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[21], statistics [25], machine learning [26], variational inequalities [31, 52], mechan-
ics [40, 41], structure design [50], and optimization [4, 38, 51]. For instance, an
important specialization of Problem 1.1 in the context of convex optimization is the
following [4, Section 27.3].

Problem 1.2. Let f : H → ]−∞,+∞] be a proper lower semicontinuous convex
function, let ϑ ∈ ]0,+∞[, and let g : H → R be a differentiable convex function such
that ∇g is ϑ−1-Lipschitz continuous on H. The problem is to

(1.3) minimize
x∈H

f(x) + g(x),

under the assumption that F = Argmin(f + g) ̸= ∅.

A standard method to solve Problem 1.1 is the forward-backward algorithm [14,
38, 52], which constructs a sequence (xn)n∈N in H by iterating

(1.4) (∀n ∈ N) xn+1 = JγnA(xn − γnBxn), where 0 < γn < 2ϑ.

Recent theoretical advances on deterministic versions of this algorithm can be found
in [6, 11, 20, 22]. Let us also stress that a major motivation for studying the forward-
backward algorithm is that it can be applied not only to Problem 1.1 per se, but
also to systems of coupled monotone inclusions via product space reformulations [2],
to strongly monotone composite inclusions problems via duality arguments [16, 20],
and to primal-dual composite problems via renorming in the primal-dual space
[20, 53]. Thus, new developments on (1.4) lead to new algorithms for solving these
problems as well.

Our paper addresses the following stochastic version of (1.4) in which, at each
iteration n, due to uncertainties on the underlying mathematical model, Bxn is
not known exactly and is available only through some stochastic approximation
un. In addition, an stands for a stochastic perturbation modeling the approximate
implementation of the resolvent operator JγnA. Let (Ω,F ,P) be the underlying
probability space. An H-valued random variable is a measurable map x : (Ω,F) →
(H,B) and, for every p ∈ [1,+∞[, Lp(Ω,F ,P;H) denotes the space of equivalence
classes of H-valued random variable x such that

∫
Ω ∥x∥pdP < +∞.

Algorithm 1.3. Consider the setting of Problem 1.1. Let x0, (un)n∈N, and (an)n∈N
be random variables in L2(Ω,F ,P;H), let (λn)n∈N be a sequence in ]0, 1], and let
(γn)n∈N be a sequence in ]0, 2ϑ[. Set

(1.5) (∀n ∈ N) xn+1 = xn + λn

(
JγnA(xn − γnun) + an − xn

)
.

The first instances of the stochastic iteration (1.5) can be traced back to [44] in the
context of the gradient method, i.e., when A = 0 and B is the gradient of a convex
function. Stochastic approximations in the gradient method were then investigated
in the Russian literature of the late 1960s and early 1970s [27, 28, 29, 33, 42, 49].
Stochastic gradient methods have also been used extensively in adaptive signal
processing, in control, and in machine learning, e.g., [3, 36, 54]. More generally,
proximal stochastic gradient methods have been applied to various problems; see
for instance [1, 26, 45, 48, 55].

The objective of the present paper is to provide an analysis of the stochastic
forward-backward method in the context of Algorithm 1.3. Almost sure convergence
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of the iterates (xn)n∈N to a solution to Problem 1.1 will be established under general
conditions on the sequences (un)n∈N, (an)n∈N, (γn)n∈N, and (λn)n∈N. In particular,
a feature of our analysis is that it allows for relaxation parameters and it does not
require that the proximal parameter sequence (γn)n∈N be vanishing. Our proofs are
based on properties of stochastic quasi-Fejér iterations [18], for which we provide a
novel convergence result.

The organization of the paper is as follows. The notation is introduced in Sec-
tion 2. Section 3 provides an asymptotic principle which will be used in Section 4 to
present the main result on the weak and strong convergence of the iterates of Algo-
rithm 1.3. Finally, Section 5 deals with applications and features a novel stochastic
primal-dual method.

2. Notation

Id denotes the identity operator on H and ⇀ and → denote, respectively, weak
and strong convergence. The sets of weak and strong sequential cluster points of a
sequence (xn)n∈N in H are denoted by W(xn)n∈N and S(xn)n∈N, respectively.

Let A : H → 2H be a set-valued operator. The domain of A is domA ={
x ∈ H

∣∣ Ax ̸= ∅
}
and the graph of A is graA =

{
(x, u) ∈ H× H

∣∣ u ∈ Ax
}
. The

inverse A−1 of A is defined via the equivalences (∀(x, u) ∈ H2) x ∈ A−1u ⇔ u ∈ Ax.
The resolvent of A is JA = (Id + A)−1. If A is maximally monotone, then JA is
single-valued and firmly nonexpansive, with dom JA = H. An operator A : H → 2H

is demiregular at x ∈ domA if, for every sequence (xn, un)n∈N in graA and every
u ∈ Ax such that xn ⇀ x and un → u, we have xn → x [2]. Let G be a real Hilbert
space. We denote by B (H,G) the space of bounded linear operators from H to G,
and we set B (H) = B (H,H). The adjoint of L ∈ B (H,G) is denoted by L∗. For
more details on convex analysis and monotone operator theory, see [4].

Let (Ω,F ,P) denote the underlying probability space. The smallest σ-algebra
generated by a family Φ of random variables is denoted by σ(Φ). Given a sequence
(xn)n∈N of H-valued random variables, we denote by X = (Xn)n∈N a sequence of
sigma-algebras such that

(2.1) (∀n ∈ N) Xn ⊂ F and σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

Furthermore, we denote by ℓ+(X ) the set of sequences of [0,+∞[-valued random
variables (ξn)n∈N such that, for every n ∈ N, ξn is Xn-measurable, and we define

(2.2) (∀p ∈ ]0,+∞[) ℓp+(X ) =

{
(ξn)n∈N ∈ ℓ+(X )

∣∣∣ ∑
n∈N

ξpn < +∞ P-a.s.

}
,

and

(2.3) ℓ∞+ (X ) =

{
(ξn)n∈N ∈ ℓ+(X )

∣∣∣ sup
n∈N

ξn < +∞ P-a.s.

}
.

Equalities and inequalities involving random variables will always be understood to
hold P-almost surely, although this will not always be expressly mentioned. Let E
be a sub sigma-algebra of F , let x ∈ L1(Ω,F ,P;H), and let y ∈ L1(Ω, E ,P;H). Then
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y is the conditional expectation of x with respect to E if (∀E ∈ E)
∫
E xdP =

∫
E ydP;

in this case we write y = E(x |E). We have

(2.4)
(
∀x ∈ L1(Ω,F ,P;H)

)
∥E(x |E)∥ ⩽ E(∥x∥|E).

In addition, L2(Ω,F ,P;H) is a Hilbert space and

(2.5)
(
∀x ∈ L2(Ω,F ,P;H)

) {
∥E(x |E)∥2 ⩽ E(∥x∥2 |E)
(∀u ∈ H) E(⟨x | u⟩ |E) = ⟨E(x |E) | u⟩.

Geometrically, if x ∈ L2(Ω,F ,P;H), E(x | E) is the projection of x onto
L2(Ω, E ,P;H). For background on probability in Hilbert spaces, see [32, 37].

3. An asymptotic principle

In this section, we establish an asymptotic principle which will lay the foundation
for the convergence analysis of our stochastic forward-backward algorithm. First,
we need the following result.

Proposition 3.1. Let F be a nonempty closed subset of H, let ϕ : [0,+∞[ → [0,+∞[
be a strictly increasing function such that limt→+∞ ϕ(t) = +∞, let (xn)n∈N be a
sequence of H-valued random variables, and let (Xn)n∈N be a sequence of sub-sigma-
algebras of F such that

(3.1) (∀n ∈ N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

Suppose that, for every z ∈ F, there exist (ϑn(z))n∈N ∈ ℓ+(X ), (χn(z))n∈N ∈
ℓ1+(X ), and (ηn(z))n∈N ∈ ℓ1+(X ) such that

(3.2) (∀n ∈ N) E(ϕ(∥xn+1−z∥) |Xn)+ϑn(z) ⩽ (1+χn(z))ϕ(∥xn−z∥)+ηn(z) P-a.s.

Then the following hold:

(i) (∀z ∈ F)
[ ∑

n∈N ϑn(z) < +∞ P-a.s.
]

(ii) (xn)n∈N is bounded P-a.s.

