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the recent development on the Lyapunov convexity theorem in Banach spaces, and
we provide an answer to this question here. The main contribution of this answer
hinges on what we see as the following threefold contribution:

(i) We formulate the saturation property for vector measures in lcHs as a nonsep-
arability condition on the Boolean σ-algebras along the lines of [5, 8, 24, 34]
by drawing on the topological structure of vector measure algebras established
in the important monograph [17].

(ii) We exploit a Pettis-like notion of vector integration in lcHs, the Bourbaki–
Kluvánek–Lewis integral, (see [1, 13, 22]) to derive an exact version of the
Lyapunov convexity theorem in lcHs without the BDS property, a result that
is a natural extension of those presented in [10, 12] (necessity and sufficiency).

(iii) We apply our Lyapunov convexity theorem to the bang-bang principle estab-
lished in [11] and Lyapunov control systems in lcHs explored in [17, 19] to
provide a further characterization of saturation.

The organization of the paper is as follows. In Section 2 we introduce the notion
of Maharam types and saturation in Boolean σ-algebras and define vector measure
algebras in lcHs. Section 3 deals with the space of integrable functions with respect
to a vector measure in lcHs and investigates its topological properties, especially
completeness and separability. Section 4 presents the main result of the paper in
which the equivalence of the saturation property of a vector measure algebra and
the Lyapunov convexity theorem is established in full generality. Section 5 contains
the application of the main result to the bang-bang principle and Lyapunov control
systems.

2. Preliminaries

2.1. Boolean Algebras and Maharam Types. Let F be a Boolean algebra with
binary operations ∨ and ∧, and a unary operation c, endowed with the order ≤ given
by A ≤ B ⇐⇒ A = A ∧B, where Ø = Ωc is the smallest element in F and Ω = Øc

is the largest element in F . A subset I of F is an ideal if Ø ∈ I, A ∨ B ∈ I for
every A,B ∈ I and B ≤ A with A ∈ I implies B ∈ I. The principal ideal FE

generated by E ∈ F is an ideal of F given by FE = {A ∈ F | A ≤ E}, which is a
Boolean algebra with unit E. An element A ∈ F is an atom if A ̸= Ø and E ≤ A
with E ∈ F implies either E = Ø or E = A; F is nonatomic if it has no atom.

A subalgebra of F is a subset of F that contains Ω and is closed under the Boolean
operations ∨, ∧ and c. A subalgebra U of F is order-closed with respect to the order
≤ if any nonempty upwards directed subsets of U with its supremum in F has the
supremum in U . A subset U ⊂ F completely generates F if the smallest order closed
subalgebra in F containing U is F itself. The Maharam type of a Boolean algebra
F is the smallest cardinal of any subset U ⊂ F which completely generates F . By
κ(F) we denote the Maharam type of F . A Boolean algebra is saturated if for every
E ∈ F with E ̸= Ø the Maharam type κ(FE) of the principal ideal FE generated
by E is uncountable. A Boolean algebra F is nonatomic if and only if κ(FE) is
infinite for every E ∈ F with E ̸= Ø (see [12, Proposition 2.1]).

2.2. Vector Measure Algebras in lcHs. Let (Ω,F) be a measurable space and
X be a locally convex Hausdorff space (briefly, lcHs). A set function m : F → X
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is countably additive if for every pairwise disjoint sequence {Ai} in F , we have
m(

∪∞
i=1Ai) =

∑∞
i=1m(Ai), where the series is unconditionally convergent with

respect to the locally convex topology on X. It is well-known that if m is countably
additive with respect to “some” locally convex topology on X that is consistent with
the dual pair ⟨X,X∗⟩, then it is countably additive with respect to “any” locally
consistent convex topology on X (see [36, Proposition 4]). This is a consequence of
Orlicz–Pettis theorem (see [25, Theorem 1]). Therefore, the countable additivity of
vector measures is independent of the particular topologies lying between the weak
and Mackey topologies of X.

For a vector measure m : F → X, a set N ∈ F is m-null if m(A ∩ N) = 0 for
every A ∈ F . An equivalence relation ∼ on F is given by A ∼ B if and only if
A△B is m-null, where A△B is the symmetric difference of A and B in F . The

collection of equivalence classes is denoted by F̂ = F/ ∼ and its generic element Â

is the equivalence class of A ∈ F . The lattice operations ∨ and ∧ in F̂ are given

in a usual way by Â ∨ B̂ = Â ∪B and Â ∧ B̂ = Â ∩B. The unary operation c in

F̂ is obtained for taking complements in F̂ by Âc = (̂Ac). Under these operations

F̂ is a Boolean σ-algebra. Let m̂ : F̂ → X be an X-valued countably additive

function on F̂ defined by m̂(Â) = m(A) for Â ∈ F̂ . Then the pair (F̂ , m̂) is called
a vector measure algebra induced by m. Denote by FE = {A ∩ E | A ∈ F}, a σ-

algebra of E ∈ F inherited from F , and (F̂E , m̂) a vector measure algebra induced

by the restriction of m to FE . Then F̂E is the principal ideal of F̂ generated by the

element Ê ∈ F̂ . A σ-algebra F is m-essentially countably generated if there exists

a subset G of F such that Ĝ is countable and F̂ is the smallest Boolean σ-algebra

containing Ĝ.
A set A ∈ F is an atom of m if m(A) ̸= 0 and Â is an atom of F̂ . If m

has no atom, it is said to be nonatomic. The Maharam type of a vector measure

m : F → X is defined to be κ(F̂). Thus, κ(F̂) is countable if and only if F is

m-essentially countably generated. Hence, m is nonatomic if and only if κ(F̂E) is
infinite for every m-nonnull E ∈ F . A vector measure space (Ω,F ,m) (or a vector

measure m) is saturated if κ(F̂E) is uncountable for every m-nonnull E ∈ F . Let Y
be a lcHs. A vector measure n : F → Y is absolutely continuous (or m-continuous)
with respect to a vector measure m : F → X if every m-null set is n-null. It is
evident that for every lcHs Y a vector measure n : F → Y is saturated (resp.
nonatomic) if and only if there exists a saturated (resp. nonatomic) vector measure
m : F → X with respect to which n is absolutely continuous.

