
ISSN 2189-3764



64 R. KUBOTA, W. TAKAHASHI, AND Y. TAKEUCHI

of T , i.e., A(T ) = {z ∈ E : ∥Tx − z∥ ≤ ∥x − z∥, ∀x ∈ C}. Consider the following
conditions:

(N1) F (T ) ⊂ A(T ).
(N2) For some s ∈ [0,∞),

∥x− Ty∥ ≤ s∥x− Tx∥+ ∥x− y∥, ∀x, y ∈ C.

Suppose that there are a sequence {αn} in [0, 1] and a sequence {un} in C such that
un+1 = αnTun + (1− αn)un for all n ∈ N . This procedure is called Krasnoselskii-
Mann iteration [12, 14]. Under these setting, consider the following condition:

(N3) ∥Tun+1 − Tun∥ ≤ αn∥Tun − un∥ = ∥un+1 − un∥, ∀n ∈ N.

Obviously, a nonexpansive mapping satisfies all these conditions (N1) − (N3). We
note that a nonexpansive mapping satisfies (N2) with s = 1 and (N2) is stronger
than (N1). These conditions are fundamental pieces of the properties of nonex-
pansive mappings. Recently, some researchers study these pieces; for example, see
Suzuki [20], Takahashi and Takeuchi [23], Kubota and Takeuchi [13] and Falset
et.al. [7]. Suzuki [20] introduced a new class of mappings. A mapping T on C is
said to satisfy Condition (C) if

(C) 1
2∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C. We call such a mapping T a class (C) mapping in this paper. It
is obvious that if T is nonexpansive then T is in Class (C). Suzuki [20] proved that
if T is in Class (C) then T satisfies (N2) with s = 3 and it also satisfies (N3) as
αn = c ∈ [1/2, 1) for all n ∈ N . It is useful that if a mapping T satisfies (N2) for
some s ∈ [0,∞), then the following holds:

(N ′
2) ∥y − Ty∥ ≤ s∥x− Tx∥+ 2∥x− y∥, ∀x, y ∈ C.

Motivated by Suzuki [20], Falset et.al. [7] studied (N2). In this direction, Khan and
Suzuki [10] obtained some results and they proved the following theorem which is
connected with Reich’s weak convergence theorem [17].

Theorem 1.3 ([10]). Let c ∈ [1/2, 1). Let E be a uniformly convex Banach space
whose dual E∗ has the Kadec–Klee property. Let C be a bounded, closed and convex
subset of E and let T be a self–mapping on C. Assume that T is in Class (C). Let
{un} be a sequence defined by u1 ∈ C and

un+1 = cTun + (1− c)un, ∀n ∈ N.

Then, {un} converges weakly to some u ∈ F (T ).

Theorem 1.4 ([17]). Let {αn} be a sequence in [0, 1] with
∑

n αn(1−αn) = ∞. Let
E be a uniformly convex Banach space whose norm is Fréchet differentiable. Let C
be a closed and convex subset of E and let T be a nonexpansive self–mapping on C
with F (T ) ̸= ∅. Let {un} be a sequence defined by u1 ∈ C and

un+1 = αnTun + (1− αn)un, ∀n ∈ N.

Then, {un} converges weakly to some u ∈ F (T ).
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Let {Tn} be a sequence of mappings from C into C and let I be the identity
mapping on C. For non–negative integers n, k, we define:

V0 = T0 = I, V n+k
n = Tn+k · · ·Tn (V n

n = Tn), Vn = V n
0 = Tn · · ·T1T0.

Obviously, Tn · · ·T1T0 = Tn · · ·T1 for all n ∈ N . Assume that each Tn is quasi–
nonexpansive and ∩nF (Tn) ̸= ∅. Then, we define the condition (N4) which is
connected with Lemma 1.2.

(N4) For c ∈ [0, 1] and z ∈ ∩nF (Tn),

lim supn supk

(
∥Vn+ku1 − V n+k

n+1 (cVnu1 + (1− c)z)∥ − (1− c)∥Vnu1 − z∥
)
≤ 0.

We note that (N4) holds if each Ti is nonexpansive and (N4) is weaker than (N ′
4).

(N ′
4) There is n0 ∈ N such that, for any n > n0 and k ∈ N ,

∥Vn+ku1 − V n+k
n+1 (cVnu1 + (1− c)z)∥ ≤ (1− c)∥Vnu1 − z∥,

where c ∈ [0, 1] and z ∈ ∩nF (Tn).

In this paper, we improve the conditions regarding the spaces or the mappings
in Theorem 1.1 or Lemma 1.2. Then, studying conditions (N1) − (N4), we obtain
extensions of Browder’s demiclosedness principle and Reich’s lemma. Using these
results, we prove extensions of Theorem 1.4 and Theorem 1.3.

2. Preliminaries

We denote by R the set of real numbers, by N the set of positive integers and by
N0 the set of nonnegative integers. For i, j ∈ N0 satisfying i ≤ j, N(i, j) denotes
the set {k ∈ N0 : i ≤ k ≤ j}. We denote by E a real Banach space with norm ∥ · ∥
and by E∗ its dual. For simplicity, we remove “real”. For x ∈ E and y∗ ∈ E∗, we
denote y∗(x) by ⟨x, y∗⟩. SE denotes the unit sphere and rBE denotes the closed
ball with radius r > 0 centered at 0 ∈ E. In particular, BE denotes the unit ball.
That is,

SE = {x ∈ E : ∥x∥ = 1}, rBE = {x ∈ E : ∥x∥ ≤ r}, BE = {x ∈ E : ∥x∥ ≤ 1}.
Let C be a nonempty subset of E and let T be a mapping of C into E. F (T ) denotes
the set of fixed points of T , that is, F (T ) = {x ∈ C : Tx = x}. A(T ) denotes the
set of attractive points of T , i.e.,

A(T ) = {x ∈ E : ∥Ty − x∥ ≤ ∥x− y∥ for all y ∈ C}.
The attractive fixed points set AF (T ) is defined by AF (T ) = A(T )∩C; see Takahashi
and Takeuchi [23]. T is said to be nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all
x, y ∈ C. Usually, T is called quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx−v∥ ≤ ∥x−v∥
for all x ∈ C and v ∈ F (T ). Then, the condition AF (T ) = F (T ) ⊂ A(T ) always
holds if T is quasi-nonexpansive.

The normalized duality mapping J of E into 2E
∗
is defined by, for any x ∈ E,

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.
We know the following basic properties of J : J(x) ̸= ø for all x ∈ E and

∥x∥2 − ∥y∥2 ≥ 2 ⟨x− y, h⟩ , ∀x, y ∈ E, h ∈ J(y).
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A Banach space E is called reflexive if the canonical embedding of E is E∗∗. In a
reflexive Banach space, a bounded, closed and convex subset is weakly compact and
a bounded sequence has a weakly convergent subsequence. Convexity is one of the
most elementary property for a norm. A Banach space E is called strictly convex if

∥ax+ (1− a)y∥2 < a∥x∥2 + (1− a)∥y∥2

for all a ∈ (0, 1), x, y ∈ E with x ̸= y. The modulus δ of convexity of E is the
function of [0, 2] into [0, 1] defined by

δ(t) = inf{1− ∥x+y
2 ∥ : x, y ∈ BE , t ≤ ∥x− y∥}, ∀t ∈ [0, 2].

A Banach space E is called uniformly convex if δ(t) > 0 for t ∈ (0, 2]. It is known
that if E is uniformly convex then δ is strictly increasing with δ(0) = 0. It is also
known that a uniformly convex Banach space is strictly convex and reflexive.

The norm of a Banach space E is said to be Fréchet differentiable if for each
x ∈ SE , the limit limt→0(∥x + ty∥ − ∥x∥)/t is attained uniformly for y ∈ SE . A
Banach space E is said to have the Opial property [15] if a sequence {xn} in E
converging weakly to u ∈ E satisfies the following condition:

lim infn ∥xn − u∥ < lim infn ∥xn − v∥, ∀v ∈ E with v ̸= u.