(iii) There exists Ω̃ ∈ F such that P(Ω̃) = 1 and, for every ω ∈ Ω̃ and every
z ∈ F, (∥xn(ω)− z∥)n∈N converges.

(iv) Suppose that W(xn)n∈N ⊂ F P-a.s. Then (xn)n∈N converges weakly P-a.s.
to an F-valued random variable.

(v) Suppose that S(xn)n∈N ∩ F ̸= ∅ P-a.s. Then (xn)n∈N converges strongly
P-a.s. to an F-valued random variable.

(vi) Suppose that S(xn)n∈N ̸= ∅ P-a.s. and that W(xn)n∈N ⊂ F P-a.s. Then
(xn)n∈N converges strongly P-a.s. to an F-valued random variable.

Proof. This is [18, Proposition 2.3] in the case when (∀n ∈ N) Xn = σ(x0, . . . , xn).
However, the proof remains the same in the more general setting of (2.1). □

The following result describes the asymptotic behavior of an abstract stochastic
recursion in Hilbert spaces.

Theorem 3.2. Let F be a nonempty closed subset of H and let (λn)n∈N be a sequence
in ]0, 1]. In addition, let (xn)n∈N, (tn)n∈N, (cn)n∈N, and (dn)n∈N be sequences in
L2(Ω,F ,P;H). Suppose that the following are satisfied:
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(a) X = (Xn)n∈N is a sequence of sub-sigma-algebras of F such that (∀n∈N)
σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

(b) (∀n ∈ N) xn+1 = xn + λn(tn + cn − xn).

(c)
∑

n∈N λn

√
E(∥cn∥2 |Xn) < +∞ and

∑
n∈N

√
λnE(∥dn∥2 |Xn) < +∞.

(d) For every z ∈ F, there exist a sequence (sn(z))n∈N of H-valued random
variables, (θ1,n(z))n∈N ∈ ℓ+(X ), (θ2,n(z))n∈N ∈ ℓ+(X ), (µ1,n(z))n∈N ∈
ℓ∞+ (X ), (µ2,n(z))n∈N ∈ ℓ∞+ (X ), (ν1,n(z))n∈N ∈ ℓ∞+ (X ), and (ν2,n(z))n∈N ∈
ℓ∞+ (X ) such that (λnµ1,n(z))n∈N ∈ ℓ1+(X ), (λnµ2,n(z))n∈N ∈ ℓ1+(X ),

(λnν1,n(z))n∈N ∈ ℓ
1/2
+ (X ), (λnν2,n(z))n∈N ∈ ℓ

1/2
+ (X ),

(3.3)
(∀n ∈ N) E(∥tn − z∥2 |Xn) + θ1,n(z) ⩽ (1 + µ1,n(z))E(∥sn(z) + dn∥2 |Xn) + ν1,n(z),

and

(3.4) (∀n ∈ N) E(∥sn(z)∥2 |Xn) + θ2,n(z) ⩽ (1 + µ2,n(z))∥xn − z∥2 + ν2,n(z).

Then the following hold:

(i) (∀z ∈ F)
[ ∑

n∈N λnθ1,n(z) < +∞ and
∑

n∈N λnθ2,n(z) < +∞ P-a.s.
]
.

(ii)
∑

n∈N λn(1− λn)E(∥tn − xn∥2 |Xn) < +∞ P-a.s.
(iii) Suppose that W(xn)n∈N ⊂ F P-a.s. Then (xn)n∈N converges weakly P-a.s.

to an F-valued random variable.
(iv) Suppose that S(xn)n∈N ∩ F ̸= ∅ P-a.s. Then (xn)n∈N converges strongly

P-a.s. to an F-valued random variable.
(v) Suppose that S(xn)n∈N ̸= ∅ P-a.s. and that W(xn)n∈N ⊂ F P-a.s. Then

(xn)n∈N converges strongly P-a.s. to an F-valued random variable.

Proof. Let z ∈ F. By (2.5) and (3.3),

(∀n ∈ N) E(∥tn − z∥|Xn)

⩽
√

E(∥tn − z∥2 |Xn)

⩽
√

1 + µ1,n(z)
√

E(∥sn(z) + dn∥2 |Xn) +
√

ν1,n(z)

⩽
(
1 +

µ1,n(z)

2

)√
E(∥sn(z) + dn∥2 |Xn) +

√
ν1,n(z).(3.5)

On the other hand, according to the triangle inequality and (3.4),

(∀n ∈ N)
√

E(∥sn(z) + dn∥2 |Xn)

⩽
√

E(∥sn(z)∥2 |Xn) +
√

E(∥dn∥2 |Xn)

⩽
√

1 + µ2,n(z)∥xn − z∥+
√

ν2,n(z) +
√

E(∥dn∥2 |Xn)

⩽
(
1 +

µ2,n(z)

2

)
∥xn − z∥+

√
ν2,n(z) +

√
E(∥dn∥2 |Xn).(3.6)

Furthermore, (b) yields

(3.7) (∀n ∈ N) ∥xn+1 − z∥ ⩽ (1− λn)∥xn − z∥+ λn∥tn − z∥+ λn∥cn∥.

Consequently, (3.5) and (3.6) lead to



18 P. L. COMBETTES AND J.-C. PESQUET

(∀n ∈ N) E(∥xn+1 − z∥|Xn)

⩽ (1− λn)∥xn − z∥+ λnE(∥tn − z∥|Xn) + λnE(∥cn∥|Xn)

⩽ (1 + ρn(z))∥xn − z∥+ ζn(z),(3.8)

where

(3.9) ρn(z) =
λn

2

(
µ1,n(z) + µ2,n(z) +

µ1,n(z)µ2,n(z)

2

)
and

(3.10) ζn(z) = λn

√
ν1,n(z) + λn

(
1 +

µ1,n(z)

2

)(√
ν2,n(z)

+
√

E(∥dn∥2 |Xn)
)
+ λnE(∥cn∥|Xn).

Now set

(3.11) µ1(z) = sup
n∈N

µ1,n(z).

In view of (3.3) and (3.4), we have

2
∑
n∈N

ρn(z) =
∑
n∈N

λnµ1,n(z) +
∑
n∈N

λnµ2,n(z) +
1

2

∑
n∈N

λnµ1,n(z)µ2,n(z)

⩽
∑
n∈N

λnµ1,n(z) +
(
1 +

µ1(z)

2

)∑
n∈N

λnµ2,n(z)

< +∞.(3.12)

In addition, since (2.5) yields

(3.13) (∀n ∈ N) E(∥cn∥|Xn) ⩽
√

E(∥cn∥2 |Xn),

we derive from (c) and (d) that∑
n∈N

ζn(z) ⩽
∑
n∈N

√
λnν1,n(z) +

(
1 +

µ1(z)

2

)(∑
n∈N

√
λnν2,n(z)

+
∑
n∈N

√
λnE(∥dn∥2 |Xn)

)
+

∑
n∈N

λn

√
E(∥cn∥2 |Xn)

< +∞.(3.14)

Using Proposition 3.1(ii), (3.8), (3.12), and (3.14), we obtain that

(3.15)
(
∥xn − z∥

)
n∈N is almost surely bounded.

In turn, by (3.4),

(3.16)
(
E(∥sn(z)∥2 |Xn)

)
n∈N is almost surely bounded.

In addition, (3.3) implies that

(∀n ∈ N) E(∥tn − z∥2 |Xn) ⩽ 2(1 + µ1(z))
(
E(∥sn(z)∥2 |Xn)

+ E(∥dn∥2 |Xn)
)
+ ν1,n(z),(3.17)
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from which we deduce that

(3.18)
(
λnE(∥tn − z∥2 |Xn)

)
n∈N is almost surely bounded.

Next, we observe that (3.3) and (3.4) yield

(∀n ∈ N) E(∥tn − z∥2 |Xn) + θ1,n(z) + (1 + µ1,n(z))θ2,n(z)

⩽ (1 + µ1,n(z))(1 + µ2,n(z))∥xn − z∥2 + ν1,n(z)

+ (1 + µ1,n(z))
(
ν2,n(z) + 2E(⟨sn(z) | dn⟩ |Xn) + E(∥dn∥2 |Xn)

)
.(3.19)

Now set

θn(z) = θ1,n(z) + (1 + µ1,n(z))θ2,n(z)

µn(z) = µ1,n(z) + (1 + µ1(z))µ2,n(z)

νn(z) = ν1,n(z) + (1 + µ1(z))
(
ν2,n(z)

+2
√

E(∥sn(z)∥2 |Xn)
√

E(∥dn∥2 |Xn) + E(∥dn∥2 |Xn)
)

ξn(z) = 2λn∥tn − z∥ ∥cn∥+ 2(1− λn)∥xn − z∥ ∥cn∥+ λn∥cn∥2.

