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MAHARAM-TYPES AND LYAPUNOV’S THEOREM FOR
VECTOR MEASURES ON LOCALLY CONVEX SPACES
WITHOUT CONTROL MEASURES

M. ALI KHAN AND NOBUSUMI SAGARA

ABSTRACT. We formulate the saturation property for vector measures in locally
convex Hausdorff spaces as a nonseparability condition on the derived Boolean
o-algebras by drawing on the topological structure of vector measure algebras.
We exploit a Pettis-like notion of vector integration in locally convex Haus-
dorff spaces, the Bourbaki-Kluvanek—Lewis integral, to derive an exact version
of the Lyapunov convexity theorem in locally convex Hausdorff spaces without
the Bartle-Dunford—Schwartz property. We apply our Lyapunov convexity the-
orem to the bang-bang principle in Lyapunov control systems in locally convex
Hausdorff spaces to provide a further characterization of the saturation property.

1. INTRODUCTION

Lyapunov’s convexity theorem on the range of an atomless vector measure has
proved to be of tremendous use and significance in applied work in the theories of
optimal control, of statistical decisions, of Nash equilibria in large games, and of
Walrasian equilibria in mathematical economics; see the references of the extended
introduction in [11]. As explored in [10, 11, 12] at length, the so-called satura-
tion property is an indispensable structure on measure spaces for the Lyapunov
convexity theorem to be valid without the closure operation for measures taking
values in infinite-dimensional spaces. This property of measure spaces is by now
a well established notion in measure theory, as formulated in the scalar measure
case (see [b, 7, 24]). For vector measures with values in locally convex Hausdorff
spaces (lcHs), the notion of saturation is easily adapted under the Bartle-Dunford—
Schwartz (BDS) property of lcHs, a property automatically satisfied in Banach
spaces (see [10, 12]), to guarantee the existence of control measures for any vector
measure.

A natural question pertains to a fruitful formulation of the notion of saturation
for vector measures in IcHs without control measures. Such a motivation stems from
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the recent development on the Lyapunov convexity theorem in Banach spaces, and
we provide an answer to this question here. The main contribution of this answer
hinges on what we see as the following threefold contribution:

(i) We formulate the saturation property for vector measures in IcHs as a nonsep-
arability condition on the Boolean o-algebras along the lines of [5, 8, 24, 34]
by drawing on the topological structure of vector measure algebras established
in the important monograph [17].

(ii) We exploit a Pettis-like notion of vector integration in lcHs, the Bourbaki-
Kluvének-Lewis integral, (see [1, 13, 22]) to derive an exact version of the
Lyapunov convexity theorem in lcHs without the BDS property, a result that
is a natural extension of those presented in [10, 12] (necessity and sufficiency).

(iii) We apply our Lyapunov convexity theorem to the bang-bang principle estab-
lished in [11] and Lyapunov control systems in lcHs explored in [17, 19] to
provide a further characterization of saturation.

The organization of the paper is as follows. In Section 2 we introduce the notion
of Maharam types and saturation in Boolean o-algebras and define vector measure
algebras in IcHs. Section 3 deals with the space of integrable functions with respect
to a vector measure in lcHs and investigates its topological properties, especially
completeness and separability. Section 4 presents the main result of the paper in
which the equivalence of the saturation property of a vector measure algebra and
the Lyapunov convexity theorem is established in full generality. Section 5 contains
the application of the main result to the bang-bang principle and Lyapunov control
systems.

2. PRELIMINARIES

2.1. Boolean Algebras and Maharam Types. Let F be a Boolean algebra with
binary operations V and A, and a unary operation ¢, endowed with the order < given
by A< B<= A= AA B, where @ = Q° is the smallest element in F and §) = ¢
is the largest element in F. A subset Z of F is an ideal if @ € Z, AV B € T for
every A,B € 7 and B < A with A € 7 implies B € Z. The principal ideal Fg
generated by E € F is an ideal of F given by Fgp = {A € F | A < E}, which is a
Boolean algebra with unit E. An element A € F is an atom if A # () and E < A
with F € F implies either E = @ or E = A; F is nonatomic if it has no atom.

A subalgebra of F is a subset of F that contains €2 and is closed under the Boolean
operations V, A and €. A subalgebra U of F is order-closed with respect to the order
< if any nonempty upwards directed subsets of & with its supremum in F has the
supremum in . A subset U C F completely generates F if the smallest order closed
subalgebra in F containing U is F itself. The Maharam type of a Boolean algebra
F is the smallest cardinal of any subset & C F which completely generates F. By
k(F) we denote the Maharam type of . A Boolean algebra is saturated if for every
E € F with E # @ the Maharam type «(Fg) of the principal ideal Fg generated
by E is uncountable. A Boolean algebra F is nonatomic if and only if xk(Fg) is
infinite for every E € F with E # O (see [12, Proposition 2.1]).

