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where ϕ : R → 2R is bounded, it follows that the solution z to (1.2) has the
probabilistic representation (see [3])

(1.4) z(t, x) = Law density {Y (t)},

where Y is the process defined by the stochastic equation

(1.5) dY = ϕ(t, Y (t))dW (t), Y (0) = Y0,

and W is a Wiener process. Then, such a representation remains true for z = yx if
y is a solution to (1.1).

Notations. Lp(R), 1 ≤ p ≤ ∞, is the space of Lebesgue p-integrable functions on
R = (−∞,+∞) and Lp

loc(R) that of p-integrable functions on compact intervals of
R. By C(R) denote the space of all continuous and bounded functions on R and

by BV (R) the space of all functions with bounded variations on R. By W 1,1
loc (R) we

denote the space of functions y ∈ L1
loc(R) with distributional derivative y′ ∈ L1

loc(R).
By y′′ we shall denote the second order derivative of y again in sense of distributions.

Given a Banach space X with the norm ∥ · ∥X , the operator A : D(A) ⊂ X → X
is called accretive in X ×X if

(1.6) ∥(I + λA)−1u− (I + λA)−1v∥X ≤ ∥u− v∥X ,

for all λ > 0 and all u, v ∈ R(I +λA). (Here R(I +λA) is the range of the operator
I + λA and I is the identity operator.)

The operator A : D(A) ⊂ X → X is said to be m-accretive if it is accretive and
for all λ > 0 or, equivalently, for some λ > 0, R(I + λA) = X.

The multivalued function (graph) β : R → 2R is said to be maximal monotone if
it is m-accretive in R× R.

In Sections 2 and 3, we shall study existence for (1.1) in L1(R). In Section 4, we
shall study (1.1) under the additional assumption R(β) = R, and in Section 5 for
β(r) = sign r.

2. The m-accretive operator associated to equation (1.1)

Everywhere in the following we assume that

(i) β is a maximal monotone graph in R × R with the domain D(β) = R and
0 ∈ β(0).

Let X be the Banach space

X =
{
u ∈ W 1,1

loc (R), u′ ∈ L1(R), lim
x→∞

u(x) = 0
}

with the norm

(2.1) ∥u∥X =

∫ ∞

−∞
|u′(x)|dx.

Consider on X the operator A : D(A) ⊂ X → X defined by

(2.2)

Ay = {−η′ ∈ L1(R); η(x) ∈ β(y′(x)), a.e. x ∈ R},
D(A) = {y ∈ X; ∃η ∈ L1

loc(R), η(x) ∈ β(y′(x)),
a.e. x ∈ R, η′ ∈ L1(R)}.
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(If β is single-valued, then Ay = −(β(y′))′ with the domain D(A) = {y ∈ X;
β(y′) ∈ L1

loc(R), (β(y′))′ ∈ L1(R)}.)

Lemma 2.1. The operator A is m-accretive in X ×X.

Proof. Let f ∈ X and let y ∈ D(A) be a solution to (I + λA)y ∋ f , that is,

(2.3)
y − λ(β(y′))′ ∋ f in R,
y′ ∈ L1(R), y(+∞) = 0, (β(y′))′ ∈ L1(R),

in sense of distributions. We set y′ = z and get by (2.3)

(2.4) z − λ(β(z))′′ ∋ f ′, a.e. in R; z ∈ L1(R).

Similarly, if f̄ ∈ X and (I + λA)ȳ ∋ f̄ , we get

(2.5) z̄ − λ(β(z̄))′′ ∋ f̄ ′, a.e. in R, z̄ ∈ L1(R).

Taking into account that the operator Γ defined by (1.3) is accretive in L1(R), we
get by (2.4)–(2.5) that

∥y − ȳ∥X = ∥y′ − ȳ′∥L1(R) = ∥z − z̄∥L1(R) ≤ ∥f ′ − f̄ ′∥L1(R) = ∥f − f̄∥X .

Hence A is accretive. On the other hand, by m-accretivity of the operator Γ in
L1(R) it follows that for each f ∈ X equation (2.4) has a unique solution z ∈ L1(R)
and so y(x) = −

∫∞
x z(s)ds, ∀x ∈ R, is a solution to (2.3). Hence R(I + λA) = X,

∀λ > 0, as claimed.

3. The semi-flow generated by the operator A

In terms of A, equation (1.1) can be written as the infinite dimensional Cauchy
problem

(3.1)
dy

dt
+Ay = 0 on (0, T ),

y(0) = y0.