By the Cauchy-Schwarz inequality and (3.19),

(3.20) (∀n ∈ N) E(∥tn − z∥2 |Xn) + θn(z) ⩽ (1 + µn(z))∥xn − z∥2 + νn(z).

On the other hand, by the conditional Cauchy-Schwarz inequality,

(∀n ∈ N) λnE(ξn(z) |Xn)

⩽ 2(1− λn)λn∥xn − z∥E(∥cn∥|Xn) + λ2
nE(∥cn∥2 |Xn)

+ 2λn

√
λnE(∥tn − z∥2 |Xn)

√
λnE(∥cn∥2 |Xn)

⩽ 2∥xn − z∥λn

√
E(∥cn∥2 |Xn) + λ2

nE(∥cn∥2 |Xn)

+ 2
√

λnE(∥tn − z∥2 |Xn)λn

√
E(∥cn∥2 |Xn).(3.21)

Thus, it follows from (3.15), (c), and (3.18) that

(3.22)
∑
n∈N

λnE(ξn(z) |Xn) < +∞.

Let us define

(3.23) (∀n ∈ N)


ϑn(z) = λnθn(z) + λn(1− λn)E(∥tn − xn∥2 |Xn)

χn(z) = λnµn(z)

ηn(z) = λnE(ξn(z) |Xn) + λnνn(z).

It follows from (c), (d), (3.16), and the inclusion ℓ
1/2
+ (X ) ⊂ ℓ1+(X ) that

(θn(z))n∈N ∈ ℓ+(X ), (λnµn(z))n∈N ∈ ℓ1+(X ), and (λnνn(z))n∈N ∈ ℓ1+(X ). There-
fore,

(3.24)
(
ϑn(z)

)
n∈N ∈ ℓ+(X )

and

(3.25)
(
χn(z)

)
n∈N ∈ ℓ1+(X ).

Furthermore, we deduce from (3.22) that

(3.26)
(
ηn(z)

)
n∈N ∈ ℓ1+(X ).
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Next, we derive from (b), [4, Corollary 2.14], and (3.20) that

(∀n ∈ N) E(∥xn+1 − z∥2 |Xn)

= E(∥(1− λn)(xn − z) + λn(tn − z+ cn)∥2 |Xn)

= (1− λn)E(∥xn − z∥2 |Xn) + λnE(∥tn − z+ cn∥2 |Xn)

− λn(1− λn)E(∥tn − xn + cn∥2 |Xn)

= (1− λn)∥xn − z∥2 + λnE(∥tn − z∥2 |Xn)

+ 2λnE(⟨tn − z | cn⟩ |Xn)− λn(1− λn)E(∥tn − xn∥2 |Xn)

− 2λn(1− λn)E(⟨tn − xn | cn⟩ |Xn) + λ2
nE(∥cn∥2 |Xn)

= (1− λn)∥xn − z∥2 + λnE(∥tn − z∥2 |Xn)

− λn(1− λn)E(∥tn − xn∥2 |Xn) + 2λ2
nE(⟨tn − z | cn⟩ |Xn)

+ 2λn(1− λn)E(⟨xn − z | cn⟩ |Xn) + λ2
nE(∥cn∥2 |Xn)

⩽ (1− λn)∥xn − z∥2 + λnE(∥tn − z∥2 |Xn)

− λn(1− λn)E(∥tn − xn∥2 |Xn) + λnE(ξn(z) |Xn)

⩽
(
1 + χn(z)

)
∥xn − z∥2 − ϑn(z) + ηn(z).(3.27)

We therefore recover (3.2) with ϕ : t 7→ t2. Hence, appealing to (3.24), (3.25), (3.26),
and Proposition 3.1(i), we obtain (ϑn(z))n∈N ∈ ℓ1+(X ), which establishes (i) and
(ii). Finally, (iii)–(v) follow from Proposition 3.1(iv)–(vi). □
Remark 3.3.

(i) Theorem 3.2 extends [18, Theorem 2.5], which corresponds to the special
case when, for every n ∈ N and every z ∈ F, µ1,n(z) = ν1,n(z) = θ2,n(z) =
0 and dn = 0. Note that the L2 assumptions in Theorem 3.2 are just
made to unify the presentation with the forthcoming results of Section 4.
However, since we take only conditional expectations of [0,+∞[-valued
random variables, they are not necessary.

(ii) Suppose that (∀n ∈ N) cn = dn = 0. Then (3.20) and (3.23) imply that

(3.28) (∀n ∈ N) ηn(z) = λn

(
ν1,n(z) + (1 + µ1(z))ν2,n(z)

)
,

and it follows directly from (3.27) and Proposition 3.1 that the conditions on
(ν1,n(z))n∈N and (ν1,n(z))n∈N can be weakened to (λnν1,n(z))n∈N ∈ ℓ1+(X )
and (λnν2,n(z))n∈N ∈ ℓ1+(X ).

4. A stochastic forward-backward algorithm

We now state the main result of the paper.

Theorem 4.1. Consider the setting of Problem 1.1, let (τn)n∈N be a sequence in
[0,+∞[, let X = (Xn)n∈N be a sequence of sub-sigma-algebras of F , and let (xn)n∈N
be a sequence generated by Algorithm 1.3. Assume that the following are satisfied:

(a) (∀n∈N) σ(x0, . . . , xn) ⊂ Xn ⊂ Xn+1.

(b)
∑

n∈N λn

√
E(∥an∥2 |Xn) < +∞.

(c)
∑

n∈N
√
λn∥E(un |Xn)− Bxn∥ < +∞.
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(d) For every z ∈ F, there exists
(
ζn(z)

)
n∈N ∈ ℓ∞+ (X ) such that

(
λnζn(z)

)
n∈N ∈

ℓ
1/2
+ (X ) and

(4.1) (∀n ∈ N) E(∥un − E(un |Xn)∥2 |Xn) ⩽ τn∥Bxn − Bz∥2 + ζn(z).

(e) infn∈N γn > 0, supn∈N τn < +∞, and supn∈N(1 + τn)γn < 2ϑ.
(f) Either infn∈N λn > 0 or

[
γn ≡ γ,

∑
n∈N τn < +∞, and

∑
n∈N λn = +∞

]
.

Then the following hold for some F-valued random variable x:

(i)
∑

n∈N λn∥Bxn − Bz∥2 < +∞ P-a.s.

(ii)
∑

n∈N λn∥xn − γnBxn − JγnA(xn − γnBxn) + γnBz∥2 < +∞ P-a.s.
(iii) (xn)n∈N converges weakly P-a.s. to x.
(iv) Suppose that one of the following is satisfied:

(g) A is demiregular at every z ∈ F.
(h) B is demiregular at every z ∈ F.
Then (xn)n∈N converges strongly P-a.s. to x.

Proof. Set

(4.2) (∀n ∈ N) Rn = Id − γnB, rn = xn − γnun, and tn = JγnArn.

Then it follows from (1.5) that assumption (b) in Theorem 3.2 is satisfied with

(4.3) (∀n ∈ N) cn = an.

In addition, for every n ∈ N, F = Fix (JγnARn) [4, Proposition 25.1(iv)] and we
deduce from the firm nonexpansiveness of the operators (JγnA)n∈N [4, Corollary 23.8]
that

(∀z ∈ F)(∀n ∈ N) ∥tn − z∥2 + ∥rn − JγnArn − Rnz+ z∥2 ⩽ ∥rn − Rnz∥2.(4.4)

Now set

(4.5) (∀n ∈ N) ũn = un − E(un |Xn) + Bxn.

Then we derive from (4.4) that (3.3) holds with

(4.6) (∀z ∈ F)(∀n ∈ N)


θ1,n(z) = E(∥rn − JγnArn − Rnz+ z∥2 |Xn)

µ1,n(z) = ν1,n(z) = 0

sn(z) = xn − γnũn − Rnz

dn = −γn(E(un |Xn)− Bxn).