A Banach space E is said to have the Kadec–Klee property if a sequence {xn} in
E converges strongly to a point x ∈ E under the conditions that {xn} converges
weakly to x and {∥xn∥} converges to ∥x∥. It is known that if a uniformly convex
Banach space E has a Fréchet differentiable norm then E∗ has the Kadec–Klee
property. However, there is a uniformly convex Banach space E whose dual E∗

has the Kadec–Klee property even if neither E has the Opial property nor E has
Fréchet differentiable norm.

3. Lemmas

In this section, we start with the following lemma which is related to Schu [19].

Lemma 3.1. Let E be a uniformly convex Banach space. Let {xn} and {yn} be
sequences in E. Assume that a ∈ (0, 1) and limn ∥axn + (1 − a)yn∥ = 1. Suppose
one of the followings holds:

(1) {xn}, {yn} ⊂ BE.
(2) limn ∥xn∥ = limn ∥yn∥ = 1.
(3) lim supn ∥xn∥ ≤ 1 and lim supn ∥yn∥ ≤ 1.

Then, limn ∥xn − yn∥ = 0.

Proof. Let δ be the modulus of convexity of E. We assume (1) and consider the
case a = 1/2. Assume that there exist ε ∈ (0, 2] and a subsequence {ni} of {n} such
that ∥xni − yni∥ ≥ ε for all i ∈ N . By the uniform convexity of E and definition

of δ, we have 0 < δ(ε) ≤ 1 − ∥xni+yni
2 ∥ for all i ∈ N . However, lim i ∥

xni+yni
2 ∥ = 1

implies δ(ε) = 0. This contradicts to 0 < δ(ε).
In the case (1), we show limn ∥xn − yn∥ = 0. By {xn}, {yn} ⊂ BE , it is obvious

that lim supn ∥
xn+yn

2 ∥ ≤ 1. We consider the case that a ∈ (0, 1/2]. Then we have

∥axn + (1− a)yn∥ = ∥2axn+yn
2 + (1− 2a)yn∥ ≤ 2a∥xn+yn

2 ∥+ (1− 2a)∥yn∥



EXTENSIONS OF BROWDER’S DEMICLOSEDNESS PRINCIPLE AND REICH’S LEMMA 67

for all n ∈ N . Since {xn}, {yn} ⊂ BE and limn ∥axn + (1− a)yn∥ = 1, we have

1 = lim infn ∥axn + (1− a)yn∥ ≤ 2a lim infn ∥xn+yn
2 ∥+ (1− 2a)× 1.

This implies that 1 ≤ lim infn ∥xn+yn
2 ∥ and hence limn ∥xn+yn

2 ∥ = 1. Thus, we have
limn ∥xn − yn∥ = 0. In the case of a ∈ (1/2, 1), the proof is similar by considering
1− a ∈ (0, 1/2].

We assume (2). Set rn = max{∥xn∥, ∥yn∥} for all n ∈ N . Then, limn rn = 1.
We may assume rn ̸= 0 for all n ∈ N . By the assumptions, we have that, for each
n ∈ N ,

un = xn
rn
, vn = yn

rn
∈ BE ,

∥aun + (1− a)vn∥ =
∥∥∥axn

rn
+ (1− a)ynrn

∥∥∥ = 1
rn

∥axn + (1− a)yn∥ .

By limn ∥axn + (1− a)yn∥ = 1 and limn rn = 1, we have limn ∥aun+(1−a)vn∥ = 1.
From the case (1), it follows that limn ∥un − vn∥ = 0. Thus, limn ∥xn − yn∥ = 0.

We assume (3). That is, we assume lim supn ∥xn∥ ≤ 1 and lim supn ∥yn∥ ≤ 1.
Then, by the case (2), if we show lim infn ∥xn∥ ≥ 1 and lim infn ∥yn∥ ≥ 1 then we
have the result. It is obvious that

∥axn + (1− a)yn∥ − (1− a)∥yn∥ ≤ a∥xn∥

for all n ∈ N . Then

a lim infn ∥xn∥ ≥ lim infn(∥axn + (1− a)yn∥ − (1− a)∥yn∥)
= limn ∥axn + (1− a)yn∥ − (1− a) lim supn ∥yn∥
≥ 1− (1− a) = a.

Thus, we have lim infn ∥xn∥ ≥ 1. In the same way, we have lim infn ∥yn∥ ≥ 1. □

Let r ∈ (0,∞). Let gr be a strictly increasing function of [0, 2r] into [0,∞) with
gr(0) = 0. We know that gr is integrable in the sense of Riemann. Let G and gr be
functions defined by

G(t) =
∫ t
0 gr(s)ds, gr(t) =

1
2rG(t) = 1

2r

∫ t
0 gr(s)ds, ∀t ∈ [0, 2r].

Then, we can easily show that gr is a strictly increasing continuous convex function
of [0, 2r] into [0,∞) with gr(0) = 0 and gr ≤ gr.

The following lemma is essentially due to Zalinescu [25]; also see Xu [24]. How-
ever, their proofs are not so simple and not so easy to read. We can find an excellent
proof of the lemma in Prus [16]. Our proof of this lemma is also elementary.

Lemma 3.2. Let E be a Banach space. Then the followings are equivalent:

(1) E is uniformly convex, that is, δ(t) > 0 for t ∈ (0, 2].
(2) For r > 0, there exists a strictly increasing function gr of [0, 2r] into [0,∞)

with gr(0) = 0 such that, for all x, y ∈ rBE and t ∈ [0, 2r] with t ≤ ∥x− y∥,

∥1
2(x+ y)∥2 ≤ 1

2∥x∥
2 + 1

2∥y∥
2 − 1

4gr(t).
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(3) For r > 0, there exists a strictly increasing function fr of [0, 2r] into [0,∞)
with fr(0) = 0 such that, for all x, y ∈ rBE and t ∈ [0, 2r] with t ≤ ∥x− y∥
and a ∈ [0, 1],

∥ax+ (1− a)y∥2 ≤ a∥x∥2 + (1− a)∥y∥2 − a(1− a)fr(t).

We note the followings: Since ∥x− y∥ ≤ ∥x− y∥ for x, y ∈ rBE, it is obvious that
we can replace gr(t) and fr(t) by gr(∥x − y∥) and fr(∥x − y∥), respectively. It is
also obvious that we can replace gr and fr by gr and fr, respectively.

Proof. We prove (1)⇒(2). Let δ(·) be the modulus of convexity of E. We set
gr(t) =

1
24
t2δ( tr )

2 for all t ∈ [0, 2r] and prove that gr satisfies conditions in (2). By
the properties of δ, we have that gr(0) = 0 and gr is strictly increasing. We show
that, for all t ∈ [0, 2r] and x, y ∈ rBE with t ≤ ∥x− y∥,

∥1
2(x+ y)∥2 ≤ 1

2∥x∥
2 + 1

2∥y∥
2 − 1

4gr(t).

Let x, y ∈ rBE with ∥x− y∥ ≥ t for some t ∈ [0, 2r]. We consider the cases (I) and
(II).
Case (I) t = 0: By the convexity of ∥ · ∥2, it is obvious that, for any x, y ∈ rBE ,

1
2∥x∥

2 + 1
2∥y∥

2 − ∥1
2(x+ y)∥2 ≥ 0 = 1

4gr(0).

Case (II) t > 0: We set s = max{∥x∥, ∥y∥} and s′ = min{∥x∥, ∥y∥} ≥ 0. Without
loss of generality, we can assume ∥y∥ ≤ ∥x∥ = s. We note that r ≥ s ≥ t/2 > 0.
We set u = x/s, v = y/s and k = t/s. Then u, v ∈ BE . We can easily have

0 < k = t
s ≤ 1

s∥x− y∥ = ∥u− v∥ ≤ ∥u∥+ ∥v∥ ≤ 2, k ∈ (0, 2],

∥1
2(x+ y)∥ ≤ 1

2∥x∥+
1
2∥y∥ = 1

2(s+ s′), 0 < δ( tr ) ≤ δ( ts) = δ(k).

We consider the following two cases:

(i) s− s′ > 1
2sδ(k), (ii) s− s′ ≤ 1

2sδ(k).