3. The L1-space of vector measures

3.1. Integrals with Respect to Vector Measures. The following Pettis-like
notion of the integral of measurable functions with respect to a vector measure was
introduced in [1], and elaborated independently by [13] and [22, 23]. For a detailed
treatment of this integral, see [17, 29, 30].

Definition 3.1. Let ⟨x∗,m⟩ : F → R be the scalar measure defined by ⟨x∗,m⟩(A) :=
⟨x∗,m(A)⟩ with x∗ ∈ X∗ and A ∈ F . A measurable function f : Ω → R is m-inte-
grable if it is integrable with respect to the scalar measure ⟨x∗,m⟩ for every x∗ ∈ X∗
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and for every A ∈ F there exists a vector xA ∈ X such that

⟨x∗, xA⟩ =
∫
A
fd⟨x∗,m⟩ for every x∗ ∈ X∗.

Since the dual space X∗ is a total family of continuous linear functionals on a
lcHs X, the vector xA is unique, which we denote by

∫
A fdm. Unlike the definition

of the integrals with respect to m formulated in [12] (see also the references therein),
no assumption is made about the completeness of X and the existence of a scalar
measure with respect to which m is absolutely continuous is unnecessary.

The vector space of all m-integrable functions is denoted by L(m). Let P be a
separating family of seminorms in X that generates the locally convex topology τ .
Let U◦

p denotes the polar of the set Up = {x ∈ X | p(x) ≤ 1}, that is, U◦
p = {x∗ ∈

X∗ | |⟨x∗, x⟩| ≤ 1 ∀x ∈ Up}. Each p ∈ P induces a seminorm p(m) in L(m) via the
formula

p(m)(f) = sup
x∗∈U◦

p

∫
|f |d|⟨x∗,m⟩|, f ∈ L(m),

where |⟨x∗,m⟩| denotes the variation of the scalar measure ⟨x∗,m⟩. The above
seminorms turn L(m) into a locally convex space. The quotient space of L(m)
modulo the subspace

∩
p∈P p(m)−1(0) of all m-null functions is denoted by L1(m),

which is a lcHs with its topology denoted by τ(m).
Denote by L∞(m) (the equivalence classes of) the space of all m-essentially

bounded measurable functions f on Ω, endowed with the m-essentially supremum
norm

∥f∥∞ = inf{α > 0 | {ω ∈ Ω | |f(ω)| > α} is m-null}.

Recall that X is said to be quasicomplete if every bounded, closed subset of X
is complete; X is said to be sequentially complete if every Cauchy sequence in X
converges. Every quasicomplete lcHs is sequentially complete. If X is a sequentially
complete lcHs, then L∞(m) ⊂ L1(m) (see [17, Lemma II.3.1] or [30, Theorem 4.1.9′])
and (L∞(m), ∥ · ∥∞) is a Banach space (see [30, Theorem 4.5.8]).

A linear operator Tm : L1(m) → X defined by Tmf =
∫
fdm for f ∈ L1(m) is

called an integration operator of m. We also denote Tmf by m(f). Since L∞(m) ⊂
L1(m) wheneverX is sequentially complete, one can restrict the integration operator
Tm to L∞(m) endowed with the m-essential sup norm. Hence, if X is a sequentially
complete lcHs, then the integration operator Tm : L∞(m) → X is continuous (see
[17, Lemma II.3.1]). Moreover, the following continuity result of the integration
operator is true without any completeness assumption on X.

Lemma 3.2. The integration operator Tm : L1(m) → X is continuous for the weak
topologies1of L1(m) and X.

Proof. We first show that the finite signed measure x∗m is a continuous linear
functional on L1(m) for every x∗ ∈ X∗ with respect to τ(m)-topology. To this end,
let {fα} be a net in L1(m) such that p(m)(fα − f) for every p ∈ P. If x∗ ∈ X∗

1See [26] for the specification of the dual space of L1(m).



MAHARAM-TYPES AND LYAPUNOV’S THEOREM 51

vanishes on Up, then x∗ ∈ U◦
p , and hence, we obtain∣∣∣∣∫ fαd⟨x∗,m⟩ −

∫
fd⟨x∗,m⟩

∣∣∣∣ ≤ ∫
|fα − f |d|⟨x∗,m⟩| ≤ p(m)(fα − f) → 0.

If x∗ ̸= 0 on Up, define p̃(m)(x∗) = supx∈Up
|⟨x∗, x⟩|. By normalization, we have

y∗ := x∗/p̃(m)(x∗) ∈ U◦
p , and hence∣∣∣∣∫ fαd⟨x∗,m⟩ −

∫
fd⟨x∗,m⟩

∣∣∣∣ ≤ p̃(m)(x∗)

∫
|fα − f |d|⟨y∗,m⟩|

≤ [p̃(m)(x∗)][p(m)(fα − f)] → 0.

