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integrand considered in [41, 42, 45, 50, 54, 55, 57, 60] and discuss our recent results
obtained for Lagrange and Bolza problems. We show that the turnpike phenomenon
holds for approximate solutions of these variational problems on large intervals and
study the structure of approximate solutions in regions close to the endpoints of the
time intervals.

2. Discrete-time optimal control problems

Let (X, ρ) be a compact metric space and Ω be a nonempty closed subset of
X ×X.

A sequence {xt}∞t=0 ⊂ X is called an (Ω)-program if (xt, xt+1) ∈ Ω for all integers

t ≥ 0. A sequence {xt}T2
t=T1

⊂ X, where integers T1, T2 satisfy 0 ≤ T1 < T2, is called

an (Ω)-program if (xt, xt+1) ∈ Ω for all integers t ∈ [T1, T2 − 1].
We analyze the problem

(P1)

T−1∑
t=0

v(xt, xt+1) → max, {(xt, xt+1)}T−1
t=0 ⊂ Ω, x0 = z1, xT = z2

which was considered in [43, 54], the problem

(P2)

T−1∑
t=0

v(xt, xt+1) → max, {(xt, xt+1)}T−1
t=0 ⊂ Ω, x0 = z1

which was studied in [40,54] and the problem

(P3)

T−1∑
t=0

v(xt, xt+1) → max, {(xt, xt+1)}T−1
t=0 ⊂ Ω,

considered in [53], where T ≥ 1 is an integer, z1, z2 ∈ X and the objective functin
v : Ω → R1 is bounded and upper semicontinuous. These optimal control problems
are discrete-time analogs of Lagrange problems in the calculus of variations.

It should be mentioned that these optimal control problems describe a general
model of economic dynamics. For this model the set X is the space of states, v is
a utility function and v(xt, xt+1) evaluates consumption at moment t. The interest
in discrete-time optimal problems of types (P1)-(P3) also stems from the study
of various optimization problems which can be reduced to them [3, 23–25, 30, 39].
Optimization problems of the types (P1)-(P3) with Ω = X × X were considered
in [39].

In [40,43,44,46,47,49,53,54] we analyzed a turnpike phenomenon for the approx-
imate solutions of problems (P1)-(P3) which is independent of the length of the
interval T , for all sufficiently large intervals. The turnpike phenomenon holds if the
approximate solutions of the optimal control problems are determined mainly by
the objective function v, and are essentially independent of T and z1, z2. Turnpike
properties are well known in mathematical economics. The term was first coined
by Samuelson in 1948 (see [37]).

Problems (P1), (P2) and (P3) were analyzed in [40,43,53,54], where we showed,
under certain assumptions, that the turnpike property holds and that the turnpike
x̄ is a unique maximizer of the optimization problem v(x, x) → max, (x, x) ∈ Ω.
Namely, we considered a collections of (v)-good programs which are approximate
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solutions of the corresponding infinite horizon optimal control problem associated
with the objective function v. It was shown that the turnpike property holds and x̄
is the turnpike if the following asymptotic turnpike property holds: the all (v)-good
programs converge to x̄.

It [53] we showed that the asymptotic turnpike property holds for most cost
functions in the sense of Baire category. In other words, the asymptotic turnpike
property holds for a generic (typical) cost function.

In this paper we discuss the structure of approximate solutions of the problems
(P2) and (P3) in regions close to the endpoints of the time intervals and present
the results obtained in [56]. The results of [56] show that in regions close to the
right endpoint T of the time interval approximate solutions are determined only by
the objective function, and are essentially independent of the choice of interval and
endpoint value z1. For the problems (P3), approximate solutions are determined
only by the objective function also in regions close to the left endpoint 0 of the time
interval.

More precisely, we define Ω̄ = {(y, x) ∈ X×X : (x, y) ∈ Ω} and v̄(y, x) = v(x, y)
for all (x, y) ∈ Ω and consider the collection P(v̄) of all solutions of a corresponding
infinite horizon optimal control problem associated with the pair (v̄, Ω̄). For given
ϵ > 0 and an integer τ ≥ 1, we show that if T is large enough and {xt}Tt=0 is
an approximate solution of the problem (P2), then ρ(xT−t, yt) ≤ ϵ for all integers
t ∈ [0, τ ], where {yt}∞t=0 ∈ P(v̄).

Moreover, using the Baire category approach, we show that for most objective
functions v the set P(v̄) is a singleton.

We also discuss the results on the structure of solutions of optimal control systems
obtained in [58,59] which are discrete-time analogs of Bolza problems in the calculus
of variations. These systems are described by a pair of objective functions which
determines an optimality criterion.

3. The turnpike results for discrete-time Lagrange problems

Let (X, ρ) be a compact metric space and Ω be a nonempty closed subset of
X × X. We denote by M(Ω) the set of all bounded functions u : Ω → R1. For
every function w ∈ M(Ω) define

∥w∥ = sup{|w(x, y)| : (x, y) ∈ Ω}.
For each x, y ∈ X, each integer T ≥ 1 and each u ∈ M(Ω) set

σ(u, T, x) = sup{
T−1∑
i=0

u(xi, xi+1) : {xi}Ti=0 is an (Ω)− program and x0 = x},

σ(u, T, x, y) = sup{
T−1∑
i=0

u(xi, xi+1) :

{xi}Ti=0 is an (Ω)− program and x0 = x, xT = y},

σ(u, T ) = sup{
T−1∑
i=0

u(xi, xi+1) : {xi}Ti=0 is an (Ω)− program}.

(Here we use the convention that the supremum of an empty set is −∞).



126 A. J. ZASLAVSKI

For every pair of points x, y ∈ X, every pair of nonnegative integers T1, T2 which
satisfies T1 < T2 and every finite sequence of functions {ut}T2−1

t=T1
⊂ M(Ω) define

σ({ut}T2−1
t=T1

, T1, T2, x) = sup{
T2−1∑
t=T1

ut(xt, xt+1) :

{xt}T2
t=T1

is an (Ω)− program and xT1 = x},

σ({ut}T2−1
t=T1

, T1, T2, x, y) = sup{
T2−1∑
t=T1

ut(xt, xt+1) :

{xt}T2
t=T1

is an (Ω)− program and xT1 = x, xT2 = y},

σ({ut}T2−1
t=T1

, T1, T2) = sup{
T2−1∑
t=T1

ut(xt, xt+1) : {xt}T2
t=T1

is an (Ω)− program},

σ̂({ut}T2−1
t=T1

, T1, T2, y) = sup{
T2−1∑
t=T1

ut(xt, xt+1) :

{xt}T2
t=T1

is an (Ω)− program and xT2 = y}.
Suppose that v ∈ M(Ω) is an upper semicontinuous function and that there

exist a point x̄v ∈ X and real positive constants c̄v and r̄v such that the following
assumptions hold.

(A1) {(x, y) ∈ X × X : ρ(x, x̄v), ρ(y, x̄v) ≤ r̄v} ⊂ Ω and the function v is
continuous at the point (x̄v, x̄v).

(A2) σ(v, T ) ≤ Tv(x̄v, x̄v) + c̄v for all integers T ≥ 1.
Clearly, for every positive integer T and every (Ω)-program {xt}Tt=0, we have

T−1∑
t=0

v(xt, xt+1) ≤ σ(v, T ) ≤ Tv(x̄v, x̄v) + c̄v.

The relation above easily implies the following result.

Proposition 3.1. For every (Ω)-program {xt}∞t=0 either the sequence

{
T−1∑
t=0

v(xt, xt+1)− Tv(x̄v, x̄v)}∞T=1

is bounded or limT→∞[
∑T−1

t=0 v(xt, xt+1)− Tv(x̄v, x̄v)] = −∞.

We say that an (Ω)-program {xt}∞t=0 is (v,Ω)-good if the sequence

{
T−1∑
t=0

v(xt, xt+1)− Tv(x̄v, x̄v)}∞T=1

is bounded.
We suppose that the following assumption holds:
(A3) (the asymptotic turnpike property or, briefly, (ATP)) For every (v,Ω)-good

program {xt}∞t=0, limt→∞ ρ(xt, x̄v) = 0.
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Assumptions (A1) and (A3) imply that ∥v∥ > 0 if (x̄v, x̄v) is not an isolated point
of the metric space X ×X.

Several examples of optimal control problems which satisfy assumptions (A1)-
(A3) are discussed in [40,43,54].

In this paper we denote by Card(A) the cardinality of a set A and suppose that
the sum over empty set is zero.

It is easy to see that for every pair of nonnegative integers T1, T2 for which
T1 < T2, every finite sequence of functions {wt}T2−1

t=T1
⊂ M(Ω) and every pair of

points x, y ∈ X for which ρ(x, x̄v), ρ(y, x̄v) ≤ r̄v the value σ({wt}T2−1
t=T1

, T1, T2, x, y)
is finite.

Let T be a positive integer. We denote by YT the collection of all x ∈ X for
which there is an (Ω)-program {xt}Tt=0 such that x0 = x̄v and xT = x and denote
by ȲT the collection of all points x ∈ X for which there is an (Ω)-program {xt}Tt=0

satisfying that x0 = x and xT = x̄v.
The following two theorems stated below were established in [47]. They show that

the turnpike phenomenon holds for approximate solutions of the optimal control
problems of the types (P1) and (P2) with objective functions ut, t = 0, . . . , T − 1
belonging to a small neighborhood of v.

Theorem 3.2. Let ϵ ∈ (0, r̄v), L0 be a positive integer andM0 be a positive number.
Then there exist a natural number L and a positive number δ < ϵ such that for
every natural number T > 2L, every finite sequence of functions {ut}T−1

t=0 ⊂ M(Ω)
for which

∥ut − v∥ ≤ δ, t = 0 . . . T − 1,

and every (Ω)-program {xt}Tt=0 for which

x0 ∈ ȲL0 , xT ∈ YL0 ,

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T, x0, xT )−M0

and
τ+L−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+L−1
t=τ , τ, τ + L, xτ , xτ+L)− δ

for every nonnegative integer τ ≤ T−L there exist integers τ1 ∈ [0, L], τ2 ∈ [T−L, T ]
such that

ρ(xt, x̄v) ≤ ϵ, t = τ1, . . . , τ2.

Moreover, if ρ(x0, x̄v) ≤ δ, then τ1 = 0 and if ρ(xT , x̄v) ≤ δ, then τ2 = T .

