JACKSON TYPE ESTIMATES FOR PIECEWISE q-MONOTONE APPROXIMATION, $q \geq 3$, ARE NOT VALID

DANY LEVIATAN AND IGOR A. SHEVCHUK

Dedicated to Professor Amnon Jakimovski on the occasion of his 90th birthday

Abstract

We say that a function $f \in C[a, b]$ is q-monotone, $q \geq 3$, if $f \in$ $C^{(q-2)}(a, b)$ and $f^{(q-2)}$ is a convex function on (a, b). Let $f \in C[-1,1]$ change its q-monotonicity $s \geq 1$ times, i.e., $f^{(q-2)}$ is alternatingly convex and concave $s+1$ times. We are interested in estimating the degree of approximation of f by polynomials which are co- q-monotone with it, namely, polynomials that change their q-monotonicity exactly at the points where f does. We prove, that no Jackson type estimates are valid, in general, for such approximation. This is in opposite to piecewise monotone $(q=1)$ and piecewise convex ($q=2$) approximations.

1. Introduction and the main results

We say that a function $f \in C[a, b]$ is q-monotone, $q \geq 2$, if $f \in C^{(q-2)}(a, b)$ and $f^{(q-2)}$ is a convex function on (a, b). Let $\mathbb{Y}_{s}[a, b]:=\left\{Y_{s}[a, b]\right\}$ where $Y_{s}[a, b]=$ $\left\{y_{i}\right\}_{i=0}^{s+1}$ such that $y_{s+1}:=a<y_{s}<\cdots<y_{1}<b=: y_{0}, s \geq 1$. We say that $f \in C[a, b]$ is piecewise q-monotone with respect to $Y_{s}[a, b]$ if it changes its q monotonicity at the points $Y_{s}[a, b]$, that is, if $(-1)^{i-1} f^{(q-2)}$ is convex in $\left(y_{i}, y_{i-1}\right)$, $1 \leq i \leq s+1$, and we denote by $\Delta^{(q)}\left(Y_{s}[a, b]\right)$ the collection of all such piecewise q-monotone functions. If $q=1$, then we use the same notation to denote piecewise monotone functions $f \in C[a, b]$, such that $(-1)^{i-1} f$ is nondecreasing in $\left(y_{i}, y_{i-1}\right)$, $1 \leq i \leq s+1$. We also need the notation $W^{r}[a, b]$ for the Sobolev class of functions $f \in A C^{r-1}[a, b]$, such that $\left\|f^{(r)}\right\|_{[a, b]} \leq 1$. Note that we use the norm $\|g\|_{[a, b]}:=$ $\operatorname{esssup}_{x \in[a, b]}|g(x)|$. Of course, if $g \in C[a, b]$, then $\|g\|_{[a, b]}=\max _{x \in[a, b]}|g(x)|$. When $[a, b]=[-1,1]$, we denote $\mathbb{Y}_{s}:=\mathbb{Y}_{s}[-1,1], Y_{s}:=Y_{s}[-1,1]$ (so that $\Delta^{(q)}\left(Y_{s}\right)=$ $\left.\Delta^{(q)}\left(Y_{s}[-1,1]\right)\right), W^{r}:=W^{r}[-1,1]$ and $\|\cdot\|:=\|\cdot\|_{[-1,1]}$.

Let \mathcal{P}_{n}, be the space of algebraic polynomials of degree $\leq n$ and, for $g \in C[-1,1]$, let

$$
E_{n}(g):=\inf _{P_{n} \in \mathcal{P}_{n}}\left\|g-P_{n}\right\|,
$$

Key words and phrases. Coconvex polynomial approximation, pointwise estimates.
denote the error of the best approximation of the function g. If $g \in \Delta^{(q)}\left(Y_{s}\right)$, then we denote by

$$
E_{n}^{(q)}\left(g, Y_{s}\right):=\inf _{P_{n} \in \mathcal{P}_{n} \cap \Delta(q)\left(Y_{s}\right)}\left\|g-P_{n}\right\|,
$$

the error of the best co- q-monotone approximation of the function g.
It is well known that if $f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{r}$, where $q=1$ or $q=2, Y_{s} \in \mathbb{Y}_{s}, s \geq 1$ and $r \geq 1$, then

$$
\begin{equation*}
E_{n}^{(q)}\left(f, Y_{s}\right)=O\left(1 / n^{r}\right), \quad n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

(see, e.g., [3] for details and references). It turns out, and proving this is the main purpose of this article, that for $q \geq 3$ the relationship (1.1) is, in general, invalid for any $r, s \in \mathbb{N}$ and every $Y_{s} \in \mathbb{Y}_{s}$.

