# PARABOLIC GRADIENT EQUATIONS ON $\mathbb{R}$ 

VIOREL BARBU

Abstract. We study here the existence and uniqueness of solutions to nonlinear divergence parabolic equations in $\mathbb{R}=(-\infty,+\infty)$ via nonlinear semigroup theory.

## 1. Introduction

We consider the Cauchy problem

$$
\begin{array}{ll}
y_{t}(t, x)-\left(\beta\left(y_{x}(t, x)\right)\right)_{x} \ni 0, & x \in \mathbb{R}=(-\infty,+\infty) \\
& t \in[0, T], 0<T<\infty  \tag{1.1}\\
y(0, x)=y_{0}(x), & x \in \mathbb{R} .
\end{array}
$$

Here $y_{t}$ and $y_{x}$ denote the time and space derivatives of $y$ and $\beta: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is a maximal monotone multivalued graph such that $0 \in \beta(0)$ and $y_{0} \in L^{1}(\mathbb{R})$. This equation arises in the theory of crystal growth (see, e.g., [4], [5], [6], [7]) as well as in image restoring techniques (see [8]). In general, it has not a classical solution and it will be treated here by using the theory of nonlinear semigroups of contractions in $L^{1}(\mathbb{R})$ in connection with the porous media equation in $L^{1}(\mathbb{R})$,

$$
\begin{align*}
& z_{t}(t, x)-(\beta(z(t, x)))_{x x} \ni 0, \quad x \in \mathbb{R}, t \in(0, T)  \tag{1.2}\\
& z(0, x)=z_{0}(x)=\left(y_{0}\right)_{x}(x), \quad x \in \mathbb{R}
\end{align*}
$$

which is formally obtained from (1.1) by differentiating with respect to $x$ and setting $z=y_{x}$.

On the other hand, for equation (1.2) there is a complete existence theory in $L^{1}(\mathbb{R})$ because the operator

$$
\begin{array}{r}
\Gamma(z)=\{-\Delta \eta\}, \quad \forall z \in D(\Gamma)=\left\{z \in L^{1}(\mathbb{R}) ; \exists \eta \in L_{\mathrm{loc}}^{1}(\mathbb{R})\right. \\
\left.\eta(x) \in \beta(z(x)) \text { a.e. } x \in \mathbb{R}, \Delta \eta \in L^{1}(\mathbb{R})\right\} \tag{1.3}
\end{array}
$$

is $m$-accretive in $L^{1}(\mathbb{R})$ if $0 \in \operatorname{int} D(\beta)$ (see [1], p. 126).
It should be said, however, that the equivalence of problems (1.1) and (1.2) is quite a delicate matter and is dependent of the smoothness of the initial data $y_{0}$. This will be discussed in some details later on.

In the special case

$$
\beta(r)=\phi^{2}(r) r
$$

2010 Mathematics Subject Classification. 35K55, 35K61.
Key words and phrases. Maximal monotone, $m$-accretive, mild solution, Cauchy problem.
where $\phi: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is bounded, it follows that the solution $z$ to (1.2) has the probabilistic representation (see [3])

$$
\begin{equation*}
z(t, x)=\text { Law density }\{Y(t)\} \tag{1.4}
\end{equation*}
$$

where $Y$ is the process defined by the stochastic equation

$$
\begin{equation*}
d Y=\phi(t, Y(t)) d W(t), \quad Y(0)=Y_{0} \tag{1.5}
\end{equation*}
$$

and $W$ is a Wiener process. Then, such a representation remains true for $z=y_{x}$ if $y$ is a solution to (1.1).

