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Theorem 6.1 in [4] has received none or little attention in the literature, a situation
we aim to remedy here. Our first step, however, is to generalize the nonsmooth
maximum principle in Theorem 6.1 to cover problems with set constrained implicit
control systems of the form

(1.1) f(t, x(t), ẋ(t), u(t)) ∈ Φ, u ∈ U,

and with less regularity with respect to the control variable. This is done in Section
2. Although we first consider nonsmooth problems, we recur to smooth problems to
illustrate some special features of our result in Section 3. There, we also consider the
smooth case when Φ in (1.1) reduces to {0}. The last result of Section 3, Corollary
3.2, plays a crucial role in the discussion of necessary conditions for problems with
semi-explicit DAE’s in section 4 of the form

(1.2) Eẋ(t)− g(t, x(t), u(t)) = 0.

where E is a N × n constant matrix.
Our problem of interest is a fixed time optimal control problem involving implicit

systems:

(P )


Minimize l(x(a), x(b))
subject to

f(t, x(t), ẋ(t), u(t)) ∈ Φ a.e.,
u(t) ∈ U a.e.,
(x(a), x(b)) ∈ E,

where l : Rn × Rn → R, f : [a, b] × Rn × Rn × Rk → RN and Φ ⊂ RN , U ⊂ Rk

and E ⊂ Rn × Rn are all closed sets. Recall that the Mayer form adopted in (P )
is not restrictive since problems with an integral cost can be easily reformulated in
the above form by well known state augmentation techniques.

Crucial to our forthcoming analysis is the reformulation of the implicit system
f(t, x, ẋ, u) ∈ Φ as

(1.3)

{
ẋ(t) = v,

f(t, x, v, u) ∈ Φ.

Clearly, and not surprisingly, this reformulation transforms an implicit control sys-
tems into a system with mixed state-control constraints.

The introduction of the variable v has implications with respect to the nature of
x. Since x is assumed to be an absolutely continuous function, this scheme prevents
us from treat some components of the state as measurable functions, a subject that
will be discussed later on in section 4.

As we have mentioned before, we apply a smooth version of our results to prob-
lems with implicit control systems of the form (1.2) in our last section. We consider
three cases: when E is of full row rank, when E is of full column rank and when
E is not of full rank. In the first case, we show that the adjoint equation can be
written in the form of the initial implicit system. In the two latter cases, however,
(1.2) is rewritten as a DAE’s in the semi-explicit form and application of necessary
conditions is not possible unless lack of full rankness is somehow compensated as,
for example when DAE’s is of index one. The necessary conditions we obtain for
DAE’s of index one coincide with known results in the literature ( [7,9,11,12,15,21]),
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but they differ in so far as they are obtained without appealing to implicit function
theorems.

To keep the exposition short and simple, we do not present the statement of
the necessary condition when g in (1.2) is nonsmooth. Those can nevertheless be
easily derived from our Theorem 2.1 or Theorem 2.2 or Lemma 3.1 below (choice
would depend on the assumptions) yielding new nonsmooth necessary conditions
for DAE’s. Preliminaries of this sort can be found in [14].

Notation: If g is a vector, g ∈ Rm, the inequality g ≤ 0 is interpreted component
wise.

We will denote by B the closed unit ball centred at the origin regardless of the
dimension of the underlying space. Also | · | is the Euclidean norm or the induced
matrix norm on Rp×q.

Take any A ⊂ Rn. Then the Euclidean distance function with respect to A is
defined as

dA : Rk → R, y → dA(y) = inf {|y − x| : x ∈ A} .
Consider now a function h : [a, b] → Rp. We say that h ∈ W 1,1([a, b];Rp) if and

only if it is absolutely continuous; in h ∈ L1([a, b];Rp) iff h is integrable; and in
h ∈ L∞([a, b];Rp) iff it is essentially bounded. The norm of L1([a, b];Rp) is denoted
by ∥ · ∥1 and the norm of L∞([a, b];Rp) is ∥ · ∥∞.

We make use of concepts from nonsmooth analysis. Thorough discussion of basic
concepts of nonsmooth analysis can be found ,for example, in [2], [6], [22], [20]
and [17]. Here we introduce only the notation of some concepts used throughout
this paper.

Let A ⊂ Rn to be a closed set with and consider x∗ ∈ A. The limiting normal
cone to A at x∗ (also known as Mordukhovich normal cone) is denoted by NL

A(x∗)
while the Clarke normal cone is NC

A (x∗).