Our main result is
Theorem 1.1. For each $q \geq 3, r \in \mathbb{N}, s \in \mathbb{N}$ and any $Y_{s} \in \mathbb{Y}_{s}$, there exists a function $f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{r}$, such that

$$
\limsup _{n \rightarrow \infty} n^{r} E_{n}^{(q)}\left(f, Y_{s}\right)=\infty
$$

In fact, we will also prove the following less general but more precise statements.
Theorem 1.2. Let $q \geq 3, s \in \mathbb{N}$ and $Y_{s} \in \mathbb{Y}_{s}$. There is a function $f \in \Delta^{(q)}\left(Y_{s}\right) \cap$ W^{q-2}, such that

$$
\begin{equation*}
E_{n}^{(q)}\left(f, Y_{s}\right) \geq C\left(q, Y_{s}\right), \quad n \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

where $C\left(q, Y_{s}\right)>0$ depends only on q and Y_{s}.
Remark 1.3. Note that this, in particular, implies that for $r=q-2$ even a Weierstrass type theorem is invalid. In fact, we will show that in Theorem 1.2, we may take the function $f(x)=\frac{1}{(q-2)!}\left|x-y_{1}\right|\left(x-y_{1}\right)^{q-3}$. Actually, we note that $\frac{1}{2} f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{j}$ for all $j=1, \ldots, q-2$. Therefore we have an immediate consequence of Theorem 1.2.
Corollary 1.4. Let $q \geq 3, j \leq q-2, s \in \mathbb{N}$ and $Y_{s} \in \mathbb{Y}_{s}$. There is a function $f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{j}$, such that

$$
E_{n}^{(q)}\left(f, Y_{s}\right) \geq C\left(q, Y_{s}\right), \quad n \in \mathbb{N}
$$

where $C\left(q, Y_{s}\right)>0$ depends only on q and Y_{s}.
Theorem 1.5. Let $q \geq 3, s \in \mathbb{N}$ and $Y_{s} \in \mathbb{Y}_{s}$. There is a function $f \in \Delta^{(q)}\left(Y_{s}\right) \cap$ W^{q-1}, such that

$$
\begin{equation*}
n E_{n}^{(q)}\left(f, Y_{s}\right) \geq C\left(q, Y_{s}\right), \quad n \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

where $C\left(q, Y_{s}\right)>0$ depends only on q and Y_{s}.
Our final result is
Theorem 1.6. Let $r \geq 3, s \in \mathbb{N}$ and $Y_{s} \in \mathbb{Y}_{s}$. For each sequence $\left\{\varepsilon_{n}\right\}_{n}^{\infty}$ of positive numbers, tending to infinity, there is a function $f \in \Delta^{(3)}\left(Y_{s}\right) \cap W^{r}$, such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \varepsilon_{n} n^{r-1} E_{n}^{(3)}\left(f, Y_{s}\right)=\infty \tag{1.4}
\end{equation*}
$$

For the sake of completeness, we formulate a well-known result (see, e.g., [2], [1] and [6]),
Theorem 1.7. Let $q \geq 4, r \geq q, s \in \mathbb{N}$ and $Y_{s} \in \mathbb{Y}_{s}$. For each sequence $\left\{\varepsilon_{n}\right\}_{n}^{\infty}$ of positive numbers, tending to infinity, there is a function $f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{r}$, such that

$$
\limsup _{n \rightarrow \infty} \varepsilon_{n} n^{r-q+3} E_{n}^{(q)}\left(f, Y_{s}\right)=\infty
$$

Thus, Theorems 1.2, 1.5, 1.6 and Corollary 1.4, close the gap between the positive results for $q \leq 2$ and the known negative ones for $q \geq 4$.

We prove Theorem 1.2 in Section 2 and Theorem 1.5 in Section 3. Then in Section 4 we prove Theorem 1.6. In the proofs we apply ideas from [1] and [2].

In the sequel, constants c and c_{i} depend only on q, r and s, while constants C may depend also on other parameters. Constants may differ from one another even if they appear in the same line.

Also, in the sequel, we will use the notation $l(\cdot ; g ; \alpha, \beta)$, for the linear function interpolating g at the points α and β, and

$$
\begin{equation*}
Y_{1}^{*}:=\{1,0,-1\} \tag{1.5}
\end{equation*}
$$

2. Proof of Theorem 1.2

Lemma 2.1. Let $g \in C[-1,1]$ be such that g is convex on $(0,1)$ and concave on $(-1,0)$. Then there is an interval $[a, b] \subset[-1,1]$ of length $\frac{1}{4}$, such that $0 \notin[a, b]$ and

$$
\min _{x \in[a, b]}|\operatorname{sgn} x-g(x)| \geq \frac{1}{2}
$$

Proof. Denote by $x^{*}>0$ and $x_{*}<0$ two arbitrary points, such that $g\left(x^{*}\right)=1$ and $g\left(x_{*}\right)=-1$, respectively. If x^{*} does not exist, we put $x^{*}=1$, and if x_{*} does not exist, we put $x_{*}=-1$. Now we consider two cases.