2.2. Vector Measure Algebras in IcHs. Let (©2, F) be a measurable space and
X be a locally convex Hausdorff space (briefly, IcHs). A set function m : F — X
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is countably additive if for every pairwise disjoint sequence {4;} in F, we have
m(U;2; Ai) = Yooy m(A;), where the series is unconditionally convergent with
respect to the locally convex topology on X. It is well-known that if m is countably
additive with respect to “some” locally convex topology on X that is consistent with
the dual pair (X, X*), then it is countably additive with respect to “any” locally
consistent convex topology on X (see [36, Proposition 4]). This is a consequence of
Orlicz—Pettis theorem (see [25, Theorem 1]). Therefore, the countable additivity of
vector measures is independent of the particular topologies lying between the weak
and Mackey topologies of X.

For a vector measure m : F — X, aset N € F is m-null if m(AN N) = 0 for
every A € F. An equivalence relation ~ on F is given by A ~ B if and only if
AAB is m-null, where AAB is the symmetric difference of A and B in F. The
collection of equivalence classes is denoted by F=F / ~ and its generic element A
is the equivalence class of A = F. The lattice operatlons V and A in F are g1ven
in a usual way by AVB=AUBand AAB=ANB B. The unary operation ¢
F is obtained for taking complements in F by Ac = (AC) Under these operatlons
Fis a Boolean o-algebra. Let m : F — X be an X- valued countably additive
function on F defined by 1(A) = m(A) for A € F. Then the pair (F,m) is called
a vector measure algebra induced by m. Denote by Fp = {ANE | A€ F}, ao-
algebra of E € F inherited from F, and (]—" B, M) a vector measure algebra induced
by the restriction of m to Fg. Then Fr £ is the principal ideal of F generated by the
element £ € F. A o- algebra Fis m- essentzally countably generated if there exists
a subset G of F such that g is countable and F is the smallest Boolean o- algebra
containing G. R R

A set A € F is an atom of m if m(A) # 0 and A is an atom of F. If m
has no atom, it is said to be nonatomic. The Maharam type of a vector measure
m : F — X is defined to be Ii(ﬁ) Thus, x(F) is countable if and only if F is
m-essentially countably generated. Hence, m is nonatomic if and only if n(]-/%) is
infinite for every m-nonnull £ € F. A vector measure space (£, F,m) (or a vector
measure m) is saturated if /@(}/'E) is uncountable for every m-nonnull £ € F. Let YV
be a lcHs. A vector measure n: F — Y is absolutely continuous (or m-continuous)
with respect to a vector measure m : F — X if every m-null set is n-null. It is
evident that for every IcHs Y a vector measure n : F — Y is saturated (resp.
nonatomic) if and only if there exists a saturated (resp. nonatomic) vector measure
m : F — X with respect to which n is absolutely continuous.

3. THE L'-SPACE OF VECTOR MEASURES

3.1. Integrals with Respect to Vector Measures. The following Pettis-like
notion of the integral of measurable functions with respect to a vector measure was
introduced in [1], and elaborated independently by [13] and [22, 23]. For a detailed
treatment of this integral, see [17, 29, 30].

Definition 3.1. Let (z*,m) : F — R be the scalar measure defined by (z*, m)(A) :=
(x*,m(A)) with z* € X* and A € F. A measurable function f : Q — R is m-inte-
grable if it is integrable with respect to the scalar measure (x*, m) for every z* € X*
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and for every A € F there exists a vector x4 € X such that
(x*,xa) = / fd{z*,m) for every z* € X*.
A

Since the dual space X* is a total family of continuous linear functionals on a
IcHs X, the vector z 4 is unique, which we denote by [ 4 Jdm. Unlike the definition
of the integrals with respect to m formulated in [12] (see also the references therein),
no assumption is made about the completeness of X and the existence of a scalar
measure with respect to which m is absolutely continuous is unnecessary.

The vector space of all m-integrable functions is denoted by L(m). Let P be a
separating family of seminorms in X that generates the locally convex topology 7.
Let Uy denotes the polar of the set U, = {z € X | p(z) < 1}, that is, U, = {z* €
X* | {z*,z)| <1Vx € U,}. Each p € P induces a seminorm p(m) in L(m) via the
formula

pm)(f) = sup [ Ifldle" m)l, 1 € Lim)
z*elUy
where [(x*,m)| denotes the variation of the scalar measure (x*;m). The above
seminorms turn L(m) into a locally convex space. The quotient space of L(m)
modulo the subspace (,cp p(m)~1(0) of all m-null functions is denoted by L!(m),
which is a IcHs with its topology denoted by 7(m).

Denote by L%(m) (the equivalence classes of) the space of all m-essentially
bounded measurable functions f on 2, endowed with the m-essentially supremum
norm

| flloc =inf{a > 0| {w e Q| |f(w)| > a} is m-null}.

Recall that X is said to be quasicomplete if every bounded, closed subset of X
is complete; X is said to be sequentially complete if every Cauchy sequence in X
converges. Every quasicomplete lcHs is sequentially complete. If X is a sequentially
complete IcHs, then L°°(m) C L*(m) (see [17, Lemma I1.3.1] or [30, Theorem 4.1.9])
and (L>°(m),| - |lec) is @ Banach space (see [30, Theorem 4.5.8]).