Take a lower semicontinuous function f : Rk → R ∪ {+∞} and a point x∗ ∈ Rk

where f(x∗) < +∞. Then the limiting subdifferential, also known as Mordukhovich
subdifferential, of f at x∗ is denoted by ∂Lf(∗). Recall that when the function
f is Lipschitz continuous near x, the convex hull of the limiting subdifferential,
co ∂Lf(x), coincides with the (Clarke) subdifferential, denoted here by ∂Cf(x).

2. Main Results

In this section we present two variants nonsmooth maximum principles for (P )
of different nature. The first one, denoted here simply as the nonsmooth maximum
principle, is closed related to Theorem 6.1 in [4]. The second result is a hybrid
nonsmooth maximum principle in line with Theorem 3.2 also in [4]. Their difference
lies in the assumptions; while the function f is assumed locally Lipschitz continuous
with respect to u for the first Theorem, in the second case only measurability of f
with respect to u is imposed. Both results hold for strong local minimizers for (P ),
whose definition we present next.

A pair (x, u), comprising an absolutely continuous function x and a measurable
function u is an admissible process for (P ), if it satisfies all the constraints of the
problem.We say that (x∗, u∗) is a strong local minimizer for (P ) if it is an admissi-
ble process for (P ) minimizing the cost J(x, u) := l(x(a), x(b)) over all admissible
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processes (x, u) such that

|x(t)− x∗(t)| ≤ ε

for some ε > 0.

2.1. Nonsmooth Maximum Principles for (P ). Define the sets

S(t) := {(x, v, u) : (f(t, x, v, u), u) ∈ Φ× U} .(2.1)

Sϵ
∗(t) := {(x, v, u) ∈ S(t) : |x− x∗(t)| ≤ ε}(2.2)

and

S(t, u) := {(x, v) : f(t, x, v, u) ∈ Φ} .(2.3)

Sϵ
∗(t, u) := {(x, v) ∈ S(t, u) : |x− x∗(t)| ≤ ε}(2.4)

The following basic hypotheses are imposed throughout: the function l is locally
Lipschitz, (t, (x, v, u)) → f(t, (x, v, u)) is L×B measurable 1, the set S(t) is closed,
the graph of t → S(t) is L × B measurable and the set U is compact and Φ and E
are closed sets.

Consider also the following assumptions.

L1∗ There exists a constant kf such that, for almost every t ∈ [a, b], for every
(xi, vi, ui) with |xi − x∗(t)| ≤ ε, we have

|f(t, x1, v1, u1)− f(t, x2, v2, u2)| ≤ kf [|x1 − x2|+ |v1 − v2|+ |u1 − u2|].

CQ1 There exists constant M such that, for almost every t ∈ [a, b], all (x, v, u) ∈
Sε
∗(t) and all (λ, µ) ∈ NL

Φ (f(t, x, v, u))×NL
U (u), we have

(α, β1, β2 − µ) ∈ ∂L
x,v,u⟨λ, f(t, x, v, u)⟩ =⇒ |λ| ≤ M |(β1, β2)|.

For our hybrid nonsmooth maximum principle, L1∗ and CQ1 are replaced by the
assumptions stated next.

L2∗ There exists a constant kf such that, for almost every t ∈ [a, b], for every
(xi, vi) in a neighborhood of Sε

∗(t, u), (i = 1, 2), we have

|f(t, x1, v1, u1)− f(t, x2, v2, u2)| ≤ kf [|x1 − x2|+ |v1 − v2|].

CQ2 For each u ∈ U , the set S(t, u) is closed and there exists a constant M
such that, for almost every t ∈ [a, b], all u ∈ U , all (x, v) ∈ Sε

∗(t, u) and all
λ ∈ NL

Φ (f(t, x, v, u)), we have

(α, β) ∈ ∂L
x,v⟨λ, f(t, x, v, u)⟩ =⇒ |λ| ≤ M |β|.

Our first result is a simple adaptation of Theorem 6.1 in [4]; it holds under
assumptions that, although stronger than those appearing in [4], are nevertheless
of interest for applications.

