

PARABOLIC GRADIENT EQUATIONS ON \mathbb{R}

VIOREL BARBU

ABSTRACT. We study here the existence and uniqueness of solutions to nonlinear divergence parabolic equations in $\mathbb{R} = (-\infty, +\infty)$ via nonlinear semigroup theory.

1. INTRODUCTION

We consider the Cauchy problem

(1.1) $y_t(t,x) - (\beta(y_x(t,x)))_x \ni 0, \quad x \in \mathbb{R} = (-\infty, +\infty), \\ t \in [0,T], \quad 0 < T < \infty, \\ y(0,x) = y_0(x), \qquad x \in \mathbb{R}.$

Here y_t and y_x denote the time and space derivatives of y and $\beta : \mathbb{R} \to 2^{\mathbb{R}}$ is a maximal monotone multivalued graph such that $0 \in \beta(0)$ and $y_0 \in L^1(\mathbb{R})$. This equation arises in the theory of crystal growth (see, e.g., [4], [5], [6], [7]) as well as in image restoring techniques (see [8]). In general, it has not a classical solution and it will be treated here by using the theory of nonlinear semigroups of contractions in $L^1(\mathbb{R})$ in connection with the porous media equation in $L^1(\mathbb{R})$,

(1.2)
$$z_t(t,x) - (\beta(z(t,x)))_{xx} \ni 0, \quad x \in \mathbb{R}, \ t \in (0,T), \\ z(0,x) = z_0(x) = (y_0)_x(x), \quad x \in \mathbb{R},$$

which is formally obtained from (1.1) by differentiating with respect to x and setting $z = y_x$.

On the other hand, for equation (1.2) there is a complete existence theory in $L^1(\mathbb{R})$ because the operator

(1.3)
$$\Gamma(z) = \{-\Delta\eta\}, \ \forall z \in D(\Gamma) = \{z \in L^1(\mathbb{R}); \ \exists \eta \in L^1_{\text{loc}}(\mathbb{R}), \\ \eta(x) \in \beta(z(x)) \text{ a.e. } x \in \mathbb{R}, \ \Delta\eta \in L^1(\mathbb{R})\}$$

is *m*-accretive in $L^1(\mathbb{R})$ if $0 \in \text{int } D(\beta)$ (see [1], p. 126).

It should be said, however, that the equivalence of problems (1.1) and (1.2) is quite a delicate matter and is dependent of the smoothness of the initial data y_0 . This will be discussed in some details later on.

In the special case

$$\beta(r) = \phi^2(r)r,$$

²⁰¹⁰ Mathematics Subject Classification. 35K55, 35K61.

Key words and phrases. Maximal monotone, m-accretive, mild solution, Cauchy problem.

where $\phi : \mathbb{R} \to 2^{\mathbb{R}}$ is bounded, it follows that the solution z to (1.2) has the probabilistic representation (see [3])

(1.4)
$$z(t,x) = \text{Law density } \{Y(t)\},\$$

where Y is the process defined by the stochastic equation

(1.5) $dY = \phi(t, Y(t))dW(t), \quad Y(0) = Y_0,$

and W is a Wiener process. Then, such a representation remains true for $z = y_x$ if y is a solution to (1.1).

Notations. $L^p(\mathbb{R}), 1 \leq p \leq \infty$, is the space of Lebesgue *p*-integrable functions on $\mathbb{R} = (-\infty, +\infty)$ and $L^p_{\text{loc}}(\mathbb{R})$ that of *p*-integrable functions on compact intervals of \mathbb{R} . By $C(\mathbb{R})$ denote the space of all continuous and bounded functions on \mathbb{R} and by $BV(\mathbb{R})$ the space of all functions with bounded variations on \mathbb{R} . By $W^{1,1}_{\text{loc}}(\mathbb{R})$ we denote the space of functions $y \in L^1_{\text{loc}}(\mathbb{R})$ with distributional derivative $y' \in L^1_{\text{loc}}(\mathbb{R})$. By y'' we shall denote the second order derivative of y again in sense of distributions.

Given a Banach space X with the norm $\|\cdot\|_X$, the operator $A: D(A) \subset X \to X$ is called *accretive* in $X \times X$ if

(1.6)
$$\| (I + \lambda A)^{-1} u - (I + \lambda A)^{-1} v \|_X \le \| u - v \|_X,$$

for all $\lambda > 0$ and all $u, v \in \mathbb{R}(I + \lambda A)$. (Here $\mathbb{R}(I + \lambda A)$ is the range of the operator $I + \lambda A$ and I is the identity operator.)