A linear operator T, : L'(m) — X defined by T,,,f = [ fdm for f € L'(m) is
called an integration operator of m. We also denote T, f by m(f). Since L*°(m) C
L'(m) whenever X is sequentially complete, one can restrict the integration operator
Ty to L (m) endowed with the m-essential sup norm. Hence, if X is a sequentially
complete lcHs, then the integration operator T,,, : L>°(m) — X is continuous (see
[17, Lemma I1.3.1]). Moreover, the following continuity result of the integration
operator is true without any completeness assumption on X.

Lemma 3.2. The integration operator Ty, : L*(m) — X is continuous for the weak
topologies'of L'(m) and X .

Proof. We first show that the finite signed measure xz*m is a continuous linear
functional on L!(m) for every z* € X* with respect to 7(m)-topology. To this end,
let {f,} be a net in L*(m) such that p(m)(f, — f) for every p € P. If 2* € X*

ISee [26] for the specification of the dual space of L'(m).
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vanishes on Up, then z* € Uy, and hence, we obtain

[ gedtarmy~ [ fd<:c*,m>] < [ Vo= Tl )| < plom) = ) = 0

If 2* # 0 on Uy, define p(m)(z*) = sup,¢y, [(z*, z)|. By normalization, we have
y* = z"/p(m)(x*) € Uy, and hence

] [ gudter i~ | fd<x*,m>\ < pm) @) [ 1fe= F1dlty" )

< [p(m) (@)][p(m)(fa = f)] = 0.

Therefore, [ fod(z*,m) — [ fd(z*, m) for every z* € X*. This means that (z*,m)
is an element of the dual space (L'(m))* for every #* € X*. Let {go} be a net in
L*(m) that converges weakly to g € L*(m). Then for every z* € X*, we have

(@ Tnga) = [ gudla®sm) — [ gd(a,m) = (&", Tyng)

Hence, T}, is continuous for the weak topologies of L'(m) and X. O

3.2. Completeness of L'(m). A measure space (£, F, i) is semi-finite if for every
A € F with u(A) = oo there exists £ € F with E C A such that 0 < u(E) < co.
A semi-finite measure space (2, F, i) is localizable if its measure algebra (]? L 1) is
Dedekind complete as a Boolean algebra. A measure space (€2, F, i) is localizable
if and only if L'(u)* = L>(u) (see [5, Theorem 365M]). Thus, the duality between
L'(p) and L () is invalid for every non-localizable measure .

For p € P, the p-semivariation of a vector measure m : F — X is a set function
|m|, : F — R defined by

[mllp(A) = sup [{z",m)[(4), AecF.

z*eUy

The p-semivariation ||m||, of m is bounded, monotone and countably subadditive
with the following estimate (see [17, Lemma I1.1.2]):

sup p(m(E)) < [[ml[p(A) < 2 sup p(m(E)).
ECA ECA

A finite (scalar) measure p, is a p-control measure of m whenever p,(A) = 0 if and
only if ||m||,(A) = 0. If X is a IcHs, then for every p € P there exists a p-control
measure of m (see [17, Corollaries I1.1.2 on p.19 and IL.1.1 on p.21]). A vector
measure m : F — X is absolutely continuous with respect to a scalar measure u
if ;1(A) = 0 implies that m(A) = 0. A finite measure u is a control measure of m
whenever p(A) = 0 if and only if m(AN E) = 0 for every E € F.

Since each characteristic function of F is identified with an element of L!(m),
we can restrict the locally convex Hausdorff topology 7(m) of L!(m) to the vector
measure algebra (]? ,m) of m. Thus, the relative 7(m)-topology on Fis generated
by a family of semimetrics {d, | p € P} on F by the formula

dp(A, B) := p(m)(xa — x8) = |mll,(AAB), A,BeF.

Denote by LL(m) = {fxr | f € L'(m)} the vector subspace consisting of m-
integrable functions on  restricted to E € F and similarly, L (m) = {fxe | f €
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L>(m)} the vector subspace consisting of m-essentially bounded functions on 2
restricted to F.

Without completeness, the function space L'(m) would be useless in the limit
operation of integrals. To overcome this difficulty, [17] introduced the notion of
closed vector measures in IcHs.

Definition 3.3. A vector measure m : F — X is closed if F is complete in the
7(m)-topology.

Closed vector measures are those for which most of the classical
theory of L' spaces carries over, especially results concerning com-
pleteness. The phenomenon of non-closed measures is observable
only if the range space is not metrizable. ([17, p.67].)

A sufficient condition for the closedness of m given by [32, Proposition 1] is the
metrizability of the range m(F) in a IlcHs X. In particular, if X is a Fréchet space,
then L'(m) is also a Fréchet space (see [17, Theorems IV.4.1 and IV.7.1] and [4,
Theorem 1]). The significance of the notion of closed vector measures is exemplified
by the next characterization of the completeness of L!(m) attributed to [17], which
can be slightly generalized as the current form, where the assumption of quasicom-
pleteness is replaced by that of sequentially completeness (see [31, Proposition 1]
and [4, Proposition 3]).