Therefore,
∫
fαd⟨x∗,m⟩ →

∫
fd⟨x∗,m⟩ for every x∗ ∈ X∗. This means that ⟨x∗,m⟩

is an element of the dual space (L1(m))∗ for every x∗ ∈ X∗. Let {gα} be a net in
L1(m) that converges weakly to g ∈ L1(m). Then for every x∗ ∈ X∗, we have

⟨x∗, Tmgα⟩ =
∫

gαd⟨x∗,m⟩ →
∫

gd⟨x∗,m⟩ = ⟨x∗, Tmg⟩.

Hence, Tm is continuous for the weak topologies of L1(m) and X. □
3.2. Completeness of L1(m). A measure space (Ω,F , µ) is semi-finite if for every
A ∈ F with µ(A) = ∞ there exists E ∈ F with E ⊂ A such that 0 < µ(E) < ∞.

A semi-finite measure space (Ω,F , µ) is localizable if its measure algebra (F̂ , µ̂) is
Dedekind complete as a Boolean algebra. A measure space (Ω,F , µ) is localizable
if and only if L1(µ)∗ = L∞(µ) (see [5, Theorem 365M]). Thus, the duality between
L1(µ) and L∞(µ) is invalid for every non-localizable measure µ.

For p ∈ P, the p-semivariation of a vector measure m : F → X is a set function
∥m∥p : F → R defined by

∥m∥p(A) = sup
x∗∈U◦

p

|⟨x∗,m⟩|(A), A ∈ F .

The p-semivariation ∥m∥p of m is bounded, monotone and countably subadditive
with the following estimate (see [17, Lemma II.1.2]):

sup
E⊂A

p(m(E)) ≤ ∥m∥p(A) ≤ 2 sup
E⊂A

p(m(E)).

A finite (scalar) measure µp is a p-control measure of m whenever µp(A) = 0 if and
only if ∥m∥p(A) = 0. If X is a lcHs, then for every p ∈ P there exists a p-control
measure of m (see [17, Corollaries II.1.2 on p. 19 and II.1.1 on p. 21]). A vector
measure m : F → X is absolutely continuous with respect to a scalar measure µ
if µ(A) = 0 implies that m(A) = 0. A finite measure µ is a control measure of m
whenever µ(A) = 0 if and only if m(A ∩ E) = 0 for every E ∈ F .

Since each characteristic function of F is identified with an element of L1(m),
we can restrict the locally convex Hausdorff topology τ(m) of L1(m) to the vector

measure algebra (F̂ , m̂) of m. Thus, the relative τ(m)-topology on F̂ is generated

by a family of semimetrics {dp | p ∈ P} on F̂ by the formula

dp(Â, B̂) := p(m)(χA − χB) = ∥m∥p(A△B), A,B ∈ F .

Denote by L1
E(m) = {fχE | f ∈ L1(m)} the vector subspace consisting of m-

integrable functions on Ω restricted to E ∈ F and similarly, L∞
E (m) = {fχE | f ∈
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L∞(m)} the vector subspace consisting of m-essentially bounded functions on Ω
restricted to E.

Without completeness, the function space L1(m) would be useless in the limit
operation of integrals. To overcome this difficulty, [17] introduced the notion of
closed vector measures in lcHs.

Definition 3.3. A vector measure m : F → X is closed if F̂ is complete in the
τ(m)-topology.

Closed vector measures are those for which most of the classical
theory of L1 spaces carries over, especially results concerning com-
pleteness. The phenomenon of non-closed measures is observable
only if the range space is not metrizable. ([17, p. 67].)

A sufficient condition for the closedness of m given by [32, Proposition 1] is the
metrizability of the range m(F) in a lcHs X. In particular, if X is a Fréchet space,
then L1(m) is also a Fréchet space (see [17, Theorems IV.4.1 and IV.7.1] and [4,
Theorem 1]). The significance of the notion of closed vector measures is exemplified
by the next characterization of the completeness of L1(m) attributed to [17], which
can be slightly generalized as the current form, where the assumption of quasicom-
pleteness is replaced by that of sequentially completeness (see [31, Proposition 1]
and [4, Proposition 3]).

Proposition 3.4. Let X be a sequentially complete lcHs. Then a vector measure
m : F → X is closed if and only if L1(m) is τ(m)-complete.

For other characterizations of closed vector measures, see [27, 28, 32, 33].

If m has a control measure µ, then the τ(m)-topology on the Boolean algebra F̂
is metrized by

d(Â, B̂) = µ(A△B), A,B ∈ F ,

where (F̂ , d) is a complete metric space (see [3, Lemma III.7.1]). It thus follows
immediately from Proposition 3.4 that a vector measure is closed if it has a control
measure. A lcHs X has the Bartle–Dunford–Schwartz (BDS) property if every X-
valued vector measure has a control measure. As demonstrated in [11, Example 2.1],
a lcHs X has the BDS property for each of the following cases: (i) X is metrizable;
(ii) X is Suslin; (iii) X∗ is weakly∗ separable.

Example 3.5. A vector measure m : F → X is countably determined if there exists
a sequence {x∗i } in X∗ such that a set A ∈ F is m-null if it is ⟨x∗i ,m⟩-null for each
i = 1, 2, . . . . A countably determined vector measure m in a lcHs X has a control
measure. Indeed, its control measure is given by

µ(A) =

∞∑
i=1

|⟨x∗i ,m⟩|(A)
2i(1 + |⟨x∗i ,m⟩|(Ω))

, A ∈ F .