Theorem 3.3. Let a positive number ϵ < r̄v, L0 be a positive integer and M0 be a
positive number. Then there exist a positive integer L and a positive number δ < ϵ
such that for every natural number T > 2L, every finite sequence {ut}T−1

t=0 ⊂ M(Ω)
for which

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1
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and every (Ω)-program {xt}Tt=0 for which

x0 ∈ ȲL0 ,

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T, x0)−M0

and
τ+L−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+L−1
t=τ , τ, τ + L, xτ , xτ+L)− δ

for every integer τ ∈ [0, T−L] there exist a pair of integers τ1 ∈ [0, L], τ2 ∈ [T−L, T ]
such that

ρ(xt, x̄v) ≤ ϵ, t = τ1, . . . , τ2.

Moreover if ρ(x0, x̄v) ≤ δ, then τ1 = 0.

The next theorem obtained in [53] establishes the turnpike property for approx-
imate solutions of the optimal control problems of the type (P3).

Theorem 3.4. Let a positive number ϵ < r̄v and M be a positive number. Then
there exist a positive number δ < min{1,M} and a positive integer L such that the
following assertions hold.

1. Assume that a natural number T ≥ L, a finite sequence of functions {ut}T−1
t=0 ⊂

M(Ω) and an (Ω)-program {xt}Tt=0 satisfy

(3.1) ∥ut − v∥ ≤ δ, t = 0, . . . , T − 1,

(3.2)

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T )−M.

Then
Card({t ∈ {0, . . . , T} : ρ(xt, x̄v) > ϵ}) < L.

2. Assume that a natural number T ≥ 2L, a finite sequence of functions {ut}T−1
t=0 ⊂

M(Ω) and that an (Ω)-program {xt}Tt=0 satisfy (3.1), (3.2) and

(3.3)

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T, x0, xT )− δ.

Then there exists a pair of integers τ1 ∈ [0, L] and τ2 ∈ [T − L, T ] such that

ρ(xt, x̄v) ≤ ϵ, t = τ1, . . . , τ2.

Moreover, if ρ(x0, x̄v) ≤ δ, then τ1 = 0 and if ρ(xT , x̄v) ≤ δ, then τ2 = T .
3. Assume that a sequence of functions {ut}∞t=0 ⊂ M(Ω) and that an (Ω)-program

{xt}∞t=0 satisfy
∥ut − v∥ ≤ δ for all integers t ≥ 0,

lim sup
T→∞

[

T−1∑
t=0

ut(xt, xt+1)− σ({ut}T−1
t=0 , 0, T )] > −M.

Then the inequality

Card({t is a nonnegative integer such that ρ(xt, x̄v) > ϵ}) < L

is true.
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4. Assume that T is a positive integer, a finite sequence of functions {ut}T−1
t=0 ⊂

M(Ω), an (Ω)-program {xt}Tt=0 satisfy (3.1), (3.2), (3.3) and that pair of nonneg-
ative integers T1, T2 satisfies T1 < T2 ≤ T . Then

T2−1∑
t=T1

ut(xt, xt+1) ≥ σ({ut}T2−1
t=T1

, T1, T2)− (4L+ 2)(2∥v∥+ 2)−M − 1.

It is clear that Assertions 1 and 2 establish the turnpike phenomenon for ap-
proximate solutions of the problem (P3). Assertion 3 shows that the turnpike
phenomenon holds for approximate solutions of the corresponding infinite horizon
problem. Moreover, they also show that the turnpike phenomenon is stable under
small perturbations of the objective function v.

In this paper we use a well-known notion of an overtaking optimal program
[39,54].

We say that an (Ω)-program {xt}∞t=0 is (v,Ω)-overtaking optimal if for every
(Ω)-program {yt}∞t=0 for which y0 = x0 the relation

lim sup
T→∞

T−1∑
t=0

[v(yt, yt+1)− v(xt, xt+1)] ≤ 0

is valid.
The following result obtained in [40] establishes the existence of an overtaking

optimal program.

Theorem 3.5. Assume that a point x ∈ X and that there exists a (v,Ω)-good
program {xt}∞t=0 for which that x0 = x. Then there exists an (v,Ω)-overtaking
optimal program {x∗t }∞t=0 satisfying x∗0 = x.

The following result was proved in [40]. It provides necessary and sufficient
conditions for overtaking optimality.

Theorem 3.6. Assume that {xt}∞t=0 is an (Ω)-program and that there exists a
(v,Ω)-good program {yt}∞t=0 satisfying that y0 = x0. Then the program {xt}∞t=0 is
(v,Ω)-overtaking optimal if and only if the following conditions hold:

(i) limt→∞ ρ(xt, x̄v) = 0;
(ii) for every positive integer T and every (Ω)-program {yt}Tt=0 for which y0 = x0,

yT = xT the relation
∑T−1

t=0 v(yt, yt+1) ≤
∑T−1

t=0 v(xt, xt+1) is valid.

The next two results were proved in [56]. They show the uniform convergence of
overtaking optimal programs to x̄v.

Theorem 3.7. Let L0 be a positive integer and ϵ be a positive number. Then there
exists a positive integer T0 such that for every (v,Ω)-overtaking optimal program
{xt}∞t=0 which satisfies x0 ∈ ȲL0 the relation ρ(xt, x̄v) ≤ ϵ is valid for all natural
numbers t ≥ T0.

Theorem 3.8. Let ϵ be a positive number. Then there exists a positive num-
ber δ such that for every (v,Ω)-overtaking optimal program {xt}∞t=0 which satisfies
ρ(x0, x̄v) ≤ δ the inequality ρ(xt, x̄v) ≤ ϵ is valid for all nonnegative integers t.
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It is easy to see that (M(Ω), ∥ · ∥) is a Banach space. We denote by M0(Ω) the
collection of all upper semicontinuous functions v ∈ M(Ω) such that there exist a
point x̄v ∈ X and a pair of numbers c̄v > 0 and r̄v ∈ (0, 1) such that

{(x, y) ∈ X ×X : ρ(x, x̄v), ρ(y, x̄v) ≤ r̄v} ⊂ Ω,

v is continuous at (x̄v, x̄v),

σ(v, T ) ≤ Tv(x̄v, x̄v) + c̄v for all integers T ≥ 1.

In other words, M0(Ω) is the collection of all upper semicontinuous functions
v ∈ M(Ω) such that assumptions (A1) and (A2) are true with some x̄v ∈ X,
r̄v ∈ (0, 1), c̄v > 0. We associate with every function v ∈ M0(Ω) the triplet
(x̄v, c̄v, r̄v).

We denote by Mc,0(Ω) the collection of all continuous functions v ∈ M0(Ω) and
denote by M̄c,0(Ω) and M̄0(Ω) the closure of subspaces Mc,0(Ω) and M0(Ω) in
M(Ω), respectively.

The sets M̄c,0(Ω) and M̄0(Ω) are equipped with the metric d which induced by
the norm ∥ · ∥: d(u1, u2) = ∥u1 − u2∥, u1, u2 ∈ M̄0(Ω).

For every function u ∈ M̄0(Ω) and every positive number r define

Bd(u, r) = {w ∈ M̄0(Ω) : ∥u− w∥ < r}.
We denote by M∗(Ω) the collection of all functions v ∈ M0(Ω) such that for

every (v,Ω)-good program {xi}∞i=0, we have

lim
i→∞

ρ(xi, x̄v) = 0.

Define
Mc∗(Ω) = M∗(Ω) ∩Mc(Ω).

The next result was obtained in [53].

Theorem 3.9. M∗(Ω) contains a set which is a countable intersection of open
everywhere dense subsets of M̄0(Ω) and Mc∗(Ω) contains a set which is a countable
intersection of open everywhere dense subsets of M̄c,0(Ω).

4. Preliminaries

We use the notation, definitions and assumptions introduced in Section 3. Let
v ∈ M(Ω) be an upper semicontinuous function. Suppose that x̄v ∈ X, r̄v ∈ (0, 1),
c̄v > 0 and that assumptions (A1), (A2) and (A3) hold.

For every positive number M we denote by XM the collection of all points x ∈ X
such that there exists a (Ω)-program {xt}∞t=0 satisfying x0 = x and that for all
positive integers T the relation

T−1∑
t=0

v(xt, xt+1)− Tv(x̄v, x̄v) ≥ −M

is true. It is clear that ∪{XM : M ∈ (0,∞)} is the collection of all x ∈ X for which
there is a (v,Ω)-good program {xt}∞t=0 such that x0 = x.

The next proposition follows from the boundedness of the function v.

Proposition 4.1. Let T be a positive integer. Then there is a positive number M
for which ȲT ⊂ XM .
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The next auxiliary proposition is true.

Proposition 4.2. Let M be a positive number. Then there exists a positive integer
T for which XM ⊂ ȲT .

For every point x ∈ X \ ∪{XM : M ∈ (0,∞)} put

πv(x) = −∞.

Let

x ∈ ∪{XM : M ∈ (0,∞)}.
Set

πv(x) = sup{lim sup
T→∞

T−1∑
t=0

(v(xt, xt+1)− v(x̄v, x̄v)) :

{xt}∞t=0 is an (Ω)− program such that x0 = x}.
Evidently,

−∞ < πv(x) ≤ c̄v

and

πv(x) = sup{lim sup
T→∞

T−1∑
t=0

(v(xt, xt+1)− v(x̄v, x̄v)) :

{xt}∞t=0 is an (v,Ω)− good program such that x0 = x}.
We denote by P(v, x) the collection of all (v,Ω)-overtaking optimal programs {xt}∞t=0

satisfying x0 = x. Theorem 3.5 implies that the collection P(v, x) is nonempty.
It should be mentioned that the function πv(x), x ∈ X which plays an important

role in our study of the structure of approximate solutions on large intervals in the
regions close to the endpoints.

The next two propositions easily follow from the definitions above.

Proposition 4.3. 1. Let {xt}∞t=0 be a (v,Ω)-good program. Then for every non-
negative integer t the inequality

πv(xt) ≥ v(xt, xt+1)− v(x̄v, x̄v) + πv(xt+1)

is valid.
2. Let T be a positive integer and {xt}Tt=0 be an (Ω)-program satisfying πv(xT ) >

−∞. Then the inequality

πv(xt) ≥ v(xt, xt+1)− v(x̄v, x̄v) + πv(xt+1)

holds for all integers t = 0, . . . , T − 1.