Proposition 3.4. Let X be a sequentially complete IcHs. Then a vector measure
m: F — X is closed if and only if L'(m) is 7(m)-complete.

For other characterizations of closed vector measures, see [27, 28, 32, 33].
If m has a control measure p, then the 7(m)-topology on the Boolean algebra F
is metrized by
d(A,B) = W(AAB), A,BE€F,

where (F,d) is a complete metric space (see [3, Lemma II1.7.1]). It thus follows
immediately from Proposition 3.4 that a vector measure is closed if it has a control
measure. A IcHs X has the Bartle-Dunford-Schwartz (BDS) property if every X-
valued vector measure has a control measure. As demonstrated in [11, Example 2.1],
a lcHs X has the BDS property for each of the following cases: (i) X is metrizable;
(ii) X is Suslin; (iii) X™* is weakly™ separable.

Example 3.5. A vector measure m : F — X is countably determined if there exists
a sequence {z} in X* such that a set A € F is m-null if it is (), m)-null for each
1=1,2,.... A countably determined vector measure m in a lcHs X has a control
measure. Indeed, its control measure is given by

()
; @y A€

Remark 3.6. At a first glance, the closedness of vector measures seems innocuous,
but it demands a lot because a vector measure m : F — X is closed if and only if
there exists a localizable measure p such that m is p-continuous (see [17, Theorem
IV.7.3] and [15, Lemma 11 and Corollary 13]). Indeed, it is “nothing” but absolute
continuity in disguise!
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3.3. Separability of L'(m). The following observation due to [34, Proposition 1A]
(see also [30, Theorems 4.6.2 and 4.6.3]) plays a crucial role to develop the notion
of saturation for vector measures in lcHs.

Proposition 3.7. If X is a sequentially complete IcHs, then L'(m) is separable if
and only if F is separable.

Indeed, for a scalar measure u, the non-separability of L'(p) is a defining property
for the saturation of the measure space (€2, F,u) (see [5, 3310 and 365X(p)], [7,
Corollary 4.5], and [8, Fact 2.5]).

Theorem 3.8. Let X be a sequentially complete IcHs and m : F — X be a vector
measure. Then the following conditions are equivalent:

(i) (2, F,m) is saturated;

ii) Fg is non-separable for every m-nonnull £ € F;
(i) Y
(iil) L% (m) is non-separable for every m-nonnull E € F.

Proof. (ii) < (iii): See Proposition 3.7.

(iii) = (i): If the Maharam type of j-"\E is countable for some m-nonnull F € F,
then there is a countable subset I of j—"} that completely generates .7-"75 By virtue
of the axiom of choice, there is a choice function ¢ : Fr — Fg such that g@(ﬁ) cA
for every Ae ]/-'E Let G be the subalgebra of Fg completely generated by go(Z:l\ ). By
construction, G is m-essentially countably generated satisfying G= j-'\E, and hence,
LL(m) is separable (see [34, Proposition 2]).

(i) = (iii): If the Maharam type of j-"\E is uncountable for every m-nonnull ¥ € F,
then the cardinality of ]/-"E is uncountable. Suppose, to the contrary, that L}s (m) is

separable for some m-nonnull £ € F. By Proposition 3.7, ]/-"E is separable, so there
exists a countable subset G of Fg such that for every A € Fg, every €1,...,6, >0
and every pi,...,pr € P there exists B € G satisfying ||m/||,,(AAB) < ¢; for each
i =1,...,k. On the other hand, since ]/-"E \ 3 is uncountable, there exists an m-
nonnull set A € Fg\G with Ae ]/:E\QA . Since P is a separating family of seminorms,
we can take a seminorm p € P with p(m(A)) > 0. Take any B € G. Then ANB = (),
and hence, |m|,(AAB) = |[[m|,(AUB) > ||m||,(A) > p(m(A)) for every B € G, a
contradiction. Therefore, L (m) is non-separable. O

4. LYAPUNOV CONVEXITY THEOREM IN LCHS

4.1. Lyapunov Measures and Lyapunov Operators. Following [10, 12], we
characterize the Lyapunov convexity theorem in terms of the integration operator.

Definition 4.1. A vector measure m : F — X is a Lyapunov measure if for every
E € F the set m(Fg) is weakly compact and convex in X.

Definition 4.2. The integration operator T, : L>(m) — X is said to be:

(i) a nonatomic operator if for every m-nonnull E € F and every neighborhood U
of the origin in X there exists f € L3 (m) \ {0} with signed values {—1,0,1}
such that T, f € U;
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(ii) a Lyapunov operator of m if for every m-nonnull E € F the restriction T, :
L% (m) — X is not injective.

Theorem 4.3. Let X be a sequentially complete lcHs and m : F — X be a vector
measure. Then m is nonatomic if and only if T,, : L>®(m) — X is a nonatomic
operator.