Case 1. Suppose $g(0) \leq 0$. Then, let $l(x):=l\left(x ; g ; 0, x^{*}\right)$. If $x^{*} \leq \frac{1}{2}$, then the convexity of g implies that $g(x) \geq l(x), \quad x \in\left[x^{*}, 1\right]$. Hence, it is readily seen that

$$
g(x)-\operatorname{sgn} x=g(x)-1 \geq l(x)-1 \geq \frac{1}{2}, \quad x \in[3 / 4,1]
$$

Otherwise, $x^{*}>\frac{1}{2}$, and the convexity of g implies $g(x) \leq l(x), \quad x \in\left[0, x^{*}\right]$. Hence, it follows that

$$
\operatorname{sgn} x-g(x)=1-g(x) \geq 1-l(x) \geq \frac{1}{2}, \quad x \in\left(0, x^{*} / 2\right]
$$

Case 2. Otherwise, $g(0)>0$, so let $l(x):=l\left(x ; g ; x_{*}, 0\right)$. If $x_{*} \geq-\frac{1}{2}$, then the concavity of g implies $g(x) \leq l(x), \quad x \in\left[-1, x_{*}\right]$. Hence, it readily follows that

$$
\operatorname{sgn} x-g(x)=-1-g(x) \geq-1-l(x) \geq \frac{1}{2}, \quad x \in[-1,-3 / 4]
$$

Otherwise, $x_{*}<-\frac{1}{2}$, and the concavity of g implies $g(x) \geq l(x), \quad x \in\left[x_{*}, 0\right]$. Hence, we immediately have

$$
g(x)-\operatorname{sgn} x=g(x)+1 \geq l(x)+1 \geq \frac{1}{2}, \quad x \in\left[x_{*} / 2,0\right)
$$

This completes the proof.

Remark 2.2. Lemma 2.1 remains valid if $g \in C(-1,1)$, with the interval $[a, b]$ of length a little smaller, say, $1 / 5$. To see this, all that is needed is to realize that if $g(x) \neq 1, x \in(0,1)$, we may define, e.g., $x^{*}:=3 / 4$ and, similarly, if $g(x) \neq-1$, $x \in(-1,0)$, we may take, e.g., $x_{*}:=-3 / 4$.

Fix $q \geq 3$ and denote

$$
F_{q}(x):=\frac{|x| x^{q-3}}{(q-2)!}
$$

Clearly,

$$
F_{q} \in \Delta^{(q)}\left(Y_{1}^{*}\right) \cap W^{r}, \quad r=1, \ldots, q-2
$$

and

$$
F_{q}^{(q-2)}(x)=\operatorname{sgn} x, \quad x \neq 0
$$

We need the following lemma.
Lemma 2.3 ([4, Lemma 2]). If $G \in C^{j}[-1,1]$, then

$$
2^{j-1} j!\|G\| \geq \min _{x \in[-1,1]}\left|G^{(j)}(x)\right|
$$

Applying this to $F \in C^{j}[a, b]$, by taking $G(x):=F\left(\frac{b-a}{2} x+\frac{a+b}{2}\right)$, we obtain

$$
\begin{equation*}
\frac{2^{2 j-1} j!}{(b-a)^{j}}\|F\|_{[a, b]} \geq \min _{x \in[a, b]}\left|F^{(j)}(x)\right| \tag{2.1}
\end{equation*}
$$

We now have,
Lemma 2.4. For each function $g \in \Delta^{(q)}\left(Y_{1}^{*}\right) \cap C^{q-2}[-1,1], q \geq 3$, where Y_{1}^{*} was defined in (1.5), we have

$$
\begin{equation*}
\left\|F_{q}-g\right\| \geq c_{0} \tag{2.2}
\end{equation*}
$$

Proof. Since $g^{(q-2)} \in C[-1,1], g^{(q-2)}$ is convex on $(0,1)$ and concave on $(-1,0)$, and since $F_{q}^{(q-2)}(x)=\operatorname{sgn} x, x \neq 0$, we can apply Lemma 2.1, and conclude that there exists an interval $[a, b] \subset[-1,1]$ of length $\frac{1}{4}$, such that

$$
\min _{x \in[a, b]}\left|F_{q}^{(q-2)}(x)-g^{(q-2)}(x)\right| \geq 1 / 2
$$

and $0 \notin[a, b]$. The latter implies that $F_{q}-g \in C^{(q-2)}[a, b]$. Hence, it follows by (2.1) that

$$
\left\|F_{q}-g\right\|_{[a, b]} \geq \frac{16^{2-q}}{(q-2)!}
$$

and (2.2) follows with $c_{0}=\frac{16^{2-q}}{(q-2)!}$.
We are ready to prove Theorem 1.2.
Proof. Given $Y_{s} \in \mathbb{Y}_{s}, s \geq 1$, set

$$
b:= \begin{cases}\min \left\{1-y_{1}, y_{1}-y_{2}\right\}, & \text { if } \quad s>1 \tag{2.3}\\ 1-\left|y_{1}\right|, & \text { if } \quad s=1\end{cases}
$$

Let

$$
f(x):=F_{q}\left(x-y_{1}\right), \quad x \in[-1,1] .
$$

Clearly, $f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{q-2}$. We will prove that it yields (1.2).
To this end, let $P_{n} \in \mathcal{P}_{n} \cap \Delta^{(q)}\left(Y_{s}\right)$, be arbitrary. Define,

$$
\left.F(u):=b^{-q+2} f\left(b u+y_{1}\right)\right) \quad u \in[-1,1]
$$

and

$$
\left.Q_{n}(u):=b^{-q+2} P_{n}\left(b u+y_{1}\right)\right) \quad u \in[-1,1] .
$$

Evidently, $F=F_{q}$, and

$$
Q_{n} \in \Delta^{(q)}\left(Y_{1}^{*}\right)
$$

Hence, by virtue of Lemma 2.4, we obtain

$$
\left\|F-Q_{n}\right\| \geq c_{0}
$$

which implies

$$
\left\|f-P_{n}\right\|_{\left[y_{1}-b, y_{1}+b\right]} \geq b^{q-2} c_{0}
$$

and (1.2) follows.