By the Crandall-Liggett theorem (see, e.g., [1], p. 131), it follows that −A generates
on X a semigroup e−tA of nonlinear contractions, that is, for each y0 ∈ X (in
particular, for y0 ∈ W 1,1(R)),

(3.2) e−tAy0 = lim
n→∞

(
I +

t

n
A

)−n

y0 in X, uniformly in t on [0, T ].

Such a function y(t) = e−tAy0 is called mild solution to equation (3.1) and, respec-
tively (1.1), and, for each h > 0, one has

y(t) + hAy(t) = y(t− h) ∀t ≥ 0,

y(t) = y0 ∀t ≤ 0.

We have, therefore,

Theorem 3.1. For every y0 ∈ X, the Cauchy problem (1.1) has a unique mild
solution y ∈ C([0, T ];X) given by the finite difference scheme

(3.3) y(t) = lim
h→0

yh(t), ∀t ∈ [0, T ],
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where

(3.4) yh(t) = yih for t ∈ [ih, (i+ 1)h), i = 1, 2, ...,
[
T
h

]
,

(3.5)
yih(t)− h(β(yih)

′)′ = yi−1
h in R, i = 1, 2, ...,

[
T
h

]
,

y0h = y0.

By the definition of X, we have also

(3.6) yx ∈ C([0, T ];L1(R)), y ∈ C([0, T ];L1(R)) ∩ C([0, T ]× R).

Remark 3.2. If we set zih = (yih)
′, we see by (3.5) that

(3.7)
zih − h(β(zih))

′′ = zi−1
h in R,

z0h = y′0

and zh(t)
h→0−→ z(t) = yx(t) in L1(Rn). Hence z = yx is the ”mild” solution to the

porous media equation (1.2).
We may conclude that at the level of the spaces (X,L1(R)), equations (1.1)–(1.2)

are equivalent through the transformation z = yx.

4. Equation (1.1) for R(β) = R

We assume here that β is a maximal monotone graph in R× R such that

(4.1) R(β) = R,

where R(β) is the range of β.
Let j : R → R be the potential of β, that is, a lower semicontinuous convex

function such that β = ∂j and j(0) = 0. (Here ∂j is the subdifferential of j.) We
note that condition (3.2) is equivalent to

lim
|r|→∞

j(r)

|r|
= +∞. (4.1)′

We have

Theorem 4.1. Let y0 ∈ L2(R). Then there is a unique solution y : [0, T ]× R → R
which satisfies

(4.2)
y ∈ C([0, T ];L2(R)), yx ∈ L∞(δ, T ;L2(R)),
yt ∈ L∞(δ, T ;L2(R)), ∀δ ∈ (0, T ),

(4.3)
yt(t, x)− (β(yx(t, x)))x ∋ 0, a.e. (t, x) ∈ (0, T )× R,
y(0, x) = y0(x), a.e. x ∈ R.

Moreover, if y′0 ∈ L1(R) and j(y′0) ∈ L1(R), then

(4.4) j(yx(t, x)) ∈ W 1,1([0, T ];L1(R)), yt ∈ L2((0, T );L1(R)).

Finally, if ∃η0 ∈ L2(R) such that η0 ∈ (β(y′0))
′, then yt ∈ L∞(0, T ;L2(R)).
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Proof. We define in H = L2(R) the operator

(4.5)

A0u = {−η′ ∈ L2(R); η(x) ∈ β(u′(x)), a.e. x ∈ R}, ∀u ∈ D(A0),

D(A0) = {u ∈ L2(R), u′ ∈ L1(R)), ∃η ∈ L2(R),
η(x) ∈ −(β(u′(x)))′ a.e. x ∈ R}.

(Here, all the derivatives are taken in sense of distributions, that is, in D′(R).)

Lemma 4.2. The operator A0 is m-accretive in H ×H.

Proof. We consider the (energy) functional φ : H → R =]−∞,+∞],

(4.6) φ(u) =

{ ∫
R j(u′(x))dx if u′ ∈ L1(R), j(u′) ∈ L1(R),
+∞ otherwise.

We setD(φ) = {u ∈ H; φ(u) < +∞}. Clearly, φ is convex and lower semicontinuous
on H. Indeed, if φ(un) ≤ C and un → u in L1(R), it follows that for each δ > 0
there is Cδ > 0 such that for any Lebesgue measurable set Q ⊂ R with the Lebesgue
measure m(Q) ≤ Cδ, we have ∫

Q
|u′n(x)|dx ≤ δ, ∀n.