Proposition 4.4. Let x ∈ ∪{XM : M ∈ (0,∞)} and {xt}∞t=0 be a (v,Ω)-overtaking
optimal program satisfying x0 = x. Then the equality

πv(x) = lim sup
T→∞

T−1∑
t=0

(v(xt, xt+1)− v(x̄v, x̄v))

is valid.
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Corollary 4.5. Let {xt}∞t=0 be a (v,Ω)-overtaking optimal and (v,Ω)-good program.
Then for every nonnegative integer t the equality

πv(xt) = v(xt, xt+1)− v(x̄v, x̄v) + πv(xt+1)

is valid.

Define
sup(πv) = sup{πv(z) : z ∈ ∪{XM : M ∈ (0,∞)}},

Xv = {x ∈ ∪{XM : M ∈ (0,∞)} : πv(x) ≥ sup(πv)− 1}.
The following propositions were obtained in [56].

Proposition 4.6. πv(x̄v) = 0.

Proposition 4.7. The function πv is finite-valued in a neighborhood of the point
x̄v and continuous at the point x̄v.

Proposition 4.8. Let x0 ∈ ∪{XM : M ∈ (0,∞)} and {xt}∞t=0 ∈ P(v, x0). Then
the equality

πv(x0) = lim
T→∞

T−1∑
t=0

(v(xt, xt+1)− v(x̄v, x̄v))

is valid.

Proposition 4.9. There exists a positive integer Lv for which Xv ⊂ ȲLv .

Proposition 4.10. The function πv : X → R1 ∪ {−∞} is upper semicontinuous.

Define
D(v) = {x ∈ X : πv(x) = sup(πv)}.

It is clear that the set D(v) is nonempty and closed subset of the metric space X.
The next results are obtained in [56].

Proposition 4.11. Let {xt}∞t=0 be a (v,Ω)-good program such that for every non-
negative integers t the equality

v(xt, xt+1)− v(x̄v, x̄v) = πv(xt)− πv(xt+1)

is valid. Then {xt}∞t=0 is a (v,Ω)-overtaking optimal program.

Proposition 4.12. For every positive number ϵ there is a positive integer Tϵ such
that for every point z ∈ D(v) and every (Ω)-program {xt}∞t=0 ∈ P(v, z) the inequality
ρ(xt, x̄v) ≤ ϵ is true for every natural number t ≥ Tϵ.

In order to analyze the structure of approximate solutions of the problems (P2)
and (P3) on large intervals in the regions close to the endpoints we introduce the
following notation and definitions.

Define
Ω̄ = {(x, y) ∈ X ×X : (y, x) ∈ Ω}.

Evidently, Ω̄ is a nonempty closed subset of the metric space X ×X and

{(x, y) ∈ X ×X : ρ(x, x̄v), ρ(y, x̄v) ≤ r̄v} ⊂ Ω̄.

Then M(Ω̄) is the collection of all bounded functions u : Ω̄ → R1 with

∥u∥ = sup{|u(z)| : z ∈ Ω̄}.



OPTIMAL CONTROL PROBLEMS ON LARGE INTERVALS 133

For every function u ∈ M(Ω) define a functin ū ∈ M(Ω̄) as follows:

ū(x, y) = u(y, x), (x, y) ∈ Ω̄.

Evidently, u→ ū, u ∈ M(Ω) is a linear invertible isometry operator.

Let T1 < T2 be nonnegative integers and let a finite sequence {xt}T2
t=T1

be an

(Ω)-program. Define a finite sequence {x̄t}T2
t=T1

⊂ X as follows:

x̄t = xT2−t+T1 , t = T1, . . . , T2.

Evidently, {x̄t}T2
t=T1

is an (Ω̄)-program.

Assume that a finite sequence of functions {ut}T2−1
t=T1

⊂ M(Ω). It is clear that

T2−1∑
t=T1

ūT2−t+T1−1(x̄t, x̄t+1) =

T2−1∑
t=T1

uT2−t+T1−1(xT2−t+T1−1, xT2−t+T1)

=

T2−1∑
t=T1

ut(xt, xt+1).

The equality above implies the following proposition.

Proposition 4.13. Let T be a natural number, M be a nonnegative number, a
finite sequence of functions

{ut}T−1
t=0 ⊂ M(Ω)

and let {x(i)t }Tt=0, i = 1, 2 be (Ω)-programs. Then the inequality

T−1∑
t=0

ut(x
(1)
t , x

(1)
t+1) ≥

T−1∑
t=0

ut(x
(2)
t , x

(2)
t+1)−M

is valid if and only if

T−1∑
t=0

ūT−t−1(x̄
(1)
t , x̄

(1)
t+1) ≥

T−1∑
t=0

ūT−t−1(x̄
(2)
t , x̄

(2)
t+1)−M.

The next result easily follows from Proposition 4.13.

Proposition 4.14. Let T be a positive integer, M be a nonnegative number, a finite
sequence of functions {ut}T−1

t=0 ⊂ M(Ω) and let {xt}Tt=0 be an (Ω)-program. Then
{x̄t}Tt=0 is an (Ω̄)-program and the following assertions are true

if
∑T−1

t=0 ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T )−M , then

T−1∑
t=0

ūT−t−1(x̄t, x̄t+1) ≥ σ({ūT−t−1}T−1
t=0 , 0, T )−M ;

if
∑T−1

t=0 ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T, x0, xT )−M , then

T−1∑
t=0

ūT−t−1(x̄t, x̄t+1) ≥ σ({ūT−t−1}T−1
t=0 , 0, T, x̄0, x̄T )−M ;
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if
∑T−1

t=0 ut(xt, xt+1) ≥ σ̂({ut}T−1
t=0 , 0, T, xT )−M , then

T−1∑
t=0

ūT−t−1(x̄t, x̄t+1) ≥ σ({ūT−t−1}T−1
t=0 , 0, T, x̄0)−M ;

if
∑T−1

t=0 ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T, x0)−M , then

T−1∑
t=0

ūT−t−1(x̄t, x̄t+1) ≥ σ̂({ūT−t−1}T−1
t=0 , 0, T, x̄T )−M.

The following proposition was proved in [56].

Proposition 4.15. Let v ∈ M(Ω) be an upper semicontinuous function. Suppose
that x̄v ∈ X, r̄v > 0, c̄v > 0 and that assumptions (A1), (A2) and (A3) hold. Then
the function v̄ is upper semicontinuous,

{(x, y) ∈ X ×X : ρ(x, x̄v), ρ(y, x̄v) ≤ r̄v} ⊂ Ω̄,

the function v̄ is continuous at the point (x̄v, x̄v),

σ(v̄, T ) ≤ T v̄(x̄v, x̄v) + c̄v for all integers T ≥ 1

and for every (v̄, Ω̄)-good program {xt}∞t=0 the equality

lim
t→∞

ρ(xt, x̄v) = 0

holds.

Proposition 4.15 implies that, if a function v ∈ M(Ω) is upper semicontinuous and
satisfies assumptions (A1)-(A3), then the function v̄ is also upper semicontinuous
and satisfies assumptions (A1)-(A3). Therefore all the results stated above for the
pair (v,Ω) are also valid for the pair (v̄, Ω̄).

5. Structure of solutions of Lagrange problems in the regions close
to the endpoints

We use the notation, definitions and assumptions introduced in Sections 3 and 4.
The results of this session were obtained in [56].

The following result describes the structure of approximate solutions of the prob-
lems of the type (P2) in the regions close to the right endpoints.

Theorem 5.1. Suppose that a function v ∈ M(Ω) is upper semicontinuous, a point
x̄v ∈ X, r̄v, c̄v are positive numbers and that assumptions (A1), (A2) and (A3) hold.
Let L0, τ0 be positive integers and let ϵ be a positive number. Then there exist a
positive number δ and a natural number T0 ≥ τ0 such that for every natural number
T ≥ T0, every finite sequence of functions {ut}T−1

t=0 ⊂ M(Ω) for which

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1

and every (Ω)-program {xt}Tt=0 for which

x0 ∈ ȲL0 ,

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T, x0)− δ
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there exists an (Ω̄)-program

{x∗t }∞t=0 ∈ ∪{P(v̄, z) : z ∈ D(v̄)}
which satisfies

ρ(xT−t, x
∗
t ) ≤ ϵ, t = 0, . . . , τ0.

Recall that ∪{P(v̄, z) : z ∈ D(v̄)} is the collection of all (v̄, Ω̄)-overtaking optimal
programs {x∗t }∞t=0 for which that x∗0 is the maximizer of the function πv̄.

The next theorem describes the structure of approximate solutions of the prob-
lems of the type (P3) on large intervals in the regions close to the endpoints.

Theorem 5.2. Suppose that a function v ∈ M(Ω) is upper semicontinuous, a point
x̄v ∈ X, r̄v, c̄v are positive numbers and that assumptions (A1), (A2) and (A3) hold.
Let τ0 be a positive integer and let ϵ be a positive number. Then there exist a positive
number δ and a natural number T0 ≥ τ0 such that for every natural number T ≥ T0,
every finite sequence of functions {ut}T−1

t=0 ⊂ M(Ω) for which

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1

and every (Ω)-program {xt}Tt=0 for which

T−1∑
t=0

ut(xt, xt+1) ≥ σ({ut}T−1
t=0 , 0, T )− δ

there exist an (Ω)-program

{y∗t }∞t=0 ∈ ∪{P(v, z) : z ∈ D(v)}
and an (Ω̄)-program

{x∗t }∞t=0 ∈ ∪{P(v̄, z) : z ∈ D(v̄)}
which satisfy for all integers t = 0, . . . , τ0,

ρ(xT−t, x
∗
t ) ≤ ϵ, ρ(xt, y

∗
t ) ≤ ϵ.

Proposition 5.3. Suppose that a function v ∈ M(Ω) is upper semicontinuous, a
point x̄v ∈ X, r̄v, c̄v are positive numbers and that assumptions (A1), (A2) and
(A3) are valid. Let τ0 be a positive integer and let ϵ be a positive number. Then
there exist a positive number δ and a natural number T0 ≥ τ0 such that for every
function u ∈ Bd(v, r) ∩M∗(Ω) the following assertions are true:

for every sequence {xt}∞t=0 ∈ ∪{P(u, z) : z ∈ D(u)} there exists a sequence

{yt}∞t=0 ∈ ∪{P(v, z) : z ∈ D(v)}
such that the inequality ρ(xt, yt) ≤ ϵ holds for all t = 0, . . . , τ0;

for every sequence {xt}∞t=0 ∈ ∪{P(ū, z) : z ∈ D(ū)} there exists a sequence

{yt}∞t=0 ∈ ∪{P(v̄, z) : z ∈ D(v̄)}
such that the inequality ρ(xt, yt) ≤ ϵ is valid for all integers t = 0, . . . , τ0.