Case (i): We can easily have the following relation:

1
2∥x∥

2 + 1
2∥y∥

2 − ∥1
2(x+ y)∥2

≥ 1
2s

2 + 1
2s

′2 − ( 1
2(s+ s′) )2

= 1
4(s− s′)2 > 1

4
1
22
s2δ(k)2

≥ 1
4

1
22
(12 t)

2δ( tr )
2 = 1

4
1
24
t2δ( tr )

2 = 1
4gr(t).

Case (ii): By the definition of δ, it is obvious that

0 < δ(k) ≤ 1− 1
2∥u+ v∥ = 1− 1

2s∥x+ y∥, 1
2∥x+ y∥ ≤ s(1− δ(k)).

Then, from 1− δ(k) ∈ [0, 1), it follows that

∥1
2(x+ y)∥2 ≤ s2(1− δ(k))2 ≤ s2(1− δ(k)) ≤ s2 − s2δ(k),

s2δ(k) ≤ s2 − ∥1
2(x+ y)∥2.(a)

We note that

s2 − s′2 = (s− s′)(s+ s′) ≤ 2s(s− s′), 1
4

1
22
s2δ(k)2 ≥ 1

4gr(t).

Thus, by (ii) and (a), we have
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1
2∥x∥

2 + 1
2∥y∥

2 − ∥1
2(x+ y)∥2

= ∥x∥2 − ∥1
2(x+ y)∥2 − 1

2(∥x∥
2 − ∥y∥2)

= s2 − ∥1
2(x+ y)∥2 − 1

2(s
2 − s′2)

≥ s2δ(k)− s(s− s′) ≥ s2δ(k)− 1
2s

2δ(k)

= 1
2s

2δ(k) > 1
4

1
22
s2δ(k)2 ≥ 1

4gr(t).

We prove (2)⇒(1). Set r = 1. Then there is g1 satisfying conditions in (2). Let
t ∈ (0, 2] and x, y ∈ BE with t ≤ ∥x− y∥. By ∥1

2(x+ y)∥ ≤ 1 and (2), we have

0 < 1
4g1(t) ≤

1
2∥x∥

2 + 1
2∥y∥

2 − ∥1
2(x+ y)∥2 ≤ 1− ∥1

2(x+ y)∥2

= (1− ∥1
2(x+ y)∥)(1 + ∥1

2(x+ y)∥) ≤ 2(1− ∥1
2(x+ y)∥).

Then it follows that

0 < 1
8g1(t) ≤ inf{1− ∥1

2(x+ y)∥ : x, y ∈ BE , t ≤ ∥x− y∥} = δ(t).

Thus, E is uniformly convex.
We prove (2)⇒(3). We set fr(t) = 1

2gr(t) for all t ∈ [0, 2r] and prove that fr
satisfies conditions in (3). Let t ∈ [0, 2r] and x, y ∈ rBE with t ≤ ∥x − y∥. In the
case a ∈ (0, 1/2], by (2) and the convexity of ∥ · ∥2, we have

∥ax+ (1− a)y∥2 = ∥2a(12(x+ y)) + (1− 2a)y∥2

≤ 2a∥1
2(x+ y)∥2 + (1− 2a)∥y∥2

≤ 2a(12∥x∥
2 + 1

2∥y∥
2 − 1

4gr(t)) + (1− 2a)∥y∥2

= a∥x∥2 + a∥y∥2 − 1
2agr(t) + (1− 2a)∥y∥2

≤ a∥x∥2 + (1− a)∥y∥2 − 1
2a(1− a)gr(t)

= a∥x∥2 + (1− a)∥y∥2 − a(1− a)fr(t).

By the properties of gr, it is obvious that fr has the desired properties.
In the case a ∈ (1/2, 1), it is obvious that 1 − a ∈ (0, 1/2]. Then, the proof is

similar. In the cases a = 0 or a = 1, the proof is trivial.
We prove (3)⇒(2). We set gr(t) = fr(t) for t ∈ [0, 2r] and a = 1/2. By the

properties of fr, it is obvious that gr satisfies conditions in (2). □

We also have the following lemma.

Lemma 3.3. Let {αn} be a sequence in [0, 1]. Let C be a subset of a Banach space
E and let T be a mapping of C into C. Suppose that a sequence {un} in C satisfies

(1) un+1 = αnTun + (1− αn)un, (2) ∥Tun+1 − Tun∥ ≤ αn∥Tun − un∥
for all n ∈ N . Then, the followings hold:

(a) {∥Tun − un∥} is non-increasing and converges.
(b) If v ∈ A(T ) then {∥un − v∥} is non-increasing and converges.
(c) If either {un} or {Tun} is bounded and {αn} is in [0, b] ⊂ [0, 1) with∑∞

n=1 αn = ∞, then limn ∥Tun − un∥ = 0.
(d) If E is uniformly convex, A(T ) ̸= ∅ and

∑
n αn(1−αn) = ∞, then limn ∥Tun−

un∥ = 0.
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Proof. We prove (a). By (1) and (2), it is obvious that, for any n ∈ N ,

∥Tun+1 − un+1∥ ≤ ∥Tun+1 − Tun∥+ ∥Tun − un+1∥
≤ αn∥Tun − un∥+ (1− αn)∥Tun − un∥ = ∥Tun − un∥.

Then, {∥Tun − un∥} is non-increasing and limn ∥Tun − un∥ exists.
We prove (b). It is obvious that

∥un+1 − v∥ ≤ αn∥Tun − v∥+ (1− αn)∥un − v∥ ≤ ∥un − v∥

for all n ∈ N . Then {∥un − v∥} is non–increasing and converges.
The proof of (c) is in [13].
We prove (d). Set r = ∥u1 − v∥, where v ∈ A(T ) and u1 ̸= v. If u1 = v,

then v ∈ F (T ) and (d) holds. By (b), we have that Tun − v, un − v ∈ rBE and
∥Tun−un∥ ≤ ∥Tun−v∥+∥un−v∥ ≤ 2r for all n ∈ N . Assume limn ∥Tun−un∥ > 0.
Then, there is ε ∈ (0, 2r] such that ∥Tun − un∥ ≥ ε for sufficiently large n ∈ N .
Since E is uniformly convex, by Lemma 3.2, there is a strictly increasing function
fr of [0, 2r] into [0,∞) such that fr(0) = 0 and

αn(1− αn)fr(ε) ≤ αn∥Tun − v∥2 + (1− αn)∥un − v∥2

− ∥αn(Tun − v) + (1− αn)(un − v)∥2

≤ ∥un − v∥2 − ∥un+1 − v∥2

for all n ∈ N . It follows that, for any n ∈ N ,

fr(ε)
∑n

i=1 αi(1− αi) =
∑n

i=1 αi(1− αi)fr(ε) ≤ ∥u1 − v∥2 − ∥un+1 − v∥2.

Since {∥un − v∥} is bounded and
∑∞

i=1 αi(1 − αi) = ∞, this inequality implies
fr(ε) = 0. This contradicts to fr(ε) > 0. Thus, limn ∥Tun − un∥ = 0. □

We prove the following two lemmas. The first one was essentially proved in [20].

Lemma 3.4. Let E be a Banach space which has the Opial property. Let C be a
closed convex subset of E and let S be a self–mapping on C which satisfies (N2).
Let {xn} be a sequence in C which converges weakly to some u ∈ C and satisfies
limn ∥Sxn − xn∥ = 0. Then u ∈ F (S).

Proof. Assume u ̸= Su. Since {xn} converges weakly to u, by the Opial property,
we have lim infn ∥xn − u∥ < lim infn ∥xn − Su∥. Since S satisfies condition (N2) for
some s ∈ [0,∞), the following holds:

∥xn − Su∥ ≤ s∥xn − Sxn∥+ ∥xn − u∥, ∀n ∈ N.

By limn ∥Sxn − xn∥ = 0, this implies lim infn ∥xn − Su∥ ≤ lim infn ∥xn − u∥. We
have a contradiction. This completes the proof. □

Lemma 3.5. Let E be a reflexive Banach space which has the Opial property. Let
C be a subset of E. Let {un} be a sequence in E such that {∥un−w∥} converges for
any w ∈ C. Suppose the weak limit of any weakly convergent subsequence of {un}
is in C. Then {un} converges weakly to some z ∈ C.
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Proof. In our setting, the bounded sequence {un} has a weakly convergent subse-
quence. Suppose {uni} and {unj} are subsequences of {un} which converge weakly
to u, v ∈ C, respectively. Assume u ̸= v. Let w ∈ C. Since {∥un − w∥} con-
verges, any subsequence of {∥un − w∥} converges to the same real number. Then,
by u, v ∈ C and the Opial property, we have

lim infi ∥uni − u∥ < lim infi ∥uni − v∥ = lim infj ∥unj − v∥
< lim infj ∥unj − u∥ = lim infi ∥uni − u∥.

