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2. Notation and definitions

Let f : X → Y be a Lipschitz map from a Banach space X to a Banach space
Y , equipped with norms that we simply denote ∥ . ∥. Unless otherwise specified, all
Banach spaces considered in this note are assumed to be infinite dimensional.

We should first explain various ways in which a Lipschitz function can attain its
norm. The Lipschitz norm Lip(f) of f is the smallest constant λ ≥ 0 such that

∥f(x)− f(x′)∥ ≤ λ∥x− x′∥
for all (x, x′) ∈ X2. We say that f attains its Lipschitz norm (in short, its norm)
on a couple (x, x′) of distinct points of X if ∥f(x)− f(x′)∥ = Lip(f)∥x− x′∥.

The derivative of a Lipschitz map f : X → Y at x in the direction e ∈ SX is
defined to be

f ′(x, e) = lim
t→0+

t−1(f(x+ te)− f(x))

when this limit exists in the Banach space Y . When the equation ∥f ′(x, e)∥ =
Lip(f) is satisfied for some x ∈ X and e ∈ SX , we say that f attains its norm at
x in the direction e. Finally, we say that f attains its norm in a direction y ∈ Y if
∥y∥ = Lip(f) and there exists a sequence (un, vn) of pairs of distinct points in X
such that

lim
n

(f(un)− f(vn))/∥un − vn∥ = y

It is trivial that if the norm of f is attained on a couple (x, x′) ∈ X2, then f attains
its norm in the direction (f(x)− f(x′)). Compactness shows that if dim(Y ) < ∞,
any Lipschitz map with range in Y attains its norm in some direction, although it
does not necessarily attain its norm on a couple (take f(t) = sin(t)). It is clear that
if f attains its norm at x in the direction e ∈ SX then it attains its norm in the
direction y = f ′(x, e) ∈ Y , and again the converse is false (take f(t) = (1 + t2)1/2).

We refer to [8] for a recent work on possible extensions of the Bishop-Phelps
theorem to real-valued Lipschitz functions defined on a Banach space. There is
however no overlap between [8] and the present work.

We now recall the definition of the modulus of asymptotic smoothness.

Definition 2.1. Let X be a Banach space equipped with the norm ∥ . ∥. If ∥x∥ = 1,
τ > 0 and Y is a closed finite-codimensional subspace of X, we let

ρ(τ, x, Y ) = sup
y∈SY

∥x+ τy∥ − 1

where SY denotes the unit sphere of Y . Then we let

ρ(τ, x) = inf
Y

ρ(τ, x, Y )

where the infimum is taken over all closed finite-codimensional subspaces. Finally,
we let

ρ(τ) = sup
x∈SX

ρ(τ, x).

This function ρ (or ρX if the space X needs to be specified) is called the modulus
of asymptotic uniform smoothness of X. It is sometimes denoted ρ to distinguish it
from the modulus of uniform smoothness, but this latter notion is not used in this
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note. A Banach space X is said to be asymptotically uniformly smooth (in short,
a. u. s) if

lim
τ→0

ρX(τ)/τ = 0.

The space X = c0 is a. u. s., and ρc0(τ) = 0 for all τ ∈ (0, 1]. More generally,
a Banach space E is called asymptotically uniformly flat if there exists τ0 > 0
such that ρE(τ0) = 0. It is shown in [5] that a separable space has an equivalent
asymptotically uniformly flat norm if and only if it is isomorphic to a subspace of
c0.

3. Results

We first recall a practical way of computing the modulus ρ.

Lemma 3.1. Let X be a Banach space with separable dual, τ ∈ (0, 1] and x ∈ SX .
We let

η(τ, x) = sup [ lim
n→∞

∥x+ xn∥ − 1]

where the supremum is taken over all sequences (xn) which converge weakly to 0 and
such that ∥xn∥ ≤ τ for all n, and η(τ) = supx∈SX

η(τ, x). Then η(τ, x) = ρ(τ, x)
and η(τ) = ρ(τ) for every τ ∈ (0, 1].

Proof. Let (xn) be a sequence which converges weakly to 0 and such that ∥xn∥ ≤ τ
for all n. Let Y ⊂ X be a closed subspace of finite codimension. The distance
d(xn, Y ) from xn to Y tends to 0, so given ϵ > 0, there exists for n large enough
yn ∈ Y with ∥xn − yn∥ < ϵ. Then ∥yn∥ < τ + ϵ and

∥x+ xn∥ − 1 ≤ ∥x+ yn∥ − 1 + ∥xn − yn∥ ≤ ρ(τ + ϵ, x, Y ) + ϵ.

