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86 D. LEVIATAN AND I. A. SHEVCHUK

denote the error of the best approximation of the function g. If g ∈ ∆(q)(Ys), then
we denote by

E(q)
n (g, Ys) := inf

Pn∈Pn∩∆(q)(Ys)
∥g − Pn∥,

the error of the best co-q-monotone approximation of the function g.
It is well known that if f ∈ ∆(q)(Ys) ∩W r, where q = 1 or q = 2, Ys ∈ Ys, s ≥ 1

and r ≥ 1, then

(1.1) E(q)
n (f, Ys) = O(1/nr), n → ∞,

(see, e.g., [3] for details and references). It turns out, and proving this is the main
purpose of this article, that for q ≥ 3 the relationship (1.1) is, in general, invalid for
any r, s ∈ N and every Ys ∈ Ys.

Our main result is

Theorem 1.1. For each q ≥ 3, r ∈ N, s ∈ N and any Ys ∈ Ys, there exists a
function f ∈ ∆(q)(Ys) ∩W r, such that

lim sup
n→∞

nrE(q)
n (f, Ys) = ∞.

In fact, we will also prove the following less general but more precise statements.

Theorem 1.2. Let q ≥ 3, s ∈ N and Ys ∈ Ys. There is a function f ∈ ∆(q)(Ys) ∩
W q−2, such that

(1.2) E(q)
n (f, Ys) ≥ C(q, Ys), n ∈ N,

where C(q, Ys) > 0 depends only on q and Ys.

Remark 1.3. Note that this, in particular, implies that for r = q − 2 even a
Weierstrass type theorem is invalid. In fact, we will show that in Theorem 1.2,
we may take the function f(x) = 1

(q−2)! |x − y1|(x − y1)
q−3. Actually, we note that

1
2f ∈ ∆(q)(Ys) ∩ W j for all j = 1, . . . , q − 2. Therefore we have an immediate
consequence of Theorem 1.2.

Corollary 1.4. Let q ≥ 3, j ≤ q − 2, s ∈ N and Ys ∈ Ys. There is a function
f ∈ ∆(q)(Ys) ∩W j, such that

E(q)
n (f, Ys) ≥ C(q, Ys), n ∈ N,

where C(q, Ys) > 0 depends only on q and Ys.

Theorem 1.5. Let q ≥ 3, s ∈ N and Ys ∈ Ys. There is a function f ∈ ∆(q)(Ys) ∩
W q−1, such that

(1.3) nE(q)
n (f, Ys) ≥ C(q, Ys), n ∈ N,

where C(q, Ys) > 0 depends only on q and Ys.

Our final result is

Theorem 1.6. Let r ≥ 3, s ∈ N and Ys ∈ Ys. For each sequence {εn}∞n of positive

numbers, tending to infinity, there is a function f ∈ ∆(3)(Ys) ∩W r, such that

(1.4) lim sup
n→∞

εnn
r−1E(3)

n (f, Ys) = ∞.
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For the sake of completeness, we formulate a well-known result (see, e.g., [2], [1]
and [6]),

Theorem 1.7. Let q ≥ 4, r ≥ q, s ∈ N and Ys ∈ Ys. For each sequence {εn}∞n of

positive numbers, tending to infinity, there is a function f ∈ ∆(q)(Ys) ∩ W r, such
that

lim sup
n→∞

εnn
r−q+3E(q)

n (f, Ys) = ∞.

Thus, Theorems 1.2, 1.5, 1.6 and Corollary 1.4, close the gap between the positive
results for q ≤ 2 and the known negative ones for q ≥ 4.

We prove Theorem 1.2 in Section 2 and Theorem 1.5 in Section 3. Then in Section
4 we prove Theorem 1.6. In the proofs we apply ideas from [1] and [2].

In the sequel, constants c and ci depend only on q, r and s, while constants C
may depend also on other parameters. Constants may differ from one another even
if they appear in the same line.

Also, in the sequel, we will use the notation l(·; g;α, β), for the linear function
interpolating g at the points α and β, and

(1.5) Y ∗
1 := {1, 0,−1}.