This is a contradiction. Thus we have u = v and the result. □

4. Browder’s demiclosedness principle

In this section, we obtain an extension of Browder’s demiclosedness principle
which was proved for nonexpansive mappings in uniformly convex Banach spaces.
Before obtaining the result, we need the following lemma which is connected with
the condition (N2).

Lemma 4.1. Let C be a bounded and convex subset of a uniformly convex Banach
space E. Let T be a self–mapping on C satisfying (N2) for s ∈ [0,∞), that is,

∥x− Ty∥ ≤ s∥x− Tx∥+ ∥x− y∥, ∀x, y ∈ C.

Then, for any ε > 0, there exists δ > 0 such that if x, y ∈ C satisfy ∥Tx − x∥ < δ
and ∥Ty − y∥ < δ then, for any c ∈ [0, 1],

∥T (cx+ (1− c)y)− (cx+ (1− c)y)∥ < ε.

Proof. Assume that there are ε0 > 0, a sequence {cn} in [0, 1] and sequences
{un}, {vn} in C such that

∥Tun − un∥ < 1
n , ∥Tvn − vn∥ < 1

n ,(i)

∥T (cnun + (1− cn)vn)− (cnun + (1− cn)vn)∥ ≥ ε0(ii)

for all n ∈ N . We set dn = ∥un − vn∥ for all n ∈ N . For simplicity, we set

An = ∥T (cnun + (1− cn)vn)− (cnun + (1− cn)vn)∥
for all n ∈ N . Since C is bounded, {dn} is also bounded in [0,∞). We know that
{cn} ⊂ [0, 1]. Without loss of generality, we can assume that there are d ∈ [0,∞)
and b ∈ [0, 1] satisfying limn dn = d and limn cn = b. It follows that limn cndn = bd
and limn(1− cn)dn = (1− b)d. We note that (i) and (ii) are still satisfied. We know
that (N ′

2) is derived from (N2). Then, we have that, for n ∈ N ,

An ≤ s∥Tun − un∥+ 2∥un − (cnun + (1− cn)vn)∥(iii)

≤ s∥Tun − un∥+ 2(1− cn)∥un − vn∥ ≤ s
n + 2(1− cn)dn.

In the same way, we have

An ≤ s∥Tvn − vn∥+ 2cn∥un − vn∥ ≤ s
n + 2cndn.(iv)

In the case of bd = 0, by (iv), it is easy to see that

lim supnAn ≤ limn(
s
n + 2cndn) = 0

and hence limnAn = 0. This contradicts to (ii). In the case of b = 1, by (iii), we also
have limnAn = 0. Then, we have b ∈ (0, 1) and d > 0. Without loss of generality,
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we can assume that there is a ∈ (0, 1) such that dn ≥ a and cn, 1 − cn ∈ [a, 1 − a]
for all n ∈ N . We set

wn = T (cnun + (1− cn)vn), xn = (un−wn)
(1−cn)dn

, yn = (wn−vn)
cndn

for all n ∈ N . Then, from (N2), we have:

∥xn∥ = 1
(1−cn)dn

∥un − wn∥

≤ 1
(1−cn)dn

(s∥un − Tun∥+ ∥un − (cnun + (1− cn)vn)∥)

= 1
(1−cn)dn

(s∥Tun − un∥+ (1− cn)∥un − vn∥)

≤ 1 + 1
n

s
(1−cn)dn

≤ 1 + s
na2

for all n ∈ N . In the same way, we have

∥yn∥ = 1
cndn

∥wn − vn∥
= 1

cndn
(s∥Tvn − vn∥+ cn∥un − vn∥) ≤ 1 + s

na2

for all n ∈ N . Since limn(1 + s
na2

) = 1, we have that lim supn ∥xn∥ ≤ 1 and
lim supn ∥yn∥ ≤ 1. On the other hand, we have

∥(1− cn)xn + cnyn∥ = 1
dn
∥un − vn∥ = 1

for all n ∈ N . Obviously, limn ∥(1− cn)xn + cnyn∥ = 1.
It is easy to see that∣∣∣∥(1− cn)xn + cnyn∥ − ∥(1− b)xn + byn∥

∣∣∣
≤ ∥(1− cn)xn + cnyn − (1− b)xn − byn∥
≤ |cn − b|(∥xn∥+ ∥yn∥)

for all n ∈ N . Then, since {cn} converges to b ∈ (0, 1), we have

limn ∥(1− b)xn + byn∥ = limn ∥(1− cn)xn + cnyn∥ = 1.

By Lemma 3.1, we have limn ∥xn − yn∥ = 0. It is also obvious that

∥xn − yn∥ = 1
cn(1−cn)

∥cn(un − wn)− (1− cn)(wn − vn)∥

= 1
cn(1−cn)

∥cnun + (1− cn)vn − wn∥ ≥ 1
(1−a)2

An

for all n ∈ N . Thus, we have limnAn = 0. This contradicts to (ii). □
The following is an extension of Browder’s demiclosedness principle.

Theorem 4.2. Let C be a bounded, closed and convex subset of a uniformly convex
Banach space E. Let T be a self–mapping on C satisfying (N2) for some s ∈ [0,∞),
that is, ∥x − Ty∥ ≤ s∥x − Tx∥ + ∥x − y∥ for all x, y ∈ C. Suppose that {un}
is a sequence in C which converges weakly to u and limn ∥Tun − un∥ = 0. Then,
u ∈ F (T ).

Proof. Let ε > 0 and set δ1 = ε/(s + 2). By Lemma 4.1, we can take a sequence
{δk} in (0,∞) with δk+1 < δk such that for any x, y ∈ C satisfying ∥Tx−x∥ < δk+1

and ∥Ty − y∥ < δk+1, and for any c ∈ [0, 1],

∥T (cx+ (1− c)y)− (cx+ (1− c)y)∥ < δk.
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By limn ∥Tun − un∥ = 0, we can take a sequence {nk} in N such that, for each k,

nk < nk+1, ∥Tunk
− unk

∥ < δk+1.

Obviously, {unk
} converges weakly to u. Let H l

c be the convex hull of {unk
}lk=1 for

each l ∈ N and let Hc be the closed and convex hull of {unk
}. We know that Hc is

a closed and convex subset of C. Then Hc is weakly closed. We have u ∈ Hc. Then,
there exists the smallest L ∈ N such that there is v ∈ HL

c satisfying ∥v − u∥ < δ1.
We show ∥v − Tv∥ < δ1. By v ∈ HL

c , there is a sequence {ak}Lk=1 in [0, 1] with∑L
k=1 ak = 1 and v =

∑L
k=1 akunk

, where aL ̸= 0.
We set bL = aL and

bk = ak + · · ·+ aL, ∀k ∈ N(1, L− 1).

This implies bk > 0 for all k ∈ N(1, L). It is obvious that b1 = 1. We set vL = unL

and

vk = 1
bk

∑L
i=k aiuni , ∀k ∈ N(1, L− 1).

It is also obvious that vL = unL = 1
aL

aLunL = 1
bL
aLunL = 1

bL

∑L
i=L aiuni .

By induction, we have v1 =
1
b1
v = v. It is obvious that ak/bk, bk+1/bk ∈ [0, 1] and

ak
bk

+
bk+1

bk
= 1, ∀k ∈ N(1, L− 1).

We know that ∥TvL−vL∥ = ∥TunL −unL∥ < δL+1 < δL. We assume that ∥Tvk+1−
vk+1∥ < δk+1 for some k ∈ N(1, L−1). Since ∥Tunk

−unk
∥ < δk+1, by the definition

of δk+1, we have

∥Tvk − vk∥ = ∥T (akbk unk
+

bk+1

bk
vk+1)− (akbk unk

+
bk+1

bk
vk+1)∥ < δk.