The operator $A: D(A) \subset X \to X$ is said to be *m*-accretive if it is accretive and for all $\lambda > 0$ or, equivalently, for some $\lambda > 0$, $\mathbb{R}(I + \lambda A) = X$.

The multivalued function (graph) $\beta : \mathbb{R} \to 2^{\mathbb{R}}$ is said to be maximal monotone if it is *m*-accretive in $\mathbb{R} \times \mathbb{R}$.

In Sections 2 and 3, we shall study existence for (1.1) in $L^1(\mathbb{R})$. In Section 4, we shall study (1.1) under the additional assumption $R(\beta) = \mathbb{R}$, and in Section 5 for $\beta(r) = \operatorname{sign} r$.

2. The m-accretive operator associated to equation (1.1)

Everywhere in the following we assume that

(i) β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with the domain $D(\beta) = \mathbb{R}$ and $0 \in \beta(0)$.

Let X be the Banach space

$$X = \left\{ u \in W^{1,1}_{\text{loc}}(\mathbb{R}), \ u' \in L^1(\mathbb{R}), \ \lim_{x \to \infty} u(x) = 0 \right\}$$

with the norm

(2.1)
$$||u||_X = \int_{-\infty}^{\infty} |u'(x)| dx.$$

Consider on X the operator $A: D(A) \subset X \to X$ defined by

(2.2)
$$Ay = \{-\eta' \in L^1(\mathbb{R}); \ \eta(x) \in \beta(y'(x)), \text{ a.e. } x \in \mathbb{R}\}, \\ D(A) = \{y \in X; \ \exists \eta \in L^1_{\text{loc}}(\mathbb{R}), \ \eta(x) \in \beta(y'(x)), \\ \text{ a.e. } x \in \mathbb{R}, \ \eta' \in L^1(\mathbb{R})\}.$$

(If β is single-valued, then $Ay = -(\beta(y'))'$ with the domain $D(A) = \{y \in X; \beta(y') \in L^1_{\text{loc}}(\mathbb{R}), (\beta(y'))' \in L^1(\mathbb{R})\}.$)

Lemma 2.1. The operator A is m-accretive in $X \times X$.

Proof. Let $f \in X$ and let $y \in D(A)$ be a solution to $(I + \lambda A)y \ni f$, that is,

(2.3)
$$y - \lambda(\beta(y'))' \ni f \quad \text{in } \mathbb{R},$$

$$y' \in L^1(\mathbb{R}), \quad y(+\infty) = 0, \ (\beta(y'))' \in L^1(\mathbb{R}),$$

in sense of distributions. We set y' = z and get by (2.3)

(2.4)
$$z - \lambda(\beta(z))'' \ni f', \text{ a.e. in } \mathbb{R}; z \in L^1(\mathbb{R}).$$

Similarly, if $\overline{f} \in X$ and $(I + \lambda A)\overline{y} \ni \overline{f}$, we get

(2.5)
$$\bar{z} - \lambda(\beta(\bar{z}))'' \ni \bar{f}', \text{ a.e. in } \mathbb{R}, \ \bar{z} \in L^1(\mathbb{R}).$$

Taking into account that the operator Γ defined by (1.3) is accretive in $L^1(\mathbb{R})$, we get by (2.4)–(2.5) that

$$\|y - \bar{y}\|_X = \|y' - \bar{y}'\|_{L^1(\mathbb{R})} = \|z - \bar{z}\|_{L^1(\mathbb{R})} \le \|f' - \bar{f}'\|_{L^1(\mathbb{R})} = \|f - \bar{f}\|_X.$$

Hence A is accretive. On the other hand, by *m*-accretivity of the operator Γ in $L^1(\mathbb{R})$ it follows that for each $f \in X$ equation (2.4) has a unique solution $z \in L^1(\mathbb{R})$ and so $y(x) = -\int_x^\infty z(s)ds$, $\forall x \in \mathbb{R}$, is a solution to (2.3). Hence $\mathbb{R}(I + \lambda A) = X$, $\forall \lambda > 0$, as claimed.