The latter follows by assumption (4.1)′ taking into account that φ(un) ≤ C implies
that∫

Q
|u′n(x)|dx ≤

∫
Q∩{x;|u′

n(x)|≥N}
+

∫
Q∩{x;|u′

n(x)|≤N}
≤ C

N
+Nm(Q), ∀N > 0.

Then, by the Dunford–Pettis compactness criterium, it follows that {u′n} is weakly
compact in L1(R) and, therefore, on a subsequence u′n → u′ weakly in L1(R). Since
the functional v →

∫
R j(v)dx is, by Fatou’s lemma, lower semicontinuous in L1(R),

being convex, it is also weakly lower semicontinuous and so

lim inf
n→∞

∫
R
j(u′n(x))dx ≥

∫
R
j(u′(x))dx.

Hence φ(u) ≤ C, as claimed.
On the other hand, for each f ∈ H, the equation u+Au ∋ f, that is,

(4.7)
u− (β(u′))′ ∋ f in D′(R),
u ∈ L2(R), u′ ∈ L1(R),

has a solution. Indeed, we associate with (4.7) the minimization problem

(4.8)

Min

{∫
R

(
1

2
u2(x)+j(u′(x))−f(x)u(x)

)
dx;u ∈ L2(R), u′ ∈ L1(R)

}
= Min

{
1

2
∥u∥2L2(R) + φ(u)− ⟨f, u⟩L2(R)

}
.

Taking into account that the functional

u −→ 1

2
∥u∥2L2(R) + φ(u)− ⟨f, u⟩L2(R)
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is convex, lower semicontinuous and coercive on H = L2(R), it follows that there is
a unique solution u∗ to equation (4.7). Since for such a u∗ we have∫

R
(u∗v + j′((u∗)′)v′ − fv)dx ≥ 0,

for all v ∈ L2(R) with v′ ∈ L1(R), where j′ is the directional derivative of j, and
that ∂j = β, it follows that u∗ is a solution to (4.7). Hence, R(I + A0) = H.
Moreover, A0 = ∂φ is the subdifferential of φ. Indeed, if z = −η′ ∈ A0u, then, for
all v ∈ L2(R) with v′ ∈ L1(R), we have

η(x)(u′(x)− v′(x)) ≥ j(u′(x))− j(v′(x)), a.e. x ∈ R

and, integrating on (−∞,+∞), we get∫
R
z(u− v)dx =

∫
R
η(u′ − v′)dx ≥ φ(u)− φ(v)

and, therefore, A0 ⊂ ∂φ. Since A0 is m-accretive, it is maximal accretive and so
this implies A0 = ∂φ.

Proof of Theorem 4.1 (continued). By the general existence theory for the
Cauchy problem associated to m-accretive nonlinear operators of subdifferential
form in Hilbert spaces (see, e.g., [1], p. 157), it follows that, for each y0 ∈ D(A0) =
H, the Cauchy problem

(4.9)

dy(t)

dt
+A0y(t) ∋ 0 a.e. t ∈ (0, T ),

y(0) = y0,

has a unique solution y ∈ C([0, T ];H) with
√
t dy
dt ∈ L2(0, T ;H). Moreover, if

y0 ∈ D(φ), then dy
dt ∈ L2(0, T ;H) and φ(y) ∈ W 1,1([0, T ]), ∀T > 0. Finally, if

y0 ∈ D(A0), then
dy
dt ∈ L∞(0, T ;H), that is, y ∈ W 1,∞([0, T ];H).

This concludes the proof.

Remark 4.3. As in the previous case (see Remark 3.2), we have

y(t) = lim
h→0

yh(t) in L2(R) and uniformly on [0, T ],

where

yh(t) = yih on (ih, (i+ 1)h)

and yih is defined by the finite difference scheme (3.4). If we set zih = (yih)
′, we have

(4.10)
zih − h(β(zih))

′′ ∋ zi−1
h , i = 1, 2, ...,

z0h = y′0.