Remark 3.6. At a first glance, the closedness of vector measures seems innocuous,
but it demands a lot because a vector measure m : F → X is closed if and only if
there exists a localizable measure µ such that m is µ-continuous (see [17, Theorem
IV.7.3] and [15, Lemma 11 and Corollary 13]). Indeed, it is “nothing” but absolute
continuity in disguise!
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3.3. Separability of L1(m). The following observation due to [34, Proposition 1A]
(see also [30, Theorems 4.6.2 and 4.6.3]) plays a crucial role to develop the notion
of saturation for vector measures in lcHs.

Proposition 3.7. If X is a sequentially complete lcHs, then L1(m) is separable if

and only if F̂ is separable.

Indeed, for a scalar measure µ, the non-separability of L1(µ) is a defining property
for the saturation of the measure space (Ω,F , µ) (see [5, 331O and 365X(p)], [7,
Corollary 4.5], and [8, Fact 2.5]).

Theorem 3.8. Let X be a sequentially complete lcHs and m : F → X be a vector
measure. Then the following conditions are equivalent:

(i) (Ω,F ,m) is saturated;

(ii) F̂E is non-separable for every m-nonnull E ∈ F ;
(iii) L1

E(m) is non-separable for every m-nonnull E ∈ F .

Proof. (ii) ⇔ (iii): See Proposition 3.7.

(iii) ⇒ (i): If the Maharam type of F̂E is countable for some m-nonnull E ∈ F ,

then there is a countable subset Û of F̂E that completely generates F̂E . By virtue

of the axiom of choice, there is a choice function φ : F̂E → FE such that φ(Â) ∈ Â

for every Â ∈ F̂E . Let G be the subalgebra of FE completely generated by φ(Û). By
construction, G is m-essentially countably generated satisfying Ĝ = F̂E , and hence,
L1
E(m) is separable (see [34, Proposition 2]).

(i) ⇒ (iii): If the Maharam type of F̂E is uncountable for every m-nonnull E ∈ F ,

then the cardinality of F̂E is uncountable. Suppose, to the contrary, that L1
E(m) is

separable for some m-nonnull E ∈ F . By Proposition 3.7, F̂E is separable, so there
exists a countable subset G of FE such that for every A ∈ FE , every ε1, . . . , εk > 0
and every p1, . . . , pk ∈ P there exists B ∈ G satisfying ∥m∥pi(A△B) < εi for each

i = 1, . . . , k. On the other hand, since F̂E \ Ĝ is uncountable, there exists an m-

nonnull set A ∈ FE\G with Â ∈ F̂E\Ĝ. Since P is a separating family of seminorms,
we can take a seminorm p ∈ P with p(m(A)) > 0. Take any B ∈ G. Then A∩B = ∅,
and hence, ∥m∥p(A△B) = ∥m∥p(A ∪B) ≥ ∥m∥p(A) ≥ p(m(A)) for every B ∈ G, a
contradiction. Therefore, L1

E(m) is non-separable. □

4. Lyapunov convexity theorem in LcHs

4.1. Lyapunov Measures and Lyapunov Operators. Following [10, 12], we
characterize the Lyapunov convexity theorem in terms of the integration operator.

Definition 4.1. A vector measure m : F → X is a Lyapunov measure if for every
E ∈ F the set m(FE) is weakly compact and convex in X.

Definition 4.2. The integration operator Tm : L∞(m) → X is said to be:

(i) a nonatomic operator if for every m-nonnull E ∈ F and every neighborhood U
of the origin in X there exists f ∈ L∞

E (m) \ {0} with signed values {−1, 0, 1}
such that Tmf ∈ U ;
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(ii) a Lyapunov operator of m if for every m-nonnull E ∈ F the restriction Tm :
L∞
E (m) → X is not injective.

Theorem 4.3. Let X be a sequentially complete lcHs and m : F → X be a vector
measure. Then m is nonatomic if and only if Tm : L∞(m) → X is a nonatomic
operator.

Proof. Suppose that Tm is a nonatomic operator. If m has an atom E ∈ F , then
m(E) ̸= 0. Thus, for every neighborhood U of 0 there exists f ∈ L∞

E (m) \ {0} with
signed values {−1, 0, 1} such that Tmf ∈ U ∩ (−U). Since measurable functions
are constant on atoms of m, either f = χE or f = −χE . We thus obtain m(E) ∈
{±Tmf} ⊂ U ∩ (−U) for every neighborhood U of 0, and hence, m(E) = 0, a
contradiction.

Conversely, suppose that Tm is not a nonatomic operator. Then there exists
E ∈ F with m(E) ̸= 0 and a convex, balanced, absorbing neighborhood U of 0
such that Tmf ̸∈ U for every f ∈ L∞

E (m) \ {0} with signed values {−1, 0, 1}. (Such
a neighborhood can be taken as U ∩ (−U) as above). Since there exists p ∈ P
such that U = Up (see [35, Theorems 1.34 and 1.35]), for every m-nonnull A ∈ FE ,
we have m(A) = TmχA ̸∈ Up. Thus, ∥m∥p(A) ≥ p(m(A)) > 1 for every m-nonnull
A ∈ FE . If E is not an atom ofm, then there exists A ∈ FE such thatm(A) ̸= m(E)
and m(A) ̸= 0. Take any p-control measure µp of m. By the µp-continuity of ∥m∥p,
we have µp(A) > 0. Hence, there exists δ > 0 such that for every B ∈ F with
µp(A∩B) < δ, we have ∥m∥p(A∩B) < 1, a contradiction. Therefore, E is an atom
of m. □

The range of a Lyapunov measure m is weakly compact and convex in X in
view of m(F) = m(FΩ). If m has an atom E ∈ F , then evidently, m(FE) is
not convex in X. Therefore, every Lyapunov measure is nonatomic. As the next
result demonstrates, the nonatomicity of vector measures is reinforced as well by
the notion of Lyapunov operators (see [10, Theorem 3.2]).