3. Proof of Theorem 1.5

Lemma 3.1. Given $q \geq 3$.
(a) Let $f \in C^{q-2}[0,2 b]$ have a convex $(q-2) n d$ derivative $f^{(q-2)}$ on $[0,2 b]$. If there is a point $\tilde{x} \in(0, b]$, such that $f^{(q-2)}(0) \leq\left|f^{(q-2)}(\tilde{x})\right|$, then

$$
\begin{equation*}
b^{q-2}\left\|f^{(q-2)}\right\|_{[0, b]} \leq c_{1}\|f\|_{[0,2 b]} \tag{3.1}
\end{equation*}
$$

(b) Let $f \in C^{q-2}[-2 b, 0]$ have a concave $(q-2) n d$ derivative $f^{(q-2)}$ on $[-2 b, 0]$. If there is a point $\tilde{x} \in[-b, 0)$, such that $f^{(q-2)}(0) \geq-\left|f^{(q-2)}(\tilde{x})\right|$, then

$$
\begin{equation*}
b^{q-2}\left\|f^{(q-2)}\right\|_{[-b, 0]} \leq c_{1}\|f\|_{[-2 b, 0]} . \tag{3.2}
\end{equation*}
$$

Proof. By symmetry it is enough to prove (a).
Let

$$
M:=\left\|f^{(q-2)}\right\|_{[0, b]}
$$

If $M=0$ there is nothing to prove, so assume $M>0$. First assume that there is a point $x_{*} \in(0, b]$, such that $f^{(q-2)}\left(x_{*}\right)=M$. Put $l(x):=l\left(x ; f^{(q-2)} ; 0, x_{*}\right)$, and the convexity of $f^{(q-2)}$ implies that

$$
\begin{equation*}
f^{(q-2)}(x) \geq l(x) \geq M, \quad x \in\left[x_{*}, 2 b\right] . \tag{3.3}
\end{equation*}
$$

In particular, (3.3) holds for $x \in[b, 2 b]$. Hence, we obtain, by virtue of (2.1),

$$
\begin{equation*}
\|f\|_{[0,2 b]} \geq\|f\|_{[b, 2 b]} \geq \frac{2^{5-2 q}}{(q-2)!} b^{q-2} M=: c_{2} b^{q-2} M \tag{3.4}
\end{equation*}
$$

Otherwise, there is a point $x_{*} \in[0, b]$, such that $f^{(q-2)}\left(x_{*}\right)=-M$. Then, if $f^{(q-2)}(x) \leq 0$ for all $x \in\left[x_{*}, 2 b\right]$, we put $l(x):=l\left(x ; f^{(q-2)} ; x_{*}, 2 b\right)$. Since

$$
f^{(q-2)}(x) \leq l(x), \quad x \in\left[x_{*}, 2 b\right]
$$

we have

$$
\left|f^{(q-2)}(x)\right| \geq|l(x)| \geq \frac{M}{2}, \quad x \in\left[x_{*}, x_{*}+b / 2\right]
$$

Hence, (2.1) implies

$$
\begin{equation*}
\|f\|_{[0,2 b]} \geq\|f\|_{\left[x_{*}, x_{*}+b / 2\right]} \geq c_{2}\left(\frac{b}{2}\right)^{q-2} \frac{M}{2} . \tag{3.5}
\end{equation*}
$$

Finally, if $f^{(q-2)}(2 b)>0$ (recall $\left.f^{(q-2)}\left(x_{*}\right)<0\right)$, then denote by $x^{*} \in\left(x_{*}, 2 b\right)$ the (unique) point, such that $f^{(q-2)}\left(x^{*}\right)=0$, and put $l(x):=l\left(x ; f^{(q-2)} ; x_{*}, x^{*}\right)$. If $x^{*} \geq \frac{3}{2} b$, then

$$
f^{(q-2)}(x) \leq l(x), \quad x \in\left[x_{*}, x^{*}\right]
$$

Hence,

$$
\left|f^{(q-2)}(x)\right| \geq|l(x)| \geq \frac{M}{2}, \quad x \in\left[x_{*}, x_{*}+b / 4\right]
$$

and (2.1) implies

$$
\begin{equation*}
\|f\|_{[0,2 b]} \geq\|f\|_{\left[x_{*}, x_{*}+b / 4\right]} \geq c_{2}\left(\frac{b}{4}\right)^{q-2} \frac{M}{2} . \tag{3.6}
\end{equation*}
$$

Otherwise $x^{*} \in\left(x_{*}, \frac{3}{2} b\right)$. Then

$$
f^{(q-2)}(x) \geq l(x), \quad x \in\left[x^{*}, 2 b\right] .
$$

Hence,

$$
\left|f^{(q-2)}(x)\right| \geq|l(x)| \geq l\left(\frac{3 b}{4}\right) \geq \frac{1}{6} M, \quad x \in[3 b / 4,2 b]
$$

and (2.1) implies

$$
\begin{equation*}
\|f\|_{[0,2 b]} \geq\|f\|_{[3 b / 4,2 b]} \geq c_{2}\left(\frac{b}{4}\right)^{q-2} \frac{M}{6} . \tag{3.7}
\end{equation*}
$$

Combining (3.4) through (3.7) yields (3.1) with an appropriate c_{1} and completes the proof of (a).

