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is generally noisy. So far in the literature, this problem remains largely unsolved.
Here in this paper, we develop a direct approach and consider feedback control
for infinite dimensional systems subject to noisy sensor data and uncertain system
model. We determine the feedback control law based on only available information.
This involves optimization of nonlinear functionals on the space of bounded linear
Operators. The feedback control law must be chosen from a prescribed class of
operator valued functions satisfying certain constraints so as to optimize the per-
formance of the system. The question of optimization on the space of bounded
linear operators also arises in the study of inverse (or equivalently identification)
problems [3]. In such problems, it is assumed that the state is fully or partially
observable without any measurement uncertainty. The problems considered here
are also different from those of optimal controls of differential inclusions [5] where
the controls are strongly measurable vector valued functions of time. In this paper,
one may view the controls as operator valued functions operating on the space of
available noisy information and delivering control forces. In a recent paper [1], we
proved existence of optimal feedback control laws, in the presence of both system as
well as sensor uncertainty, minimizing the maximum loss or equivalently maximiz-
ing minimum payoff. The emphasis there was the question of existence. Here, we
consider the problem of characterization and construction of optimal feedback con-
trol laws given the existence. This is done by developing the necessary conditions
of optimality characterizing the optimal feedback control operator. The results pre-
sented here substantially generalize our previous results on similar topics for finite
dimensional systems [7], where numerical results were also presented. This paper
also generalizes our recent results on similar topic for infinite dimensional uncertain
systems [4].

The rest of the paper is organized as follows. In section 2, we present some typical
notations. In section 3, we present the mathematical model describing the system
and formulate the problem considered in the paper. The basic assumptions used
are given in section 4 followed by a result on existence and regularity of solutions of
the feedback system. In section 5, we present a result of Mayoral [14] characterizing
compact subsets of the Banach space of compact linear operators. This result is
used for proof of existence of an optimal feedback operator. Further, we collect
together some relevant results from [1] on continuous dependence of solutions on
feedback operators and the operators representing perturbation of the semigroup
(generator) and the process representing measurement noise. Also a result on the
existence of optimal feedback operator is included. In section 6, necessary conditions
for extremality of the system and sensor uncertainty are presented leading to a pair
of forward-backward evolution inclusions (FBEI). Existence of solutions for the
FBEI is presented leading to the set of extremal solutions. In section 7, based
on the results of section 6, we present the necessary conditions of optimality. We
conclude the paper after presenting in section 8 a conceptual algorithm whereby
one can numerically determine the optimal feedback operator using the necessary
conditions.
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2. Some notations

Let {X,Y, U} denote a triple of real Banach spaces representing the state space,
the output(measurement) space and the control space respectively. Let I = [0, T ]
denote any closed bounded interval. For any separable reflexive Banach space Z, we
let L1(I, Z) denote the space of Bochner integrable functions with values in Z, and
its dual by L∞(I, Z∗). Let Z1, Z2 be any pair of real Banach spaces and L(Z1, Z2)
the Banach space of bounded linear operators from Z1 to Z2. Let B1(Z) denote the
closed unit ball in any Banach space Z. An operator S ∈ L(Z1, Z2) is said to be
compact if S(B1(Z1)) is a relatively compact subset of Z2. Let B∞(I,L(Z1, Z2))
denote the space of operator valued functions which are measurable in the uniform
operator topology and uniformly bounded on the interval I in the sense that

sup{∥ T (t) ∥L(Z1,Z2), t ∈ I} <∞

for T ∈ B∞(I,L(Z1, Z2)). Suppose this is furnished with the topology of strong
convergence (convergence in the strong operator topology) uniformly on I in the
sense that, given Tn, T ∈ B∞(I,L(Z1, Z2)), Tn → T in this topology if and only if
for every z ∈ Z1,

sup{|Tn(t)z − T (t)z|Z2 , t ∈ I} → 0

as n → ∞. Let K(Z1, Z2)) denote the class of compact linear operators from Z1

to Z2. It is well known that this is a closed linear subspace of L(Z1, Z2) in the
uniform operator topology and hence a Banach space. Let Γ be a closed bounded
(possibly convex) subset of K(Z1, Z2). We are interested in the set B∞(I,Γ) ⊂
B∞(I,K(Z1, Z2)) endowed with the relative topology of convergence in the strong
operator topology of the space L(Z1, Z2) point wise in t ∈ I.

In the sequel we need the tensor product of Banach spaces. Let V,W be a pair
real Banach spaces and denote the algebraic tensor product of V and W by V ⊗W.
An element z ∈ V ⊗W has the representation z ≡

∑n
i=1 vi ⊗ wi for vi ∈ V and

wi ∈ W and finite n ∈ N. The largest cross norm, also known as the projective
norm, (denoted by π) is given by

|z|π ≡ inf

{ n∑
i=1

|vi|V |wi|W : z =

n∑
i=1

vi ⊗ wi

}
where the infimum is taken over all such representations of z ∈ V ⊗W.With respect
to this norm topology V ⊗W is a normed space denoted by V ⊗πW. Completion of
V ⊗π W with respect to this norm topology is a Banach space denoted by V ⊗̂πW.
An element z ∈ V ⊗̂πW has the Grothendieck representation z =

∑∞
i=1 vi ⊗wi. For

any C ∈ L(V,W ∗) one can introduce the pairing

⟨C, z⟩ =
∑

(Cvi, wi)W ∗,W .

Clearly, |⟨C, z⟩| ≤∥ C ∥L(V,W ∗) |z|π. Thus every element of L(V,W ∗) induces a

continuous linear functional on V ⊗̂πW and hence the embedding L(V,W ∗) ↪→
(V ⊗̂πW )∗ is continuous (in the locally convex topology of uniform convergence
on compacts). In fact, it follows from a well known result reported in (Hájek and



162 N. U. AHMED

Smith [12], Proposition 1.1) that the equality holds, that is, L(V,W ∗) = (V ⊗̂πW )∗.
Clearly then, the cross norm π of any u ∈ V ⊗̂πW can be evaluated by

|u|π = sup{|⟨C, u⟩| : C ∈ B1(L(V,W ∗))}

where B1(L(V,W ∗)) is the closed unit ball in L(V,W ∗). It follows from this result
that if X is a reflexive Banach space then (X⊗̂πX

∗)∗ = L(X). We use this result in
section 6. For many other interesting results on tensor product spaces the interested
reader is referred to the excellent paper of Hájek and Smith [12].

3. System with uncertainties and problem formulation

Let X,Y, U be real Banach spaces, with X denoting the state space, Y denoting
the output space, and U the space where controls take their values from. The
complete system is governed by the following system of equations:

ẋ = Ax+R(t)x+ F (x) +B(t)u, in X,(3.1)

y = L(t)x+ ξ in Y,(3.2)

u = K(t)y in U,(3.3)

where the first equation describes the dynamics of the system in the state space X
giving the state x(t) at any time t ≥ 0, the second equation describes the (measure-
ment) output process that observes the status of the system in a noisy environment
characterized by the random process ξ and delivers the output y(t), t ≥ 0, with
values from the Banach space Y. The operator valued process R perturbing the
semigroup generator is also random or uncertain and takes values from the Banach
space L(X) of bounded linear operators in X. This represents the uncertainty in
the dynamics, in the sense that the exact value of R at any given time is not known,
but it is known that it takes values from a bounded set in L(X), for example, the
closed unit ball around the origin B1(L(X)).We denote this class of operator valued
functions by V ≡ B∞(I,B1(L(X))). In order to regulate the system (3.1), the third
equation provides the control based on the noisy data y through the operator valued
function K. In general the operator A is an unbounded linear operator with domain
and range in X. The operator F is a nonlinear map in X, the operator valued
function B takes values from L(U,X), the operator L, representing the sensor (or
measurement system), takes values from L(X,Y ) and the output feedback control
operator K is an operator valued function taking values from the space K(Y,U).
Let Fad, whose precise characterization is given later, denote the class of admissible
feedback operator valued functions {K(t), t ≥ 0} with values in K(Y, U). The pro-
cess ξ(t), t ≥ 0, represents the uncertainty in the measurement data and takes values
from the Banach space Y. For most practical situations, it is reasonable to assume
that the disturbance process is bounded. And so, without any loss of generality,
we may assume that the process ξ is strongly measurable taking values from the
closed unit ball B1(Y ) centered at the origin. We denote this class of disturbance
processes by D.
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The performance of the system over the time horizon I ≡ [0, T ] is measured by
the following functional (called cost functional)

J(K,R, ξ) ≡
∫
I
ℓ(t, x(t))dt+Φ(x(T ))(3.4)

where ℓ : I × X −→ [0,∞] and Φ : X −→ [0,∞]. The cost functional depends
on the choice of the control law K in the presence of dynamic uncertainty R ∈ V
and imperfect measurement induced by ξ ∈ D. Our objective is to find an operator
valued functionK ∈ Fad that minimizes the maximum possible cost. In other words,
we want a feedback law that minimizes the maximum risk posed by system and
measurement uncertainties. This problem can be formulated as min-max problem:

inf
K∈Fad

sup
(R,ξ)∈V×D

J(K,R, ξ).

Given this pessimistic view, an element Ko ∈ Fad is said to be optimal if and only
if

(3.5) Jo(Ko) ≡ sup
(R,ξ)∈V×D

J(Ko, R, ξ) ≤ sup
(R,ξ)∈V×D

J(K,R, ξ) ≡ Jo(K), ∀ K ∈ Fad.