Since Y of finite codimension is arbitrary, we have for n large enough

∥xn + x∥ − 1 ≤ ρ(τ + ϵ, x) + ϵ

and since ϵ > 0 is arbitrary it follows that η(τ, x) ≤ ρ(τ, x).

Conversely, we have η(τ, x) ≥ ρ(τ, x). Indeed, let (x∗j ) be a dense sequence in X∗,
and let

Yn =
n∩

j=0

Ker(x∗j ).

Given ϵ > 0, there is xn ∈ Yn such that ∥xn∥ ≤ τ with

∥x+ xn∥ − 1 + ϵ ≥ ρ(τ, x, Yn) ≥ ρ(τ, x).

It is easy to check that the sequence (xn) weakly converges to 0. Since ϵ > 0 is
arbitrary, it follows that η(τ, x) ≥ ρ(τ, x). Hence these two quantities are equal, and
the last assertion follows immediately by taking the supremum over x ∈ SX . □

The following result is Theorem 5.4 in [6], with an actual estimate of the con-
stants. The calculations were left to the reader in [6] since the result is a special case
of the previous Theorem 5.3 from [6]. However, these computations are non trivial
even in this special case. Moreover we will need the expression of the equivalent
norm. For the convenience of the reader, we provide a complete proof below.



42 G. GODEFROY

Theorem 3.2. Let X and Y be two separable Banach spaces. We assume that X
is asymptotically uniformly smooth, and that there exists a Lipschitz-isomorphism f
from X onto Y . If ρX denotes the modulus of asymptotic uniform smoothness of X
and M = Lip(f).Lip(f−1), there is an asymptotically uniformly smooth equivalent
norm on Y whose modulus ρY satisfies

ρY (τ/4M) ≤ 2ρX(τ)

for every τ ∈ (0, 1].

Proof. Since X is asymptotically uniformly smooth, X∗ is separable, and then it
follows from [2] that Y ∗ is separable as well. We may and do assume that Lip(f) = 1
and Lip(f−1) = M . We define a norm | . |∗ on Y ∗ by the formula

|y∗|∗ = sup{|⟨y
∗, f(x)− f(x′)⟩|

∥x− x′∥
; x ̸= x′}.

The above supremum is taken over all pairs (x, x′) of distinct points in X. Since f
is a Lipschitz isomorphism from X onto Y , this formula defines an equivalent norm
on Y ∗. We observe moreover that | . |∗ is weak* lower semi-continuous, since it is
a supremum of weak* continuous functions. Then the bipolar theorem shows that
| . |∗ is the dual norm of an equivalent norm on Y , which we denote | . |.

Let us observe that the unit ball of the norm | . | is the norm-closed convex hull
of the vectors (f((x)− f(x′))/∥x− x′∥, where (x, x′) runs over all pairs of distinct
elements of X. This means that this norm | . | is the largest norm on Y for which
the map f is 1-Lipschitz.

We claim that this norm satisfies the requested conditions. By Lemma 3.1, we
need to show that ηY (τ/4M) ≤ 2ρX(τ) = 2ρ(τ), where ηY = η is obtained from
| . | along the lines of this Lemma. Let y ∈ Y with |y| = 1 and (yn) a sequence in
Y which converges weakly to 0 and such that |yn| ≤ τ/4M for all n. We have to
show that

lim
n→∞

|y + yn| − 1 ≤ 2ρ(τ).

For all n, we pick y∗n ∈ Y ∗ with |y∗n|∗ = 1 such that ⟨y∗n, y+ yn⟩ = |y+ yn|. We may
and do assume that the sequence (y∗n) is weak* convergent to y∗ with |y∗|∗ ≤ 1 and
that lim |y∗ − y∗n|∗ = l exists. Pick ϵ > 0 and x ̸= x′ in X such that

⟨y∗, f(x)− f(x′)⟩ ≥ (1− ϵ)|y∗|∗∥x− x′∥.
We may and do assume that x′ = −x (hence x ̸= 0) and f(x′) = −f(x), and thus

⟨y∗, f(x)⟩ ≥ (1− ϵ)|y∗|∗∥x∥.
Pick any β > ρ(τ). By definition of ρ(τ), there exists a subspace X0 of finite
codimension in X such that if z ∈ X0 and ∥z∥ ≤ τ∥x∥, then

∥x+ z∥ ≤ (1 + β)∥x∥.
Pick b < τ∥x∥/2M and let d = τ∥x∥/2. Since f−1 is M -Lipschitz (for the original
norm, and thus for the larger norm | . |), we can apply Gorelik’s principle ([5], Prop.
2.7) for these values of b and d and conclude that there exists a compact set K such
that bB| . | ⊂ K + f(2dBX0).
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We observe now that the sequence (y∗n − y∗) converges to 0 uniformly on the
compact set K. It follows that there exists a sequence (zn) in X0 such that ∥zn∥ ≤
2d = τ∥x∥ and lim⟨y∗n − y∗, f(zn)⟩ = −bl.