Thus, (4.3), (4.6), (b), (c), and (e), imply that assumption (c) in Theorem 3.2 is
satisfied since∑

n∈N

√
λnE(∥dn∥2 |Xn) ⩽ 2(τn + 1)−1ϑ

∑
n∈N

√
λn∥E(un |Xn)− Bxn∥2

⩽ 2ϑ
∑
n∈N

√
λn∥E(un |Xn)− Bxn∥

< +∞.(4.7)

Moreover, for every z ∈ F and n ∈ N, we derive from (4.5), (1.1), and (4.1) that
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E(∥sn(z)∥2 |Xn)

= E(∥xn − z− γn(ũn − Bz)∥2 |Xn)

= ∥xn − z∥2 − 2γn⟨xn − z | E(ũn |Xn)− Bz⟩+ γ2nE(∥ũn − Bz∥2 |Xn)

= ∥xn − z∥2 − 2γn⟨xn − z | Bxn − Bz⟩
+ γ2n

(
E(∥un − E(un |Xn)∥2 |Xn)

+ 2⟨un − E(un |Xn) | Bxn − Bz⟩+ ∥Bxn − Bz∥2
)

= ∥xn − z∥2 − 2γn⟨xn − z | Bxn − Bz⟩
+ γ2n

(
E(∥un − E(un |Xn)∥2 |Xn) + ∥Bxn − Bz∥2

)
⩽ ∥xn − z∥2 − γn(2ϑ− γn)∥Bxn − Bz∥2

+ γ2nE(∥un − E(un |Xn)∥2 |Xn)

⩽ ∥xn − z∥2 − γn
(
2ϑ− (1 + τn)γn

)
∥Bxn − Bz∥2 + γ2nζn(z).(4.8)

Thus, (3.4) is obtained by setting

(4.9) (∀n ∈ N)


θ2,n(z) = γn

(
2ϑ− (1 + τn)γn

)
∥Bxn − Bz∥2

µ2,n(z) = 0

ν2,n(z) = γ2nζn(z).

Altogether, it follows from (d) and (e) that assumption (d) in Theorem 3.2 is also
satisfied. By applying Theorem 3.2(i), we deduce from (e), (4.6), and (4.9) that

(4.10) (∀z ∈ F)
∑
n∈N

λn∥Bxn − Bz∥2 < +∞

and

(4.11) (∀z ∈ F)
∑
n∈N

λnE(∥rn − JγnArn − Rnz+ z∥2 |Xn) < +∞.

(i): See (4.10).
(ii): Let z ∈ F. It follows from (4.2), (4.5), (2.5), and the nonexpansiveness of

the operators (JγnA)n∈N that

(∀n ∈ N) ∥xn − γnBxn − JγnA(xn − γnBxn) + γnBz∥2

= ∥E(xn − γnũn |Xn)− JγnA(xn − γnBxn) + γnBz∥2

⩽ 3
(
∥E(rn − JγnArn + γnBz |Xn)∥2 + γ2n∥E(un |Xn)− Bxn∥2

+ ∥E(JγnArn |Xn)− JγnA(xn − γnBxn)∥2
)

⩽ 3
(
E(∥rn − JγnArn + γnBz∥2 |Xn) + γ2nE(∥un − Bxn∥2 |Xn)

+ E(∥JγnArn − JγnA(xn − γnBxn)∥2 |Xn)
)

⩽ 3
(
E(∥rn − JγnArn + γnBz∥2 |Xn) + γ2nE(∥un − Bxn∥2 |Xn)

+ E(∥rn − (xn − γnBxn)∥2 |Xn)
)

= 3
(
E(∥rn − JγnArn − Rnz+ z∥2 |Xn)

+ 2γ2nE(∥un − Bxn∥2 |Xn)
)
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⩽ 3
(
E(∥rn − JγnArn − Rnz+ z∥2 |Xn)

+ 8ϑ2E(∥un − Bxn∥2 |Xn)
)
.(4.12)

However, by (4.1),

(∀n ∈ N) E(∥un − Bxn∥2 |Xn)

⩽ 2E(∥un − E(un |Xn)∥2 + ∥E(un |Xn)− Bxn∥2 |Xn)

⩽ 2
(
τn∥Bxn − Bz∥2 + ζn + ∥E(un |Xn)− Bxn∥2

)
.(4.13)

Since supn∈N τn < +∞ by (e), we therefore derive from (i), (c), and (d) that

(4.14)
∑
n∈N

λnE(∥un − Bxn∥2 |Xn) < +∞.

Altogether, the claim follows from (4.11), (4.12), and (4.14).
(iii)–(iv): Let z ∈ F. We consider the two cases separately.

• Suppose that infn∈N λn > 0. We derive from (i), (ii), and (e) that there

exists Ω̃ ∈ F such that P(Ω̃) = 1,

(4.15) (∀ω ∈ Ω̃) xn(ω)− JγnA
(
xn(ω)− γnBxn(ω)

)
→ 0,

and

(4.16) (∀ω ∈ Ω̃) Bxn(ω) → Bz.

Now set

(4.17) (∀n ∈ N) yn = JγnA(xn − γnBxn) and vn = γ−1
n (xn − yn)− Bxn.

It follows from (e), (4.15), and (4.16) that

(4.18) (∀ω ∈ Ω̃) yn(ω)− xn(ω) → 0 and vn(ω) → −Bz.

Let ω ∈ Ω̃. Assume that there exist x ∈ H and a strictly increasing sequence
(kn)n∈N in N such that xkn(ω) ⇀ x. Since Bxkn(ω) → Bz by (4.16) and
since B is maximally monotone [4, Example 20.28], [4, Proposition 20.33(ii)]
yields Bx = Bz. In addition, (4.18) implies that ykn(ω) ⇀ x and vkn(ω) →
−Bz = −Bx. Since (4.17) entails that (ykn(ω), vkn(ω))n∈N lies in the graph
of A, [4, Proposition 20.33(ii)] asserts that−Bx ∈ Ax, i.e., x ∈ F. It therefore
follows from Theorem 3.2(iii) that

(4.19) xn(ω) ⇀ x(ω)

for every ω in some Ω̂ ∈ F such that Ω̂ ⊂ Ω̃ and P(Ω̂) = 1. We now turn

to the strong convergence claims. To this end, take ω ∈ Ω̂. First, suppose
that (g) holds. Then A is demiregular at x(ω). In view of (4.18) and (4.19),
yn(ω) ⇀ x(ω). Furthermore, vn(ω) → −Bx(ω) and (yn(ω), vn(ω))n∈N lies
in the graph of A. Altogether yn(ω) → x(ω) and therefore xn(ω) → x(ω).
Next, suppose that (h) holds. Then, since (4.16) yields Bxn(ω) → Bx(ω),
(4.19) implies that xn(ω) → x(ω).
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• Suppose that
∑

n∈N τn < +∞,
∑

n∈N λn = +∞, and (∀n ∈ N) γn = γ. Let
T = JγA ◦ (Id − γB). We deduce from (i) that

(4.20) (∀z ∈ F) lim ∥Bxn − Bz∥ = 0

and from (ii) that

(4.21) (∀z ∈ F) lim ∥xn − Txn − γ(Bxn − Bz)∥ = 0.

In view of (e), we obtain

(4.22) lim ∥Txn − xn∥ = 0.

In addition, since (e) and [4, Proposition 4.33] imply that T is nonexpansive,
we derive from (1.5) that

(∀n ∈ N) ∥Txn+1 − xn+1∥
= ∥Txn+1 − (1− λn)xn − λn(JγA(xn − γun) + an)∥
= ∥Txn+1−Txn−(1−λn)(xn−Txn)

− λn(JγA(xn−γun)−JγA(xn−γBxn))−λnan∥
⩽ ∥Txn+1 − Txn∥+ (1− λn)∥Txn − xn∥

+ λn∥JγA(xn − γun)− JγA(xn − γBxn)∥+ λn∥an∥
⩽ ∥xn+1 − xn∥+ (1− λn)∥Txn − xn∥+ λnγ∥un − Bxn∥+ λn∥an∥
= λn∥JγA(xn − γun) + an − xn∥+ (1− λn)∥Txn − xn∥
+ λnγ∥un − Bxn∥+ λn∥an∥

⩽ ∥Txn − xn∥+ λn∥JγA(xn − γun)− JγA(xn − γBxn)∥
+ λnγ∥un − Bxn∥+ 2λn∥an∥

⩽ ∥Txn − xn∥+ 2λn

(
γ∥un − Bxn∥+ ∥an∥

)
.(4.23)

Now set

(4.24) (∀n ∈ N) ξn = γ
√

λnE(∥un − Bxn∥2 |Xn) + λn

√
E(∥an∥2 |Xn).

