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Therefore this is a monotone system for which the maximum principle is applica-
ble. Furthermore we suppose that the origin is a zero of F and the corresponding
linearized matrix has all eigenvalues in the left-half plane. We consider system (1.1)
on the real axis and look for an even positive solution vanishing at infinity:

w(x) > 0, w(x) = w(−x), x ∈ R, w(±∞) = 0.

Similarly to the scalar case we will call such solutions pulses. Here and everywhere
below inequalities for vectors mean that each component of the vectors satisfies this
inequality.

Instead of the problem on the whole axis, we can consider system (1.1) on the
half-axis R+ with the boundary condition

(1.3) w′(0) = 0.

We will look for decreasing solutions:

(1.4) w′(x) < 0 for x > 0.

The existence of pulses will be investigated for a particular case of system (1.1)
which consists of two equations of a special form:

(1.5)

 w′′
1 − w1 + f1(w2) = 0,

w′′
2 − w2 + f2(w1) = 0,

considered on the half-axis x ≥ 0 with the boundary condition

(1.6) w′
1(0) = w′

2(0) = 0.

As mentioned above, we look for positive decreasing solutions of this problem de-
caying at infinity:

(1.7) w(x) > 0 and w′(x) < 0 for x > 0, w(∞) = 0.

The functions fi : R → R are supposed to be sufficiently smooth. For simplic-
ity, we can consider infinitely differentiable functions. They satisfy the following
conditions:

(1.8) fi(0) = 0, fi(1) = 1, f ′
i(s) > 0 for s ≥ 0, i = 1, 2.

Hence the points w+ = (0, 0) and w− = (1, 1) are zeros of F = (F1, F2) where we
set F1(w) = −w1 + f1(w2), F2(w) = −w2 + f2(w1). We assume the existence of a
unique additional zero

(1.9)
The vector function F has three zeros w+, w−, w̄ = (w̄1, w̄2) in R2

+;
and 0 < w̄i < 1.

Here R2
+ is the quarter plane w1 ≥ 0, w2 ≥ 0. We finally assume that w+ and w−

(resp. w̄) are stable (resp. unstable) stationary points of the system

du1
dt

= −u1 + f1(u2),
du2
dt

= −u2 + f2(u1),

that is the eigenvalues of the matrices of the linearized equations

F ′(w) =

(
−1 f ′

1(w2)
f ′
2(w1) −1

)
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have negative real parts (resp. an eigenvalue with positive real part). Since off-
diagonal elements of these matrices are positive, the eigenvalues are real and simple.
Therefore we require that the principal eigenvalue is negative (resp. positive). It is
straightforward that these assumptions amount to

(1.10) f ′
1(0)f

′
2(0) < 1, f ′

1(1)f
′
2(1) < 1, f ′

1(w̄2)f
′
2(w̄1) > 1.

Under the assumptions (1.8)-(1.10), it is well known that there exists a travelling-
wave solution of the reaction-diffusion system

(1.11)
∂v

∂t
=

∂2v

∂x2
+ F (v).

This solution reads v(x, t) = u(x− ct) where u satisfies the system of equations

(1.12) u′′ + cu′ + F (u) = 0

and has the limits at infinity

(1.13) u(±∞) = w±.

Moreover, it is a monotonically decreasing vector-function (component-wise). The
wave is unique up to translation in space. This means that such solution exists for
a unique value of c, and for the given value of c it is unique up to translation in
space. We will use the results on existence, stability and the speed of propagation
of travelling waves for monotone systems of equations [5], [6].

We can now formulate the main result of this work.

Theorem 1.1. Under assumptions (1.8)-(1.10), problem (1.5)-(1.7) has a solution
if and only if the value of the speed c in problem (1.12)-(1.13) is positive.

Let us first comment on the particular case f1 ≡ f2. Then w1 ≡ w2 may provide
a solution of system (1.5). For such a solution, the problem reduces to the scalar
equation

w′′
1 + f(w1) = 0,

with f(s) = −s+ fi(s). Under the assumptions of Theorem 1.1, it can be explicitly
verified that a solution of this equation with conditions

w′
1(0) = 0, w′

1(x) < 0 for x > 0, w1(∞) = 0,

exists if and only if

(1.14)

∫ 1

0
f(s)ds > 0.

On the other hand, for the uniquely defined travelling-wave solution, we have u1 =
u2 and

u′′1 + cu′1 + f(u1) = 0, u1(−∞) = 1, u1(∞) = 0.

It is well known that the speed c has the sign of the integral in (1.14), so that it is
positive if and only if the condition (1.14) is satisfied. For this particular case these
properties yield the assertion of Theorem 1.1.

When we consider systems of equations, the positiveness of the integral can not
be used anymore to conclude that the pulse exists and/or the speed of the wave is
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positive. But the relation between the sign of the wave speed and the existence of
pulses remains true.

Let us briefly describe the methods of proof of Theorem 1.1 that are much more
involved than in the scalar case. The existence of solutions for c > 0 is derived
thanks to the Leray-Schauder method. In section 2 we show separation of monotone
solutions and we obtain a priori estimates of such solutions. Section 3 is devoted to
some spectral properties. Next in section 4, we construct homotopy to some model
problem such that f1 ≡ f2 and c remains positive (section 4.1). This system has
a solution for which w1 = w2 (section 4.2). Its index equals −1 and the degree
is different from zero. Since the value of the degree is preserved, then it is also
different from zero for the original problem. Hence this proves the existence of a
solution (section 4.3).

Non-existence of solutions for c ≤ 0 can be proved by the comparison theorem
using the wave solution (section 4.4).

We conclude the paper with an example of system for which we can show that
the speed of the wave is positive so that Theorem 1.1 provides the existence of a
pulse (section 5).

2. Properties of pulses

The results presented in this section are applicable for reaction-diffusion systems

(2.1) Dw′′ + F τ (w) = 0

which are assumed to depend on some parameter τ ∈ [0, 1]. Here w = (w1, w2)
and D is a square diagonal matrix with positive diagonal elements di, i = 1, 2. We
aim to investigate solutions of such systems defined on the half-axis x ≥ 0 and such
that:

(2.2) wi(x) > 0 for x ∈ R+, w′
i(0) = 0, wi(∞) = 0, i = 1, 2.

We will suppose for simplicity that the function F τ (w) = (F τ
1 (w), F

τ
2 (w)) is

infinitely differentiable with respect to both variables w ∈ R2
+ and τ ∈ [0, 1]. The

system is assumed to be monotone :

(2.3)
∂F τ

i

∂wj
(w) > 0, i, j = 1, 2, i ̸= j, w ∈ R2

+, τ ∈ [0, 1].

Also we set w+ = (0, 0) and we suppose that

(2.4) F τ (w+) = 0, F τ ′(w+) has all eigenvalues in the left− half plane.

For the functional setting let us introduce the Hölder space Ck+α(R+) consisting
of vector-functions of class Ck, which are continuous and bounded on the half-axis
R+ together with their derivatives of order k, and such that the derivatives of order
k satisfy the Hölder condition with the exponent α ∈ (0, 1). The norm in this space
is the usual Hölder norm. Set

E1 = {w ∈ C2+α(R+), w
′
i(0) = 0, i = 1, 2}, E2 = Cα(R+).
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Next we introduce the weighted spaces E1
µ and E2

µ where µ(x) =
√
1 + x2 which are

equipped with the norms:

∥w∥Ei
µ
= ∥wµ∥Ei , i = 1, 2.

In view of (2.1), let us consider the operator

(2.5) Aτ (w) = Dw′′ + F τ (w),

acting from E1
µ into E2

µ. Then the linearized operator about any function in E1
µ

satisfies the Fredholm property and has the zero index. The nonlinear operator is
proper on closed bounded sets. This means that the inverse image of a compact set
is compact in any closed bounded set in E1

µ. Finally, the topological degree can be
defined for this operator. All these properties can be found in [8], [9].

2.1. Separation of monotone solutions. We first suppose that all monotone
solutions of (2.1)-(2.2) are uniformly bounded in the space E1

µ (in section 2.2 below
we will investigate how to derive such bounds).

We aim to derive a result of separation between the solutions of (2.1)-(2.2) that are
monotonically decreasing for all their components that will be denoted by wM (x)
and the solutions of (2.1)-(2.2) which do not satisfy this condition that will be
denoted by wN (x). We will call the latter ones non-monotone solutions.