4. Basic assumptions and preliminaries

To consider the problem as stated above, we introduce the following basic as-
sumptions:

(A0): The Banach spaces {X,Y } are reflexive and U is any real Banach space.

(A1): The operator A is the infinitesimal generator of a C0-semigroup of opera-
tors S(t), t ≥ 0, on X.

(A2): The vector field F : X −→ X is uniformly Lipschitz with Lipschitz
constant C1 > 0.

(A3): Both B and L are measurable in the uniform operator topology, with
B ∈ L1(I,L(U,X)) and L ∈ B∞(I,L(X,Y )).

(A4): Let Γ ⊂ K(Y, U) be a nonempty closed bounded convex set and denote
the admissible feedback control laws by

Fad ≡ {K ∈ B∞(I,K(Y, U)) : K(t) ∈ Γ ∀ t ∈ I}.

(A5): The process R perturbing the semigroup is any uniformly measurable
operator valued function defined on I and taking values from the closed unit ball
B1(L(X)). This is denoted by V ≡ B∞(I,B1(L(X))).

(A6): The disturbance (noise) process ξ : I −→ Y, is any measurable function
taking values from the closed unit ball B1(Y ) of the B-space Y. We denote this
family by D ≡ B∞(I,B1(Y )). This represents the uncertainty in the measurement
data.

Some comments on the uncertainties in dynamics V and measurement D are in
order. We do not assume any probabilistic structure for these process except that
they are bounded measurable process and hence locally square integrable.
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(A7): The integrand ℓ : I ×X −→ (−∞,∞] is measurable in the first variable
and continuous in the second argument and there exists a p ∈ [1,∞) such that

|ℓ(t, x)| ≤ g(t) + c1 ∥ x ∥pX , x ∈ X, t ≥ 0

with 0 ≤ g ∈ L1(I) and c1 ≥ 0. The function Φ is also continuous on X and there
exist constants c2, c3 ≥ 0 such that

|Φ(x)| ≤ c2 + c3 ∥ x ∥pX
for the same p.

Substituting the equations (3.1) and (3.2) into (3.1) we obtain the following
uncertain feedback system

(4.1) ẋ = Ax+Rx+ F (x) +BKLx+BKξ, x0 ∈ X (fixed) ,K ∈ Fad,

subject to the (unstructured) disturbances {R, ξ} ∈ V ×D. Before we conclude this
section we present the following standard result on the existence and regularity of
solutions of the feedback system. This is used later in the paper.

Lemma 4.1. Consider the uncertain feedback system given by (4.1) over any finite
time horizon I ≡ [0, T ], and suppose the assumptions (A1)-(A6) hold. Then, for
every initial state x(0) = x0 ∈ X, and any feedback law K ∈ Fad and any element
from the set of uncertainty, (R, ξ) ∈ V × D, the system (4.1) has a unique mild
solution x ∈ C(I,X). Further, the solution set

X ≡
{
x(K,R, ξ)(·) ∈ C(I,X) : K ∈ Fad, R ∈ V , ξ ∈ D

}
is a bounded subset of C(I,X).

Proof. See [1, Lemma 4.1]. □

5. Existence of optimal feedback operator

For proof of existence of optimal feedback operator we need continuity of solutions
with respect to the operator and vector valued processes {K,R, ξ}. Since continuity
is crucially dependent on the topology of both the domain and the target spaces, it
is necessary to specify the admissible topologies. Let Z be any bounded subset of a
topological space and let B∞(I, Z) denote the class of Borel measurable functions
defined on I and taking values from Z. It was shown in [1] that for the target space
C(I,X), the sup-norm topology is natural and for the domain space,

Fad × V ×D ≡ B∞(I,Γ)×B∞(I,B1(L(X)))×B∞(I,B1(Y )),

which is a subset of the B-space B∞(I,K(Y, U)) × B∞(I,L(X)) × B∞(I, Y ), the
Tychonoff product topology is the most appropriate one. For the class of feedback
operator valued functions let Γ ⊂ K(Y, U) be a closed bounded convex set and
B∞(I,Γ) denote the class of strongly measurable operator valued functions defined
on I and taking values from Γ endowed with the topology of convergence in the
strong operator topology point wise in t ∈ I. In particular, we need the set Γ
to satisfy certain compactness property. The following result due to Mayoral [12]
characterizes relatively compact subsets of K(Y,U).
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Proposition 5.1 (Mayoral [14, Theorem 1, p79]). If the B-space Y does not contain
a copy of ℓ1, a set Γ ⊂ K(Y, U) is relatively compact iff (i): Γ is uniformly completely
continuous (ucc) and (ii): for every y ∈ Y, the y-section, Γ(y) ≡ {L(y), L ∈ Γ}, is
relatively compact in U.

(H1) (Admissible Feedback Operators Fad): By assumption, Y is a reflex-
ive Banach space, so it does not contain a copy of ℓ1. So Mayoral’s result holds.
We assume that Γ ⊂ K(Y, U) satisfies the above characterization for relative com-
pactness and further that it is closed so that it is compact and convex. Then we
consider the Tychonoff product topology τT on the function space B∞(I,Γ) ≡ Fad

which turns this into a compact Hausdorff (topological) space.

(H2) (System Uncertainty Set V): Next, we consider the set V representing
uncertainty in the system model. Since X is a reflexive Banach space, it is well
known that the closed unit ball B1(L(X)) is compact with respect to the weak
operator topology τwo. Using this fact we may now equip V ≡ B∞(I,B1(L(X))
with the Tychonoff product topology and denote this by τTwo. With respect to this
topology V is a compact Hausdorff space.

(H3) (Measurement Uncertainty Set D) Next we consider the set D ≡
B∞(I,B1(Y )) with B1(Y ) denoting the closed unit ball (centered at the origin)
representing the measurement uncertainty. Reflexivity of Y implies that B1(Y ) is
weakly compact. The set D is endowed with the Tychonoff product topology τTw.
With respect to this topology D is a compact Hausdorff space.

Remark 5.2. The assumptions that the uncertainties are given by the closed unit
balls B1(L(X)) and B1(Y ) do not impose any practical limitation. In fact, one can
choose the closed balls Br(L(X), R0(t)) and Bθ(Y, ξ0(t)) of radius r ≥ 0 and θ ≥ 0
respectively and t ∈ I, where R0 ∈ B∞(I,L(X)) and ξ0 ∈ B∞(I, Y )) are bounded
measurable functions.

Now we are prepared to consider the question of continuity. We need the continu-
ity of the solution with respect to the operators and processes on which it depends.
In particular we have the following result.

Theorem 5.3. Consider the feedback system (4.1) and suppose the assumptions
(A0)-(A6) and (H1)-(H3) hold and that the operator A is the infinitesimal generator
of a compact C0-semigroup S(t), t > 0. Then the map (K,R, ξ) −→ x(K,R, ξ) is
jointly continuous from Fad × V × D to C(I,X) with respect to their respective
topologies.

Proof. See [1, Theorem 5.2]. □
From the above result one obtains the following continuity result of the functional

J(K,R, ξ).

Corollary 5.4. Suppose the assumptions of Theorem 5.3 hold and the functions ℓ
and Φ satisfy the assumption (A7). Then, the functional (K,R, ξ) −→ J(K,R, ξ) is
jointly continuous on Fad×V×D with respect to the product topology τT ×τTwo×τw.

Proof. See [1, Corollary 5.3]. □
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Proof of existence of an optimal operator valued function Ko ∈ Fad that solves
the min-max problem requires the notions of upper and lower semi-continuity of
multi functions as follows.

Definition 5.5. Let Z1, Z2 be any pair of topological spaces. A multi function G :
Z1 −→ 2Z2 \∅ is upper semi-continuous if for every closed set C ⊂ Z2, the preimage
G−1(C) ≡ {x ∈ Z1 : G(x) ∩C ̸= ∅} is closed. And it is lower semi-continuous if for
every open set D ⊂ Z2 the preimage G−1(D) ≡ {x ∈ Z1 : G(x) ∩D ̸= ∅} is open.

For details on multi-functions see the Handbook by Hu and Papageorgiou [12].
The following existence result was proved in [1, Theorem 6.1].

Theorem 5.6. Consider the feedback system (4.1). Suppose the assumptions of
Theorem 5.3 and Corollary 5.4 hold. Then there exists an optimal feedback operator
valued function Ko ∈ Fad such that

Jo(Ko) ≤ Jo(K) ∀ K ∈ Fad

where
Jo(K) ≡ sup{J(K,R, ξ), (R, ξ) ∈ V × D}.

Proof. [1, Theorem 6.1]. □
Remark 5.7. Since J is jointly continuous on Fad × V × D and the set V × D is
compact, for each K ∈ Fad the set

Π(K) ≡ {(R, ξ) ∈ V ×D : J(K,R, ξ) = Jo(K)}
is nonempty. In view of the Theorem 5.6, there exists a Ko ∈ Fad such that
Jo(Ko) ≤ Jo(K) for all K ∈ Fad. Since Jo(K) ≡ J(K,Π(K)) for any K ∈ Fad, we
have

J(Ko, R, ξ) ≤ J(Ko,Π(Ko)) ≤ J(K,Π(K)) ∀ K ∈ Fad and ∀ (R, ξ) ∈ V ×D.
Clearly, the right side inequality says that the optimal feedback operator minimizes
the maximum risk (maximum potential cost), while the left side inequality tells that
the cost in all other situations will never exceed the pessimistic (conservative) cost.
This is precisely what is desired in the presence of uncertainty (in the system model
and measurement (sensor)).