Using (4.1), we get

ξn ⩽ γ
√

λnE(∥un − E(un |Xn)∥2 |Xn) + γ
√

λn∥E(un |Xn)− Bxn∥2

+ λn

√
E(∥an∥2 |Xn)

⩽ γ
√

λnτn∥Bxn − Bz∥+ γ
√

λnζn(z) + γ
√

λn∥E(un |Xn)− Bxn∥

+ λn

√
E(∥an∥2 |Xn).(4.25)

Thus, (4.23) and (2.4) yield

(∀n ∈ N) E(∥Txn+1 − xn+1∥|Xn)

⩽ ∥Txn − xn∥+ 2λn

(
γE(∥un − Bxn∥|Xn) + E(∥an∥|Xn)

)
⩽ ∥Txn − xn∥+ 2ξn.(4.26)
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In addition, according to the Cauchy-Schwarz inequality and (i),

(4.27)
∑
n∈N

√
λnτn∥Bxn − Bz∥ ⩽

√∑
n∈N

τn

√∑
n∈N

λn∥Bxn − Bz∥2 < +∞.

Thus, it follows from assumptions (b)-(d) that (ξn)n∈N ∈ ℓ1+(X ), and we
deduce from Proposition 3.1(iii) and (4.26) that (∥Txn−xn∥)n∈N converges

almost surely. We then derive from (4.22) that there exists Ω̃ ∈ F such

that P(Ω̃) = 1 and (4.15) holds. Let ω ∈ Ω̃. Suppose that there exist x ∈ H
and a strictly increasing sequence (kn)n∈N in N such that xkn(ω) ⇀ x.
Since xkn(ω) ⇀ x and Txkn(ω)−xkn(ω) → 0, the demiclosedness principle
[4, Corollary 4.18] asserts that x ∈ F. Hence, the weak convergence claim
follows from Theorem 3.2(iii). To establish the strong convergence claims,
set w = z − γBz, and set (∀n ∈ N) wn = xn − γBxn. Then Txn = JγAwn

and z = Tz = JγAw. Hence, appealing to the firm nonexpansiveness of JγA,
we obtain

(∀n ∈ N) ⟨Txn − z | xn − Txn − γ(Bxn − Bz)⟩
= ⟨Txn − z | wn − Txn + z− w⟩
= ⟨JγAwn − JγAw | (Id − JγA)wn − (Id − JγA)w⟩
⩾ 0(4.28)

and therefore

(4.29) (∀n ∈ N) ⟨Txn − z | xn − Txn⟩ ⩾ γ⟨Txn − z | Bxn − Bz⟩.
Consequently, since T is nonexpansive and B satisfies (1.1),

(∀n ∈ N) ∥xn − z∥ ∥Txn − xn∥
⩾ ∥Txn − z∥ ∥Txn − xn∥
⩾ ⟨Txn − z | xn − Txn⟩
⩾ γ⟨Txn − z | Bxn − Bz⟩
= γ

(
⟨Txn − xn | Bxn − Bz⟩+ ⟨xn − z | Bxn − Bz⟩

)
⩾ −γ∥Txn − xn∥ ∥Bxn − Bz∥+ γϑ∥Bxn − Bz∥2

⩾ −γ

ϑ
∥Txn − xn∥ ∥xn − z∥+ γϑ∥Bxn − Bz∥2(4.30)

and hence

(4.31) (∀n ∈ N) ∥Bxn − Bz∥2 ⩽ 1

γϑ

(
1 +

γ

ϑ

)
∥xn − z∥ ∥Txn − xn∥.

Since, P-a.s., (xn)n∈N is bounded and Txn − xn → 0, we infer that Bxn →
Bz P-a.s. Thus there exists Ω̂ ∈ F such that Ω̂ ⊂ Ω̃, P(Ω̂) = 1, and

(4.32) (∀ω ∈ Ω̂) xn(ω) ⇀ x(ω) and Bxn(ω) → Bx(ω).

Thus, (h) ⇒ xn(ω) → x(ω). Finally, if (g) holds, the strong convergence of
(xn(ω))n∈N follows from the same arguments as in the previous case.

□
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Remark 4.2. The demiregularity property in Theorem 4.1(iv) is satisfied by a wide
class of operators, e.g., uniformly monotone operators or subdifferentials of proper
lower semicontinuous uniformly convex functions; further examples are provided in
[2, Proposition 2.4].

Remark 4.3. To place our analysis in perspective, we comment on results of the
literature that seem the most pertinently related to Theorem 4.1.

(i) In the deterministic case, Theorem 4.1(iii) can be found in [14, Corol-
lary 6.5].

(ii) In [1, Corollary 8], Problem 1.2 is considered in the special case when H =
RN and solved via (1.5). Almost sure convergence properties are established
under the following assumptions: (γn)n∈N is a decreasing sequence in ]0, ϑ]
such that

∑
n∈N γn = +∞, λn ≡ 1, an ≡ 0, and the sequence (xn)n∈N is

bounded a priori.
(iii) In [46], Problem 1.1 is addressed using Algorithm 1.3. The authors make

the additional assumptions that

(4.33) (∀n ∈ N) E(un |Xn) = Bxn and an = 0.

Furthermore they employ vanishing proximal parameters (γn)n∈N. Almost
sure convergence properties of the sequence (xn)n∈N are then established
under the additional assumption that B is uniformly monotone.

(iv) The recently posted paper [47] employs tools from [18] to investigate the
convergence of a variant of (1.5) in which no errors (an)n∈N are allowed in
the implementation of the resolvents, and an inertial term is added, namely,

(4.34) (∀n ∈ N) xn+1 = xn + λn

(
JγnA(xn + ρn(xn − xn−1)− γnun)− xn

)
,

where ρn ∈ [0, 1[ .

In the case when ρn ≡ 0, assertions (iii) and (iv)(h) of Theorem 4.1 are
obtained under the additional hypothesis that inf λn > 0 and that the sto-
chastic approximations which can be performed are constrained by (4.33).

Next, we provide a version of Theorem 3.2 in which a variant of (1.5) featuring
approximations (An)n∈N of the operator A is used. In the deterministic forward-
backward method, such approximations were first used in [39, Proposition 3.2] (see
also [14, Proposition 6.7]).

Proposition 4.4. Consider the setting of Problem 1.1. Let x0, (un)n∈N, and
(an)n∈N be random variables in L2(Ω,F ,P;H), let (λn)n∈N be a sequence in ]0, 1],
let (γn)n∈N be a sequence in ]0, 2ϑ[, and let (An)n∈N be a sequence of maximally
monotone operators from H to 2H. Set

(4.35) (∀n ∈ N) xn+1 = xn + λn

(
JγnAn(xn − γnun) + an − xn

)
.

Suppose that assumptions (a)–(f) in Theorem 4.1 are satisfied, as well as the fol-
lowing:

(k) There exist sequences (αn)n∈N and (βn)n∈N in [0,+∞[ such that∑
n∈N

√
λnαn < +∞,

∑
n∈N λnβn < +∞, and

(4.36) (∀n ∈ N)(∀x ∈ H) ∥JγnAnx− JγnAx∥ ⩽ αn∥x∥+ βn.
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Then the conclusions of Theorem 4.1 remain valid.

Proof. Let z ∈ F. We have

(4.37) (∀n ∈ N) ∥xn+1−z∥ ⩽ (1−λn)∥xn−z∥+λn∥JγnAn(xn−γnun)−z∥+λn∥an∥.