Note that the mapping v → v̄, v ∈ M(Ω) is a linear isometry which has the
inverse. It is clear that

v̄ ∈ M0(Ω̄) for all v ∈ M0(Ω),

v̄ ∈ Mc,0(Ω̄) for all v ∈ Mc,0(Ω),
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v̄ ∈ M∗(Ω̄) for all v ∈ M∗(Ω),

v̄ ∈ Mc∗(Ω̄) for all v ∈ Mc∗(Ω),

v̄ ∈ M̄0(Ω̄) if and only if v ∈ M̄0(Ω),

v̄ ∈ M̄c,0(Ω̄) if and only if v ∈ M̄c,0(Ω).

The following generic result establishes that for most objective functions v the
collections ∪{P(v, z) : z ∈ D(v)} and ∪{P(v̄, z) : z ∈ D(v̄)} are singletons. In
this case approximate solutions of the problems of the types (P2) and (P3) on large
intervals have a simple structure in the regions close to the endpoints.

Theorem 5.4. Let M be either M̄0(Ω) or M̄c,0(Ω). Then there exists a subset
F ⊂ M∩M∗(Ω) which is a countable intersection of open everywhere dense subsets
of M such that for every function v ∈ F there exists a unique pair of points z, z̄ ∈ X
for which

πv(z) = sup(πv), πv̄(z̄) = sup(πv̄)

and there exist a unique (v,Ω)-overtaking optimal program {zt}∞t=0 for which z0 = z
and a unique (v̄, Ω̄)-overtaking optimal program {ẑt}∞t=0 for which ẑ0 = z̄.

6. The first class of discrete-time Bolza problems

We use the notation, definitions and assumptions introduced in Sections 3, 4 and
5.

For every nonempty set Y and every function h : Y → R1 ∪ {−∞} set

sup(h) = sup{h(y) : y ∈ Y }.
We denote by M(X) the collection of all bounded functions h : X → R1. For every
function h ∈ M(X) put

∥h∥ = sup{|h(x)| : x ∈ X}.
It is clear that (M(X), ∥ · ∥) is a Banach space. For every pair of functions h1, h2 ∈
M(X) put

dX(h1, h2) = ∥h1 − h2∥.
For every point x ∈ X, every pair of nonnegative integers T1 < T2, every finite
sequence of functions {ut}T2−1

t=T1
⊂ M(Ω) and every function h ∈ M(X) we consider

the problem

(P4)

T2−1∑
t=T1

ut(xt, xt+1) + h(xT2) → max, {(xt, xt+1)}T−1
t=0 ⊂ Ω, xT1 = x

and define

σ(h, {ut}T2−1
t=T1

, T1, T2, x) = sup{
T2−1∑
t=T1

ut(xt, xt+1) + h(xT2) :

{xt}T2
t=T1

is an (Ω)− program and xT1 = x}.
For every point x ∈ X, every pair of nonnegative integers T1 < T2, every function
u ∈ M(Ω) and every function h ∈ M(X) define

σ(h, u, T1, T2, x) = σ(h, {ut}T2−1
t=T1

, T1, T2, x) where ut = u, t = T1, . . . , T2 − 1.
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In this section we analyze the structure of approximate solutions of problems of the
type (P4) on large intervals and present the results obtained in [59]. The next three
results establish the turnpike properties of the approximate solutions.

Theorem 6.1. Let ϵ ∈ (0, r̄v) and M be a positive number. Then there are a
positive number δ < min{1,M} and a positive integer L such that for every natural

number T ≥ L, every finite sequence {ut}T−1
t=0 ⊂ M(Ω), every function h ∈ M(X)

and every (Ω)-program {xt}Tt=0 satisfying

∥h∥ ≤M, ∥ut − v∥ ≤ δ, t = 0, . . . , T − 1,

T−1∑
t=0

ut(xt, xt+1) + h(xT ) ≥ σ(h, {ut}T−1
t=0 , 0, T )−M

the inequality
Card({t ∈ {0, . . . , T} : ρ(xt, x̄v) > ϵ}) < L

is valid.

Theorem 6.2. Let a positive number ϵ < r̄v, L0 be a natural number integer andM0

be a positive number. Then there exist a positive integer L and a positive number
δ < ϵ such that for every natural number T > 2L, every sequence of functions
{ut}T−1

t=0 ⊂ M(Ω) for which

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1,

every function h ∈ M(X) for which

∥h∥ ≤M0

and every (Ω)-program {xt}Tt=0 satisfying

x0 ∈ ȲL0 ,

h(xT ) +

T−1∑
t=0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=0 , 0, T, x0)−M0

and
τ+L−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+L−1
t=τ , τ, τ + L, xτ , xτ+L)− δ

for every integer τ ∈ [0, T − L] there exists a pair of integers τ1 ∈ [0, L], τ2 ∈
[T − L, T ] for which

ρ(xt, x̄v) ≤ ϵ, t = τ1, . . . , τ2.

Moreover if ρ(x0, x̄v) ≤ δ, then τ1 = 0.

The next turnpike result easily follows from Theorem 6.2.

Theorem 6.3. Let a positive number ϵ < r̄v, L0 ≥ 1 be an integer and M0 > 0.
Then there exist an integer L ≥ 1 and a number δ ∈ (0, ϵ) such that for each integer

T > 2L, each {ut}T−1
t=0 ⊂ M(Ω) satisfying

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1,

each h ∈ M(X) satisfying
∥h∥ ≤M0
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and each (Ω)-program {xt}Tt=0 which satisfies

x0 ∈ ȲL0 ,

h(xT ) +

T−1∑
t=0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=0 , 0, T, x0)− δ

there exist integers τ1 ∈ [0, L], τ2 ∈ [T − L, T ] such that

ρ(xt, x̄v) ≤ ϵ, t = τ1, . . . , τ2.

Moreover if ρ(x0, x̄v) ≤ δ, then τ1 = 0.

The next theorem describes the structure of approximate solutions of the prob-
lems of the type (P4) on large intervals in the regions close to the right endpoints.

Theorem 6.4. Suppose that a function g ∈ M(X) and a function v ∈ M(Ω)
are upper semicontinuous, a point x̄v ∈ X, numbers r̄v, c̄v are positive and that
assumptions (A1), (A2) and (A3) are valid. Let L0, τ0 be natural numbers and
ϵ > 0, M0 > 1. Then there exist a positive number δ and a natural number T0 ≥ τ0
such that for every natural number T ≥ T0, every function h ∈ M(X) for which

∥h− g∥ ≤ δ,

every sequence of functions {ut}T−1
t=0 ⊂ M(Ω) for which

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1

and every (Ω)-program {xt}Tt=0 satisfying

x0 ∈ ȲL0 ,

h(xT ) +

T−1∑
t=0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=0 , 0, T, x0)−M0,

τ+T0−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+T0−1
t=τ , τ, τ + T0, xτ , xτ+T0)− δ

for every integer τ ∈ {0, . . . , T − T0},

h(xT ) +
T−1∑

t=T−T0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=T−T0

, T − T0, T, xT−T0)− δ

there exists an (v̄, Ω̄)-overtaking optimal program {x∗t }∞t=0 which satisfies

(πv̄ + g)(x∗0) = sup(πv̄ + g),

ρ(xT−t, x
∗
t ) ≤ ϵ, t = 0, . . . , τ0.

Let g ∈ M(X) and v ∈ M(Ω) be as in the statement of Theorem 6.4 and satisfy
all the assumptions posed there. Then the function πv + g : X → R1 ∪ {−∞} is
upper semicontinuous, bounded from above for which (πv + g)(x̄v) = g(x̄v) is finite.
Hence there is a point x ∈ X which satisfies

(πv + g)(x) = sup(πv + g).

We denote by Mu(X) the collection of all upper semicontinuous functions be-
longing to the set M(X) and denote by Mc(X) the collection of all continuous
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functions belonging to the set M(X). It is clear that Mu(X) and Mc(X) are
closed subsets of the topological space M(X). We consider the complete metric
spaces Mu(X) and Mc(X) equipped with the metric dX .

In order to state our next result we need the following notion of porosity [51].
Let (Y, d) be a complete metric space. Denote by BY (y, r) the closed ball of

center y ∈ Y and radius r > 0. We say that a set E ⊂ Y is porous (with respect
to d) if there exist constants α ∈ (0, 1] and r0 > 0 such that for every number
r ∈ (0, r0] and every point y ∈ Y there exists a point z ∈ Y such that

BY (z, αr) ⊂ BY (y, r) \ E.

We say that a subset of the space Y is σ-porous (with respect to d) if it is a countable
union of porous (with respect to d) subsets of Y .

Since porous sets are nowhere dense, all σ-porous sets are of the first category.
If Y is a finite dimensional Euclidean space, then σ-porous sets are of Lebesgue
measure 0. In fact, the class of σ-porous sets in such a space is much smaller than
the class of sets which have measure 0 and are of the first category. To point out the
difference between porous and nowhere dense sets note that if E ⊂ Y is nowhere
dense, y ∈ Y and r > 0, then there is a point z ∈ Y and a number s > 0 such that
BY (z, s) ⊂ BY (y, r) \ E. If, however, E is also porous, then for small enough r we
can choose s = αr, where α ∈ (0, 1) is a constant which depends only on E.

The discussion of the porosity notion and the corresponding references can be
found in [51]. Theorem 5.9 of [51] and Theorem 6.4 imply the following result.

Theorem 6.5. Suppose that a function v ∈ M(Ω) is upper semicontinuous, a point
x̄v ∈ X, numbers r̄v, c̄v are positive and that assumptions (A1), (A2) and (A3) hold.
Then there exists a set F ⊂ Mc(X) such that the set Mc(X) \ F is σ-porous in
Mc(X) and that for every function g ∈ F the following assertions hold.

1. There exists a unique point xg ∈ X which satisfies

{x ∈ X : (πv̄ + g)(x) = sup(πv̄ + g)} = {xg}.

2. Let L0, τ0 be natural numbers and ϵ > 0, M0 > 1. Then there exist a positive
number δ and a natural number T0 ≥ τ0 such that for every natural number T ≥ T0,
every function h ∈ M(X) for which

∥h− g∥ ≤ δ,

every finite sequence of functions {ut}T−1
t=0 ⊂ M(Ω) such that

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1

and every (Ω)-program {xt}Tt=0 satisfying

x0 ∈ ȲL0 ,

h(xT ) +
T−1∑
t=0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=0 , 0, T, x0)−M0,

τ+T0−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+T0−1
t=τ , τ, τ + T0, xτ , xτ+T0)− δ
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for every integer τ ∈ {0, . . . , T − T0},

h(xT ) +

T−1∑
t=T−T0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=T−T0

, T − T0, T, xT−T0)− δ

there exists an (v̄, Ω̄)-overtaking optimal program {x∗t }∞t=0 which satisfies

x∗0 = xg,

ρ(xT−t, x
∗
t ) ≤ ϵ, t = 0, . . . , τ0.