Theorem 2.1. Under assumptions (2.3)-(2.4), we also suppose that all monotone
solutions of (2.1)-(2.2) are uniformly bounded in the space E1

µ. Then there exists

a constant r > 0 such that for any monotone solution wM and any non-monotone
solution wN of (2.1)-(2.2) and (for all τ ∈ [0, 1]) the following estimate holds:

∥wM − wN∥E1
µ
≥ r.

Proof. Let us suppose that the assertion of the theorem does not hold true. Then
there is a sequence of monotone solutions (wM,k)k and a sequence of non-monotone
solutions (wN,k)k (possibly for various values of τ) such that the norm of their
difference tends to 0 as k → ∞.

Since all monotone solutions are uniformly bounded and the operator is proper,
the set {wM,k, wN,k, k ∈ N} is relatively compact in E1

µ. In particular the sequence

of monotone solutions possesses some convergent subsequence still denoted by wM,k.
Let us denote the limiting function by ŵ(x). It is a solution of problem (2.1) for
some τ = τ0 and satisfies ŵ(x) ≥ 0 and ŵ′(x) ≤ 0 for x ≥ 0, ŵ′(0) = 0.

Let us first show that
ŵ(0) ̸= (0, 0).

Arguing by contradiction suppose that wM,k(0) converges to w+ as k → ∞. The
assumptions (2.3)-(2.4) provide the existence of some neighborhood of the origin in
R2
+ such that for all τ sufficiently close to τ0 and for each point w ̸= w+ in this

neighborhood at least one component of F τ (w) is negative. Indeed in view of (2.4)
the matrix F τ0 ′(w+) possesses some positive eigenvector p corresponding to the
principal eigenvalue. Hence for sufficiently small ϵ, F τ0(ϵp) < 0 so that F τ (ϵp) < 0
for all τ sufficiently close to τ0. Consequently thanks to the assumption (2.3) in the
neighborhood w+ ≤ w ≤ ϵp, w ̸= w+ at least one component of F τ (w) is negative.
Coming back to the sequence wM,k(0) which converges to w+, for sufficiently large
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k, wM,k(0) enters this neighborhood and at least one component of F τk(wM,k(0))
is negative. Hence for the corresponding index i by equations (2.1) the second

derivative wM,k
i

′′
(0) is positive, and the function wM,k

i (x) cannot be decreasing.
Next let us verify that ŵ′(x) < 0 for all x > 0 (component-wise). Indeed, suppose

that ŵ′
i(x0) = 0 for some i and for some x0 > 0. Assuming for example i = 1 we

differentiate the first equation of system (2.1) for τ = τ0. Setting v = −ŵ′
1 it

provides:

−d1v
′′ − a(x)v = b(x),

where

a(x) =
∂F τ0

1

∂w1
(ŵ) , b(x) = −∂F τ0

1

∂w2
(ŵ) ŵ′

2(x).

Since b(x) ≥ 0, v(x) ≥ 0 and v(x0) = 0, the positiveness theorem yields v(x) ≡ 0
hence ŵ1(x) ≡ 0. Then ŵ2 satisfies

ŵ′′
2 − ŵ2 = 0, ŵ2 ≥ 0, ŵ′

2 ≤ 0, ŵ′
2(0) = 0,

so that ŵ2 ≡ 0. We obtain a contradiction with ŵ(0) ̸= 0. Hence ŵ′(x) < 0 for all
x > 0. In particular this yields

(2.6) ŵ(0) > 0.

Consider now a sequence of non-monotone solutions wN,k which converges to the
monotone solution ŵ as k → ∞. Without loss of generality we can suppose that the
first components of the solutions are not monotone. Then there are values xk > 0

such that wN,k
1

′
(xk) = 0 and up to some subsequence we have either xk → x∗ > 0

or xk → ∞ or xk → 0 as k → ∞.
If xk → x∗ for some x∗ > 0, then ŵ′

1(x∗) = 0 and we obtain a contradiction with
the monotonicity of this function.

We claim that for sufficiently large y > 0 and for sufficiently large k,

(2.7) wN,k ′ < 0 on [y,∞[.

Therefore the convergence xk → ∞ cannot hold.
Indeed considering again some eigenvector p > 0 corresponding to the principal

eigenvalue λ0 of F τ0 ′(w+), clearly F τ0 ′(w+)p = λ0p < 0. Consequently there exists
δ > 0 and k0 such that for k ≥ k0 and |w| ≤ δ (where |.| denotes the euclidian norm
in R2) we have F τk ′(w)p < 0. Next due to the exponential decay of the solutions
and the convergence of wN,k to the monotone function ŵ we can select y > 0 and
k1 ≥ k0 such that:

wN,k ′(y) < 0, |ŵ(x)| ≤ δ for x ≥ y, |wN,k(x)| ≤ δ for x ≥ y and k ≥ k1.

Now suppose that (2.7) is not satisfied and a function vk(x) = −wN,k ′(x) is not
positive for some x > y and k ≥ k1. By differentiating system (2.1) vk satisfies:

(2.8) Dvk
′′
+ F τk ′(wN,k)vk = 0.

Since vk(y) > 0 and vk(+∞) = 0 (due to the exponential decay of vk), we can
choose some α > 0 such that uk(x) ≡ vk(x) + αp ≥ 0 for all x ≥ y, and uk(x1) = 0
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(for at least one of the components of this vector) for some x1 > y. Taking into
account system (2.8), we see that

Duk
′′
+ F τk ′(wN,k)uk + q(x) = 0,

where q(x) = −αF τk ′(wN,k)p > 0 on [y,+∞). We obtain a contradiction in signs
in the equation for the component of the vector-function uk, which has a minimum
at x = x1 (by using also (2.3)).

It remains to study the case xk → 0. Let us verify that

(2.9) F τ0(ŵ(0)) > 0.

Obviously, the inequality F τ0(ŵ(0)) ≥ 0 holds because otherwise, if at least one of
the components of this vector is negative, then the corresponding component of the
vector ŵ′′(0) is positive. Since ŵ′(0) = 0, this would contradict the assumption that
the function ŵ is decreasing. Thus, we need to verify that the components of the
vector F τ0(ŵ(0)) can not equal zero. Suppose that this is not true, and for example
the first component vanishes. Set v(x) = −ŵ′

1(x) and differentiate the first equation
in (2.1). This gives

d1v
′′ +

∂F τ0
1

∂w1
(ŵ(x)) v + b(x) = 0,

where

b(x) = −∂F τ0
1

∂w2
(ŵ(x)) ŵ′

2(x) ≥ 0.

Since v(0) = 0 and v′(0) = 0, then we obtain a contradiction with the Hopf lemma.
Thus, we proved that all components of the vector F τ0(ŵ(0)) are positive. Since

the functions wN,k converge to ŵ, then for all k sufficiently large F τk(wN,k(0)) > 0.

Therefore wN,k(x)
′′
< 0 in some interval 0 < x < δ independent of k. Hence

wN,k(x)
′
< 0 in this interval and the convergence xk → 0 cannot hold. This

contradiction completes the proof of the lemma. □

Remark. The arguments in the proof of Theorem 2.1 yield the existence of some
constant η > 0 such that for any monotone solution wM and all τ ∈ [0, 1]:

(2.10) wM
1 (0) > η, wM

2 (0) > η.

Indeed otherwise there exists a sequence of monotone solutions wM,k converging to
some ŵ in E1

µ and at least one component of ŵ(0) vanishes. In view of (2.6) this is
impossible.

This lower bound yields that the monotone solutions are also separated from the
trivial solution w ≡ 0.

2.2. Estimates of monotone solutions. Here setting w− = (1, 1), we assume
furthermore that

(2.11) F τ (w−) = 0, F τ ′(w−) has all eigenvalues in the left− half plane.

and

(2.12)
F τhas a unique zero w̄τ ∈ (w+, w−),

the principal eigenvalue of F τ ′(w̄τ ) is positive
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where (w+, w−) denotes the set of w such that 0 < wi < 1, i = 1, 2. Note that due
to (2.4) F τ only vanishes at the two points w+ and w− on the boundary of the unit
square 0 < wi < 1.