We set An = ⟨y∗n, f(x) − f(zn)⟩. We have An ≤ |y∗n|∗∥x − zn∥ ≤ (1 + β)∥x∥.
Moreover,

An = ⟨y∗, f(x)− f(zn)⟩+ ⟨y∗n − y∗, f(x)⟩ − ⟨y∗n − y∗, f(zn)⟩
and since (y∗n − y∗) weak* converges to 0 and f(−x) = −f(x), one has

An = 2⟨y∗, f(x)⟩ − ⟨y∗, f(zn)− f(−x)⟩+ bl + ϵ(n)

with lim ϵ(n) = 0. Since we have

⟨y∗, f(zn)− f(−x)⟩ ≤ |y∗|∗∥zn + x∥ ≤ |y∗|∗(1 + β)∥x∥
il follows that

An ≥ 2(1− ϵ)|y∗|∗∥x∥ − |y∗|∗(1 + β)∥x∥+ bl + ϵ(n).

We can now combine the two inequalities on An and let n increase to infinity to
obtain

(1 + β)∥x∥ ≥ (1− β − 2ϵ)|y∗|∗∥x∥+ bl.

Playing on β and b leads to

(1 + ρ(τ))∥x∥ ≥ (1− ρ(τ)− 2ϵ)|y∗|∗∥x∥+ lτ∥x∥/2M
and since we can divide by ∥x∥ ̸= 0 and that ϵ > 0 is arbitrary, it follows that

|y∗|∗ ≤ 1 +
2ρ(τ)

1− ρ(τ)
− lτ

2M(1− ρ(τ))
.

We have

|y + yn| = ⟨y∗n, y + yn⟩ = ⟨y∗n − y∗, y⟩+ ⟨y∗n − y∗, yn⟩+ ⟨y∗, y + yn⟩
and thus

lim|y + yn| ≤ (τ/4M) lim |y∗n − y∗|∗ + |y∗|∗ = lτ

4M
+ |y∗|∗.

If lτ
4M ≤ 2ρ(τ), then since |y∗|∗ ≤ 1, it follows that lim|y + yn| − 1 ≤ 2ρ(τ). If

lτ
4M > 2ρ(τ), then

|y∗|∗ ≤ 1− lτ

4M(1− ρ(τ))
≤ 1− lτ

4M

and thus lim|y + yn| ≤ 1. Hence in both cases we have

lim
n→∞

|y + yn| − 1 ≤ 2ρ(τ)

and this concludes the proof. □
Remark 3.3. The renorming | . | constructed in the above proof can also be defined
with the techniques of [4]. Indeed, if f : X → Y is a Lipschitz-isomorphism which
maps 0 to 0 and f : F(X) → Y is its canonical extension to a quotient map from the
free space F(X) onto Y (see Lemma 2.5 in [4]), then the norm | . | is the quotient
norm of the canonical norm of F(X) obtained through f . Along these lines, let
us recall that the correspondance f → f is an isometry from Lip0(X,Y ) onto the
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space L(F(X), Y ) of linear operators from F(X) to Y , hence some norm attainment
statements have linear translations. For instance, f attains its norm on a couple
(x, x′) of distinct points if and only if f attains its operator norm on a molecule
(δ(x)− δ(x′))/∥x− x′∥ of F(X) (see [13]).

The following observation is the main technical result of this note. It relies
heavily on Theorem 3.2 and its proof. In the statement of Theorem 3.4, the moduli
of asymptotic smoothness of the Banach spaces X and Y are computed with respect
to the original norms of these spaces. We use the notation of Definition 2.1.

Theorem 3.4. Let X and Y be separable Banach spaces. We assume that X is
asymptotically uniformly smooth, and that there exists a Lipschitz isomorphism from
X onto Y which attains its norm in some direction y ∈ Y . Then there is a constant
C > 0 such that ρY (y, τ/C) ≤ 2ρX(τ) for all τ ∈ (0, 1].