The following result establishes that given a function g ∈ Mu(X), for a generic
objective function v (in the sense of the Baire category) the exists a unique pair of a
(v,Ω)-overtaking optimal program {zt}∞t=0 and a (v̄, Ω̄)-overtaking optimal program
{ẑt}∞t=0 which satisfy

(πv + g)(z0) = sup(πv + g),

(πv̄ + g)(ẑ0) = sup(πv̄ + g).

In this case approximate solutions of the problems of the types (P4) in the regions
close to the right endpoints have a simple structure.

Theorem 6.6. Let M be either M̄0(Ω) or M̄c,0(Ω) and let g ∈ Mu(X). Then there
exists a set F ⊂ M ∩M∗(Ω) which is a countable intersection of open everywhere
dense subsets of M such that for every function v ∈ F there exists a unique pair of
points z, z̄ ∈ X such that

(g + πv)(z) = sup(g + πv), (g + πv̄)(z̄) = sup(g + πv̄)

and there exist a unique (v,Ω)-overtaking optimal program {zt}∞t=0 such that z0 = z
and a unique (v̄, Ω̄)-overtaking optimal program {ẑt}∞t=0 such that ẑ0 = z̄.

Let v ∈ M∗(Ω) and g ∈ Mu(X). Define

D(g, v) = {z ∈ X : (g + πv)(z) = sup(g + πv)}

and denote by P̃(g, v) the collection of all (v,Ω)-overtaking optimal programs {zt}∞t=0

such that z0 ∈ D(g, v).

Proposition 6.7. Suppose that a function g ∈ Mu(X) and that a function v ∈
M(Ω) are upper semicontinuous, a point x̄v ∈ X, numbers r̄v, c̄v are positive and
that assumptions (A1), (A2) and (A3) are valid. Let τ0 be a natural number and ϵ
be a positive number. Then there exist a positive number δ and a natural number
T0 ≥ τ0 such that for every function u ∈ Bd(v, r) ∩ M∗(Ω) and every function
h ∈ Mu(X) for which ∥h− g∥ ≤ δ the following properties are true:

for every sequence {xt}∞t=0 ∈ P̃(h, u) there exists a sequence {yt}∞t=0 ∈ P̃(g, v)
which satisfies

ρ(xt, yt) ≤ ϵ

for all integers t = 0, . . . , τ0;
for every sequence {xt}∞t=0 ∈ P̃(h, ū) there exists a sequence {yt}∞t=0 ∈ P̃(g, v̄)

which satisfies
ρ(xt, yt) ≤ ϵ

for all integers t = 0, . . . , τ0.
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The following theorem is extension of Theorem 6.6.

Theorem 6.8. Let M be either M̄0(Ω) or M̄c,0(Ω) and A be either Mu(X) or
Mc(X). Then there exists a set F ⊂ (M ∩ M∗(Ω)) × A which is a countable
intersection of open everywhere dense subsets of M× A such that for every pair of
functions (v, g) ∈ F there exists a unique pair of sequences {xt}∞t=0 ∈ P̃(g, v) and

{x̄t}∞t=0 ∈ P̃(ḡ, v).

7. The second class of discrete-time Bolza problems

We use the notation, definitions and assumptions introduced in Sections 3, 4 and
5 and analyze the following problem

(P5) g(x0, xT ) +

T−1∑
t=0

v(xt, xt+1) → max, {(xt, xt+1)}T−1
t=0 ⊂ Ω,

where T is a positive integer number and v : Ω → R1 and g : X × X → R1 are
bounded upper semicontinuous objective functions.

For every nonempty set Y , every nonempty subset C ⊂ Y and every function
h : Y → R1 ∪ {−∞} define

sup(h) = sup{h(y) : y ∈ Y }, sup(h;C) = sup{h(y) : y ∈ C}.
If (Xi, ρi), i = 1, 2 are metric spaces, then the product X1 × X2 is equipped with
the metric

ρ1(x1, y1) + ρ2(x2, y2) for all (x1, x2), (y1, y2) ∈ X1 ×X2.

We denote by M(X×X) the collection of all bounded functions h : X×X → R1.
For every function h ∈ M(X ×X) put

∥h∥ = sup{|h(x, y)| : x, y ∈ X}.
It is not difficult to see that (M(X ×X), ∥ · ∥) is a Banach space.

For every pair of nonnegative integers T1 < T2, every finite sequence of functions
{ut}T2−1

t=T1
⊂ M(Ω) and every function h ∈ M(X ×X) we study the problem

T2−1∑
t=T1

ut(xt, xt+1) + h(xT1 , xT2) → max, {(xt, xt+1)}T2−1
t=T1

⊂ Ω

and define

σ(h, {ut}T2−1
t=T1

, T1, T2) = sup{
T2−1∑
t=T1

ut(xt, xt+1) + h(xT1 , xT2) :

{xt}T2
t=T1

is an (Ω)− program}.
For every pair of nonnegative integers T1 < T2, every function u ∈ M(Ω) and every
function h ∈ M(X ×X) define

σ(h, u, T1, T2) = σ(h, {ut}T2−1
t=T1

, T1, T2) where ut = u, t = T1, . . . , T2 − 1.

We denote by Mu(X ×X) the collection of all upper semicontinuous functions
belonging to the set M(X × X) and denote by Mc(X × X) the collection of all
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continuous functions belonging to the set M(X × X). We consider the complete
metric spaces Mu(X ×X) and Mc(X ×X) equipped with the metric

dX×X(h1, h2) = ∥h1 − h2∥, h1, h2 ∈ Mu(X ×X).

The next result obtained in [58] shows that the turnpike phenomenon holds for
approximate solutions of problems (P5) on large intervals.

Theorem 7.1. Suppose that a function v ∈ M∗(Ω) is an upper semicontinuous, a
point x̄v ∈ X, real numbers r̄v ∈ (0, 1), c̄v > 0 and that assumptions (A1), (A2) and
(A3) hold. Let ϵ ∈ (0, r̄v) and M be a positive number. Then there exist a natural
number L and a positive number δ < ϵ such that for every natural number T > 2L,
every sequence of functions {ut}T−1

t=0 ⊂ M(Ω) for which

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1,

every function h ∈ M(X ×X) for which

∥h∥ ≤M

and every (Ω)-program {xt}Tt=0 such that

h(x0, xT ) +

T−1∑
t=0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=0 , 0, T )−M,

τ+L−1∑
t=τ

ut(xt, xt+1) ≥ σ({ut}τ+L−1
t=τ , τ, τ + L, xτ , xτ+L)− δ

for every integer τ ∈ [0, T − L] there exists a pair of integers τ1 ∈ [0, L], τ2 ∈
[T − L, T ] such that

ρ(xt, x̄v) ≤ ϵ, t = τ1, . . . , τ2.

Moreover if ρ(x0, x̄v) ≤ δ, then τ1 = 0 and if ρ(xT , x̄v) ≤ δ, then τ2 = T .

It is easy to see that for every function v ∈ M∗(Ω) and every function g ∈
Mu(X ×X), the function

(ξ, η) ∈ πv(ξ) + πv̄(η) + g(ξ, η), ξ, η ∈ X

is upper semicontinuous and bounded from above and has a maximizer.
The following theorem obtained in [58], describes the structure of approximate

solutions of the problems (P5) on large intervals in the regions close to the right
endpoints.

Theorem 7.2. Suppose that a function g ∈ M(X ×X) and a function v ∈ M(Ω)
are upper semicontinuous, a point x̄v ∈ X, r̄v > 0, c̄v > 0 and that assumptions
(A1), (A2) and (A3) are valid.. Let τ0 be a natural number and ϵ be a positive
number. Then there exist a positive number δ and a natural number T0 ≥ τ0 such
that for every natural number T ≥ T0, every function h ∈ M(X × X) for which

∥h− g∥ ≤ δ, every finite sequence of function {ut}T−1
t=0 ⊂ M(Ω) such that

∥ut − v∥ ≤ δ, t = 0 . . . , T − 1
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and every (Ω)-program {xt}Tt=0 for which

h(x0, xT ) +
T−1∑
t=0

ut(xt, xt+1) ≥ σ(h, {ut}T−1
t=0 , 0, T )− δ

there exists an (v,Ω)-overtaking optimal and (v,Ω)-good program {x∗t }∞t=0 and an
(v̄, Ω̄)-overtaking optimal and (v̄, Ω̄)-good program {x̄∗t }∞t=0 which satisfy

πv(x∗0) + πv̄(x̄∗0) + g(x∗0, x̄
∗
0) ≥ πv(ξ) + πv̄(η) + g(ξ, η) for all ξ, η ∈ X

and for all t = 0, . . . , τ0, ρ(xt, x
∗
t ) ≤ ϵ and ρ(xT−t, x̄

∗
t ) ≤ ϵ.

Let v ∈ M∗(Ω) and g ∈ Mu(X × X) be given. We denote by L(g, v) the col-
lection of all pairs of sequences {xt}∞t=0, {x̄t}∞t=0 ⊂ X such that {xt}∞t=0 is a (v,Ω)-
overtaking optimal and (v,Ω)-good program and {x̄t}∞t=0 is a (v̄, Ω̄)-overtaking op-
timal and (v̄, Ω̄)-good program satisfying

πv(x0) + πv̄(x̄0) + g(x0, x̄0) ≥ πv(ξ) + πv̄(η) + g(ξ, η) for all ξ, η ∈ X.

It is clear the set L(g, v) is nonempty.
The next stability theorem was obtained in [58].

Theorem 7.3. Suppose that a function g ∈ Mu(X ×X), a function v ∈ M(Ω) is
upper semicontinuous, a point x̄v ∈ X, r̄v > 0, c̄v > 0 and that assumptions (A1),
(A2) and (A3) hold. Let τ0 be a natural number and ϵ be a positive number. Then
there exists a positive number δ such that for every function u ∈ Bd(v, δ) ∩M∗(Ω)
and every function h ∈ Mu(X ×X) for which ∥h− g∥ ≤ δ the following assertion
is valid:

for every pair of sequence ({xt}∞t=0, {yt}∞t=0) ∈ L(h, u) there exists a pair of se-
quences ({x∗t }∞t=0, {y∗t }∞t=0) ∈ L(g, v) which satisfies for all integers t = 0, . . . , τ0,

ρ(xt, x
∗
t ) ≤ ϵ, ρ(yt, y

∗
t ) ≤ ϵ.