6. Necessary conditions for extremality

In order to solve the problem (3.5), it is clear that we must solve first the ex-
tremality problem,

Jo(K) ≡ sup{J(K,R, ξ) : (R, ξ) ∈ V × D},(6.1)

for arbitrary K ∈ Fad. Since J is jointly continuous in all the variables, and V ×D
is compact in the Tychonoff product topology τTwo × τw, the supremum in (6.1)
is attained. Thus we can characterize them and then proceed to determine the
optimal feedback law. Denote the corresponding set of extremals by

EK ≡ {(R, ξ) ∈ V ×D : Jo(K) = J(K,R, ξ)} ⊂ V × D.
Clearly, for each K ∈ Fad, the set EK ̸= ∅. In the following theorem we characterize
the set EK .
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Theorem 6.1. Consider the feedback system (4.1). Suppose the assumptions of
Theorem 5.6 hold. In addition, suppose that F is once continuously Fréchet differ-
entiable with the F -derivative being continuous and uniformly bounded in operator
norm with values in L(X); and ℓ and Φ are once continuously Gâteaux differen-
tiable along any path x ∈ C(I,X) with the derivatives ℓx ∈ L1(I,X

∗) and Φx ∈ X∗.

Then, in order that the pair (R̂, ξ̂) ∈ EK , it is necessary that there exists a pair
(x, ψ) ∈ C(I,X)× C(I,X∗) satisfying the following evolution equations:

ẋ = Ax+ R̂x+ F (x) +BKLx+BKξ̂, x(0) = x0(6.2)

−ψ̇ = A∗ψ + R̂∗ψ + F ∗
x (x)ψ + (BKL)∗ψ + ℓx(t, x), ψ(T ) = Φx(x(T )),(6.3)

and the following inequality (extremality condition):∫ T

0

(
R̂x+BKξ̂, ψ

)
X,X∗dt(6.4)

≥
∫ T

0

(
Rx+BKξ, ψ

)
X,X∗dt, ∀ (R, ξ) ∈ V ×D.

Proof. Let K ∈ Fad be any fixed element and let (R̂, ξ̂) ∈ EK . Then by definition

J(K, R̂, ξ̂) ≥ J(K,R, ξ) for all (R, ξ) ∈ V×D. For any ε > 0, define Rε ≡ R̂+ε(R−
R̂) and ξε ≡ ξ̂ + ε(ξ − ξ̂) for any pair (R, ξ) ∈ V ×D. Since the set V ×D is closed
and convex, it is clear that (Rε, ξε) ∈ V ×D. Thus J(K,Rε, ξε) is well defined and

J(K, R̂, ξ̂) ≥ J(K,Rε, ξε) ∀ ε ∈ [0, 1] ∀ (R, ξ) ∈ V ×D.(6.5)

Let x ∈ C(I,X) denote the mild solution of the evolution equation (4.1) corre-

sponding to the triple (K, R̂, ξ̂) and xε ∈ C(I,X) the mild solution corresponding
to the triple (K,Rε, ξε). It is easy to verify that xε −→ x strongly in C(I,X)
as ε → 0, and further, the limit limε↓0(1/ε)(x

ε − x) exists and it is given by

limε↓0(1/ε)(x
ε − x)

s−→ z in C(I,X) with z ∈ C(I,X) being the mild solution
of the following evolution equation

(6.6)

ż = Az + R̂z + Fx(x(t))z +BKLz + (R− R̂)x+BK(ξ − ξ̂), z(0) = 0.

Since the Fréchet derivative of F is continuous and uniformly bounded and the
assumptions (A1)-(A5) hold, it follows from Banach fixed point theorem that the
following integral equation

z(t) =

∫ t

0
S(t− r)R̂(r)z(r)dr +

∫ t

0
S(t− r)Fx(x(r))z(r)dr(6.7)

+

∫ t

0
S(t− r)(BKL)(r)z(r)dr +

∫ t

0
S(t− r)(R(r)− R̂(r))x(r)dr

+

∫ t

0
S(t− r)(BK)(r)(ξ(r)− ξ̂(r))dr

has a unique solution z ∈ C(I,X). Using (3.4) and (6.5) for computing the Gâteaux

differential of J at the point (K, R̂, ξ̂) ∈ Fad×V×D in the direction (K,R−R̂, ξ−ξ̂),
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we find that

dJ(K, R̂, ξ̂;R− R̂, ξ − ξ̂)(6.8)

=

∫ T

0
(ℓx(t, x(t)), z(t))X∗,Xdt+ (Φx(x(T )), z(T ))X∗,X ≤ 0

for all (R, ξ) ∈ V ×D where z is the solution of the integral equation (6.7), equiva-
lently, the mild solution of the variational equation (6.6). Define the functional

η(z) ≡
∫ T

0
(ℓx(t, x(t)), z(t))X∗,Xdt+ (Φx(x(T )), z(T ))X∗,X .(6.9)

Since z ∈ C(I,X) ⊂ L∞(I,X) and by assumption on ℓ and Φ, ℓx(·, x(·)) ∈ L1(I,X
∗)

and Φx(x(T )) ∈ X∗, it is clear that the map z −→ η(z) is a continuous (bounded)
linear functional on C(I,X). On the other hand, under the assumptions (A3)-(A6),
it follows from the integral equation (6.7) that the map

(R− R̂)x+BK(ξ − ξ̂) −→ z

is a continuous linear map from L1(I,X) to C(I,X). Thus the composition map

h ≡ (R− R̂)x+BK(ξ − ξ̂) −→ z −→ η(z)

is a continuous linear functional on L1(I,X). Since X is assumed to be reflexive, the
dual of L1(I,X) is L∞(I,X∗). Thus by Riesz representation theorem there exists a
ψ ∈ L∞(I,X∗) such that the functional η is also given by

η(z) ≡ η̃(h) =

∫ T

0
< h(s), ψ(s) >X,X∗ ds(6.10)

=

∫ T

0
((R− R̂)(s)x(s) + (BK)(s)(ξ − ξ̂)(s), ψ(s))X,X∗ds.

Hence, it follows from the inequality (6.8) that

η̃(h)(6.11)

=

∫ T

0
((R− R̂)(s)x(s) + (BK)(s)(ξ − ξ̂)(s), ψ(s))X,X∗ds ≤ 0

for all (R, ξ) ∈ V × D. Clearly, from this inequality we arrive at the inequality

(6.4) and hence the extremality of the pair (R̂, ξ̂) ∈ V × D with x ∈ C(I,X) being
the mild solution of equation (6.2). Now we prove that ψ ∈ L∞(I,X∗) is the mild
solution of equation (6.2). Using the variational equation (6.6) into the identity
(6.11) and integrating by parts, we have

η̃(h) = (z(T ), ψ(T ))X,X∗(6.12)

−
∫ T

0
⟨z(t), ψ̇ +A∗ψ + R̂∗(t)ψ + F ∗

x (x(t))ψ + (BKL)∗ψ⟩X,X∗dt.

Since we are interested in the mild solutions (not strong solution), this is rigorously
justified by use of Yosida approximation of A and then taking limits. Now setting
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ψ(T ) ≡ Φx(x(T )) and ψ̇+A∗ψ+F ∗
x (x(t))ψ+(BKL)∗ψ = −ℓx(t, x(t)) in the above

equation we find that

η̃(h) = (z(T ),Φx(x(T )))X,X∗ +

∫ T

0
⟨z(t), ℓx(t, x(t))⟩X,X∗dt.

This is precisely the functional as defined by the expression (6.9). Thus we conclude
that ψ is the mild solution of the backward (or adjoint) evolution equation

−ψ̇ = A∗ψ + R̂∗ψ + F ∗
x (x(t))ψ + (BKL)∗ψ + ℓx(t, x(t)), ψ(T ) = Φx(x(T )).

Again using Banach fixed point theorem one can show that this equation has
a unique solution in C(I,X∗) ⊂ L∞(I,X∗). So it is more regular than what was
predicted by representation theorem. This completes the proof. □

In the sequel we need the following result. This result may be known in the
literature though the author is not unaware of any such result explicitly stated.

Proposition 6.2. Let X be a separable reflexive Banach space having separable
dual X∗. Consider the space of bounded linear operators L(X) on X equipped with
the weak operator topology τwo denoted by Lwo(X). This topology is metrizable with
respect to which it becomes a complete separable metric space and hence a Polish
space.

Proof. Since X is a reflexive Banach space, the space L(X) equipped with the weak
operator topology τwo, denoted by Lwo(X), is a locally convex sequentially complete
Hausdorff topological vector space. As both X and its dual X∗ are separable, there
exist a countable set {xn} ⊂ X dense in X and a countable set {x∗n} ⊂ X∗ which is
dense in X∗. We use this family to construct a family of seminorms {ρn} as follows.
For any T ∈ L(X) define ρn(T ) ≡ |x∗n(Txn)|. It is easy to verify that {ρn} is a
family of seminorms. Equipped with this family of seminorms, Lwo(X) turns into
a Fréchet space. This space is metrizable with a translation invariant metric as
follows,

d(T, S) ≡
∞∑
n=1

(1/2n)
ρn(T − S)

1 + ρn(T − S)
.