Proof. Suppose that T,, is a nonatomic operator. If m has an atom FE € F, then
m(E) # 0. Thus, for every neighborhood U of 0 there exists f € LY (m) \ {0} with
signed values {—1,0,1} such that T,,f € U N (=U). Since measurable functions
are constant on atoms of m, either f = xg or f = —xg. We thus obtain m(F) €
{£Tf} € Un(=U) for every neighborhood U of 0, and hence, m(E) = 0, a
contradiction.

Conversely, suppose that T, is not a nonatomic operator. Then there exists
E € F with m(F) # 0 and a convex, balanced, absorbing neighborhood U of 0
such that T}, f € U for every f € L% (m) \ {0} with signed values {—1,0,1}. (Such
a neighborhood can be taken as U N (—U) as above). Since there exists p € P
such that U = U, (see [35, Theorems 1.34 and 1.35]), for every m-nonnull A € Fg,
we have m(A) = Tyyxa € Up. Thus, |m|,(A) > p(m(A)) > 1 for every m-nonnull
A € Fg. If F is not an atom of m, then there exists A € Fg such that m(A) # m(E)
and m(A) # 0. Take any p-control measure i, of m. By the p,-continuity of |m||,,
we have pp(A) > 0. Hence, there exists 6 > 0 such that for every B € F with
pp(ANB) < 60, we have |m||,(ANB) < 1, a contradiction. Therefore, E' is an atom
of m. O

The range of a Lyapunov measure m is weakly compact and convex in X in
view of m(F) = m(Fq). If m has an atom E € F, then evidently, m(Fg) is
not convex in X. Therefore, every Lyapunov measure is nonatomic. As the next
result demonstrates, the nonatomicity of vector measures is reinforced as well by
the notion of Lyapunov operators (see [10, Theorem 3.2]).

Theorem 4.4. Let X be a sequentially complete lcHs and m : F — X be a vector
measure. If T,, : L>®(m) — X is a Lyapunov operator, then it is a nonatomic
operator.

The following result is due to [17, Theorem V.1.1].

Proposition 4.5. Let X be a quasicomplete IcHs and m : F — X be a closed
vector measure. Then m is a Lyapunov measure if and only if T,, : L°°(m) — X is
a Lyapunov operator. The range of a Lyapunov measure m is given by

m(F)={m(f) e X |0< f<1, feL®m)}.
4.2. Saturation: A Sufficiency Theorem.

Lemma 4.6. Let X be a sequentially complete lcHs and m : F — X be a closed
vector measure. Then a bounded closed convex subset of L>°(m) is weakly compact

in L'(m).

Proof. Let K be a bounded, closed, convex subset of L>(m). By Proposition 3.4, K
is 7(m)-complete in L'(m). Since the 7(m)-topology of L!(m) is generated by the
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family of seminorms {gp .+ | p € P, z* € Uy} defined by g, .+(f) = [ |fld[(z*, m)],
the quotient space Ll(m)/qp_,i*(O) is a vector subspace of L!(|(z*,m)|) endowed
with the L!(|(z*,m)|)-norm. Let - : L'(m) — Ll(m)/q;;* (0) be the natural
projection. Then 7, ,+(K) is a weakly closed subset of L'(|(z*,m)|) in view of

its closedness and convexity. Since the boundedness of K in L (m) implies that
Tp,2+ (K) is uniformly integrable in the sense that

(o i 4)0 f@ii}f(m/f; IFldita, m)| =0

by the Dunford-Pettis criterion (see [3, Corollary IV.8.11]), mp .+ (K) is weakly
sequentially compact, and hence, weakly compact in L*(|(z*, m)]) for every 2* € Uy
and p € P in view of the Eberlein-Smulian theorem (see [3, Theorem V.6.1]). By
[17, Theorem 1.1.1], the weak compactness of mp .+(K) in L*(|{(z*,m)|) for every
p € P and z* € X* implies the weak compactness of K in L'(m). O

The density of a topological space .S, denoted by dens S, is the smallest cardinal of
any dense subset of S. The density of a IcHs X is equal to the topological dimension
of X, i.e., the smallest cardinal of any set whose linear span is dense in X whenever
dens X is infinite.

Lemma 4.7. /@(.7/-";) < dens]% for every m-nonnull E € F.

Proof. Let E € F be an m-nonnull set and {A, I a<dens Ty
in Fp such that its 7(m)-closure coincides with Fp. Denote by U the subalgebra

a<dens Fp . Since {A }a<dens.7-'
U, the 7(m)-closure i of LA{ coincides with Fp. If we demonstrate that I = Fp,
then we have /i(./." ) < dens Fr E-_To this end, it suffices to show the T( )-closedness
of U. Let {A”} be a net in U converging to A. Since il = ]-"E, there exists
BY € U such that BY < A\ A” € Fy for each v and the net {B”} converges to
A Extracting a subnet from {B” } (Whlch we do not relabel) one may assume that
{B” }is upward directed in U with lim, B” = sup,, BY = A. Since U is order closed,
we have A € U. O

be a family of elements

of F completely generated by {g } is contained in

Lemma 4.8. If X is a sequentially cg\mplete lcHs and m : F — X 1is a closed

vector measure such that dens X < k(Fg) for every m-nonnull E € F, then T,
L>°(m) — X is a Lyapunov operator.

