

∗
be a
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weakly closed set-valued mapping which is locally bounded and monotone, and let ϕ :

X → R∪{+∞} be a proper, convex and differentiable functional. If FP(Π ϕ+δK
λ (Jq−

λF ),K) is strongly (resp. weakly) LP well-posed, then GMVI(F, ϕ,K) is strongly
(resp. weakly) LP well-posed, where λ > 0 is a constant.

Proof. Let x∗ be the unique solution of FP(Π ϕ+δK
λ (Jq − λF ),K). Then, by Propo-

sition 5.5 we know that x∗ is also the unique solution of GMVI(F, ϕ,K). Let {xn}
be a LP approximating sequence for GMVI(F, ϕ,K). Then there exist wn ∈ X
with wn → 0 and 0 < ϵn → 0 such that xn + wn ∈ K, and there exists un ∈ F (xn)
satisfying

(5.8) ϕ(xn) ≤ ϕ(y) + ⟨un, y − xn⟩+ ϵn, ∀y ∈ K,n ∈ N.

We claim that {xn} is bounded. Indeed, if {xn} is unbounded, without loss of
generality, we may assume that ∥xn∥ → +∞. Let

tn =
1

∥xn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1] and zn ⇀ z( ̸= x∗). Since
x∗, xn ∈ K, this together with tn ∈ (0, 1] yields that zn ∈ K and so z ∈ K. For any
y ∈ K, v ∈ F (y),

(5.9)

⟨v, z − y⟩ = ⟨v, z − zn⟩+ ⟨v, zn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − y⟩+ (1− tn)⟨v, x∗ − y⟩.

Since x∗ is the unique solution of GMVI(F, ϕ,K), there exists u∗ ∈ F (x∗) such that

(5.10) ⟨u∗, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ 0, ∀y ∈ K.

Since F is monotone, we have

(5.11) ⟨v, x∗ − y⟩ ≤ ⟨u∗, x∗ − y⟩, ⟨v, xn − y⟩ ≤ ⟨un, xn − y⟩.
Note that ϕ is convex. Hence it follows from (5.8)-(5.11) that

(5.12)

⟨v, z − y⟩ ≤ ⟨v, z − zn⟩
+ tnϕ(y)− tnϕ(xn) + tnϵn + (1− tn)(ϕ(y)− ϕ(x∗))

= ⟨v, z − zn⟩+ ϕ(y)− [tnϕ(xn) + (1− tn)ϕ(x
∗)] +

ϵn
∥xn − x∗∥

≤ ⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) +
ϵn

∥xn − x∗∥
, ∀y ∈ K.

Since ϵn → 0, it follows from (5.12) that for any y ∈ K, v ∈ F (y),

⟨v, z − y⟩ ≤ lim inf
n→∞

{⟨v, z − zn⟩+ ϕ(y)− ϕ(zn) +
ϵn

∥xn − x∗∥
} ≤ ϕ(y)− ϕ(z).

This together with Proposition 2.7 yields that z solves GMVI(F, ϕ,K), a contradic-
tion. Thus, {xn} is bounded.

Since xn + wn ∈ K, there exists x̄n ∈ K such that xn + wn = x̄n. Define
ϕ̃n : X → R ∪ {+∞} as follows:

ϕ̃n(y) = ϕ(y) + ⟨un, y − xn⟩, ∀y ∈ K,n ∈ N.
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Since ϕ is proper, convex and differentiable, we know that ϕ̃n is proper, convex
and differentiable for all n ∈ N. It follows from Proposition 2.2.6 of [2] that ϕ̃n is
Lipschitz continuous. Since ∥wn∥ = ∥x̄n − xn∥ → 0, then there exists 0 < δn → 0
such that

(5.13) ϕ̃n(x̄n)− ϕ̃n(xn) ≤ δn.

It follows from (5.8) and (5.13) that

ϕ̃n(x̄n) ≤ ϕ̃n(y) + δn + ϵn, ∀y ∈ K.

By Ekeland Theorem [8], there exists x̂n ∈ K such that

∥x̂n − x̄n∥ ≤
√

δn + ϵn,

and
ϕ̃n(x̂n) ≤ ϕ̃n(y) +

√
δn + ϵn∥y − x̂n∥, ∀y ∈ K.