Consider monotone solutions w(x) of problem (2.1)-(2.2) that furthermore satisfy
the inequality w+ < w(x) < w− for all x ≥ 0 (see Lemma 2.3 below). From this L∞

estimate and from the assumption that the function F τ is sufficiently smooth with
all derivatives uniformly bounded it follows that the Hölder norm in C2+α(R+) of
the solutions is also uniformly bounded (there exists a bound independent of such
a solution and of τ). However, this is not sufficient to conclude that the norm
in the weighted space E1 = C2+α

µ (R+) is uniformly bounded. It is clear from
the following example. Let u(x) be a positive function exponentially decaying at
infinity. Consider the sequence of functions uk(x) = u(akx) where ak is a sequence
of positive numbers converging to zero. Then this sequence is uniformly bounded
in the Hölder norm, each function uk(x) is bounded in the weighted norm, but this
sequence is not uniformly bounded in the weighted norm. This is a typical situation
for problems in unbounded domains. We need to impose some additional condition
in order to get uniform estimates in the weighted norm.

This condition will be related to the travelling wave problem

(2.13) Du′′ + cu′ + F τ (u) = 0.

In view of the assumptions (2.11)-(2.12) together with (2.3)-(2.4) there exists a
unique value of c denoted by cτ such that the system (2.13) has a monotonically
decreasing solution with the limits at infinity:

(2.14) u(±∞) = w±,

(see [5], [6]).
The following result provides the estimates for w in the weighted spaces under

an appropriate assumption on cτ .

Theorem 2.2. Let assumptions (2.3)-(2.4), (2.11)-(2.12) hold. Moreover suppose
that cτ > 0 for all τ ∈ [0, 1]. Then there exists some constant R > 0 such that
for all τ ∈ [0, 1] and for any arbitrary monotone solution w of (2.1)-(2.2) with
w+ < w < w−, the following estimate holds:

∥w∥E1
µ
≤ R.

Proof. Since such solutions are uniformly bounded in the Hölder norm without
weight, it is sufficient to prove that the norm supx |w(x)µ(x)| is uniformly bounded.
Let us recall that solutions decay exponentially at infinity. So this norm is bounded
for each solution. Suppose that solutions are not uniformly bounded in the weighted
norm. Then there is a sequence of monotone solutions wk (with w+ < wk < w−) of
problem (2.1)-(2.2) for possibly different values of τ for which

sup
x≥0

|wk(x)µ(x)| → ∞ as k → ∞.

Let ϵ > 0 be sufficiently small so that the exponential decay of the solutions gives
the estimate

|wk(x)µ(x)| ≤ M,
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for those values of x such that |wk(x)| ≤ ϵ, with some constant M > 0 independent
of k. Choosing ϵ < η given by (2.10) we can select xk so that |wk(xk)| = ϵ and

(2.15) |wk(x)µ(x− xk)| ≤ M for x ≥ xk.

If the values xk are uniformly bounded, then the values |wk(x)µ(x)| are uniformly
bounded for 0 ≤ x ≤ xk since wk(x) ≤ w+. Together with (2.15), this provides the
required estimate for all x ≥ 0. Suppose that xk → ∞. Consider the sequence of
functions uk(x) = wk(x + xk). We can choose a subsequence converging to some
limiting function u0(x) in C2

loc(R). Then u0 is a monotone function defined on the
whole axis and satisfies the equation

Du0
′′
+ F τ0(u0) = 0

for some τ0 ∈ [0, 1]. The bound (2.15) yields that u0(∞) = w+ while u0(−∞) = u−,
where u− is such that F τ0(u−) = 0 and u− ̸= w+ since |u0(0)| = ϵ. Hence we obtain
a solution of system (2.13) with c = 0. Let us show that this is not possible.
Indeed, if u− is the unstable zero of F τ0 in (w+, w−), then a solution of system
(2.13) exists only for negative c [5], [6]. If u− = w− (stable point), then by virtue
of the assumption of Theorem 2.2, c > 0. Hence the function u0 can not exist, and
the sequence xk is bounded. This completes the proof of Theorem 2.2. □

There remains to check conditions that guarantee that the monotone solutions
take values in (w+, w−). Even though more general results can be obtained we focus
on the particular system that we will consider hereafter that is

(2.16)

 d1w
′′
1 − w1 + f τ

1 (w2) = 0,

d2w
′′
2 − w2 + f τ

2 (w1) = 0,

where di > 0, i = 1, 2. We will assume that the functions f τ
i : R → R are infinitely

differentiable and satisfy conditions similar to (1.8)-(1.10) namely:

(2.17) f τ
i (0) = 0, f τ

i (1) = 1, f τ
i
′(s) > 0 for s ≥ 0, i = 1, 2,

(2.18)
The system w1 = f τ

1 (w2), w2 = f τ
2 (w1) has three solutions w

+, w−, w̄τ in R2
+,

furthermore 0 < w̄τ
i < 1,

(2.19) f τ
1
′(0)f τ

2
′(0) < 1, f τ

1
′(1)f τ

2
′(1) < 1, f τ

1
′(w̄τ

2)f
τ
2
′(w̄τ

1) > 1.

Lemma 2.3. Under assumptions (2.17)-(2.19), assume that problem (2.16) has a
solution w(x) defined for x ≥ 0 and such that

(2.20) w′(0) = 0, w(x) > 0 and w′(x) < 0 for x > 0, w(∞) = 0.

Then for x ≥ 0 and i = 1, 2 we have wi(x) ≤ 1.

Proof. Let us omit the index τ . As usual we set w− = (1, 1) and F (w) =
(F1(w), F2(w)) with F1(w) = −w1 + f1(w2), F2(w) = −w2 + f2(w1). Thanks to
the assumptions (2.18)-(2.19), we have f2(w1) < f−1

1 (w1) for w1 > 1 where f−1
1

denotes the inverse function of f1. Consequently it is easy to check that for each
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point w ∈ R2
+ that does not belong to the unit square, at least one of the functions

Fi(w) is negative.
Consider now some solution w satisfying (2.20). Both functions w1 and w2 reach

their maximum value at x = 0. If (w1(0), w2(0)) does not belong to the unit square
then at least one of the Fi(w(0)) is negative, hence the second derivative w′′

i (0) is
positive and wi can not be decreasing. This concludes the proof of Lemma 2.3.

□
The above assumptions (2.17)-(2.19) yield the conditions (2.3)-(2.4) and (2.11)-

(2.12) for F τ (w) = (−w1 + f τ
1 (w2),−w2 + f τ

2 (w1)). Hence under these assumptions
Theorems 2.1 and 2.2 and Lemma 2.3 apply. Consequently if cτ > 0 for all τ ∈ [0, 1]
the monotone solutions are uniformly bounded in E1

µ and they are separated from
the non-monotone ones. This will be a crucial tool in section 4 below where we will
apply the Leray-Schauder method to obtain the existence of monotone solutions.
To be able to compute the degree we will need some spectral properties that are
investigated in the next section.

3. Spectral properties

We consider the system

(3.1) d1w
′′
1 − w1 + f1(w2) = 0, d2w

′′
2 − w2 + f2(w1) = 0,

where d1, d2 > 0 and f1, f2 satisfy (1.8)-(1.10). We suppose that there is a solution
(w1, w2) satisfying (1.6)-(1.7). Next consider the eigenvalue problem

(3.2) d1v
′′
1 − v1 + a1v2 = λv1, d2v

′′
2 − v2 + a2v1 = λv2,

(3.3) v′1(0) = v′2(0) = 0, v1(∞) = v2(∞) = 0,

where
a1(x) = f ′

1(w2(x)), a2(x) = f ′
2(w1(x)).

Here note that ai(x) > 0 for all x ≥ 0, i = 1, 2. The principal eigenvalue λ0 of
problem (3.2)-(3.3) is real, simple, positive and the corresponding eigenfunction is
positive [7]. We aim to show that all other eigenvalues are negative.

Theorem 3.1. Let assumptions (1.8)-(1.10) hold. Suppose that w is a solution of
(3.1) satisfying (1.6)-(1.7). Then the only real non-negative eigenvalue of problem
(3.2)-(3.3) is the principal eigenvalue λ0.

Proof. Suppose that problem (3.2)-(3.3) has a real eigenvalue λ ≥ 0, λ ̸= λ0, with
some corresponding eigenfunction v = (v1, v2). The system (3.2) also reads:

(3.4) d1v
′′
1 − (1 + λ)v1 = −a1v2, d2v

′′
2 − (1 + λ)v2 = −a2v1.

Here, since λ ≥ 0, the operators in the left-hand sides of the above equations are
invertible and this guarantees that v1 ̸≡ 0 and v2 ̸≡ 0.