By induction, we have ∥Tv1 − v1∥ = ∥Tv − v∥ < δ1.
Thus, ∥v − u∥ < δ1 and ∥Tv − v∥ < δ1. By (N ′

2), we have

∥Tu− u∥ ≤ s∥Tv − v∥+ 2∥v − u∥ < (s+ 2)δ1 = ε.

Since ε is arbitrary, we have the desired result u ∈ F (T ). □

We note that Khan and Suzuki [10] proved similar result for mappings of Class
(C). We prove the following lemma which is derived from Lemmas 3.3, 3.4 and
Theorem 4.2.

Lemma 4.3. Let E be a Banach space satisfying either of the followings:

(e1) E is uniformly convex.
(e2) E is reflexive and has the Opial property.

Let C be a bounded, closed and convex subset of E and let T be a self–mapping on
C satisfying (N2). Let {αn} be a sequence in [0, b] ⊂ [0, 1) satisfying

∑∞
n=1 αn = ∞.

Let u1 ∈ C and {un} be the sequence defined by

un+1 = αnTun + (1− αn)un, ∀n ∈ N.

Suppose that (N3) holds. Then, there is a subsequence {unj} of {un} which converges
weakly to some u ∈ F (T ).



74 R. KUBOTA, W. TAKAHASHI, AND Y. TAKEUCHI

Proof. We know that {un} is bounded. Since (N3) holds, we have

∥Tun+1 − Tun∥ ≤ αn∥Tun − un∥, ∀n ∈ N.

By Lemma 3.3 (c), we have limn ∥Tun−un∥ = 0. Since E is reflexive, we have that
C is weakly compact. Then, there is a subsequence {unj} of {un} which converges
weakly to some u ∈ C. Recall that T satisfies (N2). Thus, by Theorem 4.2 or
Lemma 3.4, we have u ∈ F (T ). □

5. Reich’s lemma

In this section, we obtain an extension of Reich’s lemma [17] which was proved in
a uniformly convex Banach space with a Fréchet differentiable norm. The following
lemma was essentially proved by Falset et.al [6]. We give an elementary proof.

Lemma 5.1. Let E be a reflexive Banach space such that E∗ has the Kadec–Klee
property. Let {un} be a sequence in E. Let {ui(k)} and {uj(k)} be subsequences of
{un} which converge weakly to v, w ∈ E, respectively. Assume that, for each k ∈ N ,
there exists limn ∥ 1

kun + (1− 1
k )v − w∥. Then v = w.

Proof. By the assumptions, for each k ∈ N , {∥ 1
kun + (1− 1

k )v−w∥} converges. By
setting k = 1, we have that {∥un − w∥} converges. Then {un} is bounded. We set
M = supn ∥un − v∥. It is obvious that, for each k ∈ N , {∥ 1

kun + (1 − 1
k )v − w∥2}

also converges and that, for n ∈ N ,

∥ 1
kun + (1− 1

k )v − w∥ = ∥(v − w) + 1
k (un − v)∥.

Let J be the normalized duality mapping of E into 2E
∗
. We note that J(x) ̸= ø

for x ∈ E. We need a basic and well known property of J as follows:

∥x∥2 − ∥y∥2 ≥ 2 ⟨x− y, h⟩ , ∀x, y ∈ E, h ∈ J(y).

We note that h ∈ J(y) implies ∥h∥ = ∥y∥. Since {∥ 1
kun+(1− 1

k )v−w∥2} converges,
there is nk ∈ N such that

2
k2

≥ ∥ 1
kun + (1− 1

k )v − w∥2 − ∥ 1
kum + (1− 1

k )v − w∥2 ≥ 2× 1
k ⟨un − um, h⟩

for all m,n > nk and h ∈ J(v − w + 1
k (um − v)). That is,

1
k ≥ ⟨un − um, h⟩ , ∀m,n > nk and h ∈ J(v − w + 1

k (um − v)).

Taking subsequences of {ui(k)} and {uj(k)}, we can assume that {ui(k)} and {uj(k)}
have the following property:

1
k ≥

⟨
ui(k) − uj(k), h

⟩
for k ∈ N and h ∈ J((v − w) + 1

k (uj(k) − v)).

Let {fk} be a sequence in E∗ such that fk ∈ J((v−w)+ 1
k (uj(k)−v)) for all k. Since

{∥(v−w)+ 1
k (uj(k)− v)∥} is bounded, so is {fk}. Since E is reflexive, there exists a

subsequence of {fk} which converges weakly to some g ∈ E∗. Taking subsequences
again, we can assume that {fk} itself converges weakly to g.

Then, we can easily see that 1/k >
⟨
ui(k) − uj(k), fk

⟩
for all k ∈ N . That is, we

have

(1) lim supk
⟨
ui(k) − uj(k), fk

⟩
≤ 0.
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Let f ∈ J(v − w). It is easy to see that

| ∥fk∥ − ∥f∥ | = | ∥(v − w) + 1
k (uj(k) − v)∥ − ∥v − w∥ |

≤ ∥(v − w) + 1
k (uj(k) − v)− (v − w)∥ = 1

k∥uj(k) − v∥ ≤ 1
kM

for all k ∈ N . Then, limk ∥fk∥ = ∥f∥. We know that ∥ · ∥ is weakly lower semi–
continuous. Then, since {fk} converges weakly to g, we have

(2) ∥g∥ ≤ lim infk ∥fk∥ = limk ∥fk∥ = ∥f∥.
Let δ > 0 be arbitrary. Since limk ∥fk∥ = ∥f∥, fk ∈ J((v − w) + 1

k (uj(k) − v)) and
f ∈ J(v − w), we have, for sufficiently large k,

∥v − w∥2 = ∥f∥2 ≤ ∥fk∥2 + δ

=
⟨
(v − w) + 1

k (uj(k) − v), fk
⟩
+ δ

≤ ⟨v − w, fk⟩+ 1
kM∥fk∥+ δ.

We know that {fk} converges weakly to g. Then,

∥v − w∥2 ≤ limk

(
⟨v − w, fk⟩+ 1

kM∥fk∥
)
+ δ = ⟨v − w, g⟩+ δ.

Since δ is arbitrary, by (2), we have

∥v − w∥2 ≤ ⟨v − w, g⟩ ≤ ∥v − w∥ ∥g∥ ≤ ∥v − w∥ ∥f∥ = ∥v − w∥2.
These imply that lim k ∥fk∥ = ∥f∥ = ∥g∥ = ∥v−w∥ and g ∈ J(v−w). Since E∗ has
the Kadec–Klee property, it follows that {fk} converges strongly to g ∈ J(v − w).
Since {ui(k)} and {uj(k)} converge weakly to v and w, respectively and fk → g, by
(1), we have

∥v − w∥2 = ⟨v − w, g⟩ = limk

⟨
ui(k) − uj(k), fk

⟩
≤ 0.

Then, it follows that ∥v − w∥2 = 0 and hence v = w. □
Lemma 5.2. Let C be a convex subset of a uniformly convex Banach space E. Let
{Tn} be a sequence of quasi–nonexpansive self–mappings on C with ∩nF (Tn) ̸= ∅.
Let u1 ∈ C. Suppose that (N4) holds. That is, for any c ∈ [0, 1] and z ∈ ∩nF (Tn),

lim supn supk

(
∥Vn+ku1 − V n+k

n+1 (cVnu1 + (1− c)z)∥ − (1− c)∥Vnu1 − z∥
)
≤ 0.

Then, either of the followings hold

(1) limn ∥Vnu1 − z∥ = 0.
(2) For c ∈ [0, 1], z ∈ ∩nF (Tn) and ε > 0, there exists n0 ∈ N such that, for

n > n0 and k ∈ N ,

∥cVn+ku1 + (1− c)z − V n+k
n+1 (cVnu1 + (1− c)z)∥ < ε.

Proof. Let z ∈ ∩nF (Tn). In the case of c = 0, we easily have ∥z−V n+k
n+1 (z)∥ = 0. In

the case of c = 1, we have ∥Vn+ku1−V n+k
n+1 (Vnu1)∥ = 0. In both cases, we obviously

have (2). Then, we assume c ∈ (0, 1). Since each Ti is quasi–nonexpansive, it is
obvious that {∥Vnu1 − z∥} is non–increasing and limn ∥Vnu1 − z∥ exists.