Proof. Suppose to the contrary that T}, is not a Lyapunov operator. Then there
exists an m-nonnull set £ € F such that the restriction T}, : L% (m) — X is an
injection. Let B denote the closed unit ball in L>(m) and set Bg = BN Ly (m).
Since LY (m) is a closed vector subspace of L!'(m), by Lemma 4.6, Bg is a weakly
compact subset of L'(m). Since the integration operator Tj, : L'(m) — X is
continuous for the weak topologies of L!(m) and X by Lemma 3.2, the restriction T},
to B is a homeomorphism between Bg and T,,,(Bg). It follows from the convexity
and weak closedness of T,,(Bg) that T,,(Bg) is also closed in the strong topology
of X. Let {74 }a<dens x be a dense subset of T}, (Bg) and define f, = T,'z,. Then
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{fa}a<dens x is a weakly dense subset of Bg in L' (m). Since B is convex, it is 7(m)-
closed, and hence, { fq}a<dens x i also a 7(m)-dense subset of Bg. Since Fr C Bg,

by Lemma 4.7, we have /f(]/-"g) < dens]/-"g < dens Bg < dens X, a contradiction to
the hypothesis. O

An immediate consequence of Proposition 4.5 and Lemma 4.8 is the following
version of the Lyapunov theorem, which is a further generalization of [6, 10, 12].

Theorem 4.9. If X is a quasicomplete lcHs and m : F — X 1is a closed vector mea-

sure such that dens X < /i(].';;) for every m-nonnull E € F, then m is a Lyapunov
measure with its range given by

m(F) ={m(f) e X[0< f <1, felL>(m)}

In particular, if X is separable and m is saturated, then the density hypothesis of

Theorem 4.9 is automatic because dens X = Xy < 8y < k(Fg) for every m-nonnull
EeF.

Remark 4.10. The algebraic dimension of a lcHs X is the cardinality of a Hamel
basis in X. We denote by dim X the algebraic dimension of X. Consider the
dimensionality condition:

dim X < dim L% (m) for every m-nonnull £ € F.

This is obviously a sufficient condition for 7, to be a Lyapunov operator, introduced
in [17, Theorem V.2.1] and then applied in [10, Theorem 5.1] for the Banach space
case. The dimensionality condition is sharpened to the density condition:

dens X < k(Fg) for every m-nonnull E € F.

This condition is found in [6, Corollary 1] for the Banach space case and then
elaborated in [12, Theorem 4.1] for the lcHs case with the BDS property, where m
has a control measure p, and hence, L*>(m) = L% (u). For the detailed discussion
of the dimensionality and density conditions, see [10, Remark 3.2]. Theorem 4.9 is
a direct generalization of [17] employing the Bourbaki-Kluvanek—Lewis integrals.

4.3. Saturation: A Necessity Theorem. Let Y be alcHs. Denote by ca(F, m,Y)
the space of Y-valued closed vector measures on F which are absolutely continuous
with respect to a vector measure m : F — X.

Theorem 4.11. Let X be a quasicomplete separable IcHs, Y be a quasicomplete,
separable lcHs with a vector subspace that is isomorphic to an infinite-dimensional
Banach space, and m : F — X be a closed vector measure. Then the following
conditions are equivalent:

(i) (2, F,m) is saturated;

(ii) 1), : L*°(n) = Y is a Lyapunov operator for every n € ca(F,m,Y);

(iii) Ewvery vector measure in ca(F,m,Y) is saturated;

(iv) Ewvery vector measure in ca(F,m,Y) is a Lyapunov measure.

Proof. (i) = (iii): Trivial.
(iii) = (iv): See Lemma 4.8 and Theorem 4.9.
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(iv) = (i): If m is not saturated, then there exists an m-nonnull set £ € F
such that 7'(./_" ) is a countable cardinal, where (fE, m) is the restriction of the
vector measure algebra (]: m) to E. This means that Fpg is m-essentially countably
generated and hence, there exists a countably generated sub o-algebra G of Fg such
that Q Fx . Since the restriction of m to Fg is an X-valued Lyapunov measure on
Fg, it is nonatomic on Fg by Theorems 4.3 and 4.4. Take any p-control measure
pp of m. It follows from G = Fp that m is nonatomic on G, and hence, iy is
also nonatomic on G because of the absolutely continuity of p, with respect to
m. Therefore, (E, G, j1,) is a countably generated, nonatomic, finite measure space,
which is not obviously saturated. Let Y be a vector subspace of Y that is isomorphic
to an infinite-dimensional Banach space. By [10, Lemma 4.1], there exists a non-
Lyapunov measure ng € ca(Gr, jip,Y) for some F C E with pu,(F) > 0. Extend
np from Gr to F by n(A) = np(ANF) for A € F. Indeed, n is closed since it is
absolutely continuous with respect to p,,. Hence, n € ca(F, m,Y) is not a Lyapunov
measure.