Next we claim that if one of the functions vi, i = 1, 2, is positive, then the other
one is also positive. Indeed, suppose for example that v2(x) > 0 for all x > 0. If
v1 has negative values then it has a point of minimum because it converges to zero
at infinity. Since a1v2 > 0 on (0,+∞), we obtain a contradiction in signs in the
first equation in (3.4) at the point of minimum (which can be in particular x = 0).
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Hence v1(x) ≥ 0. It can be easily verified that this inequality is strict (due to v1 ̸≡ 0
and v′1(0) = 0).

Therefore since a positive eigenfunction only corresponds to the principal eigen-
value, both functions v1 and v2 must have variable signs.

Let us check that there exists a value x1 ≥ 0 such that

(3.5) v1(x1) ≤ 0, v2(x1) ≤ 0 and vi(x) > 0 for some x > x1 and i.

Indeed, consider the values v1(0) and v2(0). If both of them are non-positive or
non-negative then we set x1 = 0 (and eventually consider the opposite of the eigen-
function). If these values have opposite signs with for example v1(0) < 0 < v2(0),
we set x1 equal to the minimum from the two (possibly equal) values x where the
functions v1 and v2 have their first zero. Then either v2(x1) = 0 and v1(x1) ≤ 0, and
v1 will have positive values for some larger x since it has variable sign; or v1(x1) = 0
and v2(x1) ≥ 0, this case is similar to the previous one by considering the opposite
of the eigenfunction. Thus, in all cases, (3.5) holds true.

We aim to show that (3.5) contradicts the existence of some positive vector-
function v0 = (v01, v

0
2) which satisfies the equation

(3.6) d1v
0
1
′′ − v01 + a1v

0
2 = 0, d2v

0
2
′′ − v02 + a2v

0
1 = 0,

and the boundary condition

(3.7) v01(0) = v02(0) = 0.

Such a solution exists since −w′ satisfies the above conditions.
Let us begin with the following assertion. Suppose that for some N we have the

inequality

(3.8) v0i (N) > vi(N) for i = 1, 2.

We claim that, if N is large enough (to be determined below), the following inequal-
ity is satisfied:

(3.9) v0i (x) > vi(x) for all x ≥ N and i = 1, 2.

Indeed let us consider the functions zi = v0i −vi, i = 1, 2, which satisfy the equations:

(3.10) d1z
′′
1 − z1 − λz1 + a1z2 + λv01 = 0, d2z

′′
2 − z2 − λz2 + a2z1 + λv02 = 0.

Suppose that these functions are not positive for all x ≥ N . At least one of them
has negative values. Since the matrix

F ′(w+) =

(
−1 f ′

1(0)
f ′
2(0) −1

)
=

(
−1 a1(+∞)

a2(+∞) −1

)
is assumed to have negative principal eigenvalue, for some corresponding positive
eigenvector p, we have the inequality F ′(w+)p < 0. Let us choose N sufficiently
large so that the inequality

(3.11) F ′(w(x))p < 0 for all x ≥ N

holds true. Here zi(N) > 0, zi(+∞) = 0 and at least one of these two functions
has negative values for some x > N . Hence there exists a positive number τ such



108 M. MARION AND V. VOLPERT

that the functions ui(x) = zi(x) + τpi, where p1, p2 > 0 are the components of the
vector p, satisfy the following conditions:

(3.12) ui(x) ≥ 0 for x ≥ N and i = 1, 2 ; ∃ x0 > N and i such that ui(x0) = 0.

On the other hand, from (3.10) it follows that the vector-function u = (u1, u2)
satisfies the system:

Du′′ + F ′(w)u− λu+ b = 0,

where b(x) = −τF ′(w(x))p+τλp+λv0(x) > 0. We obtain a contradiction in signs at
the point x0 where ui(x0) = 0. This contradiction proves that, under the condition
(3.11), (3.9) follows from (3.8).

Let us now return to (3.5). We will compare the eigenfunction v with the function
v0 = −w′. First suppose that in (3.5) we have x1 > 0. Since v0(x) > 0 for x > 0,
we can choose a positive number σ > 0 such that

(3.13) σv0(x) > v(x) for x1 ≤ x ≤ N,

where N > x1 is fixed and verifies (3.11). Then from (3.9) it follows that

(3.14) σv0(x) > v(x) for x ≥ N.

Hence we have this inequality for all x ≥ x1. Denote by σ0 the infinimum of all
values σ for which (3.13) holds true. Since at least one of the components of the
vector-function v(x) has positive values for some x > x1, then σ0 > 0. Obviously,
σ0v

0(x) ≥ v(x) for x1 ≤ x ≤ N . Moreover there exists x2 ∈ (x1, N ] such that at
this point the inequality is not strict. Indeed, if it is strict for all x ∈ (x1, N ] and
v0(x1) > v(x1), then we can take a value σ < σ0 for which (3.13) holds true. Thus
the function ω = σ0v

0 − v satisfies the following properties:

(3.15) ω(x) ≥ 0 for x ≥ x1 ; ω(x1) > 0 ; ∃ x2 > x1 and i such that ωi(x2) = 0.

Moreover, ω satisfies the equation:

(3.16) Dω′′ + F ′(w)ω − λω + λσ0v
0 = 0.

Since the last term in the left-hand side of this equation is non-negative and ω(x) ̸≡
0, we obtain a contradiction in signs at the point x2 where (3.16) holds if λ ̸= 0 and
with the positiveness theorem if λ = 0.

We proved that (3.5) gives a contradiction if x1 > 0. If x1 = 0, the difference
with the previous case is that v0(x1) vanishes instead of being positive. Recalling
(3.5), we have v1(0), v2(0) ≤ 0. If both inequalities are strict, then we can proceed
as above starting from (3.13). Suppose now that one of the values vi(0), i = 1, 2,

(or both) equals 0. Then σv0i (0) = vi(0). However σv0i
′
(0) > 0 = v′i(0) (recall (2.9)

in the proof of Theorem 2.1). Hence σv0i (ϵ) > vi(ϵ) for ϵ sufficiently small and we
can proceed as before by replacing x1 by ϵ in (3.13) and after. □

4. Monotone pulses and travelling waves for equal diffusion
coefficients

We consider the problem

(4.1) w′′ + F (w) = 0,
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where

(4.2) F1(w) = −w1 + f1(w2), F2(w) = −w2 + f2(w1),

and the functions fi : R → R, i = 1, 2 satisfy (1.8)-(1.10).
Under these assumptions, there exists a decreasing solution of the equations

(4.3) u′′ + cu′ + F (u) = 0

with the limits

(4.4) u(−∞) = w−, u(∞) = w+.

Such a solution exists for a unique value of c and is uniquely defined up to a
translation in space, see [6].

The purpose of this section is to show that there exists a solution of (4.1) satisfying

(4.5) w′(0) = 0, w(x) > 0 and w′(x) < 0 for x > 0, w(∞) = 0,

if and only if the wave speed c is positive.
We will first assume

(4.6) c > 0

and we will derive the existence of a monotone pulse thanks to the Leray-Schauder
method. In sections 4.1 and 4.2, we construct a continuous deformation (homotopy)
of our problem to a model problem for which the value of the topological degree
is different from zero. Then in section 4.3, we use a priori estimates of solutions
obtained above to conclude that the degree is preserved and, consequently, there is
a solution of problem (4.1) satisfying (4.5).

Finally in section 4.4 we will prove the non existence of monotone pulses if c ≤ 0.

We will use some properties of travelling waves that are valid for more general
monotone systems and that are recalled in the following theorem. Namely, the
speed of the wave increases if we increase the nonlinearity. The proof can be found
in [6].

Theorem 4.1. Consider the two problems

(4.7) u′′ + cu′ + F k(u) = 0, u(±∞) = w±, k = 1, 2,

where F k = (F k
1 , F

k
2 ) are assumed to satisfy (2.3)-(2.4), (2.11) and furthermore

F 1
i (u) ≥ F 2

i (u) for w+ ≤ u ≤ w− and i = 1, 2.

If the two problems (4.7) possess monotone solutions with the values of the speed
c = ck, k = 1, 2, then we have c1 ≥ c2.
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4.1. Homotopy. We aim to construct a continuous deformation

(4.8) w′′ + F τ (w) = 0, τ ∈ [0, 1],

with functions F τ taking the form

(4.9) F τ
1 (w) = −w1 + f τ

1 (w2), F τ
2 (w) = −w2 + f τ

2 (w1),

in such a way that in its starting point (τ = 0) we have the initial system (4.1) and
in its final point (τ = 1) the functions f1

i are equal to each other, that is:

(4.10) f0
i (s) = fi(s) for i = 1, 2, f1

1 (s) = f1
2 (s) = g(s), s ≥ 0.