Since y′h(t) ∈ L1(R) ∀t, we infer that zh(t) ∈ L1(R) for all h, and that, for y0 ∈
L2(R),

zh(t) → z(t) = yx(t) in H−1(R) uniformly on [0, T ],

where z ∈ C([0, T ];H−1(R)) is the solution to the porous media equation (1.2) with
the initial condition z0 = y′0 ∈ H−1(R).
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Remark 4.4. Theorem 4.1 remains true in Rd, d ≥ 1, for parabolic equations of
the form

(4.11)
yt(t, x)− div β(∇xy(t, x)) ∋ 0, ∀t ≥ 0, x ∈ Rd,
y(0, x) = y0(x), x ∈ Rd,

where β : Rd → Rd is a maximal monotone operator of the form β = ∂j and
j : Rd → (−∞,+∞] is a lower semicontinuous convex function satisfying

(4.12) lim
|r|d →∞

j(r)

|r|d
= +∞.

(Here | · |d is the Euclidean norm of Rd.) As in the previous case, (4.11) can be
rewritten as (4.9), where H = L2(Rd) and A0 is the operator

A0u = {−div η ∈ L2(Rd); η(x) ∈ β(∇u(x)), a.e. x ∈ Rd}, ∀u ∈ D(A0),

D(A0) = {u ∈ L2(Rd); ∇u ∈ (L1(Rd))d; ∃η ∈ (L2(Rd))d,

η(x) ∈ −β(∇u(x)) a.e. x ∈ Rd}.
We omit the details.

5. Equations with singular diffusivity

We shall study here equation (1.1) in the special case

(5.1) β(r) = sign r =

{
r
|r| for r ̸= 0,

[−1, 1] for r = 0,

that is,

(5.2)
yt(t, x)− (sign yx(t, x))x = 0, t ∈ (0, T ), x ∈ R,
y(0, x) = y0(x), x ∈ R.

The corresponding operator A0 defined by (4.5) is no longer m-accretive in H =
L2(R).

In fact, the corresponding energy functional φ : H → R =]−∞,+∞],

(5.3) φ(u) =

{ ∫
R |u′(x)|dx if u′ ∈ L1(R),
+∞ otherwise,

is not lower semicontinuous, and its ℓ.s.c. closure φ : H → R is given by

(5.4) φ(u) =

{ ∫
R |Du| if u ∈ BV (R),
+∞ otherwise,

where
∫
R |Du| is the total variation of u and BV (R) is the space of functions u :

R → R with bounded variation. The function φ is convex and lower semicontinuous
on H and so its subdifferential ∂φ = A1 is m-accretive in H × H. Then, by the
general existence theory, for each y0 ∈ L2(R) there is a unique y∗ ∈ C([0, T ];L2(R))
such that

(5.5)

dy∗

dt
(t) + ∂φ(y∗(t)) ∋ 0, a.e. t ∈ (0, T ),

y∗(0) = y0,
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(5.6)
√
t
dy∗

dt
∈ L2((0, T )× R).

If y0 ∈ BV (R), then

(5.7)
dy∗

dt
∈ L2((0, T )× R).

However, since ∂φ is hard to describe, we get an idea of how (5.5) looks like from
the following approximating process.

For each ε > 0, we set

(A1)εu = −(|u′|ε sign u′)′

D(A1)ε) = {u ∈ L2(R);u′ ∈ L1(R), ((u′)ε sign u′)′ ∈ L2(R)}.
In other words, (A1)ε = ∂φε, where

(5.8) φε(u) =

{
1

1+ε

∫∞
−∞ |u′|1+εdx if u′ ∈ L1+ε(R),

+∞ otherwise.

By Theorem 4.1, there is a unique solution uε ∈ C([0, T ];L2(R)) with
√
t ∂uε

∂t ∈
L2((0, T )× R) of the equation

(5.9)

∂yε
∂t

− (|(yε)x|εsign(yε)x)x = 0, a.e. t > 0, x ∈ R,

yε(0, x) = y0(x).

On the other hand, for each λ > 0 and f ∈ L2(R), the solution uε ∈ D((A0)ε) to
the equation

uε − λ(|(uε)′|εsign(uε)′)′ = f in R,
or equivalently

uε = arg min

{∫
R

(
1

2
|u|2 + λ

1 + ε
|u′|1+ε − fu

)
dx

}
,

converges in L2(R) to

u = argmin
u

{∫
R

(
1

2
|u|2 − fu

)
dx+

∫
R
|Du|

}
.

Indeed, for each ε > 0,∫
R

(
1

2
|uε|2+

λ

1+ε
|(uε)′|1+ε − fuε

)
dx ≤

∫
R

(
1

2
|u|2 + λ

1+ε
|u′|1+ε − fu

)
dx,

∀u ∈ D(φ), and, letting ε → 0, we get uε → ũ weakly in L2(R) and

ũ = arg min
u∈BV

{∫
R

(
1

2
|u|2 − fu

)
dx+ λ

∫
R
|Du|

}
.