1relative to the σ-field generated by the product of Lebesgue measurable subsets in R and Borel
measurable subsets in Rn × Rm × Rk
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Theorem 2.1. Let (x∗, u∗) be a strong local minimizer for (P ). Assume that the
basic assumptions, L1∗ and CQ1 are satisfied. Then there exist p ∈ W 1,1([a, b];Rn)
and a scalar λ0 ≥ 0 such that:

||p||∞ + λ0 > 0,(2.5)

(p(a),−p(b)) ∈ NL
E(x∗(a), x∗(b)) + λ0∂

Ll(x∗(a), x∗(b)),(2.6)

for almost every t ∈ [a, b]

(−ṗ(t), 0, 0) ∈ ∂C
x,v,u⟨p(t), ẋ∗(t)⟩ −NC

S(t)(x∗(t), ẋ∗(t), u∗(t))(2.7)

and, for all (v, u) such that u ∈ U and f(t, x∗(t), v, u) ∈ Φ, we have

⟨p(t), v⟩ ≤ ⟨p(t), ẋ∗(t)⟩.(2.8)

Observe that Theorem 6.1 in [4] holds when Ψ = {0}. However, the tools in [4]
permit its extension to closed sets Ψ.

A special feature of Theorem 2.1 is the Lipschitz behavior of f with respect to the
control, an assumption not enforced to obtain other necessary conditions available
in the literature. This situation can be partially fixed appealing to Theorem 3.2
in [4]. This yields our second result:

Theorem 2.2. Let (x∗, u∗) be a local minimum for problem (P ). Assume that
the basic assumptions as well as L2∗ and CQ2 are satisfied. Then there exist
p ∈ W 1,1([a, b];Rn) and a scalar λ0 ≥ 0 such that conditions (2.5) and (2.6) in
Theorem 2.1 are satisfied together with:

(−ṗ(t), 0) ∈ ∂C
x,v⟨p(t), ẋ∗(t)⟩ −NC

S(t,u∗(t))
(x∗(t), ẋ∗(t)) a.e.(2.9)

and, for all u ∈ U and (x∗(t), v) ∈ S(t, u) for a.e. t,

⟨p(t), v⟩ ≤ ⟨p(t), ẋ∗(t)⟩.(2.10)

Proof. Rewrite (P ) in the following form

Minimize l(x(a), x(b))
subject to

ẋ(t) = v(t) a.e.
(x(t), v(t)) ∈ S(t, u(t)) a.e.
u(t) ∈ U a.e.
(x(a), x(b)) ∈ E.

Application of Theorem 3.2 in [4] yields the required conditions. □

Clearly, Theorem 3.2 in [4] originates Theorem 2.2, when applied to our prob-
lem. The division on the control into two components,one constrained and another
unconstrained, is not new; we refer the reader [13] and references within in this
respect.

The applicability of both Theorems is shadowed by the presence of the normal
cone of S(t) or S(t, u∗(t)) in the adjoint inclusions.
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3. Smooth Case

We now explore the implications of the above theorems to smooth problems.
First, however, let us consider an intermediate case when all the assumptions of
Theorem 2.1 are enforced and, additionally, (x, v, u) → f(t, x, v, u) is strict differ-
entiable at (x∗(t), ẋ∗(t), u∗(t)) for almost every t and that both sets Φ and U are
such that their limiting normal cones coincide to their Clarke normal cone (i.e, when
Φ and U are regular in the sense of Clarke, [2]). Under these additional hypotheses
the adjoint inclusion in Theorem 2.1 can be written in an explicit multiplier form
as we see next.

Suppose that, in addition to the hypotheses of Theorem 2.1, (x, v, u) → f(t, x, v, u)
is strict differentiable at (x∗(t), ẋ∗(t), u∗(t)) and

(3.1)

{
NL

Φ (f(x∗(t), ẋ∗(t), u∗(t))) = NC
Φ (f(t, x∗(t), ẋ∗(t), u∗(t))),

NL
U (u∗(t)) = NC

U (u∗(t))

(It is well known that when Φ and U are convex, then (3.1) holds.) In this situation
Proposition 4.1 in [4] asserts the existence of measurable functions µ : [a, b] → Rk

and λ : [a, b] → RN , where µ(t) ∈ NC
U (u∗(t)) and λ(t) ∈ NC

Φ (f(t, x∗(t), ẋ∗(t), u∗(t)))
a.e., such that (2.7) reads

(−ṗ(t), 0, µ(t)) ∈ ∂C
x,v,u⟨p(t), ẋ∗(t)⟩ − ∂C

x,v,u⟨λ(t), f(t, x∗(t), ẋ∗(t), u∗(t))⟩.(3.2)