2. Proof of Theorem 1.2

Lemma 2.1. Let g ∈ C[−1, 1] be such that g is convex on (0, 1) and concave on
(−1, 0). Then there is an interval [a, b] ⊂ [−1, 1] of length 1

4 , such that 0 /∈ [a, b]
and

min
x∈[a,b]

|sgnx− g(x)| ≥ 1

2
.

Proof. Denote by x∗ > 0 and x∗ < 0 two arbitrary points, such that g(x∗) = 1 and
g(x∗) = −1, respectively. If x∗ does not exist, we put x∗ = 1, and if x∗ does not
exist, we put x∗ = −1. Now we consider two cases.

Case 1. Suppose g(0) ≤ 0. Then, let l(x) := l(x; g; 0, x∗). If x∗ ≤ 1
2 , then the

convexity of g implies that g(x) ≥ l(x), x ∈ [x∗, 1]. Hence, it is readily seen that

g(x)− sgnx = g(x)− 1 ≥ l(x)− 1 ≥ 1

2
, x ∈ [3/4, 1].

Otherwise, x∗ > 1
2 , and the convexity of g implies g(x) ≤ l(x), x ∈ [0, x∗]. Hence,

it follows that

sgnx− g(x) = 1− g(x) ≥ 1− l(x) ≥ 1

2
, x ∈ (0, x∗/2].

Case 2. Otherwise, g(0) > 0, so let l(x) := l(x; g;x∗, 0). If x∗ ≥ −1
2 , then the

concavity of g implies g(x) ≤ l(x), x ∈ [−1, x∗]. Hence, it readily follows that

sgnx− g(x) = −1− g(x) ≥ −1− l(x) ≥ 1

2
, x ∈ [−1,−3/4].

Otherwise, x∗ < −1
2 , and the concavity of g implies g(x) ≥ l(x), x ∈ [x∗, 0].

Hence, we immediately have

g(x)− sgnx = g(x) + 1 ≥ l(x) + 1 ≥ 1

2
, x ∈ [x∗/2, 0).

This completes the proof. □
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Remark 2.2. Lemma 2.1 remains valid if g ∈ C(−1, 1), with the interval [a, b] of
length a little smaller, say, 1/5. To see this, all that is needed is to realize that if
g(x) ̸= 1, x ∈ (0, 1), we may define, e.g., x∗ := 3/4 and, similarly, if g(x) ̸= −1,
x ∈ (−1, 0), we may take, e.g., x∗ := −3/4.

Fix q ≥ 3 and denote

Fq(x) :=
|x|xq−3

(q − 2)!
.

Clearly,

Fq ∈ ∆(q)(Y ∗
1 ) ∩W r, r = 1, . . . , q − 2,

and
F (q−2)
q (x) = sgnx, x ̸= 0.

We need the following lemma.

Lemma 2.3 ([4, Lemma 2]). If G ∈ Cj [−1, 1], then

2j−1j!∥G∥ ≥ min
x∈[−1,1]

|G(j)(x)|.

Applying this to F ∈ Cj [a, b], by taking G(x) := F
(
b−a
2 x+ a+b

2

)
, we obtain

(2.1)
22j−1j!

(b− a)j
∥F∥[a,b] ≥ min

x∈[a,b]
|F (j)(x)|.

We now have,

Lemma 2.4. For each function g ∈ ∆(q)(Y ∗
1 ) ∩ Cq−2[−1, 1], q ≥ 3, where Y ∗

1 was
defined in (1.5), we have

(2.2) ∥Fq − g∥ ≥ c0.

Proof. Since g(q−2) ∈ C[−1, 1], g(q−2) is convex on (0, 1) and concave on (−1, 0),

and since F
(q−2)
q (x) = sgnx, x ̸= 0, we can apply Lemma 2.1, and conclude that

there exists an interval [a, b] ⊂ [−1, 1] of length 1
4 , such that

min
x∈[a,b]

|F (q−2)
q (x)− g(q−2)(x)| ≥ 1/2,

and 0 /∈ [a, b]. The latter implies that Fq − g ∈ C(q−2)[a, b]. Hence, it follows by
(2.1) that

∥Fq − g∥[a,b] ≥
162−q

(q − 2)!
,

and (2.2) follows with c0 =
162−q

(q−2)! . □

We are ready to prove Theorem 1.2.