Equipped with this metric topology, Lwo(X) turns into a metric space. In other
words, under the given assumptions, the original topology is compatible with the
metric topology. Since the weak operator topology is sequentially complete, the
space (Lwo(X), d) is a complete metric space. We verify that it is also separable.
Let Q0 denote the set of nonnegative rational numbers. For each n ∈ N and
r ∈ Q0, define the set Γn(r) ≡ {T ∈ L(X) : ρn(T ) < r}. Clearly, the family of sets
{Γn(r), r ∈ Q0, n ∈ N} forms a countable base for the topology consisting of convex
neighborhoods of the origin. Let Γ be any open set in Lwo(X). By translation, if
necessary, we may consider this set around the origin. Then there exists a pair
x∗ ∈ X∗ and x ∈ X and r ∈ Q0 such that Γ = {T ∈ Lwo(X) : |x∗(Tx)| < r}. Since
{xi} and {x∗i } are dense in X and X∗ respectively, it is clear that Γ ⊂ ∪∞

n=1Γn(r).
Thus this metric topology satisfies the axiom of second countability. Hence we
conclude that (Lwo(X), d) is a complete separable metric space and hence a Polish
space. □
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Note A: Since X is a reflexive Banach space, the closed unit ball B1(L(X)) is com-
pact in the weak operator topology. Thus under the assumptions of the Proposition
6.2, the closed unit ball B1(L(X)) of L(X) is a compact metric space.

Note B: Since separability of X implies w∗-separability of X∗, the assumption that
X∗ is separable can be omitted altogether.

Now we return to our control problem. We assume throughout the rest of the
paper that X is reflexive and separable having separable dual. It is clear from
the necessary conditions (Theorem 6.1), in particular the inequality (6.4), that the

extremal pair (R̂, ξ̂) ∈ V ×D must maximize the functional,

ϱ(R, ξ) ≡
∫ T

0
(Rx+BKξ, ψ)X,X∗dt,(6.13)

over the set V × D with (x, ψ) being the corresponding mild solution of the evolu-
tion equations (6.2)-(6.2). Using the tensor product notation we can rewrite this
functional in the form

(6.14) ϱ(R, ξ) ≡
∫ T

0
{⟨R, x⊗ ψ⟩L(X),X⊗̂πX∗ + (ξ, (BK)∗ψ)Y,Y ∗}dt,

where the first bracket denotes the duality pairing between the projective tensor
product space X⊗̂πX

∗ and its dual L(X) as discussed in section 2, see also Hájek
& Smith [11, Proposition 1.1]. The second duality pairing is the standard pairing
between the Banach space Y and its dual Y ∗. We must choose (R, ξ) ∈ V ×D that
maximizes this functional. Since V × D is compact with respect to the product
topology τTwo × τTw and the functional ϱ is also continuous in this topology, there
exists (R̂, ξ̂) ∈ V × D at which it attains its maximum. Let J1 : X⊗̂πX

∗ −→
2B1(L(X)) \ ∅ denote the normalized duality map with values given by

J1(z) ≡ {R ∈ B1(L(X)) : ⟨R, z⟩L(X),X⊗̂πX∗ =∥ z ∥π}(6.15)

for any z ∈ X⊗̂πX
∗. By virtue of Hahn-Banach theorem, this is a nonempty set.

More precisely, this is a multi valued map, convex, demi-continuous (strong to weak)
and τwo closed. Thus t −→ J1(z(t)) ≡ J1(x(t)⊗ψ(t)) is a measurable multi function
with values in B1(L(X)) equipped with the relative weak operator topology. It fol-
lows from Proposition 2, that this is a compact Polish space. Therefore, by virtue of
either Kuratowski-Ryll Nardzewski or Yankov-Von Neumann-Aumann measurable
selection theorem [12, Theorem 2.1, p154]; Theorem 2.14, p158], it has measurable

selections. Let J2 : Y
∗ −→ 2B1(Y )\∅ denote the normalized duality map with values

J2(y
∗) ≡ {y ∈ B1(Y ) : ⟨y∗, y⟩Y ∗,Y =∥ y∗ ∥Y ∗}.(6.16)

Since Y is reflexive, again by Hahn-Banach theorem this is a nonempty set valued
map, demi-continuous, convex, τw closed. Therefore, t −→ J2((BK)∗(t)ψ(t)) is
a measurable multifunction having measurable selections. Thus we conclude that
there exist measurable selections {R̂, ξ̂} such that R̂(t) ∈ J1(x(t) ⊗ ψ(t)), ξ̂(t) ∈
J2((BK)∗(t)ψ(t)), t ∈ I, at which the functional (6.14) attains its maximum. Using
the above multi functions we arrive at the following result:
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Corollary 6.3. Under the assumptions of Theorem 6.1 and Proposition 6.2, for
each K ∈ Fad, the solution of the extremality problem is given by the set of mild
solutions of the following forward-backward evolution inclusions,

ẋ ∈ Ax+ J1(x(t)⊗ ψ(t))x+ F (x) +BKLx+BKJ2((BK)∗(t)ψ(t)),(6.17)

−ψ̇ ∈ A∗ψ + J∗
1 (x(t)⊗ ψ(t))ψ + F ∗

x (x)ψ + (BKL)∗ψ + ℓx(t, x(t)),(6.18)

satisfying the initial boundary conditions x(0) = x0, ψ(T ) = Φx(x(T )) where, for
any z ∈ X⊗̂πX

∗, J∗
1 (z) ≡ {R∗ : R ∈ J1(z)} ⊂ B1(L(X∗)).

In view of Corollary 6.3, the original optimal feedback control problem subject
to dynamic uncertainty and imperfect measurement reduces to the following opti-
mal output feedback control problem of the forward-backward system of evolution
inclusions (6.17)-(6.18) with the cost functional

Jo(K) ≡
∫ T

0
ℓ(t, x(t))dt+Φ(x(T )),(6.19)

where x is the state component of the mild solution (x, ψ) ∈ C(I,X) × C(I,X∗)
of the system (6.17)-(6.18) (if one exists). For convenience of reference we call
this problem Pe. Before we can proceed further we must prove that the system
(6.17)-(6.18) has a nonempty set of (mild) solutions.

Theorem 6.4. Consider the system (6.17)-(6.18) and suppose the assumptions
(A0)-(A7) including those of Theorem 6.1 and Proposition 6.2 hold. Then the sys-
tem of evolution inclusions (6.17)-(6.18) with initial boundary conditions as stated
above has a nonempty set of mild solutions (x, ψ) ∈ C(I,X)× C(I,X∗).

Proof. Consider the system of forward-backward evolution inclusions (6.17)-(6.18)
and let K ∈ Fad fixed. Take any pair (R, ξ) ∈ V × D and consider the associated
evolution equations

ẋ = Ax+Rx+ F (x) +BKLx+BKξ, x(0) = x0(6.20)

−ψ̇ = A∗ψ +R∗ψ + F ∗
x (x)ψ + (BKL)∗ψ + ℓx(t, x), ψ(T ) = Φx(x(T )).(6.21)

The mild solution (if one exists) of these equations is given by the solution of the
following system of integral equations

x(t) = S(t)x0 +

∫ t

0
S(t− r)R(r)x(r)dr +

∫ t

0
S(t− r)F (x(r))dr

+

∫ t

0
S(t− r)(BKL)(r)x(r)dr +

∫ t

0
S(t− r)(BK)(r)ξ(r)dr, t ∈ I,(6.22)

ψ(t) = S∗(T − t)Φx(x(T )) +

∫ T

t
S∗(r − t)R∗(r)ψ(r)dr

+

∫ T

t
S∗(r − t)F ∗

x (x(r))ψ(r)dr +

∫ T

t
S∗(r − t)(BKL)∗(r)ψ(r)dr(6.23)

+

∫ T

t
S(r − t)ℓx(r, x(r))dr, t ∈ I.
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Let G1 and G2 denote the integral operators defining the expressions on the right-
hand side of the equations (6.22) and (6.23) respectively. Using these notations,
the equations (6.22)-(6.23) can be compactly described by the following functional
equations

x = G1(x), ψ = G2(x, ψ)(6.24)

on the Banach space C(I,X)×C(I,X∗). Under the given assumptions, it is easy to
verify that G1 : C(I,X) −→ C(I,X) and G2 : C(I,X)×C(I,X∗) −→ C(I,X∗) are
bounded and continuous (nonlinear) maps. Define the product map G ≡ G1 × G2

giving (x, ψ) = G(x, ψ). By partitioning the interval I ≡ [0, T ] into a finite number
of subintervals of suitable length, I = ∪n

i Ii, i = 1, 2, · · ·n, n <∞, and respecting the
boundary conditions, one can prove, as in Ahmed [1, Lemma 4.1], that the restriction
of the map G to each of the Banach spaces Zi ≡ C(Ii, X)×C(Ii, X

∗), i = 1, 2 · · ·n,
is a contraction and thereby guaranteeing, by Banach fixed point theorem, a unique
fixed point (xi, ψi) ∈ C(Ii, X) × C(Ii, X