Notations. $L^{p}(\mathbb{R}), 1 \leq p \leq \infty$, is the space of Lebesgue $p$-integrable functions on $\mathbb{R}=(-\infty,+\infty)$ and $L_{\text {loc }}^{p}(\mathbb{R})$ that of $p$-integrable functions on compact intervals of $\mathbb{R}$. By $C(\mathbb{R})$ denote the space of all continuous and bounded functions on $\mathbb{R}$ and by $B V(\mathbb{R})$ the space of all functions with bounded variations on $\mathbb{R}$. By $W_{\mathrm{loc}}^{1,1}(\mathbb{R})$ we denote the space of functions $y \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ with distributional derivative $y^{\prime} \in L_{\mathrm{loc}}^{1}(\mathbb{R})$. By $y^{\prime \prime}$ we shall denote the second order derivative of $y$ again in sense of distributions.

Given a Banach space $X$ with the norm $\|\cdot\|_{X}$, the operator $A: D(A) \subset X \rightarrow X$ is called accretive in $X \times X$ if

$$
\begin{equation*}
\left\|(I+\lambda A)^{-1} u-(I+\lambda A)^{-1} v\right\|_{X} \leq\|u-v\|_{X} \tag{1.6}
\end{equation*}
$$

for all $\lambda>0$ and all $u, v \in \mathbb{R}(I+\lambda A)$. (Here $\mathbb{R}(I+\lambda A)$ is the range of the operator $I+\lambda A$ and $I$ is the identity operator.)

The operator $A: D(A) \subset X \rightarrow X$ is said to be $m$-accretive if it is accretive and for all $\lambda>0$ or, equivalently, for some $\lambda>0, \mathbb{R}(I+\lambda A)=X$.

The multivalued function (graph) $\beta: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ is said to be maximal monotone if it is $m$-accretive in $\mathbb{R} \times \mathbb{R}$.

In Sections 2 and 3, we shall study existence for $(1.1)$ in $L^{1}(\mathbb{R})$. In Section 4 , we shall study (1.1) under the additional assumption $R(\beta)=\mathbb{R}$, and in Section 5 for $\beta(r)=\operatorname{sign} r$.

## 2. THE $m$-ACCRETIVE OPERATOR ASSOCIATED TO EQUATION (1.1)

Everywhere in the following we assume that
(i) $\beta$ is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ with the domain $D(\beta)=\mathbb{R}$ and $0 \in \beta(0)$.
Let $X$ be the Banach space

$$
X=\left\{u \in W_{\mathrm{loc}}^{1,1}(\mathbb{R}), u^{\prime} \in L^{1}(\mathbb{R}), \lim _{x \rightarrow \infty} u(x)=0\right\}
$$

with the norm

$$
\begin{equation*}
\|u\|_{X}=\int_{-\infty}^{\infty}\left|u^{\prime}(x)\right| d x \tag{2.1}
\end{equation*}
$$

Consider on $X$ the operator $A: D(A) \subset X \rightarrow X$ defined by

$$
\begin{align*}
A y= & \left\{-\eta^{\prime} \in L^{1}(\mathbb{R}) ; \eta(x) \in \beta\left(y^{\prime}(x)\right), \text { a.e. } x \in \mathbb{R}\right\} \\
D(A)= & \left\{y \in X ; \exists \eta \in L_{\mathrm{loc}}^{1}(\mathbb{R}), \eta(x) \in \beta\left(y^{\prime}(x)\right)\right.  \tag{2.2}\\
& \left.\quad \text { a.e. } x \in \mathbb{R}, \eta^{\prime} \in L^{1}(\mathbb{R})\right\} .
\end{align*}
$$

(If $\beta$ is single-valued, then $A y=-\left(\beta\left(y^{\prime}\right)\right)^{\prime}$ with the domain $D(A)=\{y \in X$; $\left.\left.\beta\left(y^{\prime}\right) \in L_{\mathrm{loc}}^{1}(\mathbb{R}),\left(\beta\left(y^{\prime}\right)\right)^{\prime} \in L^{1}(\mathbb{R})\right\}.\right)$