Proof. Given Ys ∈ Ys, s ≥ 1, set

(2.3) b :=

{
min{1− y1, y1 − y2}, if s > 1,

1− |y1|, if s = 1.

Let
f(x) := Fq(x− y1), x ∈ [−1, 1].
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Clearly, f ∈ ∆(q)(Ys) ∩W q−2. We will prove that it yields (1.2).

To this end, let Pn ∈ Pn ∩∆(q)(Ys), be arbitrary. Define,

F (u) := b−q+2f(bu+ y1)) u ∈ [−1, 1],

and

Qn(u) := b−q+2Pn(bu+ y1)) u ∈ [−1, 1].

Evidently, F = Fq, and

Qn ∈ ∆(q)(Y ∗
1 ).

Hence, by virtue of Lemma 2.4, we obtain

∥F −Qn∥ ≥ c0,

which implies

∥f − Pn∥[y1−b,y1+b] ≥ bq−2c0,

and (1.2) follows. □

3. Proof of Theorem 1.5

Lemma 3.1. Given q ≥ 3.
(a) Let f ∈ Cq−2[0, 2b] have a convex (q − 2)nd derivative f (q−2) on [0, 2b]. If there

is a point x̃ ∈ (0, b], such that f (q−2)(0) ≤ |f (q−2)(x̃)|, then

(3.1) bq−2∥f (q−2)∥[0,b] ≤ c1∥f∥[0,2b].

(b) Let f ∈ Cq−2[−2b, 0] have a concave (q − 2)nd derivative f (q−2) on [−2b, 0]. If

there is a point x̃ ∈ [−b, 0), such that f (q−2)(0) ≥ −|f (q−2)(x̃)|, then

(3.2) bq−2∥f (q−2)∥[−b,0] ≤ c1∥f∥[−2b,0].

Proof. By symmetry it is enough to prove (a).
Let

M := ∥f (q−2)∥[0,b]
If M = 0 there is nothing to prove, so assume M > 0. First assume that there is a
point x∗ ∈ (0, b], such that f (q−2)(x∗) = M . Put l(x) := l(x; f (q−2); 0, x∗), and the

convexity of f (q−2) implies that

(3.3) f (q−2)(x) ≥ l(x) ≥ M, x ∈ [x∗, 2b].

In particular, (3.3) holds for x ∈ [b, 2b]. Hence, we obtain, by virtue of (2.1),

(3.4) ∥f∥[0,2b] ≥ ∥f∥[b,2b] ≥
25−2q

(q − 2)!
bq−2M =: c2b

q−2M.

Otherwise, there is a point x∗ ∈ [0, b], such that f (q−2)(x∗) = −M . Then, if

f (q−2)(x) ≤ 0 for all x ∈ [x∗, 2b], we put l(x) := l(x; f (q−2);x∗, 2b). Since

f (q−2)(x) ≤ l(x), x ∈ [x∗, 2b],

we have

|f (q−2)(x)| ≥ |l(x)| ≥ M

2
, x ∈ [x∗, x∗ + b/2],
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Hence, (2.1) implies

(3.5) ∥f∥[0,2b] ≥ ∥f∥[x∗,x∗+b/2] ≥ c2

(
b

2

)q−2 M

2
.

Finally, if f (q−2)(2b) > 0 (recall f (q−2)(x∗) < 0), then denote by x∗ ∈ (x∗, 2b) the

(unique) point, such that f (q−2)(x∗) = 0, and put l(x) := l(x; f (q−2);x∗, x
∗). If

x∗ ≥ 3
2b, then

f (q−2)(x) ≤ l(x), x ∈ [x∗, x
∗].

Hence,

|f (q−2)(x)| ≥ |l(x)| ≥ M

2
, x ∈ [x∗, x∗ + b/4],

and (2.1) implies

(3.6) ∥f∥[0,2b] ≥ ∥f∥[x∗,x∗+b/4] ≥ c2

(
b

4

)q−2 M

2
.