∗) for each i ∈ [1, 2 · · ·n]. By concatena-
tion of the sequence {(xi, ψi)} one then obtains a unique fixed point (x, ψ) of the
map G in the Banach space C(I,X) × C(I,X∗) proving existence of a unique so-
lution of the system of integral equation (6.22)-(6.23) corresponding to the pair
(R, ξ) ∈ V ×D for a fixed K ∈ Fad. Further, one can verify that the solution (x, ψ)
is sequentially continuous with respect to the variable (R, ξ) ∈ V × D in the sense
as stated below. There exist two bounded continuous maps G1 : V ×D −→ C(I,X)
and G2 : V × D −→ C(I,X∗) such that x = G1(R, ξ), ψ = G2(R, ξ) and that, as
(Rn, ξn) −→ (Ro, ξo) in the product topology τTwo × τTw, the corresponding solu-

tions (xn, ψn) = (G1(R
n, ξn), G2(R

n, ξn))
s−→ (G1(R

o, ξo), G2(R
o, ξo)) = (xo, ψo)

in C(I,X) × C(I,X∗). It follows from the forward-backward evolution inclusions
(6.17)-(6.18) that if the following inclusions hold

R(t) ∈ J1(x(t)⊗ ψ(t)) ≡ J1(G1(R, ξ)(t)⊗G2(R, ξ)(t)), t ∈ I,

ξ(t) ∈ J2((BK)∗(t)G2(R, ξ)(t)), t ∈ I,

then the pair (x, ψ) is a (mild) solution of these evolution inclusions and conversely.
Define the multivalued maps

J1(R, ξ) ≡ {J1(G1(R, ξ)(t)⊗G2(R, ξ)(t)), t ∈ I},
J2(R, ξ) ≡ {J2((BK)∗(t)G2(R, ξ)(t)), t ∈ I}

and note that J1 : V ×D −→ 2V \ ∅ and J2 : V ×D −→ 2D \ ∅, and their cartesian
product J ≡ J1×J2 : V×D −→ 2V×D\∅. Thus the question of existence of a (mild)
solution of the forward-backward evolution system (6.17)-(6.18) is equivalent to the
question of existence of a fixed point of the multivalued map J : V×D −→ 2V×D \∅
in the topological space V × D. Since the weak operator topology on L(X) and
the weak topology on Y (equivalently weak star topology because Y is reflexive)
are locally convex topologies, the Tychonoff product topology on V × D is also a
locally convex topology. Thus V × D is a nonempty closed convex and compact
subset of a locally convex topological space. Since the duality map J1 is continuous
with respect to the topology induced by the cross norm π on X ⊗π X

∗ and weak
operator topology on B1(L(X)), and the solution maps G1 and G2 are continuous
with respect to the τTwo × τTw topology, the map J1 is continuous with respect to
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this topology (so both upper and lower semi-continuous in this topology). Clearly,
the set J1(R, ξ) is nonempty and, since the duality map J1 is convex and closed
valued, J1(R, ξ) is also convex and closed valued. Considering the map J2, we recall
that the duality map J2 is demi continuous, convex and τw closed. Thus the map
J2 is also continuous with respect to the τTwo × τTw topology and closed convex
valued. It is well known that a multivalued map is continuous if and only if it is
both upper and lower semicontinuous. Hence we conclude that the map J is upper
semi-continuous from V ×D to 2V×D \∅ and closed convex valued. The set V ×D is
a nonempty compact convex subset of a locally convex topological space. Further,
we have just seen that, for each (R, ξ) ∈ V × D, the set J (R, ξ) ⊂ V × D is closed
and convex. Thus, it follows from the generalized Schauder fixed point theorem for
multi valued maps, due to Kakutani (Zeidler [15, Theorem 9.B, p452]), that J has
a nonempty set of fixed points. Hence, we conclude that for any given K ∈ Fad,
the system of forward-backward evolution inclusions (6.17)-(6.18) has a nonempty
set of mild solutions. This completes the proof. □

Now we consider the optimization problem Pe. Note that, in the preceding the-
orem, K ∈ Fad was fixed and so the multivalued map J is in fact dependent on
K. So for correct notation, let us denote this map by JK and the associated set of
fixed points by Fix(JK). So for each K ∈ Fad, it follows from the above theorem
that the set Fix(JK) ̸= ∅ and hence the evolution inclusions (6.17)-(6.18) has a
nonempty set of (mild) solutions given by

(6.25)

SK ≡
{
(x, ψ) ∈ C(I,X)× C(I,X∗) : x = G1(R, ξ),

ψ = G2(R, ξ), for (R, ξ) ∈ Fix(JK)

}
.

This is the set of extremal solutions corresponding to K ∈ Fad and it is a closed
and bounded subset of C(I,X)× C(I,X∗).

7. Necessary conditions of optimality

Now we are prepared to consider the optimization problem Pe. Our objective
is to find a Ko ∈ Fad that minimizes the functional (6.19) subject to the dynamic
constraints imposed by the evolution inclusions (6.17)-(6.18). According to theorem
5.5 this optimization problem has a solution. Here we present necessary conditions
characterizing the optimality. For this we first construct the so called variational
equations around the potentially optimal Ko ∈ Fad.

Lemma 7.1. Consider the system (6.17)-(6.18) and suppose the assumptions of
Theorem 6.4 hold and further the nonlinear operator F is twice continuously Fréchet
differentiable with the second F-derivative uniformly bounded in L(X,L(X)), and
Φ, ℓ are also twice Gâteaux differentiable with the second G-derivatives being uni-
formly bounded in L(X,X∗). Let Ko ∈ Fad be optimal and K any other element of
Fad. Then the corresponding variational equations are given by the following system
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of evolution equations on the product space X ×X∗:

ż = Az +Roz +Q1z +Q2φ+ Fx(x
o)z + (BKoL)z +BKoQ5φ(7.1)

+B(K −Ko)(Lxo + ξo),

−φ̇ = A∗φ+ (Ro)∗φ+Q3z +Q4φ+ F ∗
x (x

o)φ+Q6z(7.2)

+(BKoL)∗φ+ ℓxx(t, x
o)z + (B(K −Ko)L)∗ψo,

with the boundary conditions z(0) = 0, φ(T ) = Φxx(x
o(T ))z(T ), where the operators

{Qi, i = 1, 2, · · · , 6} (dependent on (xo, ψo)) are identified in the body of the proof.
Further, the system of variational equations (7.1)-(7.2) has a unique mild solution
(z, φ) ∈ C(I,X)× C(I,X∗).

Proof. Let Ko ∈ Fad denote the optimal operator minimizing the functional (6.19)
and K ∈ Fad any other element. For any ε ∈ [0, 1], define Kε ≡ Ko + ε(K −Ko).
Since Fad is closed and convex, it is clear that Kε ∈ Fad and Jo(K

o) ≤ Jo(K
ε) for

all ε ∈ [0, 1]. Thus the Gâteaux differential of J at Ko in the direction K − Ko,
denoted by dJ(Ko;K − Ko), satisfies the inequality dJ(Ko;K − Ko) ≥ 0, for all
K ∈ Fad. Let (x

o, ψo) ∈ SKo and (xε, ψε) ∈ SKε . Suppressing the time variable (for
convenience of notation), it follows from Theorem 6.4 that there exist measurable
selections

Rε ∈ J1(x
ε ⊗ ψε), Ro ∈ J1(x

o ⊗ ψo), ξε ∈ J2((BK
ε)∗ψε), ξo ∈ J2((BK

o)∗ψo)

such that the pairs (xε, ψε) and (xo, ψo) are the mild solutions of the following pairs
of evolution equations with the boundary conditions as indicated:

ẋε = Axε +Rεxε + F (xε) +BKεLxε +BKεξε,(7.3)

xε(0) = x0,

−ψ̇ε = A∗ψε + (Rε)∗ψε + F ∗
x (x

ε)ψε + (BKεL)∗ψε + ℓx(t, x
ε),(7.4)

ψε(T ) = Φx(x
ε(T )).

ẋo = Axo +Roxo + F (xo) +BKoLxo +BKoξo,(7.5)

xo(0) = x0

−ψ̇o = A∗ψo + (Ro)∗ψo + F ∗
x (x

o)ψo + (BKoL)∗ψo + ℓx(t, x
o),(7.6)

ψo(T ) = Φx(x
o(T )).

By Theorem 5.2, xε
s−→ xo in C(I,X), ψε s−→ ψo in C(I,X∗) as ε → 0. Let

(z, φ) ∈ C(I,X)× C(I,X∗) denote the following limits

lim
ε↓0

(1/ε)(xε − xo) ≡ z ∈ C(I,X), and lim
ε↓0

(1/ε)(ψε − ψo) ≡ φ ∈ C(I,X∗).