The following result obtained in [58] shows, for a typical (in the sense of the Baire
category) pair of funnctions (v, g), that the set L(g, v) is a singleton. In this case
approximate solutions of problems (P5) on large intervals have a simple structure
in the regions close to the endpoints.

Theorem 7.4. Let M be either M̄0(Ω) or M̄c,0(Ω) and let A be either Mu(X×X)
or Mc(X×X). Then there exists a set F ⊂ (M∩M∗(Ω))×A which is a countable
intersection of open everywhere dense subsets of M×A such that for each (v, g) ∈ F
the set L(g, v) is a singleton.

8. Variational problems with extended-valued integrands

We analyze the following variational problems with extended-valued integrands:

(P1)

∫ T

0
f(v(t), v′(t))dt→ min,

v : [0, T ] → Rn is an absolutely continuous (a. c.) function such that

v(0) = x, v(T ) = y;
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(P2)

∫ T

0
f(v(t), v′(t))dt→ min,

v : [0, T ] → Rn is an a. c. function such that v(0) = x;

(P3)

∫ T

0
f(v(t), v′(t))dt→ min

v : [0, T ] → Rn is an a. c. function;

(P4)

∫ T

0
f(v(t), v′(t))dt+ g(v(T )) → min,

v : [0, T ] → Rn is an a. c. function such that v(0) = x;

(P5)

∫ T

0
f(v(t), v′(t))dt+ h(v(0), v(T )) → min,

v : [0, T ] → Rn is an a. c. function,

where the points x, y ∈ Rn and T is a positive number. Here Rn is the n-dimensional
Euclidean space with the Euclidean norm |·|, f : Rn×Rn → R1∪{∞} is an extended-
valued and lower semicontinuous integrand and g : Rn → R1 and h : Rn×Rn → R1

are lower semicontinuous functions which are bounded on bounded sets. We are
interested in the structure of approximate solutions of these problems considered
on large intervals which was studied in [41, 42, 45, 50, 54, 57, 60]. We discuss our
recent results obtained for Lagrange problems (P1) − (P3) and their extension of
these results for Bolza problems (P4) and (P5). Our results provide a full description
of the structure of approximate solutions of variational problems on large intervals.

In [41,42,45,50] we studied the turnpike phenomenon for approximate solutions of
problems (P1) and (P2) which is independent of the length of the interval T , for all
sufficiently large intervals. To have this phenomenon means that the approximate
solutions are determined mainly by the integrand, and are essentially independent
of the choice of time interval and data, except in regions close to the endpoints of
the time interval.

The problems (P1) and (P2) were studied in [41,45] where it was established, un-
der certain assumptions, that the turnpike phenomenon holds and that the turnpike
x̄ is a unique minimizer of the optimization problem f(x, 0) → min, x ∈ Rn.

The structure of approximate solutions of the problems (P2) and (P3), in regions
close to the endpoints of the time intervals, was analyzed in [57]. It was shown there
that in regions close to the right endpoint T of the time interval these approximate
solutions are determined only by the integrand, and are essentially independent of
the choice of interval and endpoint value x. For the problems (P3), approximate
solutions are determined only by the integrand function also in regions close to the
left endpoint 0 of the time interval. In [60] we extend these results to approximate
solutions of problems (P4) and (P5).

In this section we discuss the turnpike results for problems (P1)− (P3).
We denote by mes(E) the Lebesgue measure of a Lebesgue measurable set E ⊂

R1, denote by | · | the Euclidean norm of the n-dimensional Euclidean space Rn and
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by ⟨·, ·⟩ the inner product of Rn. For every function f : X → R1 ∪ {∞}, where the
set X is a nonempty, define

dom(f) = {x ∈ X : f(x) <∞}.
Let a be a positive number, ψ : [0,∞) → [0,∞) be an increasing function satis-

fying
lim
t→∞

ψ(t) = ∞

and let f : Rn ×Rn → R1 ∪ {∞} be a lower semicontinuous function such that the
set

dom(f) = {(x, y) ∈ Rn ×Rn : f(x, y) <∞}
is nonempty, convex and closed and which satisfies

f(x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn.

We say that a function v defined on an infinite subinterval of R1 with values in Rn is
absolutely continuous (a. c.) if v is absolutely continuous on every finite subinterval
of its domain.

For every pair of points x, y ∈ Rn and every positive number T set

σ(f, T, x) = inf{
∫ T

0
f(v(t), v′(t))dt : v : [0, T ] → Rn

is an a. c. function satisfying v(0) = x},

σ(f, T, x, y) = inf{
∫ T

0
f(v(t), v′(t))dt : v : [0, T ] → Rn

is an a. c. function satisfying v(0) = x, v(T ) = y},

σ(f, T ) = inf{
∫ T

0
f(v(t), v′(t))dt : v : [0, T ] → Rn is an a. c. function},

σ̂(f, T, y) = inf{
∫ T

0
f(v(t), v′(t))dt : v : [0, T ] → Rn

is an a. c. function satisfying v(T ) = y}.
(Here we assume that infimum over an empty set is infinity.)

We suppose that there exists a point x̄ ∈ Rn such that

f(x̄, 0) ≤ f(x, 0) for each x ∈ Rn

and that the following assumptions hold:
(A1) (x̄, 0) is an interior point of the set dom(f) and the function f is continuous

at the point (x̄, 0);
(A2) for every positive number M there exists a positive number cM which sat-

isfies
σ(f, T, x) ≥ Tf(x̄, 0)− cM

for every point x ∈ Rn such that |x| ≤M and every positive number T > 0;
(A3) for every point x ∈ Rn the function f(x, ·) : Rn → R1 ∪ {∞} is convex.
It follows from assumption (A2) that for every a.c. function v : [0,∞) → Rn the

function

T →
∫ T

0
f(v(t), v′(t))dt− Tf(x̄, 0), T ∈ (0,∞)
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is bounded from below.
It should be mentioned that the inequality above and assumptions (A1)-(A3)

are common in the literature and hold for many infinite horizon optimal control
problems. In particular, we need this inequality and assumption (A2) in the cases
when the problems (P1) and (P2) possess the turnpike property and the point x̄
is its turnpike. Assumption (A2) means that the constant function v̄(t) = x̄, t ∈
[0,∞) is an approximate solution of the infinite horizon variational problem with
the integrand f related to the problems (P1) and (P2).

An a. c. function v : [0,∞) → Rn is called (f)-good [39,54] if

sup{|
∫ T

0
f(v(t), v′(t))dt− Tf(x̄, 0)| : T ∈ (0,∞)} <∞.

In our study we use the next proposition which is proved in [41] (see also Propo-
sition 3.1 of [54]).

Proposition 8.1. Let v : [0,∞) → Rn be an a. c. function. Then either the
function v is (f)-good or∫ T

0
f(v(t), v′(t))dt− Tf(x̄, 0) → ∞ as T → ∞.

Moreover, if the function v is (f)-good, then sup{|v(t)| : t ∈ [0,∞)} <∞.

For every pair of real numbers T2 > T1 and every a. c. function v : [T1, T2] → Rn

set

If (T1, T2, v) =

∫ T2

T1

f(v(t), v′(t))dt

and for every number T ∈ [T1, T2] put I
f (T, T, v) = 0.

For every positive real number M denote by XM,f the collection of all points
x ∈ Rn for which |x| ≤ M and there exists an a. c. function v : [0,∞) → Rn such
that

v(0) = x, If (0, T, v)− Tf(x̄, 0) ≤M for each T ∈ (0,∞).

It is clear that ∪{XM,f : M ∈ (0,∞)} is the collection of all x ∈ X for which
there exists an (f)-good function v : [0,∞) → Rn such that v(0) = x.

We suppose that the following assumption holds:
(A4) (the asymptotic turnpike property) for every (f)-good function v : [0,∞) →

Rn the equality limt→∞ |v(t)− x̄| = 0 is true.
Examples of extended-valued integrands f satisfying assumptions (A1)-(A4) can

be found in [41,54].
The next theorem which was proved in [41] (see also Theorem 3.2 of [54]) es-

tablishes the turnpike property for approximate solutions of problem (P2) on large
intervals.

Theorem 8.2. Let ϵ,M be positive numbers. Then there exist a natural number
L and a positive number δ such that for every T > 2L and every a. c. function
v : [0, T ] → Rn for which

v(0) ∈ XM,f and If (0, T, v) ≤ σ(f, T, v(0)) + δ
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there exist a pair of numbers τ1 ∈ [0, L] and τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ϵ for all t ∈ [τ1, τ2]

and if |v(0)− x̄| ≤ δ, then τ1 = 0.

Let M be a positive real number. Denote by YM,f the collection of all points
x ∈ Rn for which there are T ∈ (0,M ] and an a. c. function v : [0, T ] → Rn such
that v(0) = x̄, v(T ) = x and If (0, T, v) ≤M .

The following result obtained in [50] (see also Theorem 3.5 of [54]) shows that
the turnpike phenomenon holds for approximate solutions of problem (P1).

Theorem 8.3. Let ϵ,M0,M1 > 0. Then there exist numbers L, δ > 0 such that for
each number T > 2L, each point z0 ∈ XM0,f and each point z1 ∈ YM1,f , the value
σ(f, T, z0, z1) is finite and for each a. c. function v : [0, T ] → Rn which satisfies

v(0) = z0, v(T ) = z1, I
f (0, T, v) ≤ σ(f, T, z0, z1) + δ

there exists a pair of numbers τ1 ∈ [0, L], τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ϵ, t ∈ [τ1, τ2].

Moreover if |v(0)− x̄| ≤ δ, then τ1 = 0 and if |v(T )− x̄| ≤ δ, then τ2 = T .

In the sequel we use a notion of an overtaking optimal function which plays an
important role in the turnpike theory and the infinite horizon optimal control [39,54].

An a. c. function v : [0,∞) → Rn is called (f)-overtaking optimal if for each a.
c. function u : [0,∞) → Rn satisfying u(0) = v(0) the inequality

lim sup
T→∞

[If (0, T, v)− If (0, T, u)] ≤ 0

holds.
The following existence result was obtained in [41] (see also Theorem 3.3 of [54].)