Otherwise x∗ ∈ (x∗,
3
2b). Then

f (q−2)(x) ≥ l(x), x ∈ [x∗, 2b].

Hence,

|f (q−2)(x)| ≥ |l(x)| ≥ l

(
3b

4

)
≥ 1

6
M, x ∈ [3b/4, 2b],

and (2.1) implies

(3.7) ∥f∥[0,2b] ≥ ∥f∥[3b/4,2b] ≥ c2

(
b

4

)q−2 M

6
.

Combining (3.4) through (3.7) yields (3.1) with an appropriate c1 and completes
the proof of (a). □

Remark 3.2. Clearly, (3.1) is guaranteed if f (q−2)(0) ≤ 0, and (3.2) is valid if

f (q−2)(0) ≥ 0.

Lemma 3.3. For the function Fq+1(x) =
|x|xq−2

(q−1)! , there exists c3 > 0 such that,

(3.8) nE(q)
n (Fq+1, Y

∗
1 ) ≥ c3, n ∈ N.

Proof. Take b = 1/2. Let Pn ∈ Pn ∩∆(q)(Y ∗
1 ), so that P

(q−2)
n is convex on [0, 1] and

concave on [−1, 0]. Note, that F
(q−2)
q+1 (x) = |x|, and the difference P

(q−2)
n −F

(q−2)
q+1 is

convex on [0, 1] and concave on [−1, 0]. By S. N. Bernstein’s result from 1914 (see,
e.g., [5]), there exists c4 > 0 such that,

M := ∥P (q−2)
n − F

(q−2)
q+1 ∥[−1/2,1/2] ≥

c4
n
.

If P
(q−2)
n (0) ≤ 0, then by Lemma 3.1(a) we have

bq−2 c4
n

≤ c1∥Pn − Fq+1∥[0,1].
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Hence,

(3.9) n∥Pn − Fq+1∥ ≥ c4
2q−2c1

=: c3.

On the other hand, if P
(q−2)
n (0) > 0, then (3.9) follows, similarly, from of Lemma

3.1(b). This completes the proof of (3.8). □
Remark 3.4. Note that ∥Fq+1∥ = 1

(q−1)! , and that (3.9), with n = 1 and Pn = 0,

yields, ∥Fq+1∥ ≥ c3, so that c3 ≤ 1
2 .

We are ready to prove Theorem 1.5, following the ideas of the proof of Theorem
1.2.

Proof. Given Ys ∈ Ys, s ≥ 1, define

f(x) := Fq+1(x− y1).

Then f ∈ ∆(q)(Ys) ∩W q−1 and we will prove that it yields (1.3).

Indeed, take any Pn ∈ Pn ∩∆(q)(Ys), and define for b from (2.3),

F (u) := b−q+1f(bu+ y1) u ∈ [−1, 1],

and
Qn(u) := b−q+1Pn(bu+ y1) u ∈ [−1, 1].

Evidently, F = Fq+1, and

Qn ∈ ∆(q)(Y ∗
1 ).

By Lemma 3.3, we conclude that

n∥F −Qn∥ ≥ c3,

so that
n∥f − Pn∥[y1−b,y1+b] ≥ bq−1c3.

Hence (1.3) follows. □

4. Proof of Theorem 1.6

Denote by S a function having the properties:
(i) S ∈ C∞(R),
(ii) S − 1

2 is a monotone odd function,
and
(iii)

S(x) =

{
1, if x ≥ 1,

0, if x ≤ −1.

Put s0 := 1,

sj := ∥S(j)∥, j ∈ N.
Note that (ii) implies, ∫ 1

−1
S(x)dx = 1

and, for the function Sλ(x) := S(xλ), λ > 0, we have

(4.1) ∥S(j)
λ ∥[−λ,λ] = λ−jsj , j ∈ N.
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Denote

f ′′
n(x) := Sλn(x− 2λn), λn :=

c3
8n

,

and

fn(x) =

∫ x

0
(x− t)f ′′

n(t)dt.