Thus, x̂n minimizes the function ϕ̃n(·) +
√
δn + ϵn∥ · −x̂n∥. It follows that 0∗ ∈

∂(ϕ̃n(·) +
√
δn + ϵn∥ · −x̂n∥)(x̂n). That is,

0∗ ∈ ∂ϕ̃n(x̂n) +
√
δn + ϵnBX∗ .

So there exists

(5.14) x∗n ∈ ∂ϕ̃n(x̂n) = ∂ϕ(x̂n) + un

such that
∥x∗n∥ ≤

√
δn + ϵn.

Since ∥xn−x̄n∥ → 0 and ∥x̂n−x̄n∥ → 0, we have ∥x̂n−xn∥ ≤ ∥xn−x̄n∥+∥x̂n−x̄n∥ →
0. From (5.14) and 0∗ ∈ ∂δk(x̂n), we have

x∗n − un ∈ ∂ϕ(x̂n) + ∂δk(x̂n) = ∂(ϕ+ δk)(x̂n),

which hence leads to

(5.15) x̂n = Π ϕ+δK
λ (Jq(x̂n) + λx∗n − λun).

Suppose that FP(Π ϕ+δK
λ (Jq − λF ),K) is strongly LP well-posed. Let {xnk

} be
any subsequence of {xn} such that xnk

→ x̄ as k → ∞. Clearly x̄ ∈ K. Since F is
locally bounded, there exists a neighborhood of x̄ and a constant ℓ > 0 such that,
for each z in this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since xnk

→ x̄ as
k → ∞, for k sufficiently large ∥unk

∥ ≤ ℓ. Furthermore, according to Lemma 5.2
and ∥x̂n − xn∥ → 0, we have

∥Jq(x̂n)− Jq(xn)∥ ≤ Lq∥x̂n − xn∥q−1 → 0.

Meantime, from (5.15) we observe that

∥xnk
−Π ϕ+δK

λ (Jq(xnk
)− λunk

)∥ ≤ ∥xnk
− x̂nk

∥+ ∥x̂nk
−Π ϕ+δK

λ (Jq(xnk
)− λunk

)∥

= ∥xnk
− x̂nk

∥+ ∥Π ϕ+δK
λ (Jq(x̂nk

) + λx∗nk

− λunk
)−Π ϕ+δK

λ (Jq(xnk
)− λunk

)∥
≤ ∥xnk

− x̂nk
∥+ ∥Jq(x̂nk

)− Jq(xnk
) + λx∗nk

∥
≤ ∥xnk

− x̂nk
∥+ ∥Jq(x̂nk

)− Jq(xnk
)∥+ λ∥x∗nk

∥
→ 0 as k → ∞,
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and
lim sup
k→∞

{⟨unk
, xnk

− ynk
⟩+ ϕ(xnk

)− ϕ(ynk
)} ≤ 0

where ynk
= Π ϕ+δK

λ (Jq(xnk
) − λunk

) for all k ∈ N. So, it follows that {xnk
} is a

LP approximating sequence for FP(Π ϕ+δK
λ (Jq − λF ),K). Since x∗ is the unique

solution of FP(Π ϕ+δK
λ (Jq − λF ),K) and FP(Π ϕ+δK

λ (Jq − λF ),K) is strongly LP
well-posed, we deduce that xnk

→ x∗ as k → ∞. This means that xn → x∗ as
n → ∞. Therefore, GMVI(F, ϕ,K) is strongly LP well-posed.

Suppose that FP(Π ϕ+δK
λ (Jq − λF ),K) is weakly LP well-posed. Let {xnk

} be
any subsequence of {xn} such that xnk

⇀ x̄ as k → ∞. Clearly x̄ ∈ K. It follows
from (5.8) that

⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y) ≤ ϵnk

, ∀y ∈ K.

Since F is monotone, ϕ is convex and lower semicontinuous and ϵn → 0 as n → ∞,
we have

(5.16)

⟨v, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ lim inf
k→∞

{⟨v, xnk
− y⟩+ ϕ(xnk

)− ϕ(y)}

≤ lim inf
k→∞

{⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y)}

≤ lim inf
k→∞

ϵnk
= 0, ∀y ∈ K, v ∈ F (y).