(i) < (ii): See Proposition 4.5. O

By taking m as a scalar measure, we can reproduce the necessity result explored
in [10, 12] as follows, and thereby allows the reader an appreciation of the marginal
contribution of this paper relative to the authors’ previous work.

Corollary 4.12. Let (Q, F, p) be a finite measure space and X be a quasicomplete,
separable lcHs with a vector subspace that is isomorphic to an infinite-dimensional
Banach space. Then the following conditions are equivalent:

(1) (2, F,p) is saturated;

(ii) T : L™ () — X is a Lyapunov operator for every m € ca(F, u, X);

(iii) Ewvery vector measure in ca(F, u, X) is saturated;

(iv) Ewvery vector measure in ca(F,u, X) is a Lyapunov measure.

5. FURTHER CHARACTERIZATION OF SATURATION

5.1. The Bang-Bang Principle in LcHs. Let I be an arbitrary subset of the
set N of natural numbers and X; be a IcHs for each i € I. Denote by Hiel X, the
product space of X; consisting of all mappings I 3 i — z; € X;, endowed with the
product topology (given by the pointwise convergence in X; for each i € I). Let
m : F — [[;,c; Xi be a vector measure with a component measure m; : 7 — X; for
i € I. Given a vector measure space (2, F,m), two measurable functions f : Q — Rf
and g : Q — R’ are regarded as equivalent if f(w) = g(w) except on the m-null set.

The infinite-dimensional control systems under scrutiny here are described by the
IcHs [;c; X, the vector measure space (2, F,m), and a multifunction I' : Q — R’.
Denote by S% the set of measurable selectors f : © — R! from I' such that each
component function f; : @ — R is m;-integrable. Thus, St is regarded as a subset of
the product space [[,.; L'(m;). For each f; € Ll(mi) let m;(fi) = [ fidm; € X;.
Then the integral of I with respect to m is given by

/Pdm = {(mi(fi))iel e[IXilf=(fiier e 5%} :

icl
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Definition 5.1. A vector measure m : F — [];c; X; satisfies the bang-bang prin-
ciple for a multifunction I' : Q — R if JTdm = [ exDT'dm, where exI': Q — R is
the multifunction given by the extreme points of I'(w) at each w € Q.

A multifunction T' : Q@ — R’ is bounded if there exists a bounded set K C R’
such that I'(w) C K for every w € Q. Denote by My (Q,R!) the set of graph
measurable, bounded multifunctions with closed convex values from € to R'.

The next result is a special case of [2, Theorems IV.14 and IV.15].

Lemma 5.2. For every I' € ./\/lbfc(Q,RI), the following conditions hold.
(i) exSt = S!

exI'
(ii) For every f € S% there exists a measurable function g : Q@ — R such that

f+ge St and g(w) # 0 whenever f(w) & exI'(w).

Theorem 5.3. If X; is a quasicomplete IcHs for eachi € I and m : F — [[;c; X;
be a closed vector measure such that dens [[;.; X; < /i(./_"E> for every m-nonnull
E € F, then m satisfies the bang-bang principle for every I' € ./\/lbfc(Q,RI).

Proof. 1t follows from the boundedness of I' that St is a bounded closed convex
subset of [,c; L°(m;), and hence, it is a weakly compact subset of [],.; L*(m;)
by Lemma 4.6. Define the integration operator T' : [,c; L*(m;) — [[;c; Xi by
T((fi)ier) = (mi(fi))ier for f; € L'(m;) with @ € I. Then T is a linear operator
that is continuous in the weak topologies for [[;c; L*(m;) and [[;c; X; since the
integration operator f; — m;(f;) is continuous in the weak topologies for L!(m;)
and Xi by Lemma 3.2. Let # € T(S{) = [T'dm be given arbitrarily. Then the
set T71(2) NS} is a weakly compact, convex subset of HZG 7 (m,) and hence, it
has an extreme point f It suffices to show that f eSSy If f ¢ S 1, then there
exists an m-nonnull set £ € F such that f(w) ¢ exI'(w) for every w € E. By the
boundedness of I and Lemma 5.2, there exists g = (g;)ics € [[;c; L' (m;) such that
f +g € 811 and g # 0 on E. Since m is a Lyapunov measure, the range of m is
convex in [[;c; X;. Take F C E with m(F) = $m(E) and define § : Q — X by
gw) ifweE\F,
§w) = { —glw) HweF,
0 otherwise.