3. The semi-flow generated by the operator A

In terms of A, equation (1.1) can be written as the infinite dimensional Cauchy problem

(3.1)
$$\frac{dy}{dt} + Ay = 0 \quad \text{on } (0,T), \\ y(0) = y_0.$$

By the Crandall-Liggett theorem (see, e.g., [1], p. 131), it follows that -A generates on X a semigroup e^{-tA} of nonlinear contractions, that is, for each $y_0 \in X$ (in particular, for $y_0 \in W^{1,1}(\mathbb{R})$),

(3.2)
$$e^{-tA}y_0 = \lim_{n \to \infty} \left(I + \frac{t}{n} A \right)^{-n} y_0 \text{ in } X, \text{ uniformly in } t \text{ on } [0, T].$$

Such a function $y(t) = e^{-tA}y_0$ is called *mild* solution to equation (3.1) and, respectively (1.1), and, for each h > 0, one has

$$\begin{aligned} y(t) + hAy(t) &= y(t-h) \quad \forall t \ge 0, \\ y(t) &= y_0 \qquad \forall t \le 0. \end{aligned}$$

We have, therefore,

Theorem 3.1. For every $y_0 \in X$, the Cauchy problem (1.1) has a unique mild solution $y \in C([0,T];X)$ given by the finite difference scheme

(3.3)
$$y(t) = \lim_{h \to 0} y_h(t), \ \forall t \in [0, T],$$

where

(3.4)
$$y_h(t) = y_h^i \text{ for } t \in [ih, (i+1)h), \ i = 1, 2, ..., [\frac{T}{h}],$$

(3.5)
$$y_h^i(t) - h(\beta(y_h^i)')' = y_h^{i-1} \text{ in } \mathbb{R}, \ i = 1, 2, ..., \left[\frac{T}{h}\right], \\ y_h^0 = y_0.$$

By the definition of X, we have also

(3.6)
$$y_x \in C([0,T]; L^1(\mathbb{R})), \ y \in C([0,T]; L^1(\mathbb{R})) \cap C([0,T] \times \mathbb{R}).$$

Remark 3.2. If we set $z_h^i = (y_h^i)'$, we see by (3.5) that

(3.7)
$$\begin{aligned} z_h^i - h(\beta(z_h^i))'' &= z_h^{i-1} \text{ in } \mathbb{R}, \\ z_h^0 &= y_0' \end{aligned}$$

and $z_h(t) \xrightarrow{h \to 0} z(t) = y_x(t)$ in $L^1(\mathbb{R}^n)$. Hence $z = y_x$ is the "mild" solution to the porous media equation (1.2).

We may conclude that at the level of the spaces $(X, L^1(\mathbb{R}))$, equations (1.1)–(1.2) are equivalent through the transformation $z = y_x$.

4. Equation (1.1) for $\mathbb{R}(\beta) = \mathbb{R}$

We assume here that β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ such that

(4.1)
$$R(\beta) = \mathbb{R},$$

where $R(\beta)$ is the range of β .

Let $j : \mathbb{R} \to \mathbb{R}$ be the potential of β , that is, a lower semicontinuous convex function such that $\beta = \partial j$ and j(0) = 0. (Here ∂j is the subdifferential of j.) We note that condition (3.2) is equivalent to

$$\lim_{|r| \to \infty} \frac{j(r)}{|r|} = +\infty.$$

$$(4.1)'$$

We have

Theorem 4.1. Let $y_0 \in L^2(\mathbb{R})$. Then there is a unique solution $y : [0,T] \times \mathbb{R} \to \mathbb{R}$ which satisfies

(4.2)
$$y \in C([0,T]; L^2(\mathbb{R})), \quad y_x \in L^{\infty}(\delta,T; L^2(\mathbb{R})),$$
$$y_t \in L^{\infty}(\delta,T; L^2(\mathbb{R})), \quad \forall \delta \in (0,T),$$

(4.3)
$$y_t(t,x) - (\beta(y_x(t,x)))_x \ni 0, \quad a.e. \ (t,x) \in (0,T) \times \mathbb{R}, \\ y(0,x) = y_0(x), \qquad a.e. \ x \in \mathbb{R}.$$

Moreover, if $y'_0 \in L^1(\mathbb{R})$ and $j(y'_0) \in L^1(\mathbb{R})$, then

(4.4)
$$j(y_x(t,x)) \in W^{1,1}([0,T];L^1(\mathbb{R})), \ y_t \in L^2((0,T);L^1(\mathbb{R})).$$

Finally, if $\exists \eta_0 \in L^2(\mathbb{R})$ such that $\eta_0 \in (\beta(y'_0))'$, then $y_t \in L^\infty(0,T; L^2(\mathbb{R}))$.