This together with Proposition 2.7, implies that x̄ solves GMVI(F, ϕ,K). Since
GMVI(F, ϕ,K) has a unique solution x∗, we get x̄ = x∗. Thus xn ⇀ x∗ and so
GMVI(F, ϕ,K) is weakly LP well-posed. The proof is complete. □
Remark 5.10. The H-uniform continuity and compactness of F in Theorems 5.1-
5.2 of [20] are replaced by the local boundedness and weak closedness of F in our
Theorems 5.8 and 5.9. If X = Rn, ϕ = δk and F is a single valued mapping,
Theorem 5.1-5.2 in [20] reduce to Theorem 5.3 of Hu and Fang [11].

Theorem 5.11. Let X be a s-uniformly convex and q-uniformly smooth Banach
space and K be a nonempty, closed and convex subset of X. Let F : X → 2X

∗
be a

nonempty set-valued mapping. Let ϕ : X → R∪{+∞} be a proper, convex and lower
semicontinuous functional. If GMVI(F, ϕ,K) is strongly (resp. weakly) LP α-well-

posed in the generalized sense with α(z) = 1
λ∥z∥

2 ∀z ∈ X, then FP(Π ϕ+δK
λ (Jq −

λF ),K) is strongly (resp. weakly) LP well-posed in the generalized sense, where
λ > 0 is a constant.

Proof. Let {xn} be a LP approximating sequence for FP(Π ϕ+δK
λ (Jq−λF ),K). Then

there exists wn ∈ X with wn → 0 such that xn + wn ∈ K, and there exists

un ∈ F (xn) such that yn = Π ϕ+δk
λ (Jq(xn) − λun), ∥xn − yn∥ → 0 as n → ∞,

and limn→∞{⟨un, xn − yn⟩ + ϕ(xn) − ϕ(yn)} = 0. By the definition of Π ϕ+δK
λ , we

get
Jq(xn)− Jq(yn)

λ
− un ∈ ∂(ϕ+ δK)(yn).

It is easy to see that {yn} ⊂ K and

ϕ(y)− ϕ(yn) ≥ ⟨Jq(xn)− Jq(yn)

λ
− un, y − yn⟩, ∀y ∈ K,n ∈ N,
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which hence implies that

⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) = ⟨un, yn − y⟩+ ϕ(yn)− ϕ(y)

+ ⟨un, xn − yn⟩+ ϕ(xn)− ϕ(yn)

≤
⟨Jq(xn)− Jq(yn)

λ
, yn − y

⟩
+ ⟨un, xn − yn⟩

+ ϕ(xn)− ϕ(yn)

≤ 1

2λ
(∥Jq(xn)− Jq(yn)∥2 + ∥yn − y∥2)

+ |⟨un, xn − yn⟩+ ϕ(xn)− ϕ(yn)|

≤ 1

2λ
(∥Jq(xn)− Jq(yn)∥2 + 2∥xn − yn∥2+ 2∥xn − y∥2)

+ |⟨un, xn − yn⟩+ ϕ(xn)− ϕ(yn)|

=
1

λ
∥xn − y∥2 + 1

2λ
(∥Jq(xn)− Jq(yn)∥2+ 2∥xn − yn∥2)

+ |⟨un, xn − yn⟩+ ϕ(xn)− ϕ(yn)|.

By Lemma 5.2, we get

∥Jq(xn)− Jq(yn)∥ ≤ Lq∥xn − yn∥q−1 → 0.

Thus, we know that {xn} is a LP α-approximating sequence for GMVI(F, ϕ,K)
with α(z) = 1

λ∥z∥
2 ∀z ∈ X. If GMVI(F, ϕ,K) is strongly LP α-well-posed in the

generalized sense with α(z) = 1
λ∥z∥

2 ∀z ∈ X, then {xn} has a subsequence {xnk
}

such that xnk
→ x∗ as k → ∞, where x∗ is a solution of GMVI(F, ϕ,K). By

Proposition 5.5, we get x∗ is also a solution of FP(Π ϕ+δK
λ (Jq − λF ),K). Thus,

FP(Π ϕ+δK
λ (Jq − λF ),K) is strongly LP well-posed in the generalized sense.