We will require the functions f τ
i (s) to be sufficiently smooth with respect to s and τ

and to satisfy the assumptions (2.17)-(2.19). Furthermore considering the travelling
wave problem:

u′′ + cτu′ + F τ (u) = 0, u(±∞) = w±,

we will require that its uniquely defined speed satisfies

(4.11) cτ > 0 for τ ∈ [0, 1],

(recall that we assume that this is true for the initial problem corresponding to
τ = 0). As noted at the end of section 2.2, these properties will provide estimates of
the monotone pulses in the space E1

µ that are independent of τ ∈ [0, 1]. Furthermore
the final problem (τ = 1) will take the form

w′′ +G(w) = 0 with G(w) = (−w1 + g(w2),−w2 + g(w1)).

We will look for its solution w = (w1, w2) for which w1 ≡ w2 so that this system
will reduce to a scalar equation.

Let us list the properties of g that will be needed. Firstly we will ask for the
properties (2.17)-(2.19) to be satisfied for τ = 1; they read:
(4.12)
The equation g(s) = s has three zeros in R+ : 0, 1 and µ ; furthermore 0 < µ < 1,

(4.13) g′(0) < 1, g′(µ) > 1, g′(1) < 1, g′(s) > 0 for s ≥ 0.

Furtermore we will require that

(4.14)

∫ 1

0
(g(s)− s)ds > 0.

As already mentioned in the introduction this last condition will both guarantee
the positivity of the speed for the corresponding travelling wave problem and the
existence of a monotone pulse for the final problem.

The construction of the homotopy consists of several steps.



EXISTENCE OF PULSES FOR A REACTION-DIFFUSION SYSTEM 111

Preliminary step. In view of the assumption (1.10) at least one of the values f ′
i(0)

is less than one and we can assume that f ′
1(0) ≤ f ′

2(0) and f ′
1(0) < 1.

We claim that we can choose smooth functions h1 and h2 from R+ into R such
that the following conditions are satisfied. Firstly the functions hi satisfy the analog
of (1.8)-(1.10), more precisely setting H(w) = (−w1 + h1(w2),−w2 + h2(w1)), we
require that:

(4.15)
the equation H(w) = 0 has three solutions in R2

+ :
w+, w−, ŵ with 0 < ŵi < 1,

(4.16)
h′1(0)h

′
2(0) < 1, h′1(1) < 1, h′2(1) < 1, h′1(ŵ2)h

′
2(ŵ1) > 1,

h′2(s) > 0 for s ≥ 0.

Next we want the hi to be bounded from below by the fi :

(4.17) fi(s) < hi(s) for 0 < s < 1 and i = 1, 2.

Moreover we will need that

(4.18) h1(s) ≤ h2(s) for 0 ≤ s ≤ 1,

and

(4.19) h1 satisfies the properties (4.12)− (4.14)

(stated above for g).

Suppose that such functions are constructed. Then the homotopy will proceed
as follows. We will first reduce the functions fi to the functions hi. The properties
(4.15)-(4.17) will guarantee that the wave speed is positive for the travelling wave
problem associated to hi (thanks to the monotony property in Theorem 4.1). Next,
the second step in the homotopy will consist of reducing h2 to h1 thanks to (4.18).
The final scalar problem for the monotone pulse will involve the function h1 which
satisfies (4.19). As already mentioned this will provide the existence of a solution
for this problem.

We first construct some piecewise linear continuous functions satisfying the con-
ditions (4.15)-(4.19) (except for the derivatives at the points where they do not
exist). Let α1 and α2 be chosen so that

f ′
1(0) < α1 < 1, f ′

2(0) < α2, α1 < α2, α1α2 < 1.

Also let
M2 > M1 > 1, Mi > max

s∈[0,1]
f ′
i(s) for i = 1, 2,

0 < m2 < m1 < 1, mi < min
s∈[0,1]

f ′
i(s) for i = 1, 2.

For i = 1, 2 we set:

(4.20) hi(s) =

 αis for 0 ≤ s < δ,
Mis+ αiδ −Miδ for δ ≤ s ≤ γi,
mis+ 1−mi for γi ≤ s ≤ 1,

where γi is determined by expressing the continuity of hi at this point. Tedious
calculations provide that by choosing δ, m1 and m2 sufficiently small and M1 and
M2 sufficiently large all required above conditions can be satisfied. In particular
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we have γ2 < γ1 < 1, h1 < h2 on (0, 1), and at the point ŵ such that (4.15) holds
h1

′(ŵ2) = M1 so that the product h1
′(ŵ2)h2

′(ŵ1) can be made larger than one.

To conclude it is straightforward to slightly modify the functions hi in the neigh-
borhoods of the points δ and γi to make them smooth on [0, 1]. Also they can be
easily extended to R+ so that the equation H(w) = 0 has no additional zero outside
the unit square.

First step (τ ∈ [0, 1/2]). As already mentioned the first step of the homotopy consists
of reducing the functions fi to the functions hi.

We first keep f1 fixed and aim to construct some homotopy f τ
2 , τ ∈ [0, 1/4], of

the function f2 to the function h2 so that (2.17)-(2.19) are satisfied for (f1, f
τ
2 ) and

furthermore

(4.21) f2(s) ≤ f τ
2 (s) for 0 ≤ s ≤ 1 and τ ∈ [0, 1/4].

This last condition will provide that

cτ ≥ c > 0 for τ ∈ [0, 1/4],

for the speed cτ of the travelling wave corresponding to F τ (w) = (−w1+f1(w2),−w2+
f τ
2 (w1)).
It is convenient to rewrite the conditions (2.18)-(2.19) in terms of the inverse

function of f1 that we denote by θ. For τ ∈ [0, 1/4], we want the function φτ =
f τ
2 − θ to vanish at 0 and 1 and to possess some unique additional zero sτ in (0, 1);
furthermore we need that φτ ′(0) < 0, φτ ′(1) < 0 and φτ ′(sτ ) > 0.

Thanks to assumptions (1.8)-(1.10) these properties hold true for the starting
point f0

2 = f2 (τ = 0). Let s ∈ (0, 1) denote the unique zero of f2 − θ in (0, 1).

For τ = 1/4, the final point f
1/4
2 = h2 is a perturbation of the piecewise linear

function (4.20). By eventually increasing 1/δ and M2, the function h2 − θ satisfies
the required properties. Let s̄ > s denote its unique zero in (0, 1).

For a > 0 sufficiently large (to be specified later), we introduce the function

(4.22) f τ
2 (s) =

 f2(s), 0 ≤ s ≤ 1− 4τ,
a(s− 1 + 4τ) + f2(1− 4τ), 1− 4τ ≤ s ≤ γτ ,
h2(s), γτ ≤ s ≤ 1,

where γτ is determined by expressing the continuity of f τ
2 at this point.
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Figure 1. Schematic representation of the first step of homotopy.

Let ϵ > 0 be given such that ϵ < s and s̄ + ϵ < 1. The above function f τ
2 is

introduced for τ ∈ [τ0, τ1] ⊂ (0, 14) with 1− 4τ0 = s̄ and 1− 4τ1 = s− ϵ. Then it is
easy to see that for sufficiently large a we can define f τ

2 such that γτ ≤ 1−4τ+ϵ < 1.
Next, let us investigate the zeros of φτ = f τ

2 − θ on (0, 1). If 1− 4τ = s̄ (that is
τ = τ0), the unique zero of φτ0 is s̄. If s ≤ 1 − 4τ < s̄ the zeros of φτ necessarily
belong to (1−4τ, γτ ) and on this interval the derivative φτ ′(s) = a−θ′(s) is positive
if a > maxs∈[0,1] θ

′(s). If s− ϵ ≤ 1− 4τ ≤ s the zeros either belong to (1− 4τ, γτ ) or
take the value s. In all cases, we conclude that φτ possesses a unique zero sτ ∈ (0, 1)
and φτ ′(sτ ) > 0 (when this derivative exists).

To complete the definition of the homotopy, we start by reducing f2 to f τ0
2 on

[0, τ0] thanks to a linear homotopy

f τ
2 (s) = (1− τ

τ0
)f2(s) +

τ

τ0
f τ0
2 (s) for 0 ≤ τ ≤ τ0.