In addition,

(∀n ∈ N) ∥JγnAn(xn − γnun)− z∥
⩽ ∥JγnAn(xn − γnun)− JγnAn(z− γnBz)∥
+ ∥JγnAn(z− γnBz)− JγnA(z− γnBz)∥

⩽ ∥xn − γnun − z+ γnBz∥+ ∥JγnAn(z− γnBz)− JγnA(z− γnBz)∥
⩽ ∥xn − z− γn(Bxn − Bz)− γn(un − E(un |Xn))∥
+ γn∥E(un |Xn)− Bxn∥+ ∥JγnAn(z− γnBz)− JγnA(z− γnBz)∥.(4.38)

On the other hand, using assumptions (d) and (e) in Theorem 4.1 as well as (1.1),
we obtain as in (4.8)

(∀n ∈ N) E(∥xn − z− γn(Bxn − Bz)− γn(un − E(un |Xn))∥2 |Xn)

⩽ ∥xn − z∥2 − γn
(
2ϑ− (1 + τn)γn

)
∥Bxn − Bz∥2 + γ2nζn(z)

⩽ ∥xn − z∥2 + γ2nζn(z),(4.39)

which implies that

(4.40) (∀n ∈ N) E(∥xn − z− γn(Bxn − Bz)− γn(un − E(un |Xn))∥|Xn)

⩽ ∥xn − z∥+ γn
√

ζn(z).

Combining (4.37), (4.38), and (4.40) yields

(∀n ∈ N) E(∥xn+1 − z∥|Xn)

⩽ ∥xn − z∥+ λnγn
√

ζn(z) + λnγn∥E(un |Xn)− Bxn∥
+ λn∥JγnAn(z− γnBz)− JγnA(z− γnBz)∥
+ λnE(∥an∥|Xn)

⩽ ∥xn − z∥+ γn
√

λnζn(z) + γn
√

λn∥E(un |Xn)− Bxn∥
+ λn∥JγnAn(z− γnBz)− JγnA(z− γnBz)∥

+ λn

√
E(∥an∥2 |Xn).(4.41)

Since [4, Proposition 4.33] asserts that

(4.42) the operators (Id − γnB)n∈N are nonexpansive,

it follows from (k) that

(∀n ∈ N) λn∥JγnAn(z− γnBz)− JγnA(z− γnBz)∥

⩽
√

λnαn∥z− γnBz∥+ λnβn

⩽
√

λnαn∥z∥+ λnβn.(4.43)
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Thus,

(4.44)
∑
n∈N

λn∥JγnAn(z− γnBz)− JγnA(z− γnBz)∥ < +∞.

In view of assumptions (a)-(e) in Theorem 4.1 and (4.44), we deduce from (4.41) and
Proposition 3.1(ii) that (xn)n∈N is almost surely bounded. In turn, (4.42) asserts
that (xn − γnBxn)n∈N is likewise. Now set

(4.45) (∀n ∈ N) ãn = JγnAn(xn − γnun)− JγnA(xn − γnun) + an.

Then (4.35) can be rewritten as

(4.46) (∀n ∈ N) xn+1 = xn + λn

(
JγnA(xn − γnun) + ãn − xn

)
.

However,

(∀n ∈ N)
√

E(∥ãn∥2 |Xn)

⩽
√
E(∥JγnAn(xn − γnun)− JγnA(xn − γnun)∥2 |Xn)

+
√

E(∥an∥2 |Xn).(4.47)

On the other hand, according to (k), assumption (d) in Theorem 4.1, and (4.42),

(∀n ∈ N) λn

√
E(∥JγnAn(xn − γnun)− JγnA(xn − γnun)∥2 |Xn)

⩽ λn

√
E((αn∥xn − γnun∥+ βn)2 |Xn)

⩽ λn

√
E((αn∥xn − γnBxn∥+ γn∥un − Bxn∥+ βn)2 |Xn)

⩽ λnαn

(
∥xn − γnBxn∥+ γn

√
E(∥un − Bxn∥2 |Xn)

)
+ λnβn

⩽ λnαn

(
∥xn − γnBxn∥+ γn∥E(un |Xn)− Bxn∥

+ γn
√

E(∥un − E(un |Xn)∥2 |Xn)
)
+ λnβn

⩽ λnαn

(
∥xn − γnBxn∥+ γn∥E(un |Xn)− Bxn∥

+ γn
√
τn∥Bxn − Bz∥+ γn

√
ζn(z)

)
+ λnβn

⩽
√
λnαn

(
∥xn − γnBxn∥+ γn

√
λn∥E(un |Xn)− Bxn∥

+ γn
√
τn∥Bxn − Bz∥+ γn

√
λnζn(z)

)
+ λnβn.(4.48)

However, assumptions (c) and (d) in Theorem 4.1 guarantee that the sequences

(
√
λn∥E(un |Xn)−Bxn∥)n∈N and (

√
λnζn(z))n∈N are P-a.s. bounded. Since (Bxn)n∈N

and (xn − γnBxn)n∈N are likewise, it follows from (k) and (4.42) that

(4.49)
∑
n∈N

λn

√
E(∥JγnAn(xn − γnun)− JγnA(xn − γnun)∥2 |Xn) < +∞,

and consequently that

(4.50)
∑
n∈N

λn

√
E(∥ãn∥2 |Xn) < +∞.

Applying Theorem 4.1 to algorithm (4.46) then yields the claims. □
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5. Applications

As discussed in the Introduction, the forward-backward algorithm is quite ver-
satile and it can be applied in various forms. Many standard applications of The-
orem 4.1 can of course be recovered for specific choices of A and B, in particular
Problem 1.2. Using the product space framework of [2], it can also be applied to
solve systems of coupled monotone inclusions. On the other hand, using the ap-
proach proposed in [16, 20], it can be used to solve strongly monotone composite
inclusions (in particular, strongly convex composite minimization problems), say,

(5.1) find x ∈ H such that z ∈ Ax+

q∑
k=1

L∗k
(
(Bk □Dk)(Lkx− rk)

)
+ ρx,

since their dual problems assume the general form of Problem 1.1 and the primal
solution can trivially be recovered from any dual solution. In (5.1), z ∈ H, ρ ∈
]0,+∞[ and, for every k ∈ {1, . . . , q}, rk lies in a real Hilbert space Gk, Bk : Gk →
2Gk is maximally monotone, Dk : Gk → 2Gk is maximally monotone and strongly
monotone, Bk □Dk = (B−1

k + D−1
k )−1, and Lk ∈ B (H,Gk). In such instances the

forward-backward algorithm actually yields a primal-dual method which produces
a sequence converging to the primal solution (see [20, Section 5] for details). Now
suppose that, in addition, C : H → H is cocoercive. As in [17], consider the primal
problem

(5.2) find x ∈ H such that z ∈ Ax+

q∑
k=1

L∗k
(
(Bk □Dk)(Lkx− rk)

)
+ Cx,

together with the dual problem

(5.3) find v1 ∈ G1, . . . , vq ∈ Gq such that

(∀k ∈ {1, . . . , q}) − rk ∈ −L∗k(A+ C)−1

(
z−

q∑
l=1

L∗l vl

)
+ B−1

k vk + D−1
k vk.

Using renorming techniques in the primal-dual space going back to [34] in the con-
text of finite-dimensional minimization problems, the primal-dual problem (5.2)–
(5.3) can be reduced to an instance of Problem 1.1 [20, 53] (see also [23]) and
therefore solved via Theorem 4.1. Next, we explicitly illustrate an application of
this approach in the special case when (5.2)–(5.3) is a minimization problem.

5.1. A stochastic primal-dual minimization method. We denote by Γ0(H) the
class of proper lower semicontinuous convex functions. The Moreau subdifferential
of f ∈ Γ0(H) is the maximally monotone operator

(5.4) ∂f : H → 2H : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) ⟨y − x | u⟩+ f(x) ⩽ f(y)
}
.

The inf-convolution of f : H → ]−∞,+∞] and h : H → ]−∞,+∞] is defined as
f □h : H → [−∞,+∞] : x 7→ infy∈H

(
f(y)+h(x−y)

)
. The conjugate of a function f ∈

Γ0(H) is the function f∗ ∈ Γ0(H) defined by (∀u ∈ H) f∗(u) = supx∈H(⟨x | u⟩ − f(x)).
Let U be a strongly positive self-adjoint operator in B (H). The proximity operator
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of f ∈ Γ0(H) relative to the metric induced by U is

(5.5) proxUf : H → H : x → argmin
y∈H

(
f(y) +

1

2
∥x− y∥2U

)
,

where

(5.6) (∀x ∈ H) ∥x∥U =
√

⟨x | Ux⟩.

We have proxUf = JU−1∂f .
We apply Theorem 4.1 to derive a stochastic version of a primal-dual optimization

algorithm for solving a multivariate optimization problem which was first proposed
in [17, Section 4].