If GMVI(F, ϕ,K) is weakly LP α-well-posed in the generalized sense with α(z) =
1
λ∥z∥

2 ∀z ∈ X, then {xn} has a subsequence {xnk
} such that xnk

⇀ x∗ as k → ∞,
where x∗ is a solution of GMVI(F, ϕ,K). By Proposition 5.5, we get x∗ is also a

solution of FP(Π ϕ+δK
λ (Jq − λF ),K). Thus, FP(Π ϕ+δK

λ (Jq − λF ),K) is weakly LP
well-posed in the generalized sense. The proof is complete. □

Theorem 5.12. Let X be a s-uniformly convex and q-uniformly smooth Banach
space and K be a nonempty, closed and convex subset of X. Let F : X → 2X

∗
be a

weakly closed set-valued mapping which is locally bounded and monotone, and let ϕ :

X → R∪{+∞} be a proper, convex and differentiable functional. If FP(Π ϕ+δK
λ (Jq−

λF ),K) is strongly (resp. weakly) LP well-posed in the generalized sense, then
GMVI(F, ϕ,K) is strongly (resp. weakly) LP well-posed in the generalized sense,
where λ > 0 is a constant.

Proof. The conclusion follows from the arguments similar to those in the proof of
Theorem 5.9. □

Remark 5.13. Theorems 5.8, 5.9, 5.11 and 5.12 improve, extend and develop
Theorems 5.1-5.4 in [20] to a great extent because we drop the compactness and
H-uniform continuity of F . In addition, if X is a Hilbert space, K = X and F is a
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single valued mapping, Theorems 5.1-5.4 of [20] reduce to Theorems 5.1-5.4 of [10],
respectively.

6. Conditions for Levitin-Polyak Well-Posedness

In this section, we shall derive some conditions under which a noncompact gen-
eralized mixed variational inequality in Banach spaces is Levitin-Polyak well-posed.

Theorem 6.1. Let K be a nonempty, closed and convex subset of X, F : X → 2X
∗

be a weakly closed set-valued mapping which is locally bounded and monotone, and
let ϕ : X → R ∪ {+∞} be a proper, convex and uniformly continuous functional.
Then the following conclusions are equivalent:

(i) GMVI(F, ϕ,K) has a unique solution;
(ii) GMVI(F, ϕ,K) is strongly LP well-posed;
(iii) GMVI(F, ϕ,K) is weakly LP well-posed.

Proof. It is clear that (ii) ⇒ (i) and (iii) ⇒ (i). Next, we show that and (i) ⇒ (iii).
Indeed, suppose that GMVI(F, ϕ,K) has a unique solution.
(i) ⇒ (ii). If GMVI(F, ϕ,K) is not strongly LP well-posed, then there exists a LP

approximating sequence {xn} for GMVI(F, ϕ,K) such that {xn} does not converge
strongly to x∗. Thus, there exists wn ∈ X with wn → 0 and 0 < ϵn → 0 such that
xn + wn ∈ K, and there exists un ∈ F (xn) such that

(6.1) ⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) ≤ ϵn, ∀y ∈ K,n ∈ N.

Since xn + wn ∈ K, then there exists x̄n ∈ K such that xn + wn = x̄n. Thus,

d(xn,K) ≤ ∥xn − x̄n∥ = ∥wn∥ → 0 as n → ∞.

We claim that {xn} is bounded. As a matter of fact, if {xn} is unbounded, then
{x̄n} is an unbounded sequence in K. Without loss of generality we may assume
that ∥x̄n∥ → +∞. Let

tn =
1

∥x̄n − x∗∥
, zn = x∗ + tn(x̄n − x∗).

Without loss of generality, we may assume that tn ∈ (0, 1] and zn ⇀ z( ̸= x∗). Then
we have for each y ∈ K, v ∈ F (y),

(6.2)

⟨v, z − y⟩ = ⟨v, z − zn⟩+ ⟨v, zn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, x̄n − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn + wn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − y⟩+ (1− tn)⟨v, x∗ − y⟩+ tn⟨v, wn⟩.

Since x∗ is the unique solution of GMVI(F, ϕ,K), there exists u∗ ∈ F (x∗) such that

(6.3) ⟨u∗, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ 0, ∀y ∈ K.