We show that (2) holds if limn ∥Vnu1 − z∥ ̸= 0. Assume that there are ε0 > 0
and a sequence {kn} of positive integers such that

∥cVn+knu1 + (1− c)z − V n+kn
n+1 (cVnu1 + (1− c)z)∥ ≥ ε0(i)
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for all n ∈ N . For simplicity, we set

xn = Vn+knu1 − V n+kn
n+1 (cVnu1 + (1− c)z), yn = V n+kn

n+1 (cVnu1 + (1− c)z)− z

for all n ∈ N . It follows that

cxn − (1− c)yn = cVn+knu1 + (1− c)z − V n+kn
n+1 (cVnu1 + (1− c)z)(ii)

for all n ∈ N . Since each Ti is quasi–nonexpansive, we have

∥yn∥ = ∥V n+kn
n+1 (cVnu1 + (1− c)z)− z∥ ≤ c∥Vnu1 − z∥.(iii)

We set dn = ∥Vnu1 − z∥ for all n ∈ N . By limn ∥Vnu1 − z∥ ̸= 0, we know that {dn}
converges to some d ∈ (0,∞), that is, dn ≥ d > 0 for all n ∈ N . It is obvious that
dn ≥ dn+kn ≥ d > 0 for all n ∈ N . Then, {dn+kn} also converges to d. By c, dn > 0,
we set

x′n = xn
(1−c)dn

=
Vn+knu1−V n+kn

n+1 (cVnu1+(1−c)z)

(1−c)dn
, y′n = yn

cdn
=

V n+kn
n+1 (cVnu1+(1−c)z)−z

cdn

for all n ∈ N . By (iii), it is obvious that lim supn ∥y′n∥ ≤ 1. Since {(1 − c)dn}
converges, by (N4), it is easy to see that lim supn ∥x′n∥ ≤ 1. It is also obvious that

∥(1− c)x′n + cy′n∥ = 1
dn
∥Vn+knu1 − z∥ = 1

dn
dn+kn .

That is, limn ∥(1 − c)x′n + cy′n∥ = 1. By Lemma 3.1, we have limn ∥x′n − y′n∥ = 0.
We know that {dn} is non–increasing and c(1− c)d1 > 0. For any n ∈ N , we have

∥x′n − y′n∥ = 1
c(1−c)dn

∥cxn − (1− c)yn∥ ≥ 1
c(1−c)d1

∥cxn − (1− c)yn∥.

Thus, we have limn ∥cxn − (1− c)yn∥ = 0. This contradicts to (i). □

Remark 1. In Lemma 5.2, the condition (2) holds if the condition (1) holds. Let
ε > 0. In the case of limn ∥Vnu1 − z∥ = 0. it is easy to see that, for any n, k ∈ N ,

∥cVn+ku1 + (1− c)z − V n+k
n+1 (cVnu1 + (1− c)z)∥

≤ ∥cVn+ku1 + (1− c)z − z∥+ ∥V n+k
n+1 (cVnu1 + (1− c)z)− z∥

≤ ∥cVn+ku1 − cz∥+ ∥cVnu1 + (1− c)z − z∥ ≤ 2c∥Vnu1 − z∥.

By limn ∥Vnu1 − z∥ = 0, there exists n0 ∈ N such that, for any n > n0 and k ∈ N ,

∥cVn+ku1 + (1− c)z − V n+k
n+1 (cVnu1 + (1− c)z)∥ < ε.

The following is an extension of Reich’s lemma [17].

Lemma 5.3. Let E be a uniformly convex Banach space such that E∗ has the
Kadec–Klee property. Let C be a convex subset of E. Let {Tn} be a sequence of
quasi–nonexpansive self–mappings on C with ∩nF (Tn) ̸= ∅. Let u1 ∈ C and let
{un} be a sequence in C defined by un+1 = Tnun = Vnu1 for all n ∈ N . Let {ui(k)}
and {uj(k)} be subsequences of {un} which converge weakly to v, w ∈ ∩nF (Tn),
respectively. Suppose (N4) holds. Then v = w.

Proof. Let ε > 0. Since v, w ∈ ∩nF (Tn) and each Ti is quasi–nonexpansive,
{∥Vnu1 − v∥} and {∥Vnu1 − w∥} are non–increasing. Then, it follows that {un}
is bounded. So {∥cun + (1− c)v − w∥} is bounded for each c ∈ [0, 1].
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We fix c ∈ [0, 1] arbitrary. Since (N4) holds for v ∈ ∩nF (Tn), Lemma 5.2 (1) or
(2) holds. If limn ∥Vnu1 − v∥ = 0 then {un} converges and v = w. We thus assume
from now on that Lemma 5.2 (2) holds. For simplicity, we set, for any n, k ∈ N ,

An,k =
∥∥∥cVn+k u1 + (1− c)v − V n+k

n+1 (cVn u1 + (1− c)v)
∥∥∥ .

Then, there exists n0 ∈ N such that An,k < ε for all n > n0 and k ∈ N . Since
v, w ∈ ∩F (Tn), it is easy to see that

∥cu(n+1)+k + (1− c)v − w∥ = ∥cVn+ku1 + (1− c)v − w∥

≤ An,k +
∥∥∥V n+k

n+1 (cVnu1 + (1− c)v)− w
∥∥∥

≤ An,k + ∥cun+1 + (1− c)v − w∥ < ∥cun+1 + (1− c)v − w∥+ ε

for all n > n0 and k ∈ N . Then the following holds:

lim supn ∥cun + (1− c)v − w∥
= lim supk ∥cu(n+1)+k + (1− c)v − w∥ ≤ ∥cun+1 + (1− c)v − w∥+ ε.

Furthermore, we have

lim supn ∥cun + (1− c)v − w∥ ≤ lim infn ∥cun + (1− c)v − w∥+ ε.

Thus, since ε is also arbitrary, limn ∥cun+(1− c)v−w∥ exists for any c ∈ [0, 1]. By
Lemma 5.1, we have the result v = w. □

We know that a mapping of Class (C) satisfies the condition (N2) with s = 3. We
prove the following lemma which is connected with the conditions (N3) and (N4).

Lemma 5.4. Let {αn} be a sequence in [1/2, 1]. Let C be a convex subset of a
Banach space E. Let T be a self–mapping of Class (C) on C. For any n ∈ N , set
Tn = αnT + (1− αn)I . Let u1 ∈ C and {un} be a sequence defined by

un+1 = αnTun + (1− αn)un = Tnun = Vnu1, ∀n ∈ N.

Then, the followings hold.

(1) (N3) holds. That is,

∥Tun+1 − Tun∥ ≤ αn∥Tun − un∥ = ∥un+1 − un∥, ∀n ∈ N.

(2) Suppose E is uniformly convex, F (T ) ̸= ∅ and
∑∞

n=1 αn(1−αn) = ∞. Then
each Tn is quasi–nonexpansive and ∩nF (Tn) = F (T ) ̸= ∅.
Moreover, (N4) holds. That is, for c ∈ [0, 1] and z ∈ ∩nF (Tn),

lim supn supk

(
∥Vn+ku1 − V n+k

n+1 (cVnu1 + (1− c)z)∥ − (1− c)∥Vnu1 − z∥
)
≤ 0.

Proof. We prove (1). For any n ∈ N , we have from αn ∈ [1/2, 1] that
1
2∥Tun − un∥ ≤ αn∥Tun − un∥

= ∥αnTun + (1− αn)un − un∥ = ∥un+1 − un∥.
Then, by the Condition (C), we have

∥Tun+1 − Tun∥ ≤ ∥un+1 − un∥ = αn∥Tun − un∥, ∀n ∈ N.

We prove (2). Let z ∈ F (T ). Since T satisfies (N2), we have ∅ ̸= F (T ) ⊂ A(T ).
That is, T is quasi–nonexpansive. By Lemma 3.3 (d), we have limn ∥Tun−un∥ = 0.
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It is obvious that F (Ti) = F (T ) for each i ∈ N and ∩iF (Ti) = F (T ). Then, each
Ti is quasi–nonexpansive with F (Ti) = F (T ) from

∥Tix− z∥ ≤ αi∥Tx− z∥+ (1− αi)∥x− z∥ ≤ ∥x− z∥, ∀x ∈ C, i ∈ N.