By straightforward variation using the above equations, one can easily verify that
the pair (z, φ) is the mild solution of the following pair of evolution equations on
the product space X ×X∗:

ż = Az +Roz +Q1(x
o, ψo)z +Q2(x

o, ψo)φ+ Fx(x
o)z +BKoLz(7.7)

+BKoη(ψo;φ) +B(K −Ko)(Lxo + ξo),

z(0) = 0,
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−φ̇ = A∗φ+ (Ro)∗φ+Q3(x
o, ψo)z +Q4(x

o, ψo)φ(7.8)

+F ∗
x (x

o)φ+ F ∗
xx(x

o; z)ψo + (BKoL)∗φ

+ℓxx(t, x
o)z + (B(K −Ko)L)∗ψo,

φ(T ) = Φxx(x
o(T ))z(T ),

where, it follows from the inclusion relations and compactness of the set V in the
τTwo topology that the operators {Ro, Q1, Q2}, evaluated at the point xo ⊗ ψo ∈
X ⊗π X

∗ along the direction (z ⊗ φ), are given by the following weak limit in X

(7.9) w − lim
ε↓0

(1/ε)(Rεxε −Roxo) ≡ Q1(x
o, ψo)z +Q2(x

o, ψo)φ+Roz

with Q1 ∈ L(X), Q2 ∈ L(X∗, X), Ro ∈ L(X). Similarly, considering the adjoint
counterpart, we have

(7.10) w∗ − lim
ε↓0

(
(Rε)∗ψε − (Ro)∗ψo

)
= Q3(x

o, ψo)z +Q4(x
o, ψo)φ+ (Ro)∗φ

with Q3 ∈ L(X,X∗), Q4 ∈ L(X∗) and (Ro)∗ ∈ L(X∗). Since the pair (xo, ψo) ∈
C(I,X×X∗) corresponds to the optimal Ko and so fixed, for simplicity of notation
we shall continue to omit these arguments. Similarly, the variable η evaluated at
ψo in the direction φ, is given by the weak limit

w − lim
ε↓0

(1/ε)(ξε − ξo) ≡ η(ψo;φ)

in Y and it is also linear in φ. Thus there exists an operator Q5(ψ
o) ∈ L(X∗, Y )

(parameterized by ψo) such that η(ψo;φ) = Q5(ψ
o)φ. Thus equation (7.7) can be

written as

ż = Az +Roz +Q1z +Q2φ+ Fx(x
o)z +BKoLz +BKoQ5φ(7.11)

+B(K −Ko)(Lxo + ξo),

z(0) = 0.

Similarly, considering the term F ∗
xx(x

o; z)ψo in equation (7.8), because of linearity
in both z and ψo, it follows from our assumption on F that there exists an oper-
ator Q6(x

o, ψo) ∈ L(X,X∗), parameterized by (xo, ψo), such that F ∗
xx(x

o; z)ψo =
Q6(x

o, ψo)z. Thus equation (7.8) can be written as

−φ̇ = A∗φ+ (Ro)∗φ+Q3z +Q4φ+ F ∗
x (x

o)φ+Q6z + (BKoL)∗φ(7.12)

+ℓxx(t, x
o)z + (B(K −Ko)L)∗ψo,

φ(T ) = Φxx(x
o(T ))z(T ).

This completes the proof of the first part of the Lemma. The last part asserting
existence and uniqueness of solution follows as a Corollary of Theorem 6.4. Also
direct proof is similar to the one given in the next theorem. □

Now we are prepared to prove the necessary conditions of optimality.

Theorem 7.2. Consider the system of evolution inclusions (6.17)-(6.18) with the
objective functional (6.19) to be minimized on the set of admissible operator valued
functions Fad. Suppose the assumptions of Lemma 7.1 hold. Then, for an element
Ko ∈ Fad to be optimal, it is necessary that there exist (multipliers) (φ1, φ2) ∈
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C(I,X∗)×C(I,X) which are the mild solutions of the following system of evolution
equations,

−φ̇1 = A∗φ1 + (Ro)∗φ1 +Q∗
1φ1 + F ∗

x (x
o)φ1 + (BKoL)∗φ1(7.13)

+(Q3 +Q6)
∗φ2 + ℓ∗xx(t, x

o)φ2 + ℓx(t, x
o)

φ̇2 = (Aφ2 +Roφ2 +Q∗
4φ2 + Fx(x

o)φ2 + (BKoL)φ2(7.14)

+(Q2 +BKoQ5)
∗φ1,

subject to the two point boundary conditions,

φ1(T )− Φ∗
xx(x

o(T ))φ2(T ) = Φx(x
o(T )), φ2(0) = 0,

satisfying the following inequality,

(7.15)

∫ T

0

{
(B(K −Ko)(Lxo + ξo), φ1)X,X∗

+ ((B(K −Ko)L)∗ψo, φ2)X∗,X

}
dt ≥ 0,

for all K ∈ Fad.

Proof. Let Ko ∈ Fad be optimal and K ∈ Fad any other element and, for any
ε ∈ [0, 1], let Kε ≡ Ko + ε(K − Ko). By convexity of the set Fad, K

ε ∈ Fad for
all ε ∈ [0, 1]. Clearly, the Gâteaux differential of Jo at Ko in the direction K −Ko,
denoted by dJo(K

o,K −Ko), satisfies the inequality, dJo(K
o;K −Ko) ≥ 0 for all

K ∈ Fad. Let (xo, ψo) ∈ SKo and (xε, ψε) ∈ SKε . Using the definition of Jo, it
follows from standard variation that

dJo(K
o;K −Ko) =

∫ T

0
⟨ℓx(t, xo(t)), z(t)⟩X∗,Xdt(7.16)

+⟨Φx(x
o(T )), z(T )⟩X∗,X ≥ 0

for all K ∈ Fad where, it follows from Lemma 7.1 that, z is the first component of
the solution (z, φ) of the variational evolution equations (7.1)-(7.2). For convenience
of reference, let us denote the functional appearing in (7.16) by

(7.17) L(z) ≡
∫ T

0
⟨ℓx(t, xo(t)), z(t)⟩X∗,Xdt+ ⟨Φx(x

o(T )), z(T )⟩X∗,X .

Note that even though this functional appears like the functional (6.9), it cor-
responds to the extremals SKo ,SKε unlike (6.9). Here the variational equations
are (7.1) and (7.2) whereas for (6.9) the variational equation is given by (6.6).
Since, by our assumption, ℓx(·, xo(·)) ∈ L1(I,X

∗) and Φx(x
o(T )) ∈ X∗ and, by

Lemma 7.1, z ∈ C(I,X), it follows from (7.17) that z −→ L(z) is a continu-
ous linear functional on C(I,X). By our assumption (A3), B ∈ L1(I,L(U,X))
and the operator valued functions K and L are bounded on I with values in
L(Y, U) and L(X,Y ) respectively, ξo ∈ B∞(I,B1(Y )) and, by Theorem 6.1, we
have xo ∈ C(I,X) and ψo ∈ C(I,X∗). Thus B(K − Ko)(Lxo + ξo) ∈ L1(I,X)
and (B(K − Ko)L)∗ψo ∈ L1(I,X

∗). In view of the variational equations (7.1)-
(7.2) or (7.11)-(7.12), we note that they are linear and driven by the elements
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B(K −Ko)(Lxo + ξo) ∈ L1(I,X) and (B(K −Ko)L)∗ψo ∈ L1(I,X
∗) respectively,

and hence the map B(K −Ko)(Lxo + ξo)

(B(K −Ko)L)∗ψo

 −→

z

φ


is a bounded linear operator from L1(I,X) × L1(I,X

∗) to C(I,X) × C(I,X∗).

Clearly, the projection map

(
z
φ

)
−→ z is continuous linear from C(I,X)×C(I,X∗)

to C(I,X). Hence the composition mapB(K −Ko)(Lxo + ξo)

(B(K −Ko)L)∗ψo

 −→

z

φ

 −→ z −→ L(z)

is a continuous linear functional on L1(I,X)×L1(I,X
∗). Since, by our assumption,

X is reflexive, the topological dual of L1(I,X)×L1(I,X
∗) is given by L∞(I,X∗)×

L∞(I,X). Thus there exist φ1 ∈ L∞(I,X∗) and φ2 ∈ L∞(I,X) such that

(7.18) L(z) =

∫ T

0

{
⟨B(K −Ko)(Lxo + ξo), φ1⟩X,X∗

+ ⟨(B(K −Ko)L)∗ψo, φ2⟩X∗,X

}
dt

≡ Λ(B(K −Ko)(Lxo + ξo), (B(K −Ko)L)∗ψo) ≥ 0 ∀ K ∈ Fad.

The last inequality follows from (7.16) and (7.17). This proves the inequality (7.15).
It remains to verify that the pair (φ1, φ2) is given by the mild solution of the
pair of forward-backward evolution equations (7.13)-(7.14) with the initial-boundary
conditions as stated. Now using the variational equations (7.1)-(7.2) of Lemma 7.1
in the righthand side of the following expression

(7.19) Λ(B(K −Ko)(Lxo + ξo), (B(K −Ko)L)∗ψo)

=

∫ T

0

{
⟨B(K −Ko)(Lxo + ξo), φ1⟩X,X∗

+ ⟨(B(K −Ko)L)∗ψo, φ2⟩X∗,X

}
dt

and using integration by parts and the boundary conditions from (7.11)-(7.12),
z(0) = 0, φ(T ) = Φxx(x

o(T ))z(T ), we arrive at the following expression

Λ = ⟨z(T ), φ1(T )⟩X,X∗(7.20)

−
∫ T

0

{
⟨z, φ̇1 + (A+Ro +Q1 + Fx(x

o))∗φ1

+(BKoL)∗φ1 + ℓ∗xxφ2 + (Q3 +Q6)
∗φ2⟩X,X∗

}
dt

−⟨Φxx(x
o(T ))z(T ), φ2(T )⟩X∗,X + ⟨φ(0), φ2(0)⟩X∗,X

−
∫ T

0

{
⟨φ,−φ̇2 + (A+Ro +Q∗

4 + Fx(x
o) +BKoL)φ2
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+(Q2 +BKoQ5)
∗φ1⟩X∗,Xdt

}
.

Now setting

φ1(T )− Φ∗
xx(x

o(T ))φ2(T ) = Φx(x
o(T )), φ2(0) = 0,(7.21)

φ̇1 + (A+Ro +Q1 + Fx(x
o) + (BKoL))∗φ1 + (Q3 +Q6)

∗φ2(7.22)

+ℓ∗xx(t, x
o)φ2 = −ℓx(t, xo),

−φ̇2 + (A+Ro +Q∗
4 + Fx(x

o) +BKoL)φ2 + (Q2 +BKoQ5)
∗φ1 = 0,(7.23)

on the righthand side of the expression (7.20), we obtain

(7.24) Λ = ⟨z(T ),Φx(x
o(T ))⟩X,X∗ +

∫ T

0
⟨z(t), ℓx(t, xo(t))⟩X,X∗dt.