Proof. We define in $H = L^2(\mathbb{R})$ the operator

(4.5)
$$A_0 u = \{-\eta' \in L^2(\mathbb{R}); \ \eta(x) \in \beta(u'(x)), \text{ a.e. } x \in \mathbb{R}\}, \ \forall u \in D(A_0), \\ D(A_0) = \{u \in L^2(\mathbb{R}), \ u' \in L^1(\mathbb{R})), \ \exists \eta \in L^2(\mathbb{R}), \\ \eta(x) \in -(\beta(u'(x)))' \text{ a.e. } x \in \mathbb{R}\}.$$

(Here, all the derivatives are taken in sense of distributions, that is, in $\mathcal{D}'(\mathbb{R})$.)

Lemma 4.2. The operator A_0 is m-accretive in $H \times H$.

Proof. We consider the (energy) functional $\varphi: H \to \overline{\mathbb{R}} =]-\infty, +\infty]$,

(4.6)
$$\varphi(u) = \begin{cases} \int_{\mathbb{R}} j(u'(x))dx & \text{if } u' \in L^{1}(\mathbb{R}), \ j(u') \in L^{1}(\mathbb{R}), \\ +\infty & \text{otherwise.} \end{cases}$$

We set $D(\varphi) = \{u \in H; \varphi(u) < +\infty\}$. Clearly, φ is convex and lower semicontinuous on H. Indeed, if $\varphi(u_n) \leq C$ and $u_n \to u$ in $L^1(\mathbb{R})$, it follows that for each $\delta > 0$ there is $C_{\delta} > 0$ such that for any Lebesgue measurable set $Q \subset \mathbb{R}$ with the Lebesgue measure $m(Q) \leq C_{\delta}$, we have

$$\int_{Q} |u'_{n}(x)| dx \le \delta, \ \forall n.$$

The latter follows by assumption (4.1)' taking into account that $\varphi(u_n) \leq C$ implies that

$$\int_{Q} |u'_n(x)| dx \le \int_{Q \cap \{x; |u'_n(x)| \ge N\}} + \int_{Q \cap \{x; |u'_n(x)| \le N\}} \le \frac{C}{N} + Nm(Q), \ \forall N > 0.$$

Then, by the Dunford–Pettis compactness criterium, it follows that $\{u'_n\}$ is weakly compact in $L^1(\mathbb{R})$ and, therefore, on a subsequence $u'_n \to u'$ weakly in $L^1(\mathbb{R})$. Since the functional $v \to \int_{\mathbb{R}} j(v) dx$ is, by Fatou's lemma, lower semicontinuous in $L^1(\mathbb{R})$, being convex, it is also weakly lower semicontinuous and so

$$\liminf_{n \to \infty} \int_{\mathbb{R}} j(u'_n(x)) dx \ge \int_{\mathbb{R}} j(u'(x)) dx$$

Hence $\varphi(u) \leq C$, as claimed.

On the other hand, for each $f \in H$, the equation $u + Au \ni f$, that is,

(4.7)
$$\begin{aligned} u - (\beta(u'))' &\ni f \quad \text{in } \mathcal{D}'(\mathbb{R}), \\ u \in L^2(\mathbb{R}), \quad u' \in L^1(\mathbb{R}), \end{aligned}$$

has a solution. Indeed, we associate with (4.7) the minimization problem

(4.8)
$$\operatorname{Min}\left\{\int_{\mathbb{R}} \left(\frac{1}{2} u^{2}(x) + j(u'(x)) - f(x)u(x)\right) dx; u \in L^{2}(\mathbb{R}), u' \in L^{1}(\mathbb{R})\right\} \\ = \operatorname{Min}\left\{\frac{1}{2} \|u\|_{L^{2}(\mathbb{R})}^{2} + \varphi(u) - \langle f, u \rangle_{L^{2}(\mathbb{R})}\right\}.$$