Lemma 4.1. We have

(4.2) fn ∈ ∆(3)(Y ∗
1 ),

(4.3) nE(3)
n (fn, Y

∗
1 ) ≥ c5,

(4.4) ∥f (j)
n ∥ =

(
8n

c3

)j−2

sj−2 =: (c6n)
j−2sj−2, j ≥ 2,

(4.5) ∥f ′
n∥ < 1,

and

(4.6) ∥fn∥ < 1.

Proof. Except for (4.3), all other statements are readily seen by straightforward
computations, so we will prove (4.3). To this end, denote

g(x) :=

{
1, if x > 0,

0, if x ≤ 0.

and

G(x) :=

∫ x

0
(x− t)g(t)dt =

{
1
2x

2, if x > 0,

0, if x ≤ 0.
.

Then,

∥fn −G∥ ≤
∫ 3λn

0
(1− f ′′

n(t))dt = 2λn.

Since G(x) = 1
4x|x|+

1
4x

2 = 1
2F4(x) +

1
4x

2, it follows by Lemma 3.3 that

nE
(3)
n (G,Y ∗

1 ) ≥ c3
2 , n ≥ 2. Therefore

nE(3)
n (fn, Y

∗
1 ) ≥ nE(3)

n (G,Y ∗
1 )− n∥fn −G∥ ≥ c3

2
− 2nλn =

c3
4

=: c5.

□

Corollary 4.2. For each r ∈ N and n ∈ N there is a function f = fn ∈ ∆(3)(Y ∗
1 )∩

W r, such that

nr−1E(3)
n (f, Y ∗

1 ) ≥ c(r).

Now we fix r ≥ 3, and for each n ∈ N and b ∈ (0, 1), we denote

λn,b := bλn,

and

fn,b(x) := Afn

(x
b

)
,
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where

A = br∥f (r)
n ∥−1 =

c2−r
6 br

sr−2nr−2
.

Lemma 4.1 readily implies

Lemma 4.3. We have

(4.7) fn,b(x) = 0, x ≤ λn,b,

(4.8) f
(3)
n,b (x) = 0, x ≥ 3λn,b,

(4.9) fn,b ∈ ∆(3)(Y ∗
1 ),

for each polynomial Pn ∈ Pn ∩∆(3)(Y ∗
1 ) the estimate

(4.10) ∥fn,b − Pn∥[−b,b] ≥
Ac5
n

=:
c7b

r

nr−1
,

(4.11) ∥f (j)
n,b∥ =

(c6n)
j−2

bj
Asj−2 =

(
b

c6n

)r−j sj−2

sr−2
, j ≥ 2,

in particular,

(4.12) ∥f (r)
n,b∥ = 1,

and for each λ > 0,

∥f (j)
n,b∥[−λ,λ] ≤ λ2−j∥f ′′

n,b∥ =
c2−r
6 br−2

sr−2nr−2
λ2−j(4.13)

=:
c8b

r−2

nr−2
λ2−j , j = 0, 1.

Lemma 4.4. Let r ≥ 3. For each sequence {ϵn}∞n of positive numbers, tending to

infinity, there is a function f∗ ∈ ∆(3)(Y ∗
1 ) ∩W r, such that

(4.14) lim sup
n→∞

ϵnn
r−1E(3)

n (f∗, Y
∗
1 ) = ∞.

Proof. First we define by induction a sequence {nk}∞k=1 of positive integers. Set
n1 = 2, b1 = 1, and assume that nk−1 has already been chosen. Then we put

bk := λnk−1,bk−1

and take nk > k2nk−1, so big, that for all n ≥ nk the inequality

ϵnk
brk > k,

holds. Now we will prove that a desired function may be defined in the form of a
convergent series

f∗(x) =
∞∑
k=1

fnk,bk(x), x ∈ [−1, 1].

Indeed, by virtue of (4.11) and (4.13), we have, for 0 ≤ j ≤ r − 1,
∞∑
k=1

∥f (j)
nk,bk

∥ ≤ c∗

∞∑
k=1

1

nk
≤ c∗

∞∑
k=1

1

k2
< 2c∗ < ∞.
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Hence

(4.15) f
(j)
∗ (x) =

∞∑
k=1

f
(j)
nk,bk

(x), x ∈ [−1, 1], 1 ≤ j ≤ r − 1,

and
f∗ ∈ Cr−1[−1, 1].