Theorem 8.4. Assume that x ∈ Rn and that there exists an (f)-good function
v : [0,∞) → Rn satisfying v(0) = x. Then there exists an (f)-overtaking optimal
function u∗ : [0,∞) → Rn such that u∗(0) = x.

In view of assumption (A1) there exists a real number r̄ ∈ (0, 1) such that:

Ω0 := {(x, y) ∈ Rn ×Rn : |x− x̄| ≤ r̄ and |y| ≤ r̄} ⊂ dom(f),

∆0 := sup{|f(z1, z2)| : (z1, z2) ∈ Ω0} <∞.

Evidently, the value σ(f, T, x, y) is finite for every real number T ≥ 1 and every
pair of points x, y ∈ Rn satisfying |x− x̄|, |y − x̄| ≤ r̄/2.

Let M be a positive number. Denote by ȲM,f the collection of all points x ∈ Rn

satisfying |x| ≤ M and such that there exist T ∈ (0,M ] and an a. c. function
v : [0, T ] → Rn which satisfy v(0) = x, v(T ) = x̄ and If (0, T, v) ≤M .

It is not difficult to see that the next proposition is valid.

Proposition 8.5. For every positive number M there exists a positive number M0

for which ȲM,f ⊂ XM0,f .

The next useful proposition was proved in [57].
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Proposition 8.6. For every positive number M there exists a positive number M0

for which that XM,f ⊂ ȲM0,f .

We say that an a. c. function v : [0,∞) → Rn is (f)-minimal [39,54] if for every
pair of nonnegative numbers T2 > T1 and every a. c. function u : [T1, T2] → Rn for
which u(Ti) = v(Ti), i = 1, 2 the inequality∫ T2

T1

f(v(t), v′(t))dt ≤
∫ T2

T1

f(u(t), u′(t))dt

is valid.
The following result which is proved in [45] (see also Theorem 3.32 of [54]) estab-

lishes the equivalence of the optimality notions introduced above.

Theorem 8.7. Assume that a point x ∈ Rn and that there exists an (f)-good
function ṽ : [0,∞) → Rn such that ṽ(0) = x. Let v : [0,∞) → Rn be an a. c.
function satisfying v(0) = x. Then the following conditions are equivalent:

(i) the function v is (f)-overtaking optimal; (ii) the function v is (f)-good and
(f)-minimal; (iii) the function v is (f)-minimal and limt→∞ v(t) = x̄; (iv) the
function v is (f)-minimal and lim inft→∞ |v(t)− x̄| = 0.

The following two results which is proved in [45] (see also Theorems 3.33 and
3.34 of [54]) describe the asymptotic behavior of overtaking optimal functions.

Theorem 8.8. Let ϵ be a positive number. Then there exists a positive number δ
such that:

(i) For each point x ∈ Rn for which |x − x̄| ≤ δ there exists an (f)-overtaking
optimal and (f)-good function v : [0,∞) → Rn which satisfies v(0) = x.

(ii) For every (f)-overtaking optimal function v : [0,∞) → Rn for which |v(0)−
x̄| ≤ δ, the relation |v(t)− x̄| ≤ ϵ is valid for every nonnegative numbers t.

Theorem 8.9. Let ϵ,M be positive numbers. Then there exists a positive number
L such that for every point x ∈ XM,f and every (f)-overtaking optimal function
v : [0,∞) → Rn for which v(0) = x the relation |v(t) − x̄| ≤ ϵ holds for every
t ∈ [L,∞).

The next turnpike theorem for approximate solutions of the problems of the type
(P3) on large intervals was proved in [57].

Theorem 8.10. Let ϵ be positive number. Then there exist positive numbers L, δ
such that for every T > 2L and every a. c. function v : [0, T ] → Rn for which

If (0, T, v) ≤ σ(f, T ) + δ

there exists a pair of numbers τ1 ∈ [0, L], τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ϵ, t ∈ [τ1, τ2].

Moreover if |v(0)− x̄| ≤ δ, then τ1 = 0 and if |v(T )− x̄| ≤ δ, then τ2 = T .
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9. Structure of solutions of Lagrange problems in the regions close
to the endpoints

We use the notation, definitions and assumptions introduced in Section 8. For
every point x ∈ Rn \ ∪{XM,f : M ∈ (0,∞)} put

πf (x) = ∞.

Let a point

x ∈ ∪{XM,f : M ∈ (0,∞)}
be given. We denote by Λ(f, x) the collection of all (f)-overtaking optimal functions
v : [0,∞) → Rn satisfying v(0) = x. It is clear that the collection Λ(f, x) is
nonempty and that every function belonging to Λ(f, x) is an (f)-good function. Set

πf (x) = lim inf
T→∞

[If (0, T, v)− Tf(x̄, 0)],

where v ∈ Λ(f, x). It is clear that πf (x) does not depend on the choice of the
function v. By assumption (A2), πf (x) is finite.

The function πf plays an important role in our analysis of the structure of solu-
tions of Lagrange problems in the regions close to the endpoints.

The next result easily follows from our definitions.

Proposition 9.1. 1. Let v : [0,∞) → Rn be an (f)-good function. Then

πf (v(0)) ≤ lim inf
T→∞

[If (0, T, v)− Tf(x̄, 0)]

and for every pair of nonnegative numbers S > T ,

πf (v(T )) ≤ If (T, S, v)− (S − T )f(x̄, 0) + πf (v(S)).

2. Let S > T ≥ 0 and v : [0, S] → Rn be an a. c. function satisfying
πf (v(T )), πf (v(S)) <∞. Then the inequality

πf (v(T )) ≤ If (T, S, v)− (S − T )f(x̄, 0) + πf (v(S))

is valid.

It is not difficult to see that the next proposition is valid.

Proposition 9.2. Let v : [0,∞) → Rn be an (f)-overtaking optimal and (f)-good
function. Then for every pair of nonnegative numbers S > T the equality

πf (v(T )) = If (T, S, v)− (S − T )f(x̄, 0) + πf (v(S))

holds.

The next three propositions were obtained in [57].

Proposition 9.3. πf (x̄) = 0.

Proposition 9.4. The function πf is finite-valued in a neighborhood of the x̄ and
continuous at the point x̄.

Proposition 9.5. For every positive number M the set {x ∈ Rn : πf (x) ≤ M} is
bounded.
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(Here we assume that an empty set is bounded.)
Define

inf(πf ) = inf{πf (z) : z ∈ Rn}.
Assumption (A2) and Proposition 9.5 imply that inf(πf ) is finite. Define

Xf = {x ∈ Rn : πf (x) ≤ inf(πf ) + 1}.
The next two propositions were also obtained in [57].

Proposition 9.6. Assume that a point x ∈ ∪{XM,f : M ∈ (0,∞)} and that a
function v ∈ Λ(f, x). Then the equality

πf (x) = lim
T→∞

[If (0, T, v)− Tf(x̄, 0)]

holds.

Proposition 9.7. There exists a positive number M for which Xf ⊂ XM,f .

The next proposition easily follows from Propositions 8.6 and 9.7.

Proposition 9.8. There exists a positive number L for which Xf ⊂ ȲL,f .

The following result was obtained in [57].

Proposition 9.9. The function πf : Rn → R1 ∪ {∞} is lower semicontinuous.

Define

D(f) = {x ∈ Rn : πf (x) = inf(πf )}.
In view of Propositions 9.5 and 9.9, the set D(f) is nonempty, bounded and closed
subset of Rn. The next two results were obtained in [57].

Proposition 9.10. Let v : [0,∞) → Rn be an (f)-good function such that for every
positive number T the equality

If (0, T, v)− Tf(x̄, 0) = πf (v(0))− πf (v(T ))

holds. Then the function v is (f)-overtaking optimal.

Proposition 9.11. For every positive number ϵ there exists a positive number Tϵ
such that for every point z ∈ D(f) and every function v ∈ Λ(f, z) the inequality
|v(t)− x̄| ≤ ϵ is valid for every number t ≥ Tϵ.

In order to analyze the structure of approximate solutions of the problems (P2)
and (P3) on large intervals, in the regions close to the endpoints, we need to intro-
duce the following notation and definitions.

Define a function f̄ : Rn ×Rn → R1 ∪ {∞} as follows:

f̄(x, y) = f(x,−y) for all x, y ∈ Rn.

Evidently,

dom(f̄) = {(x, y) ∈ Rn ×Rn : (x,−y) ∈ dom(f)},
dom(f̄) is a nonempty closed convex set, f̄ is a lower semicontinuous function such
that

f̄(x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn.
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The notation introduced for the function f is also used for the function f̄ . Namely,
for every pair of real numbers T2 > T1 and every a. c. function v : [T1, T2] → Rn

define

I f̄ (T1, T2, v) =

∫ T2

T1

f̄(v(t), v′(t))dt

and for every pair of points x, y ∈ Rn and every positive number T set

σ(f̄ , T, x) = inf{I f̄ (0, T, v) : v : [0, T ] → Rn

is an a. c. function satisfying v(0) = x},

σ(f̄ , T, x, y) = inf{I f̄ (0, T, v) : v : [0, T ] → Rn

is an a. c. function satisfying v(0) = x, v(T ) = y},

σ(f̄ , T ) = inf{I f̄ (0, T, v) : v : [0, T ] → Rn is an a. c. function},

σ̂(f̄ , T, y) = inf{I f̄ (0, T, v) : v : [0, T ] → Rn

is an a. c. function satisfying v(T ) = y}.
Let v : [0, T ] → Rn be an a. c. function. Define

v̄(t) = v(T − t), t ∈ [0, T ].

It is clear that ∫ T

0
f̄(v̄(t), v̄′(t))dt =

∫ T

0
f(v̄(t),−v̄′(t))dt

=

∫ T

0
f(v(T − t), v′(T − t))dt =

∫ T

0
f(v(t), v′(t))dt.

It is easy to see that for all points x ∈ Rn,

f̄(x̄, 0) = f(x̄, 0) ≤ f(x, 0) = f̄(x, 0),

(x̄, 0) is an interior point of the set dom(f̄) and the function f̄ is continuous at
the point (x̄, 0). Therefore assumption (A1) is valid for the function f̄ . Evidently,
for every point x ∈ Rn the function f̄(x, 0) : Rn → R1 ∪ {∞} is convex. Thus
assumption (A3) holds for the function f̄ . We can easily obtain the next proposition.

Proposition 9.12. Let T be a positive number, M be a nonnegative number and
vi : [0, T ] → Rn, i = 1, 2 be a. c. functions. Then the inequality

If (0, T, v1) ≥ If (0, T, v2)−M

is valid if and only if the inequality

I f̄ (0, T, v̄1) ≥ I f̄ (0, T, v̄2)−M

holds.