Then f = (f +4g)+ (f §)and f+g e St. A simple calculation yields [ gdm =
(mz(gl))zg =0 € X, and hence, f+§ € T-4&) N 8. This contradicts the fact
that f is an extreme point of T7(2) N St O

Remark 5.4. Theorem 5.3 is an extension of [11, Theorem 4.3] to the lcHs setting.
Instead of a vector measure m : F — X with X a separable Frechet space in [11],

we treat the case where X = [[,.; X; with X; a quasicomplete lcHs and replace

the saturation hypothesis on m by the density condition dens [[;.; X; < k(Fp) for
every m-nonnull ¥ € F.
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Lemma 5.5. Let X; be a lcHs and n; : F — X; be a vector measure for each i € 1
and define the set by

iel

Ip = {(fi)ie[ EHLOEO(M) [0 fi<1 WGI}, E e F.
We then have

ex1p = {(XAi)iEI S HLOEO(RZ) ‘ A, e FpVie I} .

icl

Proof. Clearly, any sequence of characteristic functions (4, )ier is an extreme point
of Zg. On the other hand, if an extreme point (f;);c; in Zg is not a sequence of
characteristic functions, then without loss of generality, we may assume that there
exist € > 0 and nj-nonnull set A € Fg for some index j € I such that e < f; <1—¢
on A. Then the sequence of functions [f; & exa, (fi)ier\ (;}] belongs to Tp and

1 1
(fi)ier = B [fi +exa, (f)iengy] + 3 [fi —exa, (fienin] »
a contradiction to the fact that (f;);cr is an extreme point of Zg. O

Theorem 5.6. Let X; be a quasicomplete separable lcHs with a vector subspace
that is isomorphic to an infinite-dimensional Banach space for each i € I and
m : F — [l;c; Xi is a closed vector measure. Then m is saturated if and only if
every vector measure in ca(S2,m, [[;c; Xi) satisfies the bang-bang principle for every

I'e bec(Q,RI).

Proof. Suppose that every n € ca(2,m,][;; X;) satisfies the bang-bang principle
for every I' € Mz (9, R). Take any E € F and define the multifunction I'g; :  —
R’ by

Le(t) = {(fi(1)ier € R | (fi)ier € Ip}.

We then have I'p € beC(Q,RI) and S%E = Zg. Since Zg is weakly compact in
the product topology of [],c; L'(n;) by Lemma 4.6 and the integration operator
T : [L;e; L' (ni) = [1;e; Xi provided in the proof of Theorem 5.3 is continuous for
the weak topologies in [[;c; L'(n;), the set T(S%E) = [Tgdn is weakly compact
and convex in X. By Lemma 5.2, we have Seler = ex S%E = exZg, and hence, it
follows from Lemma 5.5 that

/FEd’I’L = /eXFEdn = {(nl(A’L))ZEI eX | A, e FgVie I} = n(]:E)

The bang-bang principle for n implies that n(Fg) is weakly compact and convex
in [[;c; Xi for every E € F. Hence, every n € ca(2,m,]];c; X;) is a Lyapunov
measure. The saturation of m follows from Theorem 4.11. The converse implication
is a consequence of Theorem 5.3. [l
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5.2. Lyapunov Control Systems in LcHs. As an application of the bang-bang
principle, we examine Lyapunov control systems developed by [14, 16, 17, 18, 19,
20, 21].

Let X be a lcHs and X! be the product space [Lic; Xi with X; = X for each
i € I. A vector measure m : F — X' is a control system in X! if the sum Y icr Tiis
(unconditionally) convergent in X for every z; € m;(F) with ¢ € I. The attainable
set for a control system m : F — X! and a measurable correspondence I' : Q —» R
is defined by

Ar(m) = {Zmi(fi) € X | (fi)ier € St > milfi) exists} :
iel el

Definition 5.7. A vector measure m : F — X! is a Lyapunov control system for a

multifunction T': © — R if Ap(m) = Aexr(m).

We provide a necessary and sufficient condition for control systems to be Lya-
punov in terms of the saturation property.

Theorem 5.8. Let X be a quasicomplete separable lcHs and m : F — X! be a
closed vector measure. Then m is saturated if and only if every vector measure in
ca(Q,m, X") is a Lyapunov control system for every I' € Mz (2, RT).

Proof. Suppose that every n € ca(2,m, X1) is a Lyapunov control system for every
I' € My(Q,RY). Let T, € Mys(92,RT) be the multifunction defined by

Tp(w) = {(f (W), 0icny) €RT |0 < f <1, f € LF(ny)},

where the nonzero entry f(w) of the defining sequence in F{E(w) appears in the jth
component in R’. In view of Lemmas 5.2 and 5.5, we have

SelxI‘% = eXS%jE = {(XA7 (0)1e1\{]}) | Ae FE}

Since n is a Lyapunov control system for I' %, we obtain
Apg(n) = Aex%(n) ={nj(A) € X | A€ Fg} =n;(Fg).

By Lemma 4.6, 811% is weakly compact in [],.; L (n;) and by Lemma 3.2, AF% (n) is

weakly compact and convex in X. Therefore, n;(Fg) is weakly compact and convex
in X for every E € F, and hence, n is a Lyapunov measure. The saturation of n
follows from Theorem 4.11. The converse implication is a consequence of Theorem
5.3. O
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