Since F is monotone, we have

(6.4) ⟨v, x∗ − y⟩ ≤ ⟨u∗, x∗ − y⟩, ⟨v, xn − y⟩ ≤ ⟨un, xn − y⟩.
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It follows from (6.1)-(6.4) and the convexity of ϕ that for all v ∈ F (y),

(6.5)

⟨v, z − y⟩ ≤ ⟨v, z − zn⟩+ tnϕ(y)− tnϕ(xn) + tnϵn

+ (1− tn)(ϕ(y)− ϕ(x∗)) + tn⟨v, wn⟩
= ⟨v, z − zn⟩+ ϕ(y)

− [tnϕ(xn) + (1− tn)ϕ(x
∗)] + tnϵn + tn⟨v, wn⟩

= ⟨v, z − zn⟩+ ϕ(y)

− [tnϕ(x̄n) + (1− tn)ϕ(x
∗) + tnϕ(xn)− tnϕ(x̄n)]

+ tnϵn + tn⟨v, wn⟩
≤ ⟨v, z − zn⟩+ ϕ(y)− ϕ(zn)− tn[ϕ(xn)− ϕ(x̄n)] + tnϵn

+ tn⟨v, wn⟩, ∀y ∈ K.

Since ϕ is uniformly continuous, we have

⟨v, z − y⟩ ≤ lim inf
n→∞

{⟨v, z − zn⟩+ ϕ(y)− ϕ(zn)− tn[ϕ(xn)− ϕ(x̄n)]

+ tnϵn + tn⟨v, wn⟩}
≤ ϕ(y)− ϕ(z), ∀y ∈ K.

This together with Proposition 2.7 yields that z solves GMVI(F, ϕ,K), a contradic-
tion. Thus, {xn} is bounded.

We claim that xn → x∗ as n → ∞. Let {xnk
} be any subsequence of {xn} such

that xnk
→ x̄ as k → ∞. Clearly x̄ ∈ K. Since F is locally bounded, there exists a

neighborhood of x̄ and a constant ℓ > 0 such that, for each z in this neighborhood
and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since xnk

→ x̄ as k → ∞, for k sufficiently
large ∥unk

∥ ≤ ℓ; hence, from the reflexivity of X we may assume, without loss
of generality, that unk

→ u ∈ X∗ in the weak∗ topology of X∗. Note that the
reflexivity of X implies that the weak topology of X∗ coincides with the weak∗

topology of X∗. Thus, we know that unk
→ u ∈ X∗ in the weak topology of X∗.

Since F has weakly closed graph, xnk
→ x̄ and unk

→ u ∈ X∗ weakly, we have
u ∈ F (x̄) and

⟨u, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ 0, ∀y ∈ K

(due to (6.1)). This together with Proposition 2.7 yields that x̄ solves GMVI(F, ϕ,K).
Since GMVI(F, ϕ,K) has a unique solution x∗, we have x̄ = x∗. Thus xn → x∗, a
contradiction. Therefore, GMVI(F, ϕ,K) is strongly LP well-posed.

(i) ⇒ (iii). If GMVI(F, ϕ,K) is not weakly LP well-posed, then there exists a LP
approximating sequence {xn} for GMVI(F, ϕ,K) such that {xn} does not converge
weakly to x∗. Thus, there exists wn ∈ X with wn → 0 and 0 < ϵn → 0 such that
xn + wn ∈ K, and there exists un ∈ F (xn) such that

(6.6) ⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) ≤ ϵn, ∀y ∈ K,n ∈ N.

Since xn + wn ∈ K, then there exists x̄n ∈ K such that xn + wn = x̄n. Thus,

d(xn,K) ≤ ∥xn − x̄n∥ = ∥wn∥ → 0 as n → ∞.

We claim that {xn} is bounded. As a matter of fact, repeating the same argu-
ments as in the proof of (i) ⇒ (ii), we can prove that {xn} is bounded.
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We claim that xn ⇀ x∗. Let {xnk
} be any subsequence of {xn} such that xnk

⇀ x̄
as k → ∞. Clearly x̄ ∈ K. It follows from (6.6) that

⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y) ≤ ϵnk

, ∀y ∈ K.

Since F is monotone and ϕ is lower semicontinuous, we have

(6.7)

⟨v, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ lim inf
k→∞

{⟨v, xnk
− y⟩+ ϕ(xnk

)− ϕ(y)}

≤ lim inf
k→∞

{⟨unk
, xnk

− y⟩+ ϕ(xnk
)− ϕ(y)}

≤ lim inf
k→∞

ϵnk
= 0, ∀y ∈ K, v ∈ F (y).

This together with Proposition 2.7, implies that x̄ solves GMVI(F, ϕ,K). Since
GMVI(F, ϕ,K) has a unique solution x∗, we have x̄ = x∗. Thus xn ⇀ x∗, a
contradiction. So GMVI(F, ϕ,K) is weakly LP well-posed. The proof is complete.