The next proposition easily follows from Proposition 9.12.
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Proposition 9.13. Let T be a positive number and v : [0, T ] → Rn be an a. c.
function. Then the following assertions hold:

If (0, T, v) ≤ σ(f, T ) +M if and only if

I f̄ (0, T, v̄) ≤ σ(f̄ , T ) +M ;

If (0, T, v) ≤ σ(f, T, v(0), v(T )) +M if and only if

I f̄ (0, T, v̄) ≤ σ(f̄ , T, v̄(0), v̄(T )) +M ;

If (0, T, v) ≤ σ̂(f, T, v(T )) +M if and only if I f̄ (0, T, v̄) ≤ σ(f̄ , T, v̄(0)) +M ;

If (0, T, v) ≤ σ(f, T, v(0)) +M if and only if I f̄ (0, T, v̄) ≤ σ̂(f̄ , T, v̄(T )) +M.

The following proposition was obtained in [57].

Proposition 9.14. 1. For every positive number M there exists a positive number
cM such that σ(f̄ , T, x) ≥ T f̄(x̄, 0)− cM for every point x ∈ Rn such that |x| ≤ M
and every positive number T .

2. For every (f̄)-good function v : [0,∞) → Rn the equality limt→∞ v(t) = x̄
holds.

Proposition 9.14 implies that f̄ satisfies assumptions (A2) and (A4). We have
already mentioned that assumptions (A1) and (A3) hold for the function f̄ . There-
fore all the results stated above for the function f are also true for the function
f̄ .

The next two results which were established in [57] describe the structure of
approximate solutions of the problems (P2) and (P3) on large intervals in the regions
close to the endpoints respectively, .

Theorem 9.15. Let L0, τ0 and ϵ be positive numbers. Then there exist numbers
δ > 0 and T0 > τ0 such that for every number T ≥ T0 and every a. c. function
v : [0, T ] → Rn for which

v(0) ∈ ȲL0,f , I
f (0, T, v) ≤ σ(f, T, v(0)) + δ

there exists an (f̄)-overtaking optimal function v∗ : [0,∞) → Rn which satisfies
v∗(0) ∈ D(f̄) and |v(T − t)− v∗(t)| ≤ ϵ for all t ∈ [0, τ0].

Theorem 9.16. Let τ0 and ϵ be positive numbers. Then there exist numbers δ > 0
and T0 > τ0 such that for every T ≥ T0 and every a. c. function v : [0, T ] → Rn

for which

If (0, T, v) ≤ σ(f, T ) + δ

there exist an (f)-overtaking optimal function u∗ : [0,∞) → Rn and an (f̄)-
overtaking optimal function v∗ : [0,∞) → Rn which satisfies u∗(0) ∈ D(f), v∗(0) ∈
D(f̄) and such that for all t ∈ [0, τ0],

|v(t)− u∗(t)| ≤ ϵ and |v(T − t)− v∗(t)| ≤ ϵ.
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10. The Bolza problem (P4)

We use the notation, definitions and assumptions introduced in Sections 8 and 9.
For every nonempty set Y and every function h : Y → R1 ∪ {∞} set

inf(h) = inf{h(y) : y ∈ Y }.
Let a0 be a positive number. We denote by A(Rn) the collection of all lower semi-
continuous functions h : Rn → R1 which are bounded on bounded subsets of Rn

and which satisfy
h(z) ≥ −a0 for all z ∈ Rn.

For simplicity, we put A = A(Rn). The space A is equipped with the uniformity
determined by the base

E(N, ϵ) = {(h1, h2) ∈ A× A :

|h1(z)− h2(z)| ≤ ϵ for all z ∈ Rn satisfying |z| ≤ N},
where N, ϵ > 0. It is not difficult to see that the uniform space A is metrizable and
complete.

For every point x ∈ Rn, every pair of nonnegative numbers T1 < T2 and every
function h ∈ A set

σ(f, h, T1, T2, x) = inf{
∫ T2

T1

f(v(t), v′(t))dt+ h(v(T2)) :

v : [T1, T2] → Rn is an a. c. function satisfying v(T1) = x}.
(Here we assume that the infimum over an empty set is ∞.)

In view of assumption (A1), there exists a number r̄ ∈ (0, 1) such that

{(z1, z2) ∈ Rn ×Rn : |z1 − x̄| ≤ r̄ and |z2| ≤ r̄} ⊂ dom(f),

|f(z1, z2)− f(x̄, 0)| ≤ 1 for each (z1, z2) ∈ Rn ×Rn

satisfying |z1 − x̄| ≤ r̄, |z2| ≤ r̄.

The next theorem established in [60] shows that the turnpike phenomenon holds
for approximate solutions of problems (P4) on large intervals.

Theorem 10.1. Let ϵ,M > 0. Then there exist a number L ≥ 1 and a positive
number δ such that for every number T > 2L, every function h ∈ A for which
|h(x̄)| ≤M and every a. c. function v : [0, T ] → Rn such that

v(0) ∈ XM,f and If (0, T, v) + h(v(T )) ≤ σ(f, h, 0, T, v(0)) + δ

there exists a pair of real numbers τ1 ∈ [0, L] and τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ϵ for all t ∈ [τ1, τ2]

and if |v(0)− x̄| ≤ δ, then τ1 = 0.

Let g ∈ A be given. In view of Propositions 9.5 and 9.9, the function πf + g :
Rn → R1 ∪ {∞} is lower semicontinuous and bounded from below and satisfies

lim
|z|→∞

(πf + g)(z) = ∞

and
D(f, g) := {x ∈ Rn : (πf + g)(x) = inf(πf + g)} ̸= ∅.
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The next theorem established in [60] describes the structure of approximate solu-
tions of Bolza problems of the type (P4) on large intervals in the regions close to
the endpoints.

Theorem 10.2. Let g ∈ A and L0, τ0, ϵ be positive numbers. Then there exist
numbers δ > 0, T0 > τ0 and a neighborhood U of the function g in the space A
such that for every number T ≥ T0, every function h ∈ U and every a. c. function
v : [0, T ] → Rn satisfying

v(0) ∈ ȲL0,f , I
f (0, T, v) + h(v(T )) ≤ σ(f, h, 0, T, v(0)) + δ

there exists an (f̄)-overtaking optimal function v∗ : [0,∞) → Rn such that v∗(0) ∈
D(f̄ , g) and |v(T − t)− v∗(t)| ≤ ϵ for all t ∈ [0, τ0].

11. The Bolza problem (P5)

We use the notation, definitions and assumptions introduced in Sections 8, 9 and
10.

Let a0 be a positive number. We denote by A(Rn×Rn) the collection of all lower
semicontinuous functions h : Rn×Rn → R1 which are bounded on bounded subsets
of Rn ×Rn and satisfy

h(z1, z2) ≥ −a0 for all z1, z2 ∈ Rn.

For simplicity, we put A = A(Rn×Rn). The space A is equipped with the uniformity
determined by the base

E(N, ϵ) = {(h1, h2) ∈ A× A :

|h1(z)− h2(z)| ≤ ϵ for all z ∈ Rn ×Rn satisfying |z| ≤ N},
where N, ϵ are positive numbers. It is clear that the uniform space A is metrizable
and complete.

For every pair of nonnegative numbers T1 < T2 and every function h ∈ A set

σ(f, h, T1, T2) = inf{
∫ T2

T1

f(v(t), v′(t))dt+ h(v(T1), (v(T2)) :

v : [T1, T2] → Rn is an a. c. function}.
(Here we assume that the infimum over an empty set is ∞.)

Assumption (A1) implies that there exists a number r̄ ∈ (0, 1) such that

Ω0 := {(z1, z2) ∈ Rn ×Rn : |z1 − x̄| ≤ r̄ and |z2| ≤ r̄} ⊂ dom(f),

|f(z1, z2)− f(x̄, 0)| ≤ 1 for each (z1, z2) ∈ Ω0.

The next theorem established in [60] shows that the turnpike phenomenon holds
for approximate solutions of problems (P5) on large intervals.

Theorem 11.1. Let ϵ > 0, M > r̄v. Then there exist a number L ≥ 1 and a
positive number δ such that for every number T > 2L, every function h ∈ A for
which |h(x̄, x̄)| ≤M and every a. c. function v : [0, T ] → Rn such that

If (0, T, v) + h(v(0), v(T )) ≤ σ(f, h, 0, T ) + δ
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there exists a pair of real numbers τ1 ∈ [0, L] and τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ϵ for all t ∈ [τ1, τ2].

Moreover, if |v(0)− x̄| ≤ δ, then τ1 = 0 and if |v(T )− x̄| ≤ δ, then τ2 = T .

Let h ∈ A be given. It follows from Propositions 9.5 and 9.9 that the function

πf (z1) + πf̄ (z2) + h(z1, z2), z1, z2 ∈ Rn

is lower semicontinuous and bounded from below, satisfies

lim
|(z1,z2)|→∞

(πf (z1) + πf̄ (z2) + h(z1, z2)) = ∞

and the set
D(f, h) := {(x, y) ∈ Rn ×Rn :

πf (x) + πf̄ (y) + h(x, y) ≤ πf (ξ) + πf̄ (η) + h(ξ, η)

for all ξ, η ∈ Rn}
is nonempty and closed.

The next theorem is obtained in [60]. It describes the structure of approximate
solutions of Bolza problems of the type (P5) on large intervals in the regions close
to the endpoints.

Theorem 11.2. Let g ∈ A and τ0, ϵ be positive numbers. Then there exist numbers
δ > 0, T0 > τ0 and a neighborhood U of the function g in the space A such that for
every number T ≥ T0, every function h ∈ U and every a. c. function v : [0, T ] → Rn

for which

If (0, T, v) + h(v(0), v(T )) ≤ σ(f, h, 0, T ) + δ

there exist an (f)-overtaking optimal function v∗1 : [0,∞) → Rn and an (f̄)-
overtaking optimal function v∗2 : [0,∞) → Rn such that

πf (v∗1(0)) + πf̄ (v∗2(0)) + g(v∗1(0), v
∗
2(0)) ≤ πf (ξ1) + πf̄ (ξ2) + g(ξ1, ξ2)

for all ξ1, ξ2 ∈ Rn

and that for all t ∈ [0, τ0],

|v(t)− v∗1(t)| ≤ ϵ, |v(T − t)− v∗2(t)| ≤ ϵ.
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