Appealing to the properties of Clarke subdifferential for strict differentiablity (see
[2]) we have

∂C
x,v,u⟨λ(t), f(t, x∗(t), ẋ∗(t), u∗(t))⟩ = ∇x,v,u⟨λ(t), f(t, x∗(t), ẋ∗(t), u∗(t))⟩

and ∂C
x,v,u⟨p(t), ẋ∗(t)⟩ = (0, p(t), 0). It follows that

ṗ(t) = ∇x⟨λ(t), f(t, x∗(t), ẋ∗(t), u∗(t))⟩,
p(t) = ∇v⟨λ(t), f(t, x∗(t), ẋ∗(t), u∗(t))⟩,

−µ(t) = ∇u⟨λ(t), f(t, x∗(t), ẋ∗(t), u∗(t))⟩,

where λ(t) ∈ NC
Φ (f(t, x∗(t), ẋ∗(t), u∗(t))) and µ(t) ∈ NC

U (u∗(t)). We summarize our
findings in the following Corollary:

Lemma 3.1. Let (x∗, u∗) be a local minimum for problem (P ). Assume that the
assumptions of Theorem 2.1 hold and that (x, v, u) → f(t, x, v, u) is strict differ-
entiable at (x∗(t), ẋ∗(t), u∗(t)) a.e. and (3.1) holds almost everywhere. Then there
exist p ∈ W 1,1([a, b];Rn), measurable functions λ and µ, where µ(t) ∈ NC

U (u∗(t))
and λ(t) ∈ NC

Φ (f(t, x∗(t), ẋ∗(t), u∗(t))) a.e., and a scalar λ0 ≥ 0 satisfying (2.5),
(2.6), (2.8) and

(ṗ(t), p(t),−µ(t)) = ∇x,v,u⟨λ(t), f(t, x∗(t), ẋ∗(t), u∗(t))⟩ a.e..(3.3)

Furthermore,

(3.4) |λ(t)| ≤ M |p(t)| a.e.

where M is the constant in CQ1 .
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Lemma 3.1 covers the strict differentiability version of Theorem 2.1. To avoid
being repetitive, we leave out an analogous result one can easily obtain appealing
now to Theorem 2.2.

Lemma 3.1 requires strict differentiability simply along the optimal solution.
Clearly, it holds for (P ) when f is C1, the set U convex and Φ = {0}. To fur-
ther illustrate the implications of the above necessary conditions we now focus on
the smooth case (f in C1) with Φ = {0}.

In this scenario, it is a simple matter to see that CQ1 is equivalent to the full
row rankness of matrix fv(t, x, v, u) around the optimal solution (clearly, an implicit
condition is n ≥ N), a condition we can write as

(3.5)

{
for all λ ∈ RN , all (x, v, u) ∈ Sε

∗(t) :

∇v⟨λ, f(t, x, v, u)⟩ = 0 =⇒ λ = 0.

We now turn to (3.3). To do so let us set

f+
v (t, x∗(t), ẋ∗(t), u∗(t)) =

(
∇vf(t)(∇vf(t)

T
)−1

∇vf(t),

where ∇vf(t) = ∇vf(t, x∗(t), ẋ∗(t), u∗(t)). This matrix is the left inverse of(
∇vf(t, x∗(t), ẋ∗(t), u∗(t))

)T
. Then, the multiplier λ in (3.3) reduces to

(3.6) λ(t) = f+
v (t, x∗(t), ẋ∗(t), u∗(t))p(t)

and we get

ṗ(t) = (∇xf(t, x∗(t), ẋ∗(t), u∗(t)))
T f+

v (t, x∗(t), ẋ∗(t), u∗(t))p(t)(3.7)

−µ(t) = (∇uf(t, x∗(t), ẋ∗(t), u∗(t)))
T f+

v (t, x∗(t), ẋ∗(t), u∗(t))p(t),(3.8)

where, as before, µ ∈ NC
U (u∗(t)).

The maximum principle for the smooth version of (P ) is then given by (3.7), (3.8),
with µ ∈ NC

U (u∗(t)), together with (2.5), (2.6) and (2.8). The adjoint equation (3.7)
is of a different nature. A possible alternative way to obtain such conditions for
smooth problem would be the use of implicit function theorems similar to what is
done in [7].

For completeness we summarize our findings below.