Remark 3.2. Clearly, (3.1) is guaranteed if $f^{(q-2)}(0) \leq 0$, and (3.2) is valid if $f^{(q-2)}(0) \geq 0$.
Lemma 3.3. For the function $F_{q+1}(x)=\frac{|x| x^{q-2}}{(q-1)!}$, there exists $c_{3}>0$ such that,

$$
\begin{equation*}
n E_{n}^{(q)}\left(F_{q+1}, Y_{1}^{*}\right) \geq c_{3}, \quad n \in \mathbb{N} \tag{3.8}
\end{equation*}
$$

Proof. Take $b=1 / 2$. Let $P_{n} \in \mathcal{P}_{n} \cap \Delta^{(q)}\left(Y_{1}^{*}\right)$, so that $P_{n}^{(q-2)}$ is convex on $[0,1]$ and concave on $[-1,0]$. Note, that $F_{q+1}^{(q-2)}(x)=|x|$, and the difference $P_{n}^{(q-2)}-F_{q+1}^{(q-2)}$ is convex on $[0,1]$ and concave on $[-1,0]$. By S. N. Bernstein's result from 1914 (see, e.g., [5]), there exists $c_{4}>0$ such that,

$$
M:=\left\|P_{n}^{(q-2)}-F_{q+1}^{(q-2)}\right\|_{[-1 / 2,1 / 2]} \geq \frac{c_{4}}{n}
$$

If $P_{n}^{(q-2)}(0) \leq 0$, then by Lemma 3.1(a) we have

$$
b^{q-2} \frac{c_{4}}{n} \leq c_{1}\left\|P_{n}-F_{q+1}\right\|_{[0,1]}
$$

Hence,

$$
\begin{equation*}
n\left\|P_{n}-F_{q+1}\right\| \geq \frac{c_{4}}{2^{q-2} c_{1}}=: c_{3} . \tag{3.9}
\end{equation*}
$$

On the other hand, if $P_{n}^{(q-2)}(0)>0$, then (3.9) follows, similarly, from of Lemma 3.1(b). This completes the proof of (3.8).

Remark 3.4. Note that $\left\|F_{q+1}\right\|=\frac{1}{(q-1)!}$, and that (3.9), with $n=1$ and $P_{n}=0$, yields, $\left\|F_{q+1}\right\| \geq c_{3}$, so that $c_{3} \leq \frac{1}{2}$.

We are ready to prove Theorem 1.5, following the ideas of the proof of Theorem 1.2.

Proof. Given $Y_{s} \in \mathbb{Y}_{s}, s \geq 1$, define

$$
f(x):=F_{q+1}\left(x-y_{1}\right) .
$$

Then $f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{q-1}$ and we will prove that it yields (1.3).
Indeed, take any $P_{n} \in \mathcal{P}_{n} \cap \Delta^{(q)}\left(Y_{s}\right)$, and define for b from (2.3),

$$
F(u):=b^{-q+1} f\left(b u+y_{1}\right) \quad u \in[-1,1],
$$

and

$$
Q_{n}(u):=b^{-q+1} P_{n}\left(b u+y_{1}\right) \quad u \in[-1,1] .
$$

Evidently, $F=F_{q+1}$, and

$$
Q_{n} \in \Delta^{(q)}\left(Y_{1}^{*}\right)
$$

By Lemma 3.3, we conclude that

$$
n\left\|F-Q_{n}\right\| \geq c_{3}
$$

so that

$$
n\left\|f-P_{n}\right\|_{\left[y_{1}-b, y_{1}+b\right]} \geq b^{q-1} c_{3} .
$$

Hence (1.3) follows.