Taking into account that the functional

$$u \longrightarrow \frac{1}{2} \|u\|_{L^2(\mathbb{R})}^2 + \varphi(u) - \langle f, u \rangle_{L^2(\mathbb{R})}$$

is convex, lower semicontinuous and coercive on $H = L^2(\mathbb{R})$, it follows that there is a unique solution u^* to equation (4.7). Since for such a u^* we have

$$\int_{\mathbb{R}} (u^* v + j'((u^*)')v' - fv) dx \ge 0.$$

for all $v \in L^2(\mathbb{R})$ with $v' \in L^1(\mathbb{R})$, where j' is the directional derivative of j, and that $\partial j = \beta$, it follows that u^* is a solution to (4.7). Hence, $\mathbb{R}(I + A_0) = H$. Moreover, $A_0 = \partial \varphi$ is the subdifferential of φ . Indeed, if $z = -\eta' \in A_0 u$, then, for all $v \in L^2(\mathbb{R})$ with $v' \in L^1(\mathbb{R})$, we have

$$\eta(x)(u'(x) - v'(x)) \ge j(u'(x)) - j(v'(x)), \text{ a.e. } x \in \mathbb{R}$$

and, integrating on $(-\infty, +\infty)$, we get

$$\int_{\mathbb{R}} z(u-v)dx = \int_{\mathbb{R}} \eta(u'-v')dx \ge \varphi(u) - \varphi(v)$$

and, therefore, $A_0 \subset \partial \varphi$. Since A_0 is *m*-accretive, it is maximal accretive and so this implies $A_0 = \partial \varphi$.

Proof of Theorem 4.1 (continued). By the general existence theory for the Cauchy problem associated to *m*-accretive nonlinear operators of subdifferential form in Hilbert spaces (see, e.g., [1], p. 157), it follows that, for each $y_0 \in D(A_0) =$ H, the Cauchy problem

(4.9)
$$\frac{dy(t)}{dt} + A_0 y(t) \ni 0 \quad \text{a.e. } t \in (0,T),$$
$$y(0) = y_0,$$

has a unique solution $y \in C([0,T];H)$ with $\sqrt{t} \frac{dy}{dt} \in L^2(0,T;H)$. Moreover, if $y_0 \in D(\varphi)$, then $\frac{dy}{dt} \in L^2(0,T;H)$ and $\varphi(y) \in W^{1,1}([0,T]), \forall T > 0$. Finally, if $y_0 \in D(A_0)$, then $\frac{dy}{dt} \in L^{\infty}(0,T;H)$, that is, $y \in W^{1,\infty}([0,T];H)$.

This concludes the proof.

Remark 4.3. As in the previous case (see Remark 3.2), we have

$$y(t) = \lim_{h \to 0} y_h(t)$$
 in $L^2(\mathbb{R})$ and uniformly on $[0, T]$,

where

$$y_h(t) = y_h^i$$
 on $(ih, (i+1)h)$

and y_h^i is defined by the finite difference scheme (3.4). If we set $z_h^i = (y_h^i)'$, we have

(4.10)
$$z_h^i - h(\beta(z_h^i))'' \ni z_h^{i-1}, \quad i = 1, 2, ..., \\ z_h^0 = y'_0.$$

Since $y'_h(t) \in L^1(\mathbb{R}) \ \forall t$, we infer that $z_h(t) \in L^1(\mathbb{R})$ for all h, and that, for $y_0 \in L^1(\mathbb{R})$ $L^2(\mathbb{R}),$

 $z_h(t) \to z(t) = y_x(t)$ in $H^{-1}(\mathbb{R})$ uniformly on [0, T],

where $z \in C([0,T]; H^{-1}(\mathbb{R}))$ is the solution to the porous media equation (1.2) with the initial condition $z_0 = y'_0 \in H^{-1}(\mathbb{R})$.

Remark 4.4. Theorem 4.1 remains true in \mathbb{R}^d , $d \ge 1$, for parabolic equations of the form

(4.11)
$$y_t(t,x) - \operatorname{div} \beta(\nabla_x y(t,x)) \ni 0, \quad \forall t \ge 0, \ x \in \mathbb{R}^d$$
$$y(0,x) = y_0(x), \qquad x \in \mathbb{R}^d,$$

where $\beta : \mathbb{R}^d \to \mathbb{R}^d$ is a maximal monotone operator of the form $\beta = \partial j$ and $j : \mathbb{R}^d \to (-\infty, +\infty]$ is a lower semicontinuous convex function satisfying

(4.12)
$$\lim_{|r|_d \to \infty} \frac{j(r)}{|r|_d} = +\infty.$$

(Here $|\cdot|_d$ is the Euclidean norm of \mathbb{R}^d .) As in the previous case, (4.11) can be rewritten as (4.9), where $H = L^2(\mathbb{R}^d)$ and A_0 is the operator

$$A_0 u = \{-\operatorname{div} \eta \in L^2(\mathbb{R}^d); \ \eta(x) \in \beta(\nabla u(x)), \text{ a.e. } x \in \mathbb{R}^d\}, \ \forall u \in D(A_0), \\ D(A_0) = \{u \in L^2(\mathbb{R}^d); \ \nabla u \in (L^1(\mathbb{R}^d))^d; \ \exists \eta \in (L^2(\mathbb{R}^d))^d, \\ \eta(x) \in -\beta(\nabla u(x)) \text{ a.e. } x \in \mathbb{R}^d\}.$$

We omit the details.