Lemma 2.1. The operator $A$ is $m$-accretive in $X \times X$.
Proof. Let $f \in X$ and let $y \in D(A)$ be a solution to $(I+\lambda A) y \ni f$, that is,

$$
\begin{align*}
& y-\lambda\left(\beta\left(y^{\prime}\right)\right)^{\prime} \ni f \quad \text { in } \mathbb{R} \\
& y^{\prime} \in L^{1}(\mathbb{R}), \quad y(+\infty)=0,\left(\beta\left(y^{\prime}\right)\right)^{\prime} \in L^{1}(\mathbb{R}) \tag{2.3}
\end{align*}
$$

in sense of distributions. We set $y^{\prime}=z$ and get by (2.3)

$$
\begin{equation*}
z-\lambda(\beta(z))^{\prime \prime} \ni f^{\prime}, \quad \text { a.e. in } \mathbb{R} ; z \in L^{1}(\mathbb{R}) \tag{2.4}
\end{equation*}
$$

Similarly, if $\bar{f} \in X$ and $(I+\lambda A) \bar{y} \ni \bar{f}$, we get

$$
\begin{equation*}
\bar{z}-\lambda(\beta(\bar{z}))^{\prime \prime} \ni \bar{f}^{\prime}, \quad \text { a.e. in } \mathbb{R}, \bar{z} \in L^{1}(\mathbb{R}) \tag{2.5}
\end{equation*}
$$

Taking into account that the operator $\Gamma$ defined by (1.3) is accretive in $L^{1}(\mathbb{R})$, we get by (2.4)-(2.5) that

$$
\|y-\bar{y}\|_{X}=\left\|y^{\prime}-\bar{y}^{\prime}\right\|_{L^{1}(\mathbb{R})}=\|z-\bar{z}\|_{L^{1}(\mathbb{R})} \leq\left\|f^{\prime}-\bar{f}^{\prime}\right\|_{L^{1}(\mathbb{R})}=\|f-\bar{f}\|_{X}
$$

Hence $A$ is accretive. On the other hand, by $m$-accretivity of the operator $\Gamma$ in $L^{1}(\mathbb{R})$ it follows that for each $f \in X$ equation (2.4) has a unique solution $z \in L^{1}(\mathbb{R})$ and so $y(x)=-\int_{x}^{\infty} z(s) d s, \forall x \in \mathbb{R}$, is a solution to (2.3). Hence $\mathbb{R}(I+\lambda A)=X$, $\forall \lambda>0$, as claimed.

## 3. The semi-flow generated by the operator $A$

In terms of $A$, equation (1.1) can be written as the infinite dimensional Cauchy problem

$$
\begin{align*}
\frac{d y}{d t}+A y & =0 \quad \text { on }(0, T)  \tag{3.1}\\
y(0) & =y_{0}
\end{align*}
$$

By the Crandall-Liggett theorem (see, e.g., [1], p. 131), it follows that $-A$ generates on $X$ a semigroup $e^{-t A}$ of nonlinear contractions, that is, for each $y_{0} \in X$ (in particular, for $y_{0} \in W^{1,1}(\mathbb{R})$ ),

$$
\begin{equation*}
e^{-t A} y_{0}=\lim _{n \rightarrow \infty}\left(I+\frac{t}{n} A\right)^{-n} y_{0} \text { in } X, \text { uniformly in } t \text { on }[0, T] \tag{3.2}
\end{equation*}
$$

Such a function $y(t)=e^{-t A} y_{0}$ is called mild solution to equation (3.1) and, respectively (1.1), and, for each $h>0$, one has

$$
\begin{array}{rlrl}
y(t)+h A y(t) & =y(t-h) & \forall t \geq 0 \\
y(t) & =y_{0} & & \forall t \leq 0
\end{array}
$$