Proof. We may and do assume that Lip(f) = 1. We denote by ∥ . ∥ the original
norm on the space Y . Then 1 = ∥y∥ ≤ |y|, where | . | denotes the equivalent
norm on Y constructed in Theorem 3.2. Moreover |y| ≤ 1 since y = limn(f(un) −
f(vn))/∥un − vn∥. Hence ∥y∥ = |y| = 1. Since ∥z∥ ≤ |z| for all z ∈ Y , Theorem 3.2
implies that ρY (y, τ/4M) ≤ 2ρX(τ) for all τ ∈ (0, 1], where M = Lip(f−1). □

Note that the assumptions of Theorem 3.4 are satisfied in particular if f attains
its norm at some point x ∈ X in the direction e ∈ SX , or on a pair of distinct points
(x, x′) ∈ X2. This result implies, as we will see now, that the attainment of the
Lipschitz norm is a quite restrictive condition. Note that it is an open question to
know if two separable Banach spaces which are Lipschitz isomorphic are actually
linearly isomorphic. However the following corollary is of isometric nature, and
applies to a Banach space equipped with two equivalent norms. The assumption
made on Y below is usually called the Kadec-Klee property.

Corollary 3.5. Let E be a separable asymptotically uniformly flat Banach space.
Let Y be a Banach space such the the weak and norm topologies agree on the unit
sphere of Y . Let f be a Lipschitz isomorphism between E and Y . Then there is no
y ∈ Y such that f attains its norm in the direction y.

Proof. Assume otherwise. Since Y is Lipschitz-isomorphic to E, its dual Y ∗ is
separable ([2], see also Theorem 2.1 in [5]). By Theorem 3.4 there exists y ∈ SY

and τ0 > 0 such that ρY (y, τ0) = 0. Hence by Lemma 3.1, if (yn) is a weakly-null
sequence in Y with ∥yn∥ = τ0, then lim ∥y + yn∥ = 1. If we let now

zn = (y + yn)/∥y + yn∥
the sequence (zn) is contained in SY and it converges weakly but not in norm to y,
which contradicts our assumption. □
Remark 3.6. The assumptions of Corollary 3.5 are somewhat optimal. It fails
to hold if E is merely assumed to be a.u.s. Indeed, if 1 < p < ∞, the space lp
equipped with its canonical norm is a.u.s. and uniformly convex, and f = Id serves
as a counterexample. On the other hand, Corollary 3.5 applies if E is asymptotically
uniformly flat and Y is locally uniformly rotund. But it fails if Y is simply assumed
to be strictly convex. To check this, we observe that if T is a one-to-one continuous
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linear map from c0 into l2, then T maps weakly null sequences in c0 to norm null
sequences, and thus the equivalent norm on c0 given by

|x| = ∥x∥∞ + ∥T (x)∥2
is asymptotically uniformly flat and strictly convex. But again, f = Id trivially
attains its Lipschitz norm.

However, when E is a subspace of c0 equipped with the restriction of the canonical
norm, Lipschitz maps with strictly convex range cannot satisfy the strongest form
of norm-attainment. I am grateful to A. Naor who suggested the use of geodesics
in this context [11].

Proposition 3.7. Let E be an infinite dimensional subspace of c0 equipped with the
restriction of the canonical norm. Let Y be a strictly convex Banach space. Then
no one-to-one Lipschitz map from E into Y attains its norm on a pair of distinct
points (x, x′) ∈ E2.

Proof. Assume that a one-to-one Lipschitz map f from E to Y attains its norm on
a couple (x, x′) ∈ E2. Then the usual mid-point argument shows that a geodesic
between x and x′ (that is, the range of a 1-Lipschitz map g from [0, ∥x′ − x∥] to
E such that g(0) = x and g(∥x′ − x∥) = x′) is mapped to a geodesic between f(x)
and f(x′). We note now that if Y is strictly convex, any couple of points in Y is
connected by a unique geodesic, namely the linear segment between these points.

Since f is one-to-one, Proposition 3.7 will be shown if we prove that if E is an
infinite dimensional subspace of c0 equipped with the restriction of the canonical
norm, and x ̸= x′ are distinct points in E, there are at least two geodesics between
x and x′. For doing so, we may and do assume that x′ = 0 and ∥x∥ = 1. Since E is
infinite-dimensional, its unit ball BE contains no extreme point: indeed if x ∈ SE ,
the set F = {n ∈ N; |x(n)| > 1/2} is finite, and if y ∈ E if such that y(n) = 0 for all
n ∈ F and ∥y∥ ≤ 1/2, then ∥x+ y∥ = ∥x− y∥ = 1. If z is any point on the segment
[(x − y)/2, (x + y)/2] the map gz : [0, 1] → E such that g(0) = 0, g(1/2) = z and
g(1) = x which is affine on [0, 1/2] and [1/2, 1] is a geodesic between 0 and x. This
concludes the proof. □
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