5. Equations with singular diffusivity

We shall study here equation (1.1) in the special case

(5.1)
$$\beta(r) = \text{sign } r = \begin{cases} \frac{r}{|r|} & \text{for } r \neq 0, \\ [-1,1] & \text{for } r = 0, \end{cases}$$

that is,

(5.2)
$$y_t(t,x) - (\text{sign } y_x(t,x))_x = 0, \ t \in (0,T), \ x \in \mathbb{R}, y(0,x) = y_0(x), \ x \in \mathbb{R}.$$

The corresponding operator A_0 defined by (4.5) is no longer *m*-accretive in $H = L^2(\mathbb{R})$.

In fact, the corresponding energy functional $\varphi: H \to \overline{\mathbb{R}} =]-\infty, +\infty]$,

(5.3)
$$\varphi(u) = \begin{cases} \int_{\mathbb{R}} |u'(x)| dx & \text{if } u' \in L^1(\mathbb{R}) \\ +\infty & \text{otherwise,} \end{cases}$$

is not lower semicontinuous, and its ℓ .s.c. closure $\overline{\varphi}: H \to \mathbb{R}$ is given by

(5.4)
$$\overline{\varphi}(u) = \begin{cases} \int_{\mathbb{R}} |Du| & \text{if } u \in BV(\mathbb{R}), \\ +\infty & \text{otherwise,} \end{cases}$$

where $\int_{\mathbb{R}} |Du|$ is the total variation of u and $BV(\mathbb{R})$ is the space of functions $u : \mathbb{R} \to \mathbb{R}$ with bounded variation. The function $\overline{\varphi}$ is convex and lower semicontinuous on H and so its subdifferential $\partial \overline{\varphi} = A_1$ is *m*-accretive in $H \times H$. Then, by the general existence theory, for each $y_0 \in L^2(\mathbb{R})$ there is a unique $y^* \in C([0,T]; L^2(\mathbb{R}))$ such that

(5.5)
$$\frac{dy^*}{dt}(t) + \partial\overline{\varphi}(y^*(t)) \ni 0, \quad a.e. \ t \in (0,T),$$
$$y^*(0) = y_0,$$

V. BARBU

(5.6)
$$\sqrt{t} \ \frac{dy^*}{dt} \in L^2((0,T) \times \mathbb{R})$$

If $y_0 \in BV(\mathbb{R})$, then

(5.7)
$$\frac{dy^*}{dt} \in L^2((0,T) \times \mathbb{R}).$$

However, since $\partial \overline{\varphi}$ is hard to describe, we get an idea of how (5.5) looks like from the following approximating process.

For each $\varepsilon > 0$, we set

$$(A_1)_{\varepsilon} u = -(|u'|^{\varepsilon} \operatorname{sign} u')'$$

$$D(A_1)_{\varepsilon}) = \{u \in L^2(\mathbb{R}); u' \in L^1(\mathbb{R}), ((u')^{\varepsilon} \operatorname{sign} u')' \in L^2(\mathbb{R})\}.$$

In other words, $(A_1)_{\varepsilon} = \partial \varphi_{\varepsilon}$, where

0

(5.8)
$$\varphi_{\varepsilon}(u) = \begin{cases} \frac{1}{1+\varepsilon} \int_{-\infty}^{\infty} |u'|^{1+\varepsilon} dx & \text{if } u' \in L^{1+\varepsilon}(\mathbb{R}), \\ +\infty & \text{otherwise.} \end{cases}$$

By Theorem 4.1, there is a unique solution $u_{\varepsilon} \in C([0,T]; L^2(\mathbb{R}))$ with $\sqrt{t} \ \frac{\partial u_{\varepsilon}}{\partial t} \in L^2((0,T) \times \mathbb{R})$ of the equation

(5.9)
$$\frac{\partial y_{\varepsilon}}{\partial t} - (|(y_{\varepsilon})_x|^{\varepsilon} \operatorname{sign}(y_{\varepsilon})_x)_x = 0, \text{ a.e. } t > 0, x \in \mathbb{R}, \\ y_{\varepsilon}(0, x) = y_0(x).$$