Since each Ti is quasi–nonexpansive, {∥Vnu1 − z∥} is non–increasing.
In the cases c = 0 or c = 1, (N4) obviously holds. We can assume c ∈ (0, 1).
Fix c ∈ (0, 1) arbitrary. For simplicity, we set, for any n, k ∈ N ,

Bn,k = ∥Vn+ku1 − V n+k
n+1 (cVnu1 + (1− c)z)∥ − (1− c)∥Vnu1 − z∥.

It is easy to see that, for any n, k ∈ N ,

Bn,k ≤ ∥Vn+ku1 − z∥+ ∥z − V n+k
n+1 (cVnu1 + (1− c)z)∥ − (1− c)∥Vnu1 − z∥

≤ ∥Vnu1 − z∥+ c∥z − Vnu1∥ − (1− c)∥Vnu1 − z∥ = 2c∥Vnu1 − z∥.
Set dn = ∥Vnu1 − z∥ for all n ∈ N . It is easy to see that {dn} = {∥Vnu1 − z∥}
converges to some d ∈ [0,∞). By Bn,k ≤ 2c∥Vnu1 − z∥ for all n, k ∈ N , we have
that (N4) holds if d = limn ∥Vnu1 − z∥ = 0. We assume limn ∥Vnu1 − z∥ = d ̸= 0,
that is, dn ≥ d > 0 for all n ∈ N . Since limn dn = d > 0, there are b > 0 and l1 ∈ N
such that c∥Vnu1 − z∥ ≤ cb < d for all n > l1. Then,

∥Vn+mu1 − V n+m
n+1 (cVnu1 + (1− c)z)∥

≥ ∥Vn+mu1 − z∥ − ∥V n+m
n+1 (cVnu1 + (1− c)z)− z∥

≥ d− ∥(cVnu1 + (1− c)z)− z∥
= d− c∥Vnu1 − z∥ ≥ d− cb > 0

for all n > l1 and m ∈ N . On the other hand, by limn ∥Tun − un∥ = 0, there is
l2 ∈ N such that ∥TVn+mu1 − Vn+mu1∥ < d − cb for all n > l2 and m ∈ N . Thus,
we have

1
2∥TVn+mu1 − Vn+mu1∥ < d− cb ≤ ∥Vn+mu1 − V n+m

n+1 (cVnu1 + (1− c)z)∥
for all n > l0 = l1 + l2 and m ∈ N . By the Condition (C), we have that

∥TVn+mu1 − TV n+m
n+1 (cVnu1 + (1− c)z)∥ ≤ ∥Vn+mu1 − V n+m

n+1 (cVnu1 + (1− c)z)∥
for all n > l0 and m ∈ N . We know that, for any x, y ∈ C,

∥Tn+kx− Tn+ky∥ = ∥(αn+kTx+ (1− αn+k)x)− (αn+kTy + (1− αn+k)y)∥
≤ αn+k∥Tx− Ty∥+ (1− αn+k)∥x− y∥.

This implies that if ∥Tx− Ty∥ ≤ ∥x− y∥ then ∥Tn+kx− Tn+ky∥ ≤ ∥x− y∥. Then,
for n > l0 and k ∈ N , we have that

∥Vn+ku1 − V n+k
n+1 (cVnu1 + (1− c)z)∥

= ∥Tn+kVn+k−1u1 − Tn+kV
n+k−1
n+1 (cVnu1 + (1− c)z)∥

≤ ∥Vn+k−1u1 − V n+k−1
n+1 (cVnu1 + (1− c)z)∥

≤ · · ·
≤ ∥Tn+1Vnu1 − Tn+1(cVnu1 + (1− c)z)∥
≤ ∥Vnu1 − (cVnu1 + (1− c)z)∥ = (1− c)∥Vnu1 − z∥.

This implies that (N4) holds. □
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6. Weak convergence theorems

In this section, we prove some weak convergence theorems for nonlinear mappings
in Banach spaces. In particular, we obtain weak convergence theorems for mappings
in Class (C) which are generalizations of Khan and Suzuki [10] and Suzuki [20].

Lemma 6.1. Let {αn} be a sequence in [0, 1] with
∑

n αn(1− αn) = ∞. Let E be
a uniformly convex Banach space whose dual E∗ has the Kadec–Klee property. Let
C be a closed and convex subset of E and let T be a self–mapping on C satisfying
F (T ) ̸= ∅ and (N2). Set Tn = αnT + (1 − αn)I for all n ∈ N . Let {un} be a
sequence defined by u1 ∈ C and

un+1 = αnTun + (1− αn)un = Tnun, ∀n ∈ N.

Suppose that (N3) and (N4) hold. Then {un} converges weakly to some u ∈ F (T ).

Proof. By F (T ) ̸= ø and (N2), T is quasi-nonexpansive. Let v ∈ F (T ) ⊂ A(T ).
Then, ∥Tx− v∥ ≤ ∥x− v∥ for all x ∈ C. We set D = {x ∈ C : ∥x− v∥ ≤ ∥u1 − v∥}.
Obviously, D is bounded, closed and convex and T is a self–mapping on D. It is also
obvious that ∩nF (Tn) = F (T ) ̸= ∅, each Tn is quasi-nonexpansive self-mapping on
D and {un} ⊂ D. Since (N3) holds, by Lemma 3.3 (d), we have limn ∥Tun−un∥ = 0.
SinceD is weakly compact, there exists a subsequence {unj} of {un} which converges
weakly to some u ∈ D. By Theorem 4.2, we have u ∈ F (T ). Since (N4) holds, by
Lemma 5.3, any weakly convergent subsequence of {un} converges weakly to u.
Thus {un} converges weakly to u ∈ F (T ). □

Lemma 6.2. Let b be a real number belonging to (0, 1) and let {αn} be a sequence
in [0, b].with

∑
n αn = ∞. Let E be a reflexive Banach space which has the Opial

property. Let C be a closed and convex subset of E and let T be a self–mapping on
C satisfying F (T ) ̸= ∅ and (N2). Let {un} be a sequence defined by u1 ∈ C and

un+1 = αnTun + (1− αn)un, ∀n ∈ N.

Suppose that (N3) holds. Then {un} converges weakly to some u ∈ F (T ).

Proof. By F (T ) ̸= ø and (N2), T is quasi-nonexpansive. Let v ∈ F (T ) ⊂ A(T ).
Then, ∥Tx− v∥ ≤ ∥x− v∥ for all x ∈ C. We set D = {x ∈ C : ∥x− v∥ ≤ ∥u1 − v∥}.
Then, D is bounded closed convex and T is a self–mapping on D. Obviously,
{un} ⊂ D. Since (N3) holds, by Lemma 3.3 (b),(c), we have that {∥un − v∥}
converges and limn ∥Tun − un∥ = 0. Since D is weakly compact, there exists a
subsequence {unj} of {un} which converges weakly to some u ∈ D. By Lemma 3.4,
we have u ∈ F (T ). Recall that {∥un − v∥} converges for v ∈ F (T ). Then, by
Lemma 3.5, any weakly convergent subsequence of {un} converges weakly to u.
Thus {un} converges weakly to u ∈ F (T ). □

Remark 2. In Lemmas 6.1 and 6.2, assume that C is bounded. Set αn = b ∈ (0, 1)
for n ∈ N . Since (N2) and (N3) hold, by Lemma 4.3, we have ∅ ̸= F (T ) ⊂ A(T ).
Then, we can remove the assumption F (T ) ̸= ∅.

The following are weak convergence theorems for mappings in Class (C) which
are derived from Lemmas 6.1 and 6.2.
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Theorem 6.3. Let {αn} be a sequence in [1/2, 1] with
∑

n αn(1−αn) = ∞. Let E
be a uniformly convex Banach space whose dual E∗ has the Kadec–Klee property.
Let C be a bounded, closed and convex subset of E and let T be a self–mapping of
Class(C) on C. Set Tn = αnT + (1 − αn)I for n ∈ N . Let {un} be a sequence
defined by u1 ∈ C and

un+1 = αnTun + (1− αn)un = Tnun, ∀n ∈ N.