Problem 5.1. Let f ∈ Γ0(H), let h : H → R be convex and differentiable with a
Lipschitz-continuous gradient, and let q be a strictly positive integer. For every
k ∈ {1, . . . , q}, let Gk be a separable Hilbert space, let gk ∈ Γ0(Gk), let jk ∈ Γ0(Gk)
be strongly convex, and let Lk ∈ B (H,Gk). Let G = G1 ⊕ · · · ⊕ Gq be the direct
Hilbert sum of G1, . . . ,Gq, and suppose that there exists x ∈ H such that

(5.7) 0 ∈ ∂f(x) +

q∑
k=1

L∗k(∂gk □∂jk)(Lkx) +∇h(x).

Let F be the set of solutions to the problem

(5.8) minimize
x∈H

f(x) +

q∑
k=1

(gk □ jk)(Lkx) + h(x)

and let F∗ be the set of solutions to the dual problem

(5.9) minimize
v∈G

(f∗□h∗)

(
−

q∑
k=1

L∗kvk

)
+

q∑
k=1

(
g∗k(vk) + j∗k(vk)

)
,

where we denote by v = (v1, . . . , vq) a generic point in G. The problem is to find a
point in F× F∗.

We address the case when only stochastic approximations of the gradients of h and
(j∗k)1⩽k⩽q and approximations of the functions f are available to solve Problem 5.1.

Algorithm 5.2. Consider the setting of Problem 5.1 and let W ∈ B (H) be strongly
positive and self-adjoint. Let (fn)n∈N be a sequence in Γ0(H), let (λn)n∈N be a
sequence in ]0, 1] such that

∑
n∈N λn = +∞, and, for every k ∈ {1, . . . , q}, let

Uk ∈ B (Gk) be strongly positive and self-adjoint. Let x0, (un)n∈N, and (bn)n∈N be
random variables in L2(Ω,F ,P;H), and let v0, (sn)n∈N, and (cn)n∈N be random
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variables in L2(Ω,F ,P;G). Iterate

(5.10)

for n = 0, 1, . . .

yn = proxW
−1

fn

(
xn −W

( q∑
k=1

L∗kvk,n + un

))
+ bn

xn+1 = xn + λn(yn − xn)
for k = 1, . . . , q⌊

wk,n = prox
U−1
k

g∗k

(
vk,n + Uk(Lk(2yn − xn)− sk,n)

)
+ ck,n

vk,n+1 = vk,n + λn(wk,n − vk,n).

Proposition 5.3. Consider the setting of Problem 5.1, let X = (Xn)n∈N be a
sequence of sub-sigma-algebras of F , and let (xn)n∈N and (vn)n∈N be sequences
generated by Algorithm 5.2. Let µ ∈ ]0,+∞[ be a Lipschitz constant of the gradient

of h ◦W1/2 and, for every k ∈ {1, . . . , q}, let νk ∈ ]0,+∞[ be a Lipschitz constant

of the gradient of j∗k ◦ U
1/2
k . Assume that the following are satisfied:

(a) (∀n∈N) σ(xn′ ,vn′)0⩽n′⩽n ⊂ Xn ⊂ Xn+1.

(b)
∑

n∈N λn

√
E(∥bn∥2 |Xn) < +∞ and

∑
n∈N λn

√
E(∥cn∥2 |Xn) < +∞.

(c)
∑

n∈N
√
λn∥E(un |Xn)−∇h(xn)∥ < +∞.

(d) For every k ∈ {1, . . . , q},
∑

n∈N
√
λn∥E(sk,n |Xn)−∇j∗k(vk,n)∥ < +∞.

(e) There exists a summable sequence (τn)n∈N in [0,+∞[ such that, for ev-
ery (x, v) ∈ F × F∗, there exists

(
ζn(x, v)

)
n∈N ∈ ℓ∞+ (X ) such that(

λnζn(x, v)
)
n∈N ∈ ℓ

1/2
+ (X ) and

(5.11) (∀n ∈ N) E(∥un − E(un |Xn)∥2 |Xn) + E(∥sn − E(sn |Xn)∥2 |Xn)

⩽ τn

(
∥∇h(xn)−∇h(x)∥2 +

q∑
k=1

∥∇j∗k(vk,n)−∇j∗k(vk)∥2
)
+ ζn(x, v).

(f) There exist sequences (αn)n∈N and (βn)n∈N in [0,+∞[ such that∑
n∈N

√
λnαn < +∞,

∑
n∈N λnβn < +∞, and

(5.12) (∀n ∈ N)(∀x ∈ H) ∥proxW−1

fn x− proxW
−1

f x∥ ⩽ αn∥x∥+ βn.

(g) max{µ, ν1, . . . , νq} < 2

(
1−

√∑q
k=1 ∥U

1/2
k LkW1/2∥2

)
.

Then, the following hold for some F-valued random variable x and some F∗-valued
random variable v:

(i) (xn)n∈N converges weakly P-a.s. to x and (vn)n∈N converges weakly almost
surely to v.

(ii) Suppose that ∇h is demiregular at every x ∈ F. Then (xn)n∈N converges
strongly almost surely to x.

(iii) Suppose that there exists k ∈ {1, . . . , q} such that, for every v ∈ F∗, ∇j∗k is
demiregular at vk. Then (vk,n)n∈N converges strongly almost surely to vk.

Proof. The proof relies on the ability to employ a constant proximal parameter in
algorithm (4.35). Let us define K = H⊕ G, g : G → ]−∞,+∞] : v 7→

∑q
k=1 gk(vk),
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j : G → ]−∞,+∞] : v 7→
∑q

k=1 jk(vk), L : H → G : x 7→
(
Lkx

)
1⩽k⩽q

, and U : G →
G : v 7→ (U1v1, . . . ,Uqvq). Let us now introduce the set-valued operator

(5.13) A : K → 2K : (x, v) 7→
(
∂f(x) + L∗v

)
×

(
− Lx+ ∂g∗(v)

)
,

the single-valued operator

(5.14) B : K → K : (x, v) 7→
(
∇h(x),∇j∗(v)

)
,

and the bounded linear operator

V : K → K : (x, v) 7→
(
W−1x− L∗v,−Lx+U−1v

)
.(5.15)

Further, set

(5.16) ϑ =

1−

√√√√ q∑
k=1

∥U1/2
k LkW1/2∥2

min{µ−1, ν−1
1 , . . . , ν−1

q }

and

(5.17) (∀n ∈ N) τ̃n = ∥V−1∥ ∥V∥τn.
Since (e) imposes that

∑
n∈N τ̃n < +∞, we assume without loss of generality that

(5.18) sup
n∈N

τ̃n < 2ϑ− 1.

In the renormed space (K, ∥ · ∥V), V−1A is maximally monotone and V−1B is coco-
ercive [20, Lemma 3.7] with cocoercivity constant ϑ [43, Lemma 4.3]. In addition,
finding a zero of the sum of these operators is equivalent to finding a point in F×F∗,
and algorithm (4.35) with γn ≡ 1 for solving this monotone inclusion problem spe-
cializes to (5.10) (see [20, 43] for details), which can thus be rewritten as

(5.19) (∀n ∈ N) (xn+1,vn+1) = (xn,vn)

+ λn

(
JV−1An

(
(xn,vn)− V−1(un, sn)

)
+ an − (xn,vn)

)
,

where

(5.20) (∀n ∈ N) an = (bn, cn)

and

(5.21) (∀n ∈ N) An : K → 2K : (x, v) 7→
(
∂fn(x) + L∗v

)
×

(
− Lx+ ∂g∗(v)

)
.

Then

(∀n ∈ N)(∀(x, v) ∈ K) JV−1An
(x, v) =

(
y, proxU

−1

g∗
(
v +UL(2y − x)

))
,

where y = proxW
−1

fn (x−WL∗v).(5.22)

Assumption (b) is equivalent to
∑

n∈N λn

√
E(∥an∥2V |Xn) < +∞, and assumptions

(c) and (d) imply that

(5.23)
∑
n∈N

√
λn∥E(V−1(un, sn) |Xn)− V−1B(un, sn)∥V < +∞.