4. Proof of Theorem 1.6

Denote by S a function having the properties:
(i) $S \in C^{\infty}(\mathbb{R})$,
(ii) $S-\frac{1}{2}$ is a monotone odd function, and
(iii)

$$
S(x)= \begin{cases}1, & \text { if } \\ 0, & \text { if } \\ 0 \leq-1\end{cases}
$$

Put $s_{0}:=1$,

$$
s_{j}:=\left\|S^{(j)}\right\|, \quad j \in \mathbb{N} .
$$

Note that (ii) implies,

$$
\int_{-1}^{1} S(x) d x=1
$$

and, for the function $S_{\lambda}(x):=S\left(\frac{x}{\lambda}\right), \lambda>0$, we have

$$
\begin{equation*}
\left\|S_{\lambda}^{(j)}\right\|_{[-\lambda, \lambda]}=\lambda^{-j} s_{j}, \quad j \in \mathbb{N} . \tag{4.1}
\end{equation*}
$$

Denote

$$
f_{n}^{\prime \prime}(x):=S_{\lambda_{n}}\left(x-2 \lambda_{n}\right), \quad \lambda_{n}:=\frac{c_{3}}{8 n}
$$

and

$$
f_{n}(x)=\int_{0}^{x}(x-t) f_{n}^{\prime \prime}(t) d t
$$

Lemma 4.1. We have

$$
\begin{gather*}
f_{n} \in \Delta^{(3)}\left(Y_{1}^{*}\right) \tag{4.2}\\
n E_{n}^{(3)}\left(f_{n}, Y_{1}^{*}\right) \geq c_{5} \\
\left\|f_{n}^{(j)}\right\|=\left(\frac{8 n}{c_{3}}\right)^{j-2} s_{j-2}=:\left(c_{6} n\right)^{j-2} s_{j-2}, \quad j \geq 2 \\
\left\|f_{n}^{\prime}\right\|<1
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|f_{n}\right\|<1 \tag{4.6}
\end{equation*}
$$

Proof. Except for (4.3), all other statements are readily seen by straightforward computations, so we will prove (4.3). To this end, denote

$$
g(x):= \begin{cases}1, & \text { if } \quad x>0 \\ 0, & \text { if } \quad x \leq 0\end{cases}
$$

and

$$
G(x):=\int_{0}^{x}(x-t) g(t) d t= \begin{cases}\frac{1}{2} x^{2}, & \text { if } \quad x>0 \\ 0, & \text { if } \quad x \leq 0\end{cases}
$$

Then,

$$
\left\|f_{n}-G\right\| \leq \int_{0}^{3 \lambda_{n}}\left(1-f_{n}^{\prime \prime}(t)\right) d t=2 \lambda_{n}
$$

Since $G(x)=\frac{1}{4} x|x|+\frac{1}{4} x^{2}=\frac{1}{2} F_{4}(x)+\frac{1}{4} x^{2}$, it follows by Lemma 3.3 that $n E_{n}^{(3)}\left(G, Y_{1}^{*}\right) \geq \frac{c_{3}}{2}, n \geq 2$. Therefore

$$
n E_{n}^{(3)}\left(f_{n}, Y_{1}^{*}\right) \geq n E_{n}^{(3)}\left(G, Y_{1}^{*}\right)-n\left\|f_{n}-G\right\| \geq \frac{c_{3}}{2}-2 n \lambda_{n}=\frac{c_{3}}{4}=: c_{5}
$$

Corollary 4.2. For each $r \in \mathbb{N}$ and $n \in \mathbb{N}$ there is a function $f=f_{n} \in \Delta^{(3)}\left(Y_{1}^{*}\right) \cap$ W^{r}, such that

$$
n^{r-1} E_{n}^{(3)}\left(f, Y_{1}^{*}\right) \geq c(r)
$$

Now we fix $r \geq 3$, and for each $n \in \mathbb{N}$ and $b \in(0,1)$, we denote

$$
\lambda_{n, b}:=b \lambda_{n}
$$

and

$$
f_{n, b}(x):=A f_{n}\left(\frac{x}{b}\right),
$$

where

$$
A=b^{r}\left\|f_{n}^{(r)}\right\|^{-1}=\frac{c_{6}^{2-r} b^{r}}{s_{r-2} n^{r-2}}
$$

Lemma 4.1 readily implies
Lemma 4.3. We have

$$
\begin{gather*}
f_{n, b}(x)=0, \quad x \leq \lambda_{n, b} \tag{4.7}\\
f_{n, b}^{(3)}(x)=0, \quad x \geq 3 \lambda_{n, b} \tag{4.8}\\
f_{n, b} \in \Delta^{(3)}\left(Y_{1}^{*}\right) \tag{4.9}
\end{gather*}
$$

for each polynomial $P_{n} \in \mathcal{P}_{n} \cap \Delta^{(3)}\left(Y_{1}^{*}\right)$ the estimate

$$
\begin{gather*}
\left\|f_{n, b}-P_{n}\right\|_{[-b, b]} \geq \frac{A c_{5}}{n}=: \frac{c_{7} b^{r}}{n^{r-1}} \tag{4.10}\\
\left\|f_{n, b}^{(j)}\right\|=\frac{\left(c_{6} n\right)^{j-2}}{b^{j}} A s_{j-2}=\left(\frac{b}{c_{6} n}\right)^{r-j} \frac{s_{j-2}}{s_{r-2}}, \quad j \geq 2 \tag{4.11}
\end{gather*}
$$

in particular,

$$
\begin{equation*}
\left\|f_{n, b}^{(r)}\right\|=1 \tag{4.12}
\end{equation*}
$$

and for each $\lambda>0$,

$$
\begin{align*}
\left\|f_{n, b}^{(j)}\right\|_{[-\lambda, \lambda]} \leq \lambda^{2-j}\left\|f_{n, b}^{\prime \prime}\right\| & =\frac{c_{6}^{2-r} b^{r-2}}{s_{r-2} n^{r-2}} \lambda^{2-j} \tag{4.13}\\
& =: \frac{c_{8} b^{r-2}}{n^{r-2}} \lambda^{2-j}, \quad j=0,1
\end{align*}
$$