Corollary 3.2. Let (x∗, u∗) be a local minimum for problem (P ) where Φ = {0}.
Assume the basic assumptions. Assume also that the function f is C1, (3.5) holds
and the set U is compact and satisfies the condition

(3.9) NL
U (u) = NC

U (u).

Then there exist p ∈ W 1,1([a, b];Rn), a measurable function µ, where µ(t) ∈
NC

U (u∗(t)) a.e., and a scalar λ0 ≥ 0 satisfying (2.5), (2.6), (2.8), (3.7) and (3.8).

Remark. The above Corollary can be easily adapted to cover situations when
Φ = {x : x ≤ 0} or Φ = {0}×{x : x ≤ 0}. In these cases, the smooth counterparts
of CQ1 can be easily obtained (in this respect we refer to reader to [4]).
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4. Special Cases

We consider some problems involving DAE’s. Throughout we consider the as-
sumptions under which Corollary 3.2 is valid and

f(t, x, ẋ, u) = Eẋ− g(t, x, u),(4.1)

where E is a N × n matrix with rank(E) = r. This incorporates three different
situations. Matrix E may be

Case (A): of full row rank (N ≤ n and r = N);
Case (B): of column full rank (N > n and r = n);
Case (C): r < min{n,N}.

Here we dwell on the smooth cases. Remarkably, however, Theorems 2.1 or 2.2
or Lemma 3.1 are of importance because they provide necessary conditions for the
DAE’s problems (4.1) (and some more general one, indeed) when the function g is
nonsmooth. To keep our analysis simple, we do not state such results; they can be
easily obtained with the tools developed here.

In what follows, we consider the data smooth and the matrix E appearing in
the system (4.1) in all the three cases (A)–(C) but under some simple forms. For
simplicity of exposition we assume the matrix E to be constant. The case where E
is dependent on t, if its required properties are assumed to hold for almost every t,
can be treated analogously.

4.1. Necessary conditions for a case (A). In case (A), we consider matrix E
in (4.1) to be of the form

E =
[
Ea 0

]
,

where Ea is a N ×N nonsingular matrix. Considering x partitioned as x = (y, z),
with y ∈ RN and z ∈ Rn−N , the equation (4.1) reduces to the ODE

ẏ(t) = E−1
a g(t, y, z, u).(4.2)

An important feature of (4.2) is the presence of the z, a component of state
variable x, not associated with a differential equation. If we were to apply known
necessary conditions to (P ) involving (4.2), we would question the role of z: should
it be a control or a state? In situation where (4.1) reduces to (4.2), we may have
to consider z to be a “state”. In this case, we could reformulate system Eaẏ(t) −
g(t, y, z, u) = 0 to the form

ẏ(t) = va(t),

ż(t) = vb(t),

0 = Eava(t)− g(t, y(t), z(t), u(t)).

Here v = (va, vb) plays the role of an unconstrained control. However, the Jacobian
of Eava−g(t, y, z, u) with respect to v would not be of full rank and the application
of Corollary 3.2 would be compromised, unless the lack of full rankness were com-
pensated identifying the control v with va and some additional components of u.
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To apply Corollary 3.2 to our general system Eaẏ(t)− g(t, y, z, u) = 0, we consider
the system {

ẏ(t) = va(t),

0 = Eava(t)− g(t, y(t), z(t), u(t)).

Here the control variable is (va, z, u), where both va and z are unconstrained. More-
over, we need to assume that the cost function l(x(a), x(b)) depends only on y and
the constraint (x(a), x(b)) ∈ E reduces to (y(a), y(b)) ∈ E. This yields the following
result.

Corollary 4.1. Consider x partitioned as (y, z) ∈ RN × Rn−N . Let (y∗, z∗, u∗) be
a local minimum for (P ) when

f(t, y, z, ẏ, ż, u) = Eaẏ(t)− g(t, y, z, u),

where g is a C1 function, Ea is a N × N nonsingular matrix, U is compact and
satisfies (3.9), l(x(a), x(b)) = l(y(a), y(b)), (x(a), x(b)) ∈ E reduces to (y(a), y(b)) ∈
E. Then there exist p ∈ W 1,1([a, b];RN ), a measurable function µ : [a, b] → Rk,
with µ(t) ∈ NC

U (u∗(t)) a.e., and a scalar λ0 ≥ 0 such that:

||p||∞ + λ0 > 0,(4.3)

(p(a),−p(b)) ∈ NL
E(y∗(a), y∗(b)) + λ0∂

Ll(y∗(a), y∗(b)),(4.4)