Theorem 4.4. Let X be a sequentially complete lcHs and m : F → X be a vector
measure. If Tm : L∞(m) → X is a Lyapunov operator, then it is a nonatomic
operator.

The following result is due to [17, Theorem V.1.1].

Proposition 4.5. Let X be a quasicomplete lcHs and m : F → X be a closed
vector measure. Then m is a Lyapunov measure if and only if Tm : L∞(m) → X is
a Lyapunov operator. The range of a Lyapunov measure m is given by

m(F) = {m(f) ∈ X | 0 ≤ f ≤ 1, f ∈ L∞(m)}.

4.2. Saturation: A Sufficiency Theorem.

Lemma 4.6. Let X be a sequentially complete lcHs and m : F → X be a closed
vector measure. Then a bounded closed convex subset of L∞(m) is weakly compact
in L1(m).

Proof. Let K be a bounded, closed, convex subset of L∞(m). By Proposition 3.4, K
is τ(m)-complete in L1(m). Since the τ(m)-topology of L1(m) is generated by the
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family of seminorms {qp,x∗ | p ∈ P, x∗ ∈ U◦
p } defined by qp,x∗(f) =

∫
|f |d|⟨x∗,m⟩|,

the quotient space L1(m)/q−1
p,x∗(0) is a vector subspace of L1(|⟨x∗,m⟩|) endowed

with the L1(|⟨x∗,m⟩|)-norm. Let πp,x∗ : L1(m) → L1(m)/q−1
p,x∗(0) be the natural

projection. Then πp,x∗(K) is a weakly closed subset of L1(|⟨x∗,m⟩|) in view of
its closedness and convexity. Since the boundedness of K in L∞(m) implies that
πp,x∗(K) is uniformly integrable in the sense that

lim
|⟨x∗,m⟩|(A)→0

sup
f∈πp,x∗ (K)

∫
A
|f |d|⟨x∗,m⟩| = 0

by the Dunford–Pettis criterion (see [3, Corollary IV.8.11]), πp,x∗(K) is weakly
sequentially compact, and hence, weakly compact in L1(|⟨x∗,m⟩|) for every x∗ ∈ U◦

p

and p ∈ P in view of the Eberlein–S̆mulian theorem (see [3, Theorem V.6.1]). By
[17, Theorem I.1.1], the weak compactness of πp,x∗(K) in L1(|⟨x∗,m⟩|) for every
p ∈ P and x∗ ∈ X∗ implies the weak compactness of K in L1(m). □

The density of a topological space S, denoted by densS, is the smallest cardinal of
any dense subset of S. The density of a lcHs X is equal to the topological dimension
of X, i.e., the smallest cardinal of any set whose linear span is dense in X whenever
densX is infinite.

Lemma 4.7. κ(F̂E) ≤ dens F̂E for every m-nonnull E ∈ F .

Proof. Let E ∈ F be an m-nonnull set and {Âα}α<dens F̂E
be a family of elements

in F̂E such that its τ(m)-closure coincides with F̂E . Denote by Û the subalgebra

of F̂E completely generated by {Âα}α<dens F̂E
. Since {Âα}α<dens F̂E

is contained in

Û , the τ(m)-closure cl Û of Û coincides with F̂E . If we demonstrate that Û = F̂E ,

then we have κ(F̂E) ≤ dens F̂E . To this end, it suffices to show the τ(m)-closedness

of Û . Let {Âν} be a net in Û converging to Â. Since cl Û = F̂E , there exists

B̂ν ∈ Û such that B̂ν ≤ Â ∧ Âν ∈ F̂E for each ν and the net {B̂ν} converges to

Â. Extracting a subnet from {B̂ν} (which we do not relabel), one may assume that

{B̂ν} is upward directed in Û with limν B̂
ν = supν B̂

ν = Â. Since Û is order closed,

we have Â ∈ Û . □

Lemma 4.8. If X is a sequentially complete lcHs and m : F → X is a closed

vector measure such that densX < κ(F̂E) for every m-nonnull E ∈ F , then Tm :
L∞(m) → X is a Lyapunov operator.

Proof. Suppose to the contrary that Tm is not a Lyapunov operator. Then there
exists an m-nonnull set E ∈ F such that the restriction Tm : L∞

E (m) → X is an
injection. Let B denote the closed unit ball in L∞(m) and set BE = B ∩ L∞

E (m).
Since L∞

E (m) is a closed vector subspace of L1(m), by Lemma 4.6, BE is a weakly
compact subset of L1(m). Since the integration operator Tm : L1(m) → X is
continuous for the weak topologies of L1(m) andX by Lemma 3.2, the restriction Tm

to BE is a homeomorphism between BE and Tm(BE). It follows from the convexity
and weak closedness of Tm(BE) that Tm(BE) is also closed in the strong topology
of X. Let {xα}α<densX be a dense subset of Tm(BE) and define fα = T−1

m xα. Then
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{fα}α<densX is a weakly dense subset of BE in L1(m). Since BE is convex, it is τ(m)-

closed, and hence, {fα}α<densX is also a τ(m)-dense subset of BE . Since F̂E ⊂ BE ,

by Lemma 4.7, we have κ(F̂E) ≤ dens F̂E ≤ densBE ≤ densX, a contradiction to
the hypothesis. □

An immediate consequence of Proposition 4.5 and Lemma 4.8 is the following
version of the Lyapunov theorem, which is a further generalization of [6, 10, 12].