If r > 3, then for any x0 > 0 there is a neighbourhood, Ox0 of x0, such that all

terms in the summation in (4.15) except perhaps one, say, f
(r−1)
nk,bk

(x), vanish for

all x ∈ Ox0 . Hence, we may differentiate pointwise, so that f
(r)
∗ is continuous in

[−1, 1] \ {0}, and by (4.12),

∥f (r)
∗ ∥ = 1.

Thus, we conclude that
f∗ ∈ W r.

Similarly, if r = 3, then for any x0 > 0 there is a neighbourhood, Ox0 of x0, such

that all terms in the summation in (4.15) except perhaps one, say, f
(2)
nk,bk

(x), are

constants and add up to a finite constant, for all x ∈ Ox0 . Hence the sum in (4.15)

equals f
(2)
nk,bk

(x) plus a constant. Therefore the same arguments yield

f∗ ∈ W 3.

Finally, for all r ≥ 3, it follows from the above discussion that

f
(3)
∗ (x) ≥ 0, x ∈ (0, 1],

so that
f∗ ∈ ∆(3)(Y ∗

1 ).

We will show that (4.14) holds for this function. To this end, we fix k ≥ 1 and take

a polynomial Pnk
∈ Pnk

∩∆(3)(Y ∗
1 ). Then

∥f∗ − Pnk
∥ ≥∥f∗ − Pnk

∥[−bk,bk] =
∥∥ ∞∑
m=k

fnm,bm − Pnk

∥∥
[−bk,bk]

=
∥∥(fnk,bk − Pnk

) +

∞∑
m=k+1

fnm,bm

∥∥
[−bk,bk]

≥∥fnk,bk − Pnk
∥[−bk,bk] −

∥∥ ∞∑
m=k+1

fnm,bm

∥∥
[−bk,bk]

≥c7
brk

nr−1
k

−
∥∥ ∞∑
m=k+1

fnm,bm

∥∥
[−bk,bk]

.

Now

bm = bm−1λnm−1 =
c3
8

bm−1

nm−1
=: c9

bm−1

nm−1
,

so that ∥∥ ∞∑
m=k+1

fnm,bm

∥∥
[−bk,bk]

=

∞∑
m=k+1

∥fnm,bm∥[−bk,bk] ≤ c8b
2
k

∞∑
m=k+1

br−2
m

nr−2
m
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=c8c
r−2
9 b2k

∞∑
m=k+1

br−2
m−1

(nm−1nm)r−2

≤c8c
r−2
9

brk
nr−1
k

∞∑
m=k+1

1

m2nr−3
m

≤ c8c
r−2
9

k

brk
nr−1
k

≤ c7
2

brk
nr−1
k

,

for all k ≥ k0 := 2c8c
r−2
9 /c7. Hence, for all k ≥ k0 we have

ϵnk
nr−1
k E(3)

nk
(f∗, Y

∗
1 ) ≥

c7
2
k → ∞, k → ∞,

and (4.14) is proved. □

Remark 4.5. Note that, for j ≥ 3, f
(j)
∗ (x) ≡ 0, x /∈ [0, 1/2].

We are ready to prove Theorem 1.6.

Proof. Given Ys ∈ Ys, s ≥ 1, define for b from (2.3). Put

f(x) := brf∗

(
x− y1

b

)
.

Then f ∈ ∆(q)(Ys) ∩W r and we will prove that it yields (1.4).
Indeed, note that

f∗(u) = b−rf(bu+ y1).

Take any Pn ∈ Pn ∩∆(q)(Ys), and define

Qn(u) := b−rPn(bu+ y1).

Then Qn ∈ ∆(q)(Y ∗
1 ). Hence,

∥f − Pn∥ ≥ ∥f − Pn∥[y1−b,y1+b]

= br∥f∗ −Qn∥

≥ brE(3)
n (f∗, Y

∗
1 ),

so we conclude that
E(3)

n (f, Ys) ≥ brE(3)
n (f∗, Y

∗
1 ).

By virtue of Lemma 4.4, (1.4) follows, and the proof is complete. □
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