Hence
ũ = (I + λA1)

−1f.

Then, by the Trotter–Kato theorem for nonlinear semigroups of contractions (see,
e.g., [1], p. 170), we have

(5.10) yε(t) → y∗(t) strongly in C([0, T ];L2(R)),
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as ε → 0, where y∗ is the solution to (5.5). In this generalized sense, y∗ can be
viewed as a solution to (5.2).

If we set yx = z, we may rewrite (5.2) as the porous media equation

(5.11)
zt − (sign z)xx = 0, t ≥ 0,

z(0) = y′0 = z0,

which in the above sense, for z0 ∈ M(R) (the space of Borelian measures on R), has
a solution z ∈ C([0, T ];M(R)), ∀T > 0.

Remark 5.1. The above existence result for (5.2) extends in Rd mutatis-mutandis
to the equation

yt − div

(
∇y

|∇y|

)
= 0, x ∈ Rd,

y(0, x) = y0(x).

In this case, H = L2(Rd), and φ : H →]−∞,+∞] is given by

φ(u) =

{ ∫
Rd |Du| if u ∈ BV (Rd)

+∞ otherwise,

where BV (Rd) is the space of functions with bounded variation on Rd.
This equation is relevant in image restoring techniques (see [2] and [8]).

Remark 5.2. The results of this section extends to the maximal monotone graphs
β : R → 2R such that, for some ρ > 0,

(5.12) ηr ≥ ρ|r|, ∀η ∈ β(r), r ∈ R,

or

(5.13) β = ∂j and j(r) ≥ ρ|r|, ∀r ∈ R.

In this case, φ is the closure of the functional

φ(u) =

{ ∫
R j(u′)dx, u′ ∈ L1(R),
+∞, otherwise,

and so

φ(u) ≥ ρ

∫
R
|Du|, ∀u ∈ D(φ).

We omit the details.

6. An example

The nonlinear parabolic equation

(6.1)
yt − a(yx)(W

′(yx))x = 0, t ≥ 0, x ∈ R,
y(0, x) = y0(x), x ∈ R,

whereW is a convex function on R, u(0) = 0 and a is a given nonnegative continuous
function, is relevant in materials sciences as a model of interface evolution of two
phases of materials as well as in crystal growth and was studied in [4], [5], [6].
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By the formal substitution

(6.2) β(y) =

∫ y

0
a(r)W ′′(r)dr, y ∈ R,

it reduces to (1.1). However, if W ′′ is not in L1
loc(R), assuming that a is smooth (of

class C1 with a′′ ∈ L1
loc(R)), ≥ 0 and W (0) = 0, 0 ∈ ∂W (0), we can take β as

(6.3) β(y) = a(y)∂W (y)− a′(y)W (y) +

∫ y

0
a′′(s)W (s)ds

and so Theorem 3.1 is applicable in this case. Moreover, if

(6.4) β(+∞) = +∞, β(−∞) = ∞,

then we may apply Theorem 4.1.
Finally, if W (y) = |y| and

(6.5) a(y) ≥ ρ, ∀y ∈ R, (−1)ka(k) ≥ 0, k = 1, 2,

then β satisfies condition (5.13) and so the equation

(6.6)
yt − a(yx)(sign yx)x = 0, x ∈ R,
y(0, x) = y0(x),

has, for each y0 ∈ L2(R), a unique solution y ∈ C([0, T ];L2(R)) in sense of (5.5)–
(5.7).

Consequently, the porous media equation

(6.7)
zt − (a(z)(sign z)x)x = 0, x ∈ R, t ≥ 0,

z(0, x) = y′0(x),

has a (generalized) solution z ∈ L2(0, T ;H−1(R)).

7. Equation (1.1) with periodic conditions

Theorem 4.1 remains true if the space L2(R) or L1(R) is replaced by

L2
π(R) = {u ∈ L2

loc(R); u(x+ L) ≡ u(x), x ∈ R}
with the standard Hilbertian norm. For instance, the operator A0 defined by (4.5)
is replaced in this case by

Aπu = −(β(u′))′, u ∈ D(Aπ),

D(Aπ) = {u ∈ Hπ(R); u′ ∈ L1
loc(R), (β(u′))′ ∈ Hπ}.

The details are omitted.
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