Theorem 4.9. If X is a quasicomplete lcHs and m : F → X is a closed vector mea-

sure such that densX < κ(F̂E) for every m-nonnull E ∈ F , then m is a Lyapunov
measure with its range given by

m(F) = {m(f) ∈ X | 0 ≤ f ≤ 1, f ∈ L∞(m)}.

In particular, if X is separable and m is saturated, then the density hypothesis of

Theorem 4.9 is automatic because densX = ℵ0 < ℵ1 ≤ κ(F̂E) for every m-nonnull
E ∈ F .

Remark 4.10. The algebraic dimension of a lcHs X is the cardinality of a Hamel
basis in X. We denote by dimX the algebraic dimension of X. Consider the
dimensionality condition:

dimX < dimL∞
E (m) for every m-nonnull E ∈ F .

This is obviously a sufficient condition for Tm to be a Lyapunov operator, introduced
in [17, Theorem V.2.1] and then applied in [10, Theorem 5.1] for the Banach space
case. The dimensionality condition is sharpened to the density condition:

densX < κ(F̂E) for every m-nonnull E ∈ F .

This condition is found in [6, Corollary 1] for the Banach space case and then
elaborated in [12, Theorem 4.1] for the lcHs case with the BDS property, where m
has a control measure µ, and hence, L∞(m) = L∞(µ). For the detailed discussion
of the dimensionality and density conditions, see [10, Remark 3.2]. Theorem 4.9 is
a direct generalization of [17] employing the Bourbaki–Kluvánek–Lewis integrals.

4.3. Saturation: A Necessity Theorem. Let Y be a lcHs. Denote by ca(F ,m, Y )
the space of Y -valued closed vector measures on F which are absolutely continuous
with respect to a vector measure m : F → X.

Theorem 4.11. Let X be a quasicomplete separable lcHs, Y be a quasicomplete,
separable lcHs with a vector subspace that is isomorphic to an infinite-dimensional
Banach space, and m : F → X be a closed vector measure. Then the following
conditions are equivalent:

(i) (Ω,F ,m) is saturated;
(ii) Tn : L∞(n) → Y is a Lyapunov operator for every n ∈ ca(F ,m, Y );
(iii) Every vector measure in ca(F ,m, Y ) is saturated;
(iv) Every vector measure in ca(F ,m, Y ) is a Lyapunov measure.

Proof. (i) ⇒ (iii): Trivial.
(iii) ⇒ (iv): See Lemma 4.8 and Theorem 4.9.
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(iv) ⇒ (i): If m is not saturated, then there exists an m-nonnull set E ∈ F
such that τ(F̂E) is a countable cardinal, where (F̂E , m̂) is the restriction of the

vector measure algebra (F̂ , m̂) to E. This means that FE is m-essentially countably
generated, and hence, there exists a countably generated sub σ-algebra G of FE such

that Ĝ = F̂E . Since the restriction of m to FE is an X-valued Lyapunov measure on
FE , it is nonatomic on FE by Theorems 4.3 and 4.4. Take any p-control measure

µp of m. It follows from Ĝ = F̂E that m is nonatomic on G, and hence, µp is
also nonatomic on G because of the absolutely continuity of µp with respect to
m. Therefore, (E,G, µp) is a countably generated, nonatomic, finite measure space,

which is not obviously saturated. Let Ỹ be a vector subspace of Y that is isomorphic
to an infinite-dimensional Banach space. By [10, Lemma 4.1], there exists a non-

Lyapunov measure nF ∈ ca(GF , µp, Ỹ ) for some F ⊂ E with µp(F ) > 0. Extend
nF from GF to F by n(A) = nF (A ∩ F ) for A ∈ F . Indeed, n is closed since it is
absolutely continuous with respect to µp. Hence, n ∈ ca(F ,m, Y ) is not a Lyapunov
measure.

(i) ⇔ (ii): See Proposition 4.5. □
By taking m as a scalar measure, we can reproduce the necessity result explored

in [10, 12] as follows, and thereby allows the reader an appreciation of the marginal
contribution of this paper relative to the authors’ previous work.

Corollary 4.12. Let (Ω,F , µ) be a finite measure space and X be a quasicomplete,
separable lcHs with a vector subspace that is isomorphic to an infinite-dimensional
Banach space. Then the following conditions are equivalent:

(i) (Ω,F , µ) is saturated;
(ii) Tm : L∞(µ) → X is a Lyapunov operator for every m ∈ ca(F , µ,X);
(iii) Every vector measure in ca(F , µ,X) is saturated;
(iv) Every vector measure in ca(F , µ,X) is a Lyapunov measure.