Then on [τ0, τ1], we go from f τ0
2 to f τ1

2 as described above. We conclude by reducing
f τ1
2 to h2 on [τ1, 1/4] :

f τ
2 (s) =

1− 4τ

1− 4τ1
f τ1
2 (s) +

4τ − 4τ1
1− 4τ1

h2(s) for τ1 ≤ τ ≤ 1

4
.

For τ /∈ [τ0, τ1], the unique zero of the corresponding φτ = f τ
2 − θ is either s̄ or s,

the condition on the derivative is satisfied.
Up to now we have been considering piecewise C1 functions and we conclude

by slightly modifying them in the neighborhoods of the points where they are not
differentiable. Also we extend them to R+ so that the equation F τ (w) = 0 has no
additional zero outside the unit square.

For τ ∈ [1/4, 1/2], we next reduce the function f1 to the function h1. We proceed
as above. The homotopy takes the form

F τ (w) = (−w1 + f τ
1 (w2),−w2 + h2(w1)).
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Denoting by ξ the inverse function to h2 we want the function f τ
1 − ξ to possess

a unique zero in (0, 1) with a positive derivative at that point. We construct f τ
1 ,

τ ∈ [1/4, 1/2], as we did above for f τ
2 , τ ∈ [0, 1/4].

Second step (τ ∈ [1/2, 1]). We now aim to reduce the function h2 to h1. The
homotopy takes the form:

f τ
1 (s) = h1(s), f τ

2 (s) = 2(1− τ)h2(s) + (2τ − 1)h1(s), τ ∈ [1/2, 1].

Recalling that the hi are slight perturbations of the functions in (4.20), the prop-
erties (2.17)-(2.19) for F τ are easily checked (eventually by increasing the constant
M1). Also we claim that

(4.23) cτ > 0 for τ ∈ [1/2, 1].

Indeed note that (4.18) yields f τ
2 ≥ h1 on [0, 1]. Therefore cτ ≥ ĉ where ĉ is the

speed of the travelling wave for the problem

u′′ + ĉ u′ +G(u) = 0, G(u) = (−u1 + g(u2),−u2 + g(u1))

with g = h1. For this uniquely defined wave, we have u1 = u2 and the sign of the
speed is the same as the sign of the integral in (4.14). Hence cτ ≥ ĉ > 0.

4.2. Model problem. As a result of the homotopy above, we obtained the model
system

(4.24) w′′
1 − w1 + g(w2) = 0, w′′

2 − w2 + g(w1) = 0,

where g = h1 satisfies (4.12)-(4.14).
Let us look for its solution for which w1 = w2 so that the system amounts to the

scalar equation

(4.25) w′′
1 − w1 + g(w1) = 0.

The following lemma yields the existence of a monotone pulse for this problem.

Lemma 4.2. Let f : R → R be a C1 function such that f(0) = f(1) = 0, f ′(0) < 0,

there exists a single zero µ of this function in (0, 1) and
∫ 1
0 f(s)ds > 0. Then the

scalar equation

w′′ + f(w) = 0,

possesses a unique solution defined for x ≥ 0 such that w′(0) = 0, w′ < 0 on (0,∞)
and w(∞) = 0.

Proof. Let us rewrite the equation as a system of two first-order equations:{
w′ = v,
v′ = −f(w).

The equilibrium point (0, 0) is a saddle and we can consider the solution on the
stable manifold such that w′(x) < 0 for large x. For this solution

w′(x)2

2
= −

∫ w(x)

0
f(s)ds

and Lemma 4.2 follows readily. □
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Lemma 4.2 with f(s) = g(s) − s provides a solution w1 of (4.25). Then, setting
w2 = w1, the system (4.24) has a positive monotone solution with w′

i(0) = 0 and
wi(∞) = 0, i = 1, 2. We do not know whether this solution is unique but we do
not need its uniqueness. We now use Theorem 3.1 about spectral properties of the
operator linearized at monotone solutions. We can introduce the number

γ∗ =
K∑
k=1

(−1)νk ,

where K is the number of monotone solutions, νk the number of positive eigenvalues
of the operator linearized about these solutions together with their multiplicity.
Since these operators have a single real non-negative eigenvalue and it is simple,
then γ∗ = −K ̸= 0. This is the value of the topological degree for the model
problem. We will use separation of monotone solutions and their a priori estimates
in order to show that this value is preserved for all τ . This will allow us to conclude
the proof of the existence of solutions in the next section.

4.3. Existence of solutions. We can now prove the existence of monotone pulses
for problem (4.1) under the assumption c > 0.

In section 4.1 we constructed the homotopy F τ satisfying (4.10)-(4.11) and (2.17)-
(2.19). Let us now consider the spaces introduced in section 2 and the operator Aτ

given by (2.5).
It satisfies the conditions imposed to obtain a priori estimates of monotone solu-

tions (Theorem 2.2 and Lemma 2.3). Denote by B ⊂ E1
µ a ball which contains all

monotone solutions. Since the operator Aτ is proper on closed bounded sets with
respect to both variables w and τ , then the set of monotone solutions of the equa-
tion Aτ (w) = 0 is compact. Since they are separated from non-monotone solutions,
then we can construct a domain D ⊂ B ⊂ E1

µ such that all monotone solutions
(for all τ ∈ [0, 1]) are located inside D and there are no non-monotone solutions in
the closure D̄. Indeed it is sufficient to take a union of small balls of the radius r
(Theorem 2.1) around each monotone solution.

Let us note that only strictly monotone solutions belong to this domain. In
particular, the trivial solution w ≡ 0 does not belong to it since, as indicated at
the end of the section 2.1, the monotone solutions are separated from the trivial
solution. This is an important remark because the index of the trivial solution
equals one. If it belongs to the domain D, then the sum of the indices, which equals
the value of the degree, can be zero. If it was the case, then we could not affirm the
existence of solutions for the original problem.

We can define the topological degree γ(Aτ , D). We have

γ(A0, D) = γ(A1, D) = γ∗ ̸= 0.

Hence the degree is different from zero for the original problem, and the equation
A0(w) = 0 has a solution in D. This concludes the proof of the existence result in
Theorem 1.1.

4.4. Non-existence of solutions. Here we suppose that the speed c in problem
(4.3)-(4.4) is negative. We aim to show that problem (4.1) can not possess any
solution w satisfying (4.5).
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Let us begin with the case c < 0. Suppose that such a solution exists. Let us
extend it to R by setting w(x) = w(−x). Consider the parabolic equation

(4.26)
∂v

∂t
=

∂2v

∂x2
+ F (v)

on the whole axis (for x) with some initial condition v0 such that v0(−∞) =
w−, v0(∞) = w+ and v0(x) > w(x) for all x ∈ R. The solution v of this Cauchy
problem will satisfy the inequality

(4.27) v(x, t) > w(x), ∀ x ∈ R, t > 0.

On the other hand, this solution converges to the wave u(x− ct− h) where h is an
appropriate real number [6]:

sup
x∈R

|v(x, t)− u(x− ct− h)| → 0, t → ∞.

Since c < 0, then v(0, t) → w+ as t → ∞. We obtain a contradiction with inequality
(4.27).

Consider now the case c = 0. Suppose again that (4.1) possesses some positive
solution w satisfying (4.5) that we extend to R as above. Let u denote a travelling
wave with speed 0, so that

u′′ + F (u) = 0, u(−∞) = w−, u(∞) = w+.

Introduce uh(x) = u(x−h). We can choose h sufficiently large such that uh(x) >
w(x) for all x ∈ R. Indeed, first let us select N > 0 sufficiently large so that from the
inequality uh(N) > w(N) it follows that uh(x) > w(x) for all x ≥ N (the existence
of such N can be derived by arguments close to the ones used to infer (3.9) from
(3.8) by using the Taylor formulas). Then since w(x) < w− we can find h such that
uh > w on [0, N ]. Consequently since w is even, uh(x) > w(x) for all x ≤ 0.

Let h0 be the infimum of all h for which uh > w on R. Then

uh0(x) ≥ w(x) for x ∈ R,

and there exists some point x0 where this inequality is not strict. This contradicts
the positiveness theorem which is valid for monotone systems. Thus we have proved
the non-existence part of Theorem 1.1.

5. Sign of the wave speed

As already mentioned, for the scalar case the wave speed c has the sign of the
integral of the nonlinearity. This is no more true for systems. For monotone systems,
the wave speed admits a minimax representation [6]. It allows one to estimate the
speed if a good test function is chosen.