Lemma 4.4. Let $r \geq 3$. For each sequence $\left\{\epsilon_{n}\right\}_{n}^{\infty}$ of positive numbers, tending to infinity, there is a function $f_{*} \in \Delta^{(3)}\left(Y_{1}^{*}\right) \cap W^{r}$, such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \epsilon_{n} n^{r-1} E_{n}^{(3)}\left(f_{*}, Y_{1}^{*}\right)=\infty \tag{4.14}
\end{equation*}
$$

Proof. First we define by induction a sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of positive integers. Set $n_{1}=2, b_{1}=1$, and assume that n_{k-1} has already been chosen. Then we put

$$
b_{k}:=\lambda_{n_{k-1}, b_{k-1}}
$$

and take $n_{k}>k^{2} n_{k-1}$, so big, that for all $n \geq n_{k}$ the inequality

$$
\epsilon_{n_{k}} b_{k}^{r}>k
$$

holds. Now we will prove that a desired function may be defined in the form of a convergent series

$$
f_{*}(x)=\sum_{k=1}^{\infty} f_{n_{k}, b_{k}}(x), \quad x \in[-1,1]
$$

Indeed, by virtue of (4.11) and (4.13), we have, for $0 \leq j \leq r-1$,

$$
\sum_{k=1}^{\infty}\left\|f_{n_{k}, b_{k}}^{(j)}\right\| \leq c_{*} \sum_{k=1}^{\infty} \frac{1}{n_{k}} \leq c_{*} \sum_{k=1}^{\infty} \frac{1}{k^{2}}<2 c_{*}<\infty
$$

Hence

$$
\begin{equation*}
f_{*}^{(j)}(x)=\sum_{k=1}^{\infty} f_{n_{k}, b_{k}}^{(j)}(x), \quad x \in[-1,1], \quad 1 \leq j \leq r-1 \tag{4.15}
\end{equation*}
$$

and

$$
f_{*} \in C^{r-1}[-1,1]
$$

If $r>3$, then for any $x_{0}>0$ there is a neighbourhood, $O_{x_{0}}$ of x_{0}, such that all terms in the summation in (4.15) except perhaps one, say, $f_{n_{k}, b_{k}}^{(r-1)}(x)$, vanish for all $x \in O_{x_{0}}$. Hence, we may differentiate pointwise, so that $f_{*}^{(r)}$ is continuous in $[-1,1] \backslash\{0\}$, and by (4.12),

$$
\left\|f_{*}^{(r)}\right\|=1
$$

Thus, we conclude that

$$
f_{*} \in W^{r}
$$

Similarly, if $r=3$, then for any $x_{0}>0$ there is a neighbourhood, $O_{x_{0}}$ of x_{0}, such that all terms in the summation in (4.15) except perhaps one, say, $f_{n_{k}, b_{k}}^{(2)}(x)$, are constants and add up to a finite constant, for all $x \in O_{x_{0}}$. Hence the sum in (4.15) equals $f_{n_{k}, b_{k}}^{(2)}(x)$ plus a constant. Therefore the same arguments yield

$$
f_{*} \in W^{3}
$$

Finally, for all $r \geq 3$, it follows from the above discussion that

$$
f_{*}^{(3)}(x) \geq 0, \quad x \in(0,1]
$$

so that

$$
f_{*} \in \Delta^{(3)}\left(Y_{1}^{*}\right)
$$

We will show that (4.14) holds for this function. To this end, we fix $k \geq 1$ and take a polynomial $P_{n_{k}} \in \mathcal{P}_{n_{k}} \cap \Delta^{(3)}\left(Y_{1}^{*}\right)$. Then

$$
\begin{aligned}
\left\|f_{*}-P_{n_{k}}\right\| & \geq\left\|f_{*}-P_{n_{k}}\right\|_{\left[-b_{k}, b_{k}\right]}=\left\|\sum_{m=k}^{\infty} f_{n_{m}, b_{m}}-P_{n_{k}}\right\|_{\left[-b_{k}, b_{k}\right]} \\
& =\left\|\left(f_{n_{k}, b_{k}}-P_{n_{k}}\right)+\sum_{m=k+1}^{\infty} f_{n_{m}, b_{m}}\right\|_{\left[-b_{k}, b_{k}\right]} \\
& \geq\left\|f_{n_{k}, b_{k}}-P_{n_{k}}\right\|_{\left[-b_{k}, b_{k}\right]}-\left\|\sum_{m=k+1}^{\infty} f_{n_{m}, b_{m}}\right\|_{\left[-b_{k}, b_{k}\right]} \\
& \geq c_{7} \frac{b_{k}^{r}}{n_{k}^{r-1}}-\left\|\sum_{m=k+1}^{\infty} f_{n_{m}, b_{m}}\right\|_{\left[-b_{k}, b_{k}\right]}
\end{aligned}
$$