This shows that the identities (7.21)-(7.23) yield the same functional L(z) as defined
by the expression (7.17). Thus we conclude that the multipliers {φ1, φ2}, whose
existence was guaranteed by the representation of the dual of the Banach space
L1(I,X) × L1(I,X

∗) by the Banach space L∞(I,X∗) × L∞(I,X), satisfy in the
mild sense the evolution equations (7.22)-(7.23) subject to the boundary conditions
(7.21). Collecting all the above facts we arrive at the following initial-boundary
value problem on the Banach space Z ≡ X∗ ×X :

−φ̇1 = A∗φ1 + (Ro)∗φ1 +Q∗
1φ1 + F ∗

x (x
o)φ1 + (BKoL)∗φ1(7.25)

+(Q3 +Q6)
∗φ2 + ℓ∗xxφ2 + ℓx(t, x

o)

φ̇2 = Aφ2 +Roφ2 +Q∗
4φ2 + Fx(x

o)φ2(7.26)

+(BKoL)φ2 + (Q2 +BKoQ5)
∗φ1

subject to the two point boundary conditions:

φ1(T )− Φ∗
xx(x

o(T ))φ2(T ) = Φx(x
o(T )), φ2(0) = 0.(7.27)

Thus we have obtained the necessary conditions as stated in Theorem 7.2. To
complete the proof, we must show that the evolution equations (7.13)-(7.14) with the
two point boundary conditions as stated have mild solutions (φ1, φ2) ∈ C(I,X∗)×
C(I,X). We present a brief outline of the proof. Consider the following associated
integral equations on the Banach space C(I,Z) ≡ C(I,X∗) × C(I,X) (with the
usual supnorm topology):

φ1(t) = H1(φ1, φ2)(t) ≡ S∗(T − t)[Φx(x
o(T )) + Φ∗

xx(x
o(T ))φ2(T )](7.28)

+

∫ T

t
S∗(r − t)[(Ro)∗ +Q∗

1 + F ∗
x (x

o) + (BKoL)∗](r)φ1(r)dr

+

∫ T

t
S∗(r − t)(Q3 +Q6 + ℓxx)

∗(r)φ2(r)dr

+

∫ T

t
S∗(r − t)ℓx(r, x

o(r))dr,

φ2(t) = H2(φ1, φ2)(t)(7.29)

≡
∫ t

0
S(t− r)[Ro +Q∗

4 + Fx(x
o) +BKoL](r)φ2(r)dr
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+

∫ t

0
S(t− r)(Q2 +BKoQ5)

∗(r)φ1(r)dr, t ∈ I.

For convenience of presentation we introduce the following operator valued functions
{Ei, i = 1, 2, 3, 4} taking values in the spaces indicated:

E1(t) ≡ [(Ro)∗ +Q∗
1 + F ∗

x (x
o) + (BKoL)∗](t) ∈ L(X∗), t ∈ I,(7.30)

E2(t) ≡ (Q3 +Q6 + ℓxx)
∗(t) ∈ L(X,X∗), t ∈ I,(7.31)

E3(t) ≡ [Ro +Q∗
4 + Fx(x

o) +BKoL](t) ∈ L(X), t ∈ I,(7.32)

E4(t) ≡ (Q2 +BKoQ5)
∗(t) ∈ L(X∗, X), t ∈ I ≡ [0, T ].(7.33)

Under our assumptions, all the operators, except B, appearing in the above ex-
pressions, are uniformly norm bounded on I and ∥ B(·) ∥L(U,X)∈ L+

1 (I). Thus the
norms

∥ E1(·) ∥L(X∗)≡ h1(·) ∈ L+
1 (I), ∥ E2(·) ∥L(X,X∗)≡ h2(·) ∈ L+

1 (I),

∥ E3(·) ∥L(X)≡ h3(·) ∈ L+
1 (I), ∥ E4(·) ∥L(X∗,X)≡ h4(·) ∈ L+

1 (I).

Recall that, by assumption ℓx ∈ L1(I,X
∗) along the path xo, and there existsM ≥ 1

such that the semigroup S has the bound supt∈I ∥ S(t) ∥L(X)≤M. Using these facts
and Gronwall inequality it is easy to verify that the solutions of the above integral
equations (if they exist) are bounded, that is, there exists an apriori bound b > 0
such that

∥ Φ ∥C(I,Z)≡∥ (φ1, φ2) ∥C(I,Z)≡∥ φ1 ∥C(I,X∗) + ∥ φ2 ∥C(I,X)≤ b <∞.

Define the operator H : C(I,Z) −→ C(I,Z) as follows:

H(Φ) = (H1(Φ),H2(Φ)) ≡ (H1(φ1, φ2),H2(φ1, φ2))

with values H(Φ)(t) ∈ Z, t ∈ I. We show that the operator H has a unique fixed
point in C(I,Z). Choose any subinterval Ii ≡ [Ti−1, T1] ⊂ I and consider the
restriction of the operator H on C(Ii,Z) and note that, for any (Φ,Ψ) ∈ C(Ii,Z),
we have

sup
t∈Ii

|H(Φ)(t)−H(Ψ)(t)|Z ≤ |Φxx(x
o(Ti))[φ2(Ti)− ψ2(Ti)]|X∗(7.34)

+M

∫ Ti

Ti−1

h1(r)|φ1(r)− ψ1(r)|X∗dr +M

∫ Ti

Ti−1

h2(r)|φ2(r)− ψ2(r)|Xdr

M

∫ Ti

Ti−1

h3(r)|φ2(r)− ψ2(r)|Xdr +M

∫ Ti

Ti−1

h4(r)|φ1(r)− ψ1(r)|X∗dr.

Considering the first term on the righthand side of the above expression, note that
by our hypothesis, ∥ Φxx ∥L(X,X∗) is uniformly bounded, say, by C0. Then, using
equation (7.29) one can easily verify that

|Φxx(x
o(Ti))[φ2(Ti)− ψ2(Ti)]|X∗ ≤ C0|φ2(Ti)− ψ2(Ti)|X(7.35)

≤ C0M

∫
Ii

h3(r)|φ2(r)− ψ2(r)|Xdr

+C0M

∫
Ii

h4(r)|φ1(r)− ψ1(r)|X∗dr.
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Substituting (7.35) into (7.34) we obtain

sup
t∈Ii

|H(Φ)(t)−H(Ψ)(t)|Z ≤
∫ Ti

Ti−1

M [h1(r) + (1 + C0)h4(r)]|φ1(r)− ψ1(r)|X∗dr

+

∫ Ti

Ti−1

M [h2(r) + (1 + C0)h3(r)]|φ2(r)− ψ2(r)|Xdr.(7.36)

Let B(I) denote the class of Borel subsets of the set I. Define the set function α by

(7.37) α(σ) ≡
∫
σ
M{h1(t) + (1 + C0)h4(t) + h2(t) + (1 + C0)h3(t)}dt

for σ ∈ B(I). This is a nonnegative set function and since {h1, h2, h3, h4} ∈ L+
1 (I)

it has bounded variation on I and it is absolutely continuous with respect to the
Lebesgue measure. Upon using this set function, it follows from the expression
(7.36) that

sup
t∈Ii

|H(Φ)(t)−H(Ψ)(t)| ≤ α(Ii) ∥ Φ− Ψ ∥C(Ii,Z) .(7.38)

Partition the interval I ≡ [0, T ] into a finite number of subintervals, I = ∪n
i=1Ii,

such that, I1 = [0, T1], {Ii = [Ti−1, Ti], i = 2, 3, · · · , n − 1} and In = [Tn−1, T ],
and that α(Ii) < 1 for all i = 1, 2, · · · , n. Since I is a finite interval and α is
absolutely continuous with respect to Lebesgue measure, there exists an integer
n ∈ N (finite) for which the above partition is feasible. Thus it follows from (7.38)
that the restriction of the operator H to each of the Banach spaces C(Ii,Z) is a
contraction and hence by Banach fixed point theorem it has a unique fixed point on
each of these spaces C(Ii,Z). By piecing together these solutions we conclude that
the system of integral equations (7.28)-(7.29) has a unique solution Φ ∈ C(I,Z).
This proves that the two point boundary value problem (7.13)-(7.14) has a unique
mild solution. This completes the proof. □

Remark 7.3a In the absence of uncertainty (both dynamic and measurement) we
recover the standard minimum principle. Indeed, by setting R ≡ 0, ξ ≡ 0 in the
necessary conditions of optimality given by Theorem 7.2 we find that Q1 = 0, Q2 =
0, Q3 = 0, Q4 = 0, Q5 = 0. Thus the equations (7.13)-(7.14) reduce to

−φ̇1 = A∗φ1 + F ∗
x (x

o)φ1 + (BKoL)∗φ1 + (ℓxx +Q6)
∗φ2 + ℓx(t, x

o)(7.39)

φ̇2 = Aφ2 + Fx(x
o)φ2 + (BKoL)φ2(7.40)

with the boundary conditions φ1(T ) − Φ∗
xx(x

o(T ))φ2(T ) = Φx(x
o(T )), φ2(0) = 0.