ṗ(t) = −(∇yg(t, y∗(t), z∗(t), u∗(t)))
T
(
ET

a

)−1
p(t) a.e.(4.5)

0 = −(∇zg(t, y∗(t), z∗(t), u∗(t)))
T
(
ET

a

)−1
p(t) a.e.(4.6)

−µ(t) = −(∇ug(t, y∗(t), z∗(t), u∗(t)))
T
(
ET

a

)−1
p(t) a.e.(4.7)

and, for all u ∈ U ,

⟨p(t), E−1
a g(t, y∗(t), z∗(t), u)⟩ ≤ ⟨p(t), E−1

a g(t, y∗(t), z∗(t), u∗(t))⟩.(4.8)

Indeed, and as we would expect, these necessary conditions coincide with well
known necessary conditions when the ODE considered is (4.2). It is however worth
mentioning that the equations (4.5) and (4.6) come in the form of (4.1) setting
q(t) = ET

a p(t) and recalling that x = (y, z) we get

ET q̇(t) + (∇xg(t, x∗(t), u∗(t)))
T q(t) = 0.

In this way, we get adjoint equations which themselves come in the form of the
implicit system.

4.2. Necessary conditions for a case (B). Turning now to case (B), let us

consider E =

[
Eb

0

]
, where Eb is a n× n nonsingular matrix and

g(t, x, u) =

[
gd(t, x, u)
ga(t, x, u)

]
.

It follows that (4.1) reduces to{
ẋ(t) = E−1

b gd(t, x, u),

0 = ga(t, x, u).
(4.9)
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Clearly, this is a DAE system, that is, (4.9) comprises an ordinary differential
equation (ODE) coupled with an algebraic equation. However, the variable x is not
partitioned as in the previous case and so there is no “fast” state variable. Thus
the full column rank of E in (4.1) yields the system (4.9) with mixed constraints
in the form of equality. Application of Corollary 3.2 is possible if the lack of full
rankness is compensated with the derivatives of ga with respect to some constrained
components of u (see [4]). It is worth mentioning that the conditions under which
Corollary 3.2 holds require that assumption

4.3. Necessary conditions for a case (C). We finally turn to case (C). We
make no assumptions on how N and n are related and we consider

E =

[
Ec 0
0 0

]
,

where Ec is a r × r nonsingular matrix, where r < min{n,N}. Under such circum-
stances we consider x partitioned as

x = (y, z) and g(t, y, z, u) =

[
gd(t, y, z, u)
ga(t, y, z, u)

]
,

where y ∈ Rr, gd(t, y, z, u) ∈ Rr, ga(t, y, z, u) ∈ Rn−r and z ∈ Rn−r. Thus (4.1) now
reads as the following DAE’s{

ẏ(t) = E−1
c gd(t, y, z, u),

0 = ga(t, y, z, u).
(4.10)

In contrast with (4.9), we now have a “slow” state y (or “differential” state) and a
“fast” state z (or “algebraic” state).

It is worth mentioning that when the end point constraints and the cost function
do not depend on z, then z may be seen as an unconstrained control (see [15]).
We can then define the control to be w = (z, u). If, furthermore, ∇zga(t, y, z, u) is
invertible, then (4.10) is an index one DAE’s.

5. Conclusions

We extended the results in [4] to cover nonsmooth optimal control problem prob-
lems with implicit constraints expressed as set constraints. We also considered the
case where the control is partitioned into two components, one constrained and
another component unconstrained, as in [13], when only measurability with respect
to the constrained control component is assumed. Our approach is based on (1.3).
For our problem (P ) with smooth data, necessary conditions have been derived ap-
pealing to implicit function theorem (see, for example, [7], [21] [11], [19], and [14]).
Corollary 3.2 yields the same set of necessary conditions but avoids the calculation
of implicit functions.

It is our belief that our results for smooth problem could possibly be obtained
using an approach in line with that developed in [13](if this has been done, it is
unknown to us). Noteworthy, this would enable the addition of pure state con-
straints which are considered in [13] but not in [4]. Nevertheless, it is fair to expect
that in the near future the recently developments in [1] may be used together with
those in [4] to allow for state constraints to be included for nonsmooth problem in
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the form of (P ), given rise to generalizations of both Theorems 2.1 and 2.2. The
introduction of state constraints is of importance when higher index DAE systems
are considered. These will be the focus of future research.
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