5. Further characterization of saturation

5.1. The Bang-Bang Principle in LcHs. Let I be an arbitrary subset of the
set N of natural numbers and Xi be a lcHs for each i ∈ I. Denote by

∏
i∈I Xi the

product space of Xi consisting of all mappings I ∋ i 7→ xi ∈ Xi, endowed with the
product topology (given by the pointwise convergence in Xi for each i ∈ I). Let
m : F →

∏
i∈I Xi be a vector measure with a component measure mi : F → Xi for

i ∈ I. Given a vector measure space (Ω,F ,m), two measurable functions f : Ω → RI

and g : Ω → RI are regarded as equivalent if f(ω) = g(ω) except on the m-null set.
The infinite-dimensional control systems under scrutiny here are described by the

lcHs
∏

i∈I Xi, the vector measure space (Ω,F ,m), and a multifunction Γ : Ω ↠ RI .

Denote by S1
Γ the set of measurable selectors f : Ω → RI from Γ such that each

component function fi : Ω → R is mi-integrable. Thus, S1
Γ is regarded as a subset of

the product space
∏

i∈I L
1(mi). For each fi ∈ L1(mi), let mi(fi) =

∫
fidmi ∈ Xi.

Then the integral of Γ with respect to m is given by∫
Γdm =

{
(mi(fi))i∈I ∈

∏
i∈I

Xi | f = (fi)i∈I ∈ S1
Γ

}
.
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Definition 5.1. A vector measure m : F →
∏

i∈I Xi satisfies the bang-bang prin-

ciple for a multifunction Γ : Ω ↠ RI if
∫
Γdm =

∫
exΓdm, where ex Γ : Ω ↠ RI is

the multifunction given by the extreme points of Γ(ω) at each ω ∈ Ω.

A multifunction Γ : Ω ↠ RI is bounded if there exists a bounded set K ⊂ RI

such that Γ(ω) ⊂ K for every ω ∈ Ω. Denote by Mbfc(Ω,RI) the set of graph

measurable, bounded multifunctions with closed convex values from Ω to RI .
The next result is a special case of [2, Theorems IV.14 and IV.15].

Lemma 5.2. For every Γ ∈ Mbfc(Ω,RI), the following conditions hold.

(i) exS1
Γ = S1

exΓ.

(ii) For every f ∈ S1
Γ there exists a measurable function g : Ω → RI such that

f ± g ∈ S1
Γ and g(ω) ̸= 0 whenever f(ω) ̸∈ exΓ(ω).

Theorem 5.3. If Xi is a quasicomplete lcHs for each i ∈ I and m : F →
∏

i∈I Xi

be a closed vector measure such that dens
∏

i∈I Xi < κ(F̂E) for every m-nonnull

E ∈ F , then m satisfies the bang-bang principle for every Γ ∈ Mbfc(Ω,RI).

Proof. It follows from the boundedness of Γ that S1
Γ is a bounded closed convex

subset of
∏

i∈I L
∞(mi), and hence, it is a weakly compact subset of

∏
i∈I L

1(mi)

by Lemma 4.6. Define the integration operator T :
∏

i∈I L
1(mi) →

∏
i∈I Xi by

T ((fi)i∈I) = (mi(fi))i∈I for fi ∈ L1(mi) with i ∈ I. Then T is a linear operator
that is continuous in the weak topologies for

∏
i∈I L

1(mi) and
∏

i∈I Xi since the

integration operator fi 7→ mi(fi) is continuous in the weak topologies for L1(mi)
and Xi by Lemma 3.2. Let x̂ ∈ T (S1

Γ) =
∫
Γdm be given arbitrarily. Then the

set T−1(x̂) ∩ S1
Γ is a weakly compact, convex subset of

∏
i∈I L

1(mi), and hence, it

has an extreme point f̂ . It suffices to show that f̂ ∈ S1
exΓ. If f̂ ̸∈ S1

exΓ, then there

exists an m-nonnull set E ∈ F such that f̂(ω) ̸∈ exΓ(ω) for every ω ∈ E. By the
boundedness of Γ and Lemma 5.2, there exists g = (gi)i∈I ∈

∏
i∈I L

1(mi) such that

f̂ ± g ∈ S1
Γ and g ̸= 0 on E. Since m is a Lyapunov measure, the range of m is

convex in
∏

i∈I Xi. Take F ⊂ E with m(F ) = 1
2m(E) and define ĝ : Ω → X by

ĝ(ω) =


g(ω) if ω ∈ E \ F ,

−g(ω) if ω ∈ F,

0 otherwise.

Then f̂ = 1
2(f̂ + ĝ)+ 1

2(f̂ − ĝ) and f̂ ± ĝ ∈ S1
Γ. A simple calculation yields

∫
ĝdm =

(mi(ĝi))i∈I = 0 ∈ X, and hence, f̂ ± ĝ ∈ T−1(x̂) ∩ S1
Γ. This contradicts the fact

that f̂ is an extreme point of T−1(x̂) ∩ S1
Γ. □

Remark 5.4. Theorem 5.3 is an extension of [11, Theorem 4.3] to the lcHs setting.
Instead of a vector measure m : F → X with X a separable Frećhet space in [11],
we treat the case where X =

∏
i∈I Xi with Xi a quasicomplete lcHs and replace

the saturation hypothesis on m by the density condition dens
∏

i∈I Xi < κ(F̂E) for
every m-nonnull E ∈ F .
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Lemma 5.5. Let Xi be a lcHs and ni : F → Xi be a vector measure for each i ∈ I
and define the set by

IE =

{
(fi)i∈I ∈

∏
i∈I

L∞
E (ni) | 0 ≤ fi ≤ 1 ∀i ∈ I

}
, E ∈ F .