Now

$$
b_{m}=b_{m-1} \lambda_{n_{m-1}}=\frac{c_{3}}{8} \frac{b_{m-1}}{n_{m-1}}=: c_{9} \frac{b_{m-1}}{n_{m-1}}
$$

so that

$$
\left\|\sum_{m=k+1}^{\infty} f_{n_{m}, b_{m}}\right\|_{\left[-b_{k}, b_{k}\right]}=\sum_{m=k+1}^{\infty}\left\|f_{n_{m}, b_{m}}\right\|_{\left[-b_{k}, b_{k}\right]} \leq c_{8} b_{k}^{2} \sum_{m=k+1}^{\infty} \frac{b_{m}^{r-2}}{n_{m}^{r-2}}
$$

$$
\begin{gathered}
=c_{8} c_{9}^{r-2} b_{k}^{2} \sum_{m=k+1}^{\infty} \frac{b_{m-1}^{r-2}}{\left(n_{m-1} n_{m}\right)^{r-2}} \\
\leq c_{8} c_{9}^{r-2} \frac{b_{k}^{r}}{n_{k}^{r-1}} \sum_{m=k+1}^{\infty} \frac{1}{m^{2} n_{m}^{r-3}} \\
\quad \leq \frac{c_{8} c_{9}^{r-2}}{k} \frac{b_{k}^{r}}{n_{k}^{r-1}} \leq \frac{c_{7}}{2} \frac{b_{k}^{r}}{n_{k}^{r-1}}
\end{gathered}
$$

for all $k \geq k_{0}:=2 c_{8} c_{9}^{r-2} / c_{7}$. Hence, for all $k \geq k_{0}$ we have

$$
\epsilon_{n_{k}} n_{k}^{r-1} E_{n_{k}}^{(3)}\left(f_{*}, Y_{1}^{*}\right) \geq \frac{c_{7}}{2} k \rightarrow \infty, \quad k \rightarrow \infty
$$

and (4.14) is proved.
Remark 4.5. Note that, for $j \geq 3, f_{*}^{(j)}(x) \equiv 0, x \notin[0,1 / 2]$.
We are ready to prove Theorem 1.6.
Proof. Given $Y_{s} \in \mathbb{Y}_{s}, s \geq 1$, define for b from (2.3). Put

$$
f(x):=b^{r} f_{*}\left(\frac{x-y_{1}}{b}\right)
$$

Then $f \in \Delta^{(q)}\left(Y_{s}\right) \cap W^{r}$ and we will prove that it yields (1.4).
Indeed, note that

$$
f_{*}(u)=b^{-r} f\left(b u+y_{1}\right)
$$

Take any $P_{n} \in \mathcal{P}_{n} \cap \Delta^{(q)}\left(Y_{s}\right)$, and define

$$
Q_{n}(u):=b^{-r} P_{n}\left(b u+y_{1}\right)
$$

Then $Q_{n} \in \Delta^{(q)}\left(Y_{1}^{*}\right)$. Hence,

$$
\begin{aligned}
\left\|f-P_{n}\right\| & \geq\left\|f-P_{n}\right\|_{\left[y_{1}-b, y_{1}+b\right]} \\
& =b^{r}\left\|f_{*}-Q_{n}\right\| \\
& \geq b^{r} E_{n}^{(3)}\left(f_{*}, Y_{1}^{*}\right)
\end{aligned}
$$

so we conclude that

$$
E_{n}^{(3)}\left(f, Y_{s}\right) \geq b^{r} E_{n}^{(3)}\left(f_{*}, Y_{1}^{*}\right)
$$

By virtue of Lemma 4.4, (1.4) follows, and the proof is complete.

References

[1] A. V. Bondarenko and A. V. Primak, Negative results in shape-preserving higher-order approximations (in Russian), Mat. Zametki 76 (2004), 812-823; transl. Math. Notes 76 (2004), 758-769.
[2] V. N. Konovalov and D. Leviatan, Shape preserving widths of Sobolev-type classes of smonotone functions on a finite interval, Israel J. Math. 133 (2003), 239-268.
[3] K. A. Kopotun, D. Leviatan, A. Prymak and I. A. Shevchuk, Uniform and pointwise shape preserving approximation by algebraic polynomials, Surv. Approx. Theory 6 (2011), 24-74.
[4] D. Leviatan and I. A. Shevchuk, Counter examples in convex and higher order constrained approximation, East J. Approx. 1 (1995), 391-398.
[5] R. S. Varga and A. J. Carpenter, On the Bernstein conjecture in approximation theory, Constr. Approx. 1 (1985), 333-348.
[6] L. P. Yushchenko, The negative results in q-coconvex approximation (Ukrainian, with English summary), Visn., Mat. Mekh., Kyiv. Univ. Im. Tarasa Shevchenka 22 (2009), 8-10.

Manuscript received 28 May 2015
revised 22 July 2015
D. Leviatan

Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

E-mail address: leviatan@post.tau.ac.il
I. A. Shevchuk

Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

E-mail address: shevchuk@univ.kiev.ua