Then, {un} converges weakly to some u ∈ F (T ).

Proof. We know that a mapping T of Class (C) satisfies (N2). Under our assump-
tions, by Lemma 5.4 (1), we have that (N3) holds. Since C is bounded, by Re-
mark 2, we know ∅ ̸= F (T ) ⊂ A(T ). Then, each Tn is quasi–nonexpansive and
∩nF (Tn) = F (T ) ̸= ∅. By F (T ) ̸= ∅ and Lemma 5.4 (2), we have that (N4) holds.
By Lemma 6.1, we have the result. □

Theorem 6.4. Let b be a real number belonging to [1/2, 1) and let {αn} be a se-
quence in [1/2, b]. Let E be a reflexive Banach space which has the Opial property.
Let C be a bounded, closed and convex subset of E and let T be a self–mapping of
Class(C) on C. Let {un} be a sequence defined by u1 ∈ C and

un+1 = αnTun + (1− αn)un, ∀n ∈ N.

Then {un} converges weakly to some u ∈ F (T ).

Proof. We note that
∑

n αn = ∞ and a mapping T of Class (C) satisfies (N2). By
Lemma 5.4 (1), we have that (N3) holds. Since C is bounded, by Remark 2, we
know ∅ ̸= F (T ) ⊂ A(T ). By Lemma 6.2, we have the result. □

A nonexpansive mapping satisfies all assumptions in Lemmas 6.1 and 6.2. The
following theorems are direct consequences of Lemmas 6.1 and 6.2.

Theorem 6.5. Let {αn} be a sequence in [0, 1] with
∑

n αn(1−αn) = ∞. Let E be
a uniformly convex Banach space whose dual E∗ has the Kadec–Klee property. Let
C be a closed and convex subset of E and let T be a nonexpansive self–mapping on
C with F (T ) ̸= ∅. Let {un} be a sequence defined by u1 ∈ C and

un+1 = αnTun + (1− αn)un, ∀n ∈ N.

Then, {un} converges weakly to some u ∈ F (T ).

Theorem 6.6. Let b be a real number belonging to (0, 1) and {αn} be a sequence in
[0, b] with

∑
n αn = ∞. Let E be a reflexive Banach space which has the Opial prop-

erty. Let C be a bounded, closed and convex subset of E and let T be a nonexpansive
self–mapping on C. Let {un} be a sequence defined by u1 ∈ C and

un+1 = αnTun + (1− αn)un, ∀n ∈ N.

Then {un} converges weakly to some u ∈ F (T ).
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7. Appendix

In this section, we present a mapping T which does not belong to Class (C), but
it has desirable properties in our study.

Example 1. Let R2 be the 2-dimensional Euclidean space. Let C = [0, 1]2 ⊂ R2.
Let T be a mapping on C defined by

T (x1, x2) =
(
1
4(1 + 2x2)x1 , x2

)
, ∀(x1, x2) ∈ C.

Then, the followings hold:

(1) T is not Class (C) and hence T is not nonexpansive.
(2) T satisfies (N2).

For simplicity, set Tn = 1
2T + 1

2I for n ∈ N . Let {un} be a sequence defined by

u1 ∈ C, un+1 =
1
2Tun + 1

2un = Tnun = Vnu1, ∀n ∈ N.

Then,

(3) (N3) and (N4) hold.

Proof. It is obvious that C is compact and convex and F (T ) = {(x1, x2) ∈ C : x1 =
0}. It is also obvious that T is quasi–nonexpansive. Let x = (x1, x2) ∈ C and set
r(x2) =

1
4(1 + 2x2). Then, T (x1, x2) = (r(x2)x1, x2) and

1
4 ≤ r(x2) ≤ 3

4 .
We show (1). Let x = (1, 0) and y = (1, 1) ∈ C. Then, y − x = (0, 1) and

x− Tx = (1, 0)− (14 , 0) = (34 , 0), T y − Tx = (34 , 1)− (14 , 0) = (12 , 1).

One can easily see that
1
2∥x− Tx∥ < 1 = ∥x− y∥, ∥x− y∥ = 1 < ∥Tx− Ty∥.

This implies that T is not in Class (C) and hence T is not nonexpansive.
We show (2), that is, we show that T satisfies (N2).
Let y = (y1, y2) ∈ C and x = (x1, x2). In the case of r(y2)y1 ≥ x1, it is obvious

from y1 ≥ r(y2)y1 ≥ x1 that |x1 − r(y2)y1| ≤ |x1 − y1|. This implies that

∥x− Ty∥2 = |x1 − r(y2)y1|2 + |x2 − y2|2

≤ |x1 − y1|2 + |x2 − y2|2

= ∥x− y∥2

and hence
∥x− Ty∥ ≤ 4∥Tx− x∥+ ∥x− y∥.

In the case of r(y2)y1 < x1, we have from 0 ≤ r(y2)y1 < x1 that 0 < x1 − r(y2)y1 ≤
x1 ≤ 4(x1 − r(x2)x1). Then, we have

4∥x− Tx∥ = 4∥(x1, x2)− (r(x2)x1, x2)∥ = 4∥(x1 − r(x2)x1, 0)∥ ≥ ∥(x1, 0)∥.
This implies that

∥x− Ty∥ = ∥(x1 − r(y2)y1, x2 − y2)∥
≤ ∥(x1 − r(y2)y1, 0)∥+ ∥(0, x2 − y2)∥
≤ ∥(x1 − r(y2)y1, 0)∥+ ∥(x1 − y1, x2 − y2)∥
≤ ∥(x1, 0)∥+ ∥x− y∥ ≤ 4∥Tx− x∥+ ∥x− y∥.
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Thus, T satisfies (N2) with s = 4.
We show (3). Set u1 = (x(1), x2) and M = 1

2(1 + r(x2)) < 1. We know

u2 = V1u1 =
1
2(r(x2)x(1), x2) +

1
2(x(1), x2) =

(
1
2(1 + r(x2))x(1), x2

)
.

Inductively, we have un+1 = (x(n+1), x2) and x(n+1) = Mnx(1) for n ∈ N . Then,
limn x(n) = 0. From the following inequality, it is obvious that (N3) holds.

∥Tun+1 − Tun∥ =
∥∥(r(x2)x(n+ 1), x2

)
−

(
r(x2)x(n), x2

)∥∥
= r(x2)

∥∥(x(n+ 1)− x(n), 0
)∥∥

≤ ∥(x(n+ 1)− x(n), 0)∥
= ∥(x(n+ 1), x2)− (x(n), x2)∥
= ∥un+1 − un∥.

Let u1 = (x(1), x2), u = (0, v) ∈ F (T ) and c ∈ [0, 1]. Fix n ∈ N . Set

x = Vnu1 = (x(n), x2), y = cVnu1 + (1− c)u.

Then, we have

y = cVnu1 + (1− c)u = c(x(n), x2) + (1− c)(0, v) = (cx(n), y2),

where y2 = cx2 + (1− c)v. Set L = 1
2(1+ r(y2)). We have 0 < L < 1. We also have

that, for any k ∈ N ,

V n+k
n+1 x =

(
Mkx(n), x2

)
, V n+k

n+1 y =
(
cLkx(n), y2

)
,

∥Vn+ku1 − V n+k
n+1 (cVnu1 + (1− c)u)∥

= ∥V n+k
n+1 x− V n+k

n+1 y∥ =
∥∥((Mk − cLk)x(n), x2 − y2

)∥∥ .
It is obvious that limn supk |Mk − cLk|x(n) = 0. We know x2− y2 = (1− c)(x2− v)
and Vnu1 − u = (x(n), x2 − v). Since n is arbitrary, we have

lim supn supk∈N ∥V n+k
n+1 x− V n+k

n+1 y∥ ≤ ∥(0, x2 − y2)∥ = (1− c)∥(0, x2 − v)∥,
(1− c) limn ∥Vnu1 − u∥ = (1− c) limn ∥(x(n), x2 − v)∥ = (1− c)∥(0, x2 − v)∥.

Thus, it follows that (N4) holds. □

References

[1] K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for
λ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335–343.

[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations
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