We will use here another approach. In section 5.1, we will introduce a system with
discontinuous nonlinear terms for which we show the existence of travelling waves
and explicitly determine the sign of the corresponding speed. Then in section 5.2
we will consider a regularized system obtained by smoothing the nonlinear terms.
We will show the convergence of the corresponding wave speed to the wave speed
of the system with discontinuous nonlinearities. This result will allow us to make
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conclusion about the sign of the wave speed for the regularized system and to apply
the results on the existence of pulses to this system.

5.1. A system with discontinuous nonlinearities. We consider the system

(5.1)

 u′′1 + cu′1 − u1 + f1(u2) = 0,

u′′2 + cu′2 − u2 + f2(u1) = 0,

where

f1(s) =

{
0 for s < s2
1 for s ≥ s2

, f2(s) =

{
0 for s < s1
1 for s ≥ s1

for some 0 < s2, s1 < 1. Without loss of generality we will suppose that s2 ≤ s1.
We look for a monotonically decreasing solution of this system with the limits

(5.2) ui(−∞) = 1, ui(∞) = 0, i = 1, 2.

Since the solution is invariant with respect to translation in space, we can suppose
that u1(0) = s1. Let L be such that u2(L) = s2. Then we can write equations (5.1)
as follows:

(5.3) u′′1 + cu′1 − u1 + 1 = 0 for x < L, u′′1 + cu′1 − u1 = 0 for x > L,

(5.4) u′′2 + cu′2 − u2 + 1 = 0 for x < 0, u′′2 + cu′2 − u2 = 0 for x > 0.

The solutions of (5.3)-(5.4) can be easily computed. Consider

(5.5) λ1 = − c

2
−

√
c2

4
+ 1 < 0 , λ2 = − c

2
+

√
c2

4
+ 1 > 0 .

Setting u1(L) = u∗1 and u2(0) = u∗2, and expressing the limits at infinity, we find
readily that

u1(x) = 1− (1− u∗1)e
λ2(x−L) for x < L, u1(x) = u∗1e

λ1(x−L) for x > L,

u2(x) = 1− (1− u∗2)e
λ2x for x < 0, u2(x) = u∗2e

λ1x for x > 0.

We now need to distinguish the cases L ≥ 0 and L < 0. First suppose that L ≥ 0.
Then the conditions u1(0) = s1 and u2(L) = s2 take the form:

(5.6) 1− (1− u∗1)e
−λ2L = s1 , u∗2e

λ1L = s2,

while the continuity of the derivatives for u1 at L and for u2 at 0 reads:

(5.7) λ1u
∗
1 = −λ2(1− u∗1), λ1u

∗
2 = −λ2(1− u∗2).

The conditions (5.6)-(5.7) provide four equations for the four unknowns u∗1, u
∗
2, L

and c. We can eliminate the unknowns u∗1 and u∗2 thanks to the equations (5.7):

u∗1 = u∗2 =
λ2

λ2 − λ1
,

so that it suffices to solve the following system of two equations for the unknowns
c and L:

(5.8)
−λ1

λ2 − λ1
e−λ2L = 1− s1,

λ2

λ2 − λ1
eλ1L = s2.

Recall that λ1 and λ2 are given by (5.5).
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Lemma 5.1. For any 0 < s2 ≤ s1 < 1, i = 1, 2, the system (5.8) has a unique
solution (c, L); moreover L ≥ 0. Furthermore c > 0 if s1 + s2 < 1, c = 0 if
s1 + s2 = 1 and c < 0 if s1 + s2 > 1.

Proof. Let us express L from the first equation in (5.8) and denote the corresponding
function L1(c), and also express it from the second equation with the corresponding
function L2(c). We obtain:

L1(c) = − 1

λ2
log

(1− s1)(λ2 − λ1)

−λ1
, L2(c) =

1

λ1
log

s2(λ2 − λ1)

λ2
.

It can be easily verified that L1(c) → ∞ and L2(c) → 0 as c → ∞. On the other
hand, L1(c) → 0 and L2(c) → ∞ as c → −∞. Therefore the equation L1(c) = L2(c)
has at least a solution.

Next, we have L1(0) = − log(2(1−s1)) and L2(0) = − log(2s2). If L1(0) < L2(0),
then there is a solution c > 0. In the case of equality, c = 0 is a solution, and if the
inequality is opposite, then there is a solution c < 0.

In order to prove the uniqueness of the solution, we now consider L1 and L2 as
functions of the variable λ2 and we will use for them the same notations. Since
λ1 = −1/λ2, we have:

(5.9) L1(λ2) = − 1

λ2
log((1− s1)(λ

2
2 + 1)), L2(λ2) = −λ2 log(s2(1 + 1/λ2

2)).

Then introducing y = λ2
2, the equation L1(λ2) = L2(λ2) amounts to

Φ(y) ≡ y(log(1 + 1/y) + log s2)− log(1 + y)− log(1− s1) = 0, y > 0.

We note that Φ(0) = − log(1 − s1) > 0 and Φ(y) < 0 for sufficiently large y > 0.

Furthermore since Φ′′(y) = y−1
y(1+y)2

, we have Φ′′(y) < 0 for y < 1 and Φ′′(y) > 0 for

y > 1. It is straightforward to conclude that the equation Φ(y) = 0 has a unique
solution y0 > 0. Hence λ2 =

√
y0 and λ1 = −1/λ2 are uniquely defined and this

provides c thanks to (5.5). Finally by (5.9):

(5.10) L = − 1

λ2
log((1− s1)(y0 + 1)).

There remains to investigate the sign of L. Clearly in view of (5.10) L ≥ 0 amounts
to y0 < s1

1−s1
. Checking the sign of Φ( s1

1−s1
) we find readily that L ≥ 0 if and only

if s2 ≤ s1. □
Lemma 5.1 provides the existence of a travelling-wave with L ≥ 0 in (5.3)-(5.4).

Let us check that solution with L < 0 does not exist. Indeed if L < 0 the condition
(5.6) is replaced by

(5.11) u∗1e
−λ1L = s1 , 1− (1− u∗2)e

λ2L = s2,

while (5.7) is unchanged. Here (5.11) is similar to (5.6) by replacing L by −L and
interverting the index 1 and 2. Hence Lemma 5.1 allows us to conclude that for
0 < s2 ≤ s1 < 1 solution of (5.11)-(5.7) with L < 0 does not exist.

In conclusion we proved that Problem (5.1)-(5.2) possesses a monotone solution
for a unique value of the speed which is given by Lemma 5.1 and that hereafter we
denote by c0. Furthermore c0 is positive if and only if s1 + s2 < 1.
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Let us give some interpretation of this last condition. It also reads S+ > S−,
where S+ = (1 − s1)(1 − s2) and S− = s1s2. Coming back to the functions
F1(w1, w2) = −w1 + f1(w2) and F2(w1, w2) = −w2 + f2(w1), then S+ is the area of
the domain (in the unit square) where both functions F1 and F2 are positive while
S− is the area of the domain where both functions are negative.

5.2. Passage to the limit for a regularized system. Consider the regularized
system

(5.12)

 u′′1 + cu′1 − u1 + fρ
1 (u2) = 0,

u′′2 + cu′2 − u2 + fρ
2 (u1) = 0,

where fρ
1 and fρ

2 are infinitely differentiable functions with non-negative first deriva-
tives and

fρ
1 (s) =

{
0 for s ≤ s2 − ρ
1 for s ≥ s2 + ρ

, fρ
2 (s) =

{
0 for s ≤ s1 − ρ
1 for s ≥ s1 + ρ

for some 0 < s1, s2 < 1. Here 0 < ρ ≤ ρ0 where ρ0 > 0 is given and satisfies
si − 2ρ0 > 0, si + 2ρ0 < 1, i = 1, 2. We also suppose that the system

u1 = fρ
1 (u2), u2 = fρ

2 (u1)

possesses only one additional zero ūρ = (ūρ1, ū
ρ
2) with 0 < ūρi < 1 and this zero is

unstable: fρ
1
′
(ūρ2)f

ρ
2
′
(ūρ1) > 1. Functions fρ

i satisfying these conditions can be easily
constructed.

System (5.12) has a unique monotone solution (up to translation in space) uρ(x) =
(uρ1(x), u

ρ
2(x)) with the limits

(5.13) uρi (−∞) = 1, uρi (∞) = 0, i = 1, 2

with the speed c = cρ. We will show that cρ converges to the speed c0 of the discon-
tinuous system (5.1) as ρ → 0 together with the convergence of the corresponding
waves.