On the other hand, for each $\lambda > 0$ and $f \in L^2(\mathbb{R})$, the solution $u^{\varepsilon} \in D((A_0)_{\varepsilon})$ to the equation

$$u_{\varepsilon} - \lambda(|(u_{\varepsilon})'|^{\varepsilon} \operatorname{sign}(u_{\varepsilon})')' = f \text{ in } \mathbb{R},$$

or equivalently

$$u_{\varepsilon} = \arg \min \left\{ \int_{\mathbb{R}} \left(\frac{1}{2} |u|^2 + \frac{\lambda}{1+\varepsilon} |u'|^{1+\varepsilon} - fu \right) dx \right\},\$$

converges in $L^2(\mathbb{R})$ to

$$u = \arg\min_{u} \left\{ \int_{\mathbb{R}} \left(\frac{1}{2} |u|^2 - fu \right) dx + \int_{\mathbb{R}} |Du| \right\}.$$

Indeed, for each $\varepsilon > 0$,

$$\int_{\mathbb{R}} \left(\frac{1}{2} |u_{\varepsilon}|^2 + \frac{\lambda}{1+\varepsilon} |(u_{\varepsilon})'|^{1+\varepsilon} - fu^{\varepsilon} \right) dx \leq \int_{\mathbb{R}} \left(\frac{1}{2} |u|^2 + \frac{\lambda}{1+\varepsilon} |u'|^{1+\varepsilon} - fu \right) dx,$$

 $\forall u \in D(\overline{\varphi})$, and, letting $\varepsilon \to 0$, we get $u_{\varepsilon} \to \widetilde{u}$ weakly in $L^2(\mathbb{R})$ and

$$\widetilde{u} = \arg\min_{u \in BV} \left\{ \int_{\mathbb{R}} \left(\frac{1}{2} |u|^2 - fu \right) dx + \lambda \int_{\mathbb{R}} |Du| \right\}.$$

Hence

$$\widetilde{u} = (I + \lambda A_1)^{-1} f$$

Then, by the Trotter–Kato theorem for nonlinear semigroups of contractions (see, e.g., [1], p. 170), we have

(5.10)
$$y_{\varepsilon}(t) \to y^*(t)$$
 strongly in $C([0,T]; L^2(\mathbb{R})),$

as $\varepsilon \to 0$, where y^* is the solution to (5.5). In this generalized sense, y^* can be viewed as a solution to (5.2).

0.

If we set $y_x = z$, we may rewrite (5.2) as the porous media equation

(5.11)
$$z_t - (\text{sign } z)_{xx} = 0, \quad t \ge z(0) = y'_0 = z_0,$$

which in the above sense, for $z_0 \in M(\mathbb{R})$ (the space of Borelian measures on \mathbb{R}), has a solution $z \in C([0,T]; M(\mathbb{R})), \forall T > 0$.

Remark 5.1. The above existence result for (5.2) extends in \mathbb{R}^d mutatis-mutandis to the equation

$$y_t - \operatorname{div}\left(\frac{\nabla y}{|\nabla y|}\right) = 0, \quad x \in \mathbb{R}^d,$$
$$y(0, x) = y_0(x).$$

In this case, $H = L^2(\mathbb{R}^d)$, and $\overline{\varphi}: H \to]-\infty, +\infty]$ is given by

$$\overline{\varphi}(u) = \begin{cases} \int_{\mathbb{R}^d} |Du| & \text{if } u \in BV(\mathbb{R}^d) \\ +\infty & \text{otherwise,} \end{cases}$$

where $BV(\mathbb{R}^d)$ is the space of functions with bounded variation on \mathbb{R}^d .

This equation is relevant in image restoring techniques (see [2] and [8]).

Remark 5.2. The results of this section extends to the maximal monotone graphs $\beta : \mathbb{R} \to 2^{\mathbb{R}}$ such that, for some $\rho > 0$,

(5.12)
$$\eta r \ge \rho |r|, \quad \forall \eta \in \beta(r), \ r \in \mathbb{R},$$

or

(5.13)
$$\beta = \partial j \text{ and } j(r) \ge \rho |r|, \ \forall r \in \mathbb{R}.$$

In this case, $\overline{\varphi}$ is the closure of the functional

$$\varphi(u) = \begin{cases} \int_{\mathbb{R}} j(u') dx, & u' \in L^1(\mathbb{R}), \\ +\infty, & \text{otherwise,} \end{cases}$$

and so

$$\overline{\varphi}(u) \ge \rho \int_{\mathbb{R}} |Du|, \ \forall u \in D(\varphi).$$

We omit the details.