□
Remark 6.2. The H-hemicontinuity and compactness of F in Theorem 6.1 of [20]
is replaced by the local boundedness and weak closedness of F in our Theorem 6.1.
If X ia a Hilbert space, k = X and F is a single valued mapping, Theorem 6.1
in [20] reduces to Theorem 6.1 in [10].

Now, for any δ0 ≥ 0, we denote M(δ0) = {x ∈ X : dK(x) ≤ δ0}. In addition, we
say that a bounded LP α-approximating sequence {xn} for GMVI(F, ϕ,K) has the
approximation property (AP) if there exists a strongly convergent subsequence of
{xn}. Then we have the following result.

Theorem 6.3. Let K be a nonempty, closed and convex subset of X, F : X → 2X
∗

be a nonempty, weakly closed and locally bounded set-valued mapping, and let ϕ :
X → R ∪ {+∞} be a proper, convex and lower semicontinuous functional. If there
exists some δ0 with δ0 > 0 such that M(δ0) is bounded and every bounded LP α-
approximating sequence {xn} for GMVI(F, ϕ,K) has the AP. Then GMVI(F, ϕ,K)
is strongly LP α-well-posed in the generalized sense.

Proof. Let {xn} be a LP α-approximating sequence for GMVI(F, ϕ,K). Then there
exist 0 < ϵ′n → 0 and wn ∈ X with wn → 0 such that

xn + wn ∈ K,

and there exists un ∈ F (xn) satisfying

(6.8) ⟨un, xn − y⟩+ ϕ(xn)− ϕ(y) ≤ α(xn − y) + ϵ′n, ∀y ∈ K,n ∈ R.

Since xn + wn ∈ K, then there exists x̄n ∈ K such that xn + wn = x̄n. Thus,

d(xn,K) ≤ ∥xn − x̄n∥ = ∥wn∥ → 0.

Set ϵn = max{ϵ′n, ∥wn∥}, we can get d(xn,K) ≤ ϵn. Without loss of generality, we
may assume that {xn} ⊂ M(δ0) for n sufficiently large. By the boundedness of
M(δ0), we know that {xn} is bounded. Since every bounded LP α-approximating
sequence {xn} for GMVI(F, ϕ,K) has the AP, there exists a subsequence {xnk

} of
{xn} such that xnk

→ x̄. It is easy to see x̄ ∈ K. Since F is locally bounded,
there exists a neighborhood of x̄ and a constant ℓ > 0 such that, for each z in
this neighborhood and u ∈ F (z), we have ∥u∥ ≤ ℓ. Since xnk

→ x̄ as k → ∞,
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for k sufficiently large ∥unk
∥ ≤ ℓ; hence, from the reflexivity of X we may assume,

without loss of generality, that unk
→ ū ∈ X∗ in the weak∗ topology of X∗. Note

that the reflexivity of X implies that the weak topology of X∗ coincides with the
weak∗ topology of X∗. Thus, we know that unk

→ ū ∈ X∗ in the weak topology of
X∗. Since F has weakly closed graph, xnk

→ x̄ and unk
→ ū ∈ X∗ weakly, we have

ū ∈ F (x̄). Since ϕ is proper, convex and lower semicontinuous, it follows from (6.8)
that

(6.9) ⟨ū, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ α(x̄− y), ∀y ∈ K.

For any y ∈ K, put yt = x̄+ t(y− x̄) for all t ∈ (0, 1), it is easy to see yt ∈ K. Now,
utilizing (6.9), one has

⟨ū, x̄− yt⟩+ ϕ(x̄)− ϕ(yt) ≤ α(x̄− yt).

By the convexity of ϕ and the property of α, we deduce that for each t ∈ (0, 1), one
has

⟨ū, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ tp−1α(x̄− y), ∀y ∈ K,

where p > 1. Letting t → 0+ in the last inequality, we have

⟨ū, x̄− y⟩+ ϕ(x̄)− ϕ(y) ≤ 0, ∀y ∈ K.

This shows that x̄ solves GMVI(F, ϕ,K). Thus, GMVI(F, ϕ,K) is strongly LP
α-well-posed in the generalized sense. The proof is complete. □

Remark 6.4. Theorems 6.1 and 6.3 improve, extend and develop Theorems 6.1-6.2
in [20] to a great extent because we drop the compactness, H-semicontinuity and
upper semisemicontinuity of F , and the compactness of M(δ0).
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