Note that equation (7.40) is homogeneous with initial condition φ2(0) = 0. Thus this
equation has the trivial (mild) solution φ2(t) ≡ 0. Hence equation (7.39) reduces to

−φ̇1 = A∗φ1 + F ∗
x (x

o)φ1 + (BKoL)∗φ1 + ℓx(t, x
o)(7.41)

with the boundary condition φ1(T ) = Φx(x
o(T )). The inequality (7.15) reduces to∫ T

0

{
(B(K −Ko)(Lxo), φ1)X,X∗

}
dt ≥ 0 ∀ K ∈ Fad.(7.42)
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where xo is the mild solution of the state equation (4.1) with the uncertainty re-
moved

ẋo = Axo + F (xo) + (BKoL)xo, xo(0) = x0.(7.43)

The evolution equations (7.41) and (7.43) along with the boundary conditions and
the inequality (7.42) provide the necessary conditions of optimality in the absence
of uncertainty.

Remark 7.3b Similarly, in the absence of only dynamic uncertainty (R(t) ≡ 0),
the necessary conditions (7.13)-(7.14) simplify with Ro = 0, Q1 = 0, Q2 = 0, Q3 =
0, Q4 = 0. The inequality (7.15) remains unchanged. The system of inclusions
(6.17)-(6.18) are modified by removing the duality map J1.

Remark 7.4 It is interesting to mention that in the absence of uncertainty, the
assumptions on the admissible feedback control laws Fad ≡ B∞(I,Γ) can be relaxed.
One can take a compact convex subset Γ of the locally convex topological space
(L(Y, U), τso) ( L(Y, U) endowed with the strong operator topology).

8. A conceptual algorithm

Here we present a conceptual algorithm for computation of optimal feedback
operator. Throughout this section we assume that {X,Y, U} are all reflexive Banach
spaces. Using the necessary conditions of optimality as stated in Theorem 7.2, we
construct a sequence of operator valued functions {Kn} ∈ Fad that converges to a
point in Fad at which Jo attains it’s local minimum. Before we proceed with the
algorithm, let us note that the necessary inequality (7.15) can be written in the
form of duality products using the projective tensor product space as introduced in
section 2. Since K(Y,U) is a Banach space, it follows from Hahn-Banach theorem
that it has a nontrivial continuous dual denoted by K∗(Y, U). Using the tensor
product, the reader can easily verify that the inequality (7.15) can be expressed in
the following form:

dJo(K
o,K −Ko) =

∫ T

0

{
⟨K −Ko, (Lxo + ξo)⊗ (B∗φ1) + (Lφ2)⊗ (B∗ψo)⟩

}
dt

≡
∫ T

0
⟨K −Ko, Zo⟩K(Y,U),K∗(Y,U)dt ≥ 0, ∀ K ∈ Fad,(8.1)

where K∗(Y, U) denotes the (topological) dual (see, Feder & Saphar, [10] for charac-
terization of the dual) of the space K(Y, U). Since Y is a reflexive Banach space it has
RNP (Radon Nikodym Property) and hence the result of Feder and Saphar [10, The-
orem 1, p40] holds. Note that Zo given by Zo ≡ (Lxo + ξo) ⊗ (B∗φ1) + (Lφ2) ⊗
(B∗ψo) ∈ Y ⊗̂πU

∗ ⊂ K∗(Y, U) is a sum of two elementary tensors. Since U is also a
reflexive Banach space, the duality pairing (8.1) is equivalent to the pairing between
the Banach space Y ⊗̂πU

∗ and its dual (Y ⊗̂πU
∗)∗ = L(Y,U). Now we describe the

algorithm:

Step1: Suppose at the n-th stage of iteration we have Kn ∈ Fad.

Step2: Using this Kn, solve the corresponding two point boundary value prob-
lem (given by differential inclusions) (6.17)-(6.18) following Theorem 6.4 giving
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{xn, ψn} ∈ SKn ⊂ C(I,X) × C(I,X∗) corresponding to any pair (Rn, ξn) ∈
Fix(JKn) ⊂ V ×D.

Step 3: Use {xn, ψn} to compute the operators {Qi, i = 1, 2, · · · , 6} as introduced
in Lemma 7.1 by replacing the pair {xo, ψo} in their arguments by the pair {xn, ψn}
and solve the system (7.13)-(7.14) with the two point boundary conditions as stated
in Theorem 7.2 giving the pair {φn

1 , φ
n
2}.

Step 4: Use the optimality condition (7.15) or equivalently (8.1) (corresponding
to the n− th stage) and verify if the following inequality holds

dJo(K
n,K −Kn) =

∫ T

0
⟨K −Kn, Zn⟩K(Y,U),K∗(Y,U)dt(8.2)

≡ ⟨⟨K −Kn, DJo(K
n)⟩⟩(Y ⊗̂πU∗)∗ ,Y ⊗̂πU∗ ≥ 0,

∀ K ∈ Fad where the tensor Zn is given by

Zn(t) ≡ (Lxn + ξn)(t)⊗ (B∗φn
1 )(t) + (Lφn

2 )(t)⊗ (B∗ψn)(t), t ∈ I,

and DJo(K
n) = {Zn(t), t ∈ I}. Note that Zn(t) ∈ Y ⊗̂πU

∗ ⊂ K∗(Y,U) for t ∈ I.
If the inequality (8.2) holds, the algorithm is complete and the optimal operator is
given by Kn. If it fails, go to step 5.

Step 5: Define the normalized duality map

∆ : (Y ⊗̂πU
∗) −→ 2(Y ⊗̂πU

∗)∗ \ 0
by

∆(z) ≡ {S ∈ (Y ⊗̂πU
∗)∗ :< S, z >=∥ z ∥π}

for z ∈ Y ⊗̂πU
∗ and choose Kn+1 given by

(8.3) Kn+1(t) ∈ Kn(t)− ε∆(DJo(K
n))(t) = Kn(t)− ε∆(Zn)(t), t ∈ I,

for ε > 0, sufficiently small, so that Kn+1 ∈ Fad. In general t −→ ∆(Zn(t)) is a
uniformly measurable multifunction with closed convex values ∆(Zn(t)) ⊂ L(Y,U).
But since, for each t ∈ I, Zn(t) is the sum of a finite number (two) of elementary
tensors there exists a uniformly measurable operator valued function Υ with values
Υ(t) ∈ K(Y,U) ∩ (Y ⊗π U

∗)∗ of norm 1 such that ⟨Υ(t), Zn(t)⟩ =∥ Zn(t) ∥π . For
example, a finite rank operator valued function Υ of the form Υ(t) = V1(t)⊗W ∗

1 (t)+
V2(t)⊗W ∗

2 (t) ⊂ K(Y, U) ⊂ (Y ⊗̂πU
∗)

∗
, satisfies the required properties for suitable

choice of V1(t), V2(t) ∈ B1(U) and W ∗
1 (t),W

∗
2 (t) ∈ B1(Y

∗). As U is also a reflexive
Banach space, existence of such elements follows from Hahn-Banach separation
theorem. Now returning to the algorithm and computing the cost functional at
Kn+1 we have

Jo(K
n+1) = Jo(K

n) + dJo(K
n;Kn+1 −Kn) + o(∥ Kn+1 −Kn ∥)(8.4)

= Jo(K
n) + ⟨⟨Kn+1 −Kn, DJo(K

n)⟩⟩+ o(·)
= Jo(K

n)− ε⟨⟨∆(Zn), Zn⟩⟩+ o(ε)

= Jo(K
n)− ε ∥ Zn ∥π +o(ε).

This inequality implies that, for sufficiently small ε > 0, {Jo(Kn)} is a (possibly
monotone) decreasing sequence of real numbers. It follows from Corollary 5.4 and



OPTIMAL FEEDBACK CONTROL LAW FOR UNCERTAIN SYSTEMS 183

compactness of Fad in the τT topology that sup{|Jo(K)|,K ∈ Fad} <∞. Thus there
exists a real number m such that, as n→ ∞, Jo(K

n) −→ m where m is (possibly)
a local minimum.

Remark 8.1 Since, generally, the space K(Y, U) is not reflexive Kalton[Corollary
2, p268]12 the duality map Γ : K∗(Y,U) −→ B1(K(Y, U)) may not be well defined
in the sense that for any Z ∈ K∗(Y, U) the following set

Γ(Z) ≡ {T ∈ B1(K(Y, U)) : ⟨T,Z⟩K(Y,U),K∗(Y,U) =∥ Z ∥∗}

may be empty. In our particular case (see the expression (8.2)), Zn is given by
a sum of two elementary tensors. We can take advantage of this and replace the
K(Y, U)−K∗(Y, U) pairing by (Y ⊗̂πU

∗)∗ − (Y ⊗̂πU
∗) pairing.

Open Problem It would be interesting to extend the above results to stochas-
tic evolution equations. In particular, equation (3.1) is replaced by the following
stochastic evolution equation

(8.5) dx = Axdt+R(t)xdt+ F (x)dt+B(t)u(t)dt+G(x)dW, x(0) = x0, t ∈ I,

where W is an H-cylindrical Brownian motion (or Wiener process) on a complete
filtered probability space (Ω,F ,Ft≥0, P ) and G : X −→ L(H,Y ). If the stochastic
component appear additively, that is G is independent of the state x, the optimal
feedback operator valued function Ko given by the deterministic analysis remain
unchanged. For multiplicative noise substantial modification of the results given
here is required.
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