Denote by C l
b(R) the class of vector functions of class l on R which are bounded

together with all their derivatives of order ≤ l. The following result is standard.

Lemma 5.2. The monotone solution uρ of (5.12)-(5.13) is bounded in C2
b (R) in-

dependently of 0 < ρ ≤ ρ0.

Proof. See Lemma 2.1 in [6, p.158] □

We now aim to derive a priori bounds for cρ independent of ρ ∈ (0, ρ0].

Lemma 5.3. There exist two constants 0 < c∗ < c∗ such that for all 0 < ρ ≤ ρ0,
we have the bounds c∗ ≤ cρ ≤ c∗.

Proof. Let hi and Hi be infinitely differentiable monotone functions such that

h1(s) =

{
0 for s ≤ s2 + ρ0
1 for s ≥ s2 + 2ρ0

, h2(s) =

{
0 for s ≤ s1 + ρ0
1 for s ≥ s1 + 2ρ0
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and

H1(s) =

{
0 for s ≤ s2 − 2ρ0
1 for s ≥ s2 − ρ0

, H2(s) =

{
0 for s ≤ s1 − 2ρ0
1 for s ≥ s1 − ρ0

.

We suppose that the system of equations u1 = h1(u2), u2 = h2(u1) has a unique
solution for 0 < u1, u2 < 1 and this solution is unstable. A similar condition is
imposed on the functions Hi. Such functions can be easily constructed.

Then for 0 < ρ ≤ ρ0

hi(s) ≤ fρ
i (s) ≤ Hi(s) for 0 ≤ s ≤ 1 and i = 1, 2.

Consider the systems

(5.14)

 u′′1 + cu′1 − u1 + h1(u2) = 0,

u′′2 + cu′2 − u2 + h2(u1) = 0,

and

(5.15)

 u′′1 + cu′1 − u1 +H1(u2) = 0,

u′′2 + cu′2 − u2 +H2(u1) = 0.

They have unique solutions with the limits ui(−∞) = 1, ui(+∞) = 0, i = 1, 2.
Denote by c∗ the corresponding value of c for system (5.14) and by c∗ for system
(5.15). By virtue of Theorem 4.1, we have the estimates c∗ ≤ cρ ≤ c∗. □

We can now prove the theorem about the convergence of the travelling waves.
Since the waves are unique up to some translation in space we need to fix the value
of one of the unknowns at some point. For example let us set

(5.16) uρ1(0) =
s1
2

for 0 < ρ ≤ ρ0.

Theorem 5.4. As ρ → 0, cρ converges to the speed c0 for Problem (5.1). Moreover
under the additional condition (5.16), the corresponding solution (uρ1, u

ρ
2) converges

in the topology of C1
b (R) to the unique solution (u01, u

0
2) of problem (5.1) satisfying

u01(0) =
s1
2 .

Proof. Thanks to the previous lemmae the speed cρ is bounded independently of
0 < ρ ≤ ρ0 while uρ is bounded in C2

b (R). Classical compactness arguments yield

the existence of a sequence ρk with limk→∞ ρk = 0 such that ck = cρk converges to
some limiting value ĉ and uk = uρk converges to some û in C1

loc(R) as k → ∞. We
also set (fk

1 , f
k
2 ) = (fρk

1 , fρk
2 ).

Let us denote by λk
i , i = 1, 2, the values in (5.5) corresponding to c = ck and by

λ̂i, i = 1, 2, the values for c = ĉ. Since the sequence ck is bounded it is easily seen
that there existe δ > 0 such that

(5.17) ∀k, λk
1 ≤ −δ < 0.

The monotony of uk1 together with the condition (5.16) yield uk1(x) < s1
2 for

x ≥ 0. Hence fk
2 (u

k
1) = 0 for k large enough so that thanks to the equation for uk2

and 0 ≤ uk2 ≤ 1:

(5.18) uk2(x) = uk2(0)e
λk
1x for x ≥ 0 and k ≥ k0.
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Hence for k ≥ k0, (5.17) and (5.18) provide uk2(x) ≤ e−δx for x ≥ 0, so that
uk2(x) <

s2
2 for x ≥ x1 where x1 is independent of k. Then fk

1 (u
k
2) = 0 for k large

enough and the equation for uk1 yields

(5.19) uk1(x) = uk1(x1)e
λk
1(x−x1) for x ≥ x1 ≥ 0 and k ≥ k1 ≥ k0.

By taking the limit k → ∞ in (5.18) and (5.19) we obtain

(5.20) û2(x) = û2(0)e
λ̂1x for x ≥ 0, û1(x) = û1(x1)e

λ̂1(x−x1) for x ≥ x1 ≥ 0.

Hence û1(∞) = û2(∞) = 0 and the function û1 is not constant since û1(0) =
s1
2 .

Next let us check that for some x0 < 0 we have û1(x0) = s1. Indeed otherwise
û1 < s1 on R. Consider a ∈ R−. The uniform convergence of the sequence uk1
on bounded sets together with the monotony guarantee that for k large enough

ûk1(x) ≤ ûk1(a) < s1 for x ≥ a. As above we conclude that û2(x) = û2(0)e
λ̂1x on

(a,∞) hence on R since a is arbitrary. Since û2 is bounded we necessarily have
û2 ≡ 0. Then û2 < s2 on R which thanks to similar arguments yields û1 ≡ 0, hence
the contradiction.

Further properties of solutions are given in the following lemmas. The proof of
the theorem is completed after them.

Lemma 5.5.

(i) There existe a unique x0 ∈ R such that û1(x0) = s1. Furthermore x0 < 0,
û1 > s1 on (−∞, x0) and û1 < s1 on (x0,∞).

(ii) We have û2(x) = û2(x0)e
λ̂1(x−x0) for x ≥ x0 and û2(x) = 1−

(1− û2(x0))e
λ̂2(x−x0) for x ≤ x0.

Proof. (i) The function û1 is (possibly not strictly) decaying with û1(∞) = 0,
û1(0) = s1

2 . Furthermore we proved that û1(x0) = s1 for some x0 < 0. Let us
argue by contradiction to derive the uniqueness of x0. If not denote by x0 the
largest x such that û1(x) = s1. Then we have x0 < 0, û1 ≡ s1 on [b, x0] for some
b < x0 and û1 < s1 on (x0,∞).

Let us show that û1 can not be differentiable at x0 which will provide the desired
contradiction. Since û1 is constant on [b, x0] the derivative should be equal to 0.

Next since û1 < s1 on (x0,∞), we obtain that û2(x) = û2(x0)e
λ̂1(x−x0) for x ≥ x0.

Then there are two possibilities. Either û2 < s2 on (x0,∞). Then for x ≥ x0,

û1(x) = û1(x0)e
λ̂1(x−x0) and û′1(x0) = s1λ1 < 0. Or there exists some x1 > x0

such that û2(x1) = s2. Since û2(x) = û2(x0)e
λ̂1(x−x0) is strictly monotone on

[x0,∞) we have û2 > s2 on (−∞, x1) so that û1(x) = 1 + Beλ̂2x on (−∞, x1).

Here û1(x0) = s1 < 1 hence B < 0 and û′1(x0) = λ̂2Beλ̂2x0 < 0. To conclude,
the derivative of û1 at x0 should both vanish and be strictly negative, which is
impossible. This shows (i) in Lemma 5.5. Then (ii) follows readily. □

Using analogous argument it is possible to derive the following lemma. Its proof
is left to the reader.
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Lemma 5.6.

(i) There exists a unique y0 ∈ R such that û2(y0) = s2. Furthermore û2 > s2
on (−∞, y0) and û2 < s2 on (y0,∞).

(ii) We have û1(x) = û1(y0)e
λ̂1(x−y0) for x ≥ y0 and û2(x) = 1−

(1− û2(y0))e
λ̂2(x−y0) for y ≤ x0.

In view of Lemmae 5.5 and 5.6 we conclude that (û1, û2) is a solution of system
(5.1)-(5.2) for c = ĉ and û1(0) = s1

2 . Hence ĉ = c0 and û = u0. Also since the
solution of the limiting system is unique, then the convergence holds true for the
whole family (cρ, uρ) as ρ → 0. It remains to note that the local convergence
combined with the behavior at infinity imply the uniform convergence on the whole
axis. This completes the proof of Theorem 5.4. □
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