For every (x, v) ∈ F× F∗, assumption (e) yields
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(∀n ∈ N) E(∥V−1(un, sn)− E(V−1(un, sn) |Xn)∥2V |Xn)

⩽ ∥V−1∥
(
E(∥un − E(un |Xn)∥2 |Xn) + E(∥sn − E(sn |Xn)∥2 |Xn)

)
⩽ ∥V−1∥

(
τn
(
∥∇h(xn)−∇h(x)∥2 + ∥∇j∗(vn)−∇j∗(v)∥2

)
+ ζn(x, v)

)
⩽ τ̃n∥V−1B(xn,vn)− V−1B(x, v)∥2V + ζ̃n(x, v),(5.24)

where

(5.25) (∀n ∈ N) ζ̃n(x, v) = ∥V−1∥ ζn(x, v).

According to assumption (e),
(
ζ̃n(x, v)

)
n∈N ∈ ℓ∞+ (X ), and

(
λnζ̃n(x, v)

)
n∈N ∈

ℓ
1/2
+ (X ). Now, let n ∈ N, let (x, v) ∈ K, and set ỹ = proxW

−1

f (x − WL∗v). By

(5.22) and the nonexpansiveness of proxU
−1

g∗ in (G, ∥ · ∥U−1), we obtain

∥JV−1An
(x, v)− JV−1A(x, v)∥

2
V

⩽ ∥V∥
(
∥y − ỹ∥2

+
∥∥proxU−1

g∗ (v +UL(2y − x))− proxU
−1

g∗ (v +UL(2ỹ − x))
∥∥2)

⩽ ∥V∥
(
∥y − ỹ∥2 + 4∥UL(y − ỹ)∥2

U−1

)
⩽ ∥V∥(1 + 4∥U∥∥L∥2)∥y − ỹ∥2.(5.26)

It follows from (f) that

∥JV−1An
(x, v)− JV−1A(x, v)∥V

⩽ ∥V∥1/2∥(1 + 2∥U∥1/2∥L∥)

× ∥proxW−1

fn (x−WL∗v)− proxW
−1

f (x−WL∗v)∥

⩽ ∥V∥1/2∥(1 + 2∥U∥1/2∥L∥)(αn∥x−WL∗v∥+ βn)

⩽ ∥V∥1/2∥(1 + 2∥U∥1/2∥L∥)
(
αn(∥x∥+ ∥WL∗∥∥v∥) + βn

)
⩽ α̃n∥(x, v)∥V + β̃n,(5.27)

where

(5.28)

{
α̃n =

√
2∥V∥1/2∥(1 + 2∥U∥1/2∥L∥)max{1, ∥WL∗∥}∥V−1∥1/2αn

β̃n = ∥V∥1/2∥(1 + 2∥U∥1/2∥L∥)βn.

Thus,
∑

n∈N
√
λnα̃n < +∞ and

∑
n∈N λnβ̃n < +∞. Finally, since γn ≡ 1, (5.18)

implies that supn∈N(1 + τ̃n)γn < 2ϑ. All the assumptions of Proposition 4.4 are
therefore satisfied for algorithm (5.19). □

Remark 5.4.

(i) Algorithm 5.10 can be viewed as a stochastic version of the primal-dual
algorithm investigated in [20, Example 6.4] when the metric is fixed in the
latter. Particular cases of such fixed metric primal-algorithm can be found
in [12, 15, 30, 34, 35].
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(ii) The same type of primal-dual algorithm is investigated in [5, 43] in a dif-
ferent context since in those papers the stochastic nature of the algorithms
stems from the random activation of blocks of variables.

5.2. Example. We illustrate an implementation of Algorithm 5.2 in a simple sce-
nario with H = RN by constructing an example in which the gradient of h is available
only through the observation of stochastic data and the approximation conditions
are fulfilled.

For every k ∈ {1, . . . , q} and every n ∈ N, set sk,n = ∇j∗k(vk,n) and suppose that
(yn)n∈N is almost surely bounded. This assumption is satisfied, in particular, if
dom f and (bn)n∈N are bounded. In addition, let

(5.29) (∀n ∈ N) Xn = σ
(
x0,v0, (Kn′ , zn′)0⩽n′<mn , (bn′ , cn′)1⩽n′<n

)
,

where (mn)n∈N is a strictly increasing sequence in N such that mn = O(n1+δ) with
δ ∈ ]0,+∞[, (Kn)n∈N is a sequence of independent and identically distributed (i.i.d.)
random matrices of RM×N , and (zn)n∈N is a sequence of i.i.d. random vectors of
RM . For example, in signal recovery, (Kn)n∈N may model a stochastic degradation
operators [19], while (zn)n∈N are observations related to an unknown signal that
we want to estimate. The variables (Kn, zn)n∈N are supposed to be independent of
(bn, cn)n∈N and such that E∥K0∥4 < +∞ and E∥z0∥4 < +∞. Set

(5.30) (∀x ∈ H) h(x) =
1

2
E∥K0x− z0∥2

and, for every n ∈ N, let

(5.31) un =
1

mn+1

mn+1−1∑
n′=0

K⊤
n′(Kn′xn − zn′)

be an empirical estimate of ∇h(xn). We assume that λn = O(n−κ), where κ ∈
]1− δ, 1] ∩ [0, 1]. We have

(5.32) (∀n ∈ N) E(un |Xn)−∇h(xn) =
1

mn+1

(
Q0,mnxn − r0,mn

)
where, for every (n1, n2) ∈ N2 such that n1 < n2,

(5.33) Qn1,n2 =

n2−1∑
n′=n1

(
K⊤

n′Kn′−E(K⊤
0 K0)

)
and rn1,n2 =

n2−1∑
n′=n1

(
K⊤

n′zn′−E(K⊤
0 z0)

)
.

From the law of iterated logarithm [24, Section 25.8], we have almost surely

(5.34) lim
n→+∞

∥Q0,mn∥√
mn log(log(mn))

< +∞ and lim
n→+∞

∥r0,mn∥√
mn log(log(mn))

< +∞.

Since (yn)n∈N is assumed to be bounded, there exists a [0,+∞[-valued random
variable η such that, for every n ∈ N, supn∈N ∥yn∥ ⩽ η. Therefore,

(5.35) (∀n ∈ N) ∥xn∥ ⩽ ∥x0∥+ η.

Altogether, (5.32)–(5.35) yield

(5.36) λn∥E(un |Xn)−∇h(xn)∥2 = O
(λnmn log(log(mn))

m2
n+1

)
= O

( log(log(n))
n1+δ+κ

)
.
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Consequently, assumption (c) in Proposition 5.3 holds. In addition, for every n ∈ N,

(5.37) un − E(un |Xn) =
1

mn+1

(
Qmn,mn+1xn − rmn,mn+1

)
which, by the triangle inequality, implies that

E(∥un − E(un |Xn)∥2 |Xn)

⩽ 1

m2
n+1

E((∥Qmn,mn+1∥ ∥xn∥+ ∥rmn,mn+1∥)2 |Xn)

⩽ 2

m2
n+1

(
E∥Qmn,mn+1∥2 ∥xn∥2 + E∥rmn,mn+1∥2

)
.(5.38)

Upon invoking the i.i.d. assumptions, we obtain

(5.39) (∀n ∈ N)

{
E∥Qmn,mn+1∥2 = (mn+1 −mn)E∥K⊤

0 K0 − E(K⊤
0 K0)∥2

E∥rmn,mn+1∥2 = (mn+1 −mn)E∥K⊤
0 z0 − E(K⊤

0 z0)∥2

and it therefore follows from (5.35) that

(5.40) ζn = E(∥un − E(un |Xn)∥2 |Xn) = O
(mn+1 −mn

m2
n+1

)
= O

( 1

n2+δ

)
and

(5.41) λnζn = O
( 1

n2+δ+κ

)
.

Thus, assumption (e) in Proposition 5.3 holds with τn ≡ 0.
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[16] P. L. Combettes, D- inh Dũng, and B. C. Vũ, Dualization of signal recovery problems, Set-Valued
Anal. 18 (2010), 373–404.

[17] P. L. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with
mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued
Var. Anal. 20 (2012), 307–330.

[18] P. L. Combettes and J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations
with random sweeping, SIAM J. Optim. 25 (2015), 1221–1248.

[19] P. L. Combettes and H. J. Trussell, Methods for digital restoration of signals degraded by a
stochastic impulse response, IEEE Trans. Acoustics, Speech, Signal Process. 37 (1989), 393–
401.
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Université Paris-Est, Laboratoire d’Informatique Gaspard Monge – CNRS UMR 8049, F-77454,
Marne la Vallée Cedex 2, France

E-mail address: jean-christophe.pesquet@univ-paris-est.fr