We then have

ex IE =

{
(χAi)i∈I ∈

∏
i∈I

L∞
E (ni) | Ai ∈ FE ∀i ∈ I

}
.

Proof. Clearly, any sequence of characteristic functions (χAi)i∈I is an extreme point
of IE . On the other hand, if an extreme point (fi)i∈I in IE is not a sequence of
characteristic functions, then without loss of generality, we may assume that there
exist ε > 0 and nj-nonnull set A ∈ FE for some index j ∈ I such that ε ≤ fj ≤ 1−ε
on A. Then the sequence of functions [fj ± εχA, (fi)i∈I\{j}] belongs to IE and

(fi)i∈I =
1

2

[
fj + εχA, (fi)i∈I\{j}

]
+

1

2

[
fj − εχA, (fi)i∈I\{j}

]
,

a contradiction to the fact that (fi)i∈I is an extreme point of IE . □

Theorem 5.6. Let Xi be a quasicomplete separable lcHs with a vector subspace
that is isomorphic to an infinite-dimensional Banach space for each i ∈ I and
m : F →

∏
i∈I Xi is a closed vector measure. Then m is saturated if and only if

every vector measure in ca(Ω,m,
∏

i∈I Xi) satisfies the bang-bang principle for every

Γ ∈ Mbfc(Ω,RI).

Proof. Suppose that every n ∈ ca(Ω,m,
∏

i∈I Xi) satisfies the bang-bang principle

for every Γ ∈ Mbfc(Ω,RI). Take any E ∈ F and define the multifunction ΓE : Ω ↠
RI by

ΓE(t) = {(fi(t))i∈I ∈ RI | (fi)i∈I ∈ IE}.

We then have ΓE ∈ Mbfc(Ω,RI) and S1
ΓE

= IE . Since IE is weakly compact in

the product topology of
∏

i∈I L
1(ni) by Lemma 4.6 and the integration operator

T :
∏

i∈I L
1(ni) →

∏
i∈I Xi provided in the proof of Theorem 5.3 is continuous for

the weak topologies in
∏

i∈I L
1(ni), the set T (S1

ΓE
) =

∫
ΓEdn is weakly compact

and convex in X. By Lemma 5.2, we have S1
exΓE

= exS1
ΓE

= ex IE , and hence, it
follows from Lemma 5.5 that∫

ΓEdn =

∫
exΓEdn = {(ni(Ai))i∈I ∈ X | Ai ∈ FE ∀i ∈ I} = n(FE).

The bang-bang principle for n implies that n(FE) is weakly compact and convex
in

∏
i∈I Xi for every E ∈ F . Hence, every n ∈ ca(Ω,m,

∏
i∈I Xi) is a Lyapunov

measure. The saturation of m follows from Theorem 4.11. The converse implication
is a consequence of Theorem 5.3. □
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5.2. Lyapunov Control Systems in LcHs. As an application of the bang-bang
principle, we examine Lyapunov control systems developed by [14, 16, 17, 18, 19,
20, 21].

Let X be a lcHs and XI be the product space
∏

i∈I Xi with Xi = X for each

i ∈ I. A vector measure m : F → XI is a control system in XI if the sum
∑

i∈I xi is
(unconditionally) convergent in X for every xi ∈ mi(F) with i ∈ I. The attainable
set for a control system m : F → XI and a measurable correspondence Γ : Ω ↠ RI

is defined by

AΓ(m) =

{∑
i∈I

mi(fi) ∈ X | (fi)i∈I ∈ S1
Γ,

∑
i∈I

mi(fi) exists

}
.

Definition 5.7. A vector measure m : F → XI is a Lyapunov control system for a
multifunction Γ : Ω ↠ RI if AΓ(m) = AexΓ(m).

We provide a necessary and sufficient condition for control systems to be Lya-
punov in terms of the saturation property.

Theorem 5.8. Let X be a quasicomplete separable lcHs and m : F → XI be a
closed vector measure. Then m is saturated if and only if every vector measure in
ca(Ω,m,XI) is a Lyapunov control system for every Γ ∈ Mbfc(Ω,RI).

Proof. Suppose that every n ∈ ca(Ω,m,XI) is a Lyapunov control system for every

Γ ∈ Mbfc(Ω,RI). Let Γj
E ∈ Mbfc(Ω,RI) be the multifunction defined by

Γj
E(ω) = {(f(ω), (0)i∈I\{j}) ∈ RI | 0 ≤ f ≤ 1, f ∈ L∞

E (nj)},

where the nonzero entry f(ω) of the defining sequence in Γj
E(ω) appears in the jth

component in RI . In view of Lemmas 5.2 and 5.5, we have

S1
exΓj

E

= exS1
Γj
E

= {(χA, (0)i∈I\{j}) | A ∈ FE}.

Since n is a Lyapunov control system for Γj
E , we obtain

A
Γj
E
(n) = A

exΓj
E
(n) = {nj(A) ∈ X | A ∈ FE} = nj(FE).

By Lemma 4.6, S1
Γj
E

is weakly compact in
∏

i∈I L
1(ni) and by Lemma 3.2, A

Γj
E
(n) is

weakly compact and convex in X. Therefore, nj(FE) is weakly compact and convex
in X for every E ∈ F , and hence, n is a Lyapunov measure. The saturation of n
follows from Theorem 4.11. The converse implication is a consequence of Theorem
5.3. □
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[14] I. Kluvánek, The range of a vector-valued measure, Math. Systems Theory 7
(1973), 44–54.
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