6. An example

The nonlinear parabolic equation

(6.1)
$$y_t - a(y_x)(W'(y_x))_x = 0, \ t \ge 0, \ x \in \mathbb{R}, y(0, x) = y_0(x), \ x \in \mathbb{R},$$

where W is a convex function on \mathbb{R} , u(0) = 0 and a is a given nonnegative continuous function, is relevant in materials sciences as a model of interface evolution of two phases of materials as well as in crystal growth and was studied in [4], [5], [6].

By the formal substitution

(6.2)
$$\beta(y) = \int_0^y a(r) W''(r) dr, \ y \in \mathbb{R},$$

it reduces to (1.1). However, if W'' is not in $L^1_{\text{loc}}(\mathbb{R})$, assuming that a is smooth (of class C^1 with $a'' \in L^1_{\text{loc}}(\mathbb{R})$), ≥ 0 and W(0) = 0, $0 \in \partial W(0)$, we can take β as

(6.3)
$$\beta(y) = a(y)\partial W(y) - a'(y)W(y) + \int_0^y a''(s)W(s)ds$$

and so Theorem 3.1 is applicable in this case. Moreover, if

(6.4)
$$\beta(+\infty) = +\infty, \ \beta(-\infty) = \infty,$$

then we may apply Theorem 4.1.

Finally, if W(y) = |y| and

(6.5)
$$a(y) \ge \rho, \quad \forall y \in \mathbb{R}, \ (-1)^k a^{(k)} \ge 0, \ k = 1, 2,$$

then β satisfies condition (5.13) and so the equation

(6.6)
$$y_t - a(y_x)(\text{sign } y_x)_x = 0, \ x \in \mathbb{R}, y(0, x) = y_0(x),$$

has, for each $y_0 \in L^2(\mathbb{R})$, a unique solution $y \in C([0,T]; L^2(\mathbb{R}))$ in sense of (5.5)–(5.7).

Consequently, the porous media equation

(6.7)
$$z_t - (a(z)(\text{sign } z)_x)_x = 0, \quad x \in \mathbb{R}, \ t \ge 0, \\ z(0,x) = y'_0(x),$$

has a (generalized) solution $z \in L^2(0,T; H^{-1}(\mathbb{R}))$.

7. Equation (1.1) with periodic conditions

Theorem 4.1 remains true if the space $L^2(\mathbb{R})$ or $L^1(\mathbb{R})$ is replaced by

$$L^2_{\pi}(\mathbb{R}) = \{ u \in L^2_{\text{loc}}(\mathbb{R}); \ u(x+L) \equiv u(x), \ x \in \mathbb{R} \}$$

with the standard Hilbertian norm. For instance, the operator A_0 defined by (4.5) is replaced in this case by

$$A_{\pi}u = -(\beta(u'))', \quad u \in D(A_{\pi}), D(A_{\pi}) = \{u \in H_{\pi}(\mathbb{R}); \ u' \in L^{1}_{\text{loc}}(\mathbb{R}), \ (\beta(u'))' \in H_{\pi}\}.$$

The details are omitted.

References

- V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010.
- [2] V. Barbu, Nonlinear diffusion equations in image processing, Revue Roumaine Math. Pures Appl. 2 (2013), 175–204.
- [3] V. Barbu, M. Röckner and F. Russo, Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case, Probab. Theory Related Fields 151 (2011), 1-43.

10

- M. H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Archive Rat. Mech. Anal. 141 (1998), 117–198.
- [5] R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Statistical Physics 95 (1999), 1187–1220.
- [6] R. Kobayashi and Y. Giga, On constrained equations with singular diffusivity, Methods and Applications of Analysis 10 (2003), 253–278.
- [7] P. Rybka, A crystalline motion: uniqueness and geometric properties, SIAM J. Appl. Math. 57 (1997), 53–72.
- [8] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variations based noise removal algorithms, Physica, D 60 (1992), 259–262.

Manuscript received 12 October 2015 revised 3 January 2016

V. Barbu

Al.I. Cuza University and Octav Mayer Institute of Mathematics of the Romanian Academy, Romania

E-mail address: vb41@uaic.ro