We have, therefore,
Theorem 3.1. For every $y_{0} \in X$, the Cauchy problem (1.1) has a unique mild solution $y \in C([0, T] ; X)$ given by the finite difference scheme

$$
\begin{equation*}
y(t)=\lim _{h \rightarrow 0} y_{h}(t), \quad \forall t \in[0, T] \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& y_{h}(t)=y_{h}^{i} \text { for } t \in[i h,(i+1) h), i=1,2, \ldots,\left[\frac{T}{h}\right]  \tag{3.4}\\
& y_{h}^{i}(t)-h\left(\beta\left(y_{h}^{i}\right)^{\prime}\right)^{\prime}=y_{h}^{i-1} \text { in } \mathbb{R}, i=1,2, \ldots,\left[\frac{T}{h}\right]  \tag{3.5}\\
& y_{h}^{0}=y_{0}
\end{align*}
$$

By the definition of $X$, we have also

$$
\begin{equation*}
y_{x} \in C\left([0, T] ; L^{1}(\mathbb{R})\right), y \in C\left([0, T] ; L^{1}(\mathbb{R})\right) \cap C([0, T] \times \mathbb{R}) \tag{3.6}
\end{equation*}
$$

Remark 3.2. If we set $z_{h}^{i}=\left(y_{h}^{i}\right)^{\prime}$, we see by (3.5) that

$$
\begin{align*}
& z_{h}^{i}-h\left(\beta\left(z_{h}^{i}\right)\right)^{\prime \prime}=z_{h}^{i-1} \text { in } \mathbb{R}  \tag{3.7}\\
& z_{h}^{0}=y_{0}^{\prime}
\end{align*}
$$

and $z_{h}(t) \xrightarrow{h \rightarrow 0} z(t)=y_{x}(t)$ in $L^{1}\left(\mathbb{R}^{n}\right)$. Hence $z=y_{x}$ is the "mild" solution to the porous media equation (1.2).

We may conclude that at the level of the spaces $\left(X, L^{1}(\mathbb{R})\right)$, equations (1.1)-(1.2) are equivalent through the transformation $z=y_{x}$.

$$
\text { 4. EQUATION (1.1) FOR } \mathbb{R}(\beta)=\mathbb{R}
$$

We assume here that $\beta$ is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$ such that

$$
\begin{equation*}
R(\beta)=\mathbb{R} \tag{4.1}
\end{equation*}
$$

where $R(\beta)$ is the range of $\beta$.
Let $j: \mathbb{R} \rightarrow \mathbb{R}$ be the potential of $\beta$, that is, a lower semicontinuous convex function such that $\beta=\partial j$ and $j(0)=0$. (Here $\partial j$ is the subdifferential of $j$.) We note that condition (3.2) is equivalent to

$$
\begin{equation*}
\lim _{|r| \rightarrow \infty} \frac{j(r)}{|r|}=+\infty \tag{4.1}
\end{equation*}
$$

We have
Theorem 4.1. Let $y_{0} \in L^{2}(\mathbb{R})$. Then there is a unique solution $y:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ which satisfies

$$
\begin{array}{ll}
y \in C\left([0, T] ; L^{2}(\mathbb{R})\right), & y_{x} \in L^{\infty}\left(\delta, T ; L^{2}(\mathbb{R})\right) \\
y_{t} \in L^{\infty}\left(\delta, T ; L^{2}(\mathbb{R})\right), & \forall \delta \in(0, T) \\
y_{t}(t, x)-\left(\beta\left(y_{x}(t, x)\right)\right)_{x} \ni 0, & \text { a.e. }(t, x) \in(0, T) \times \mathbb{R}  \tag{4.3}\\
y(0, x)=y_{0}(x), & \text { a.e. } x \in \mathbb{R} .
\end{array}
$$

Moreover, if $y_{0}^{\prime} \in L^{1}(\mathbb{R})$ and $j\left(y_{0}^{\prime}\right) \in L^{1}(\mathbb{R})$, then

$$
\begin{equation*}
j\left(y_{x}(t, x)\right) \in W^{1,1}\left([0, T] ; L^{1}(\mathbb{R})\right), y_{t} \in L^{2}\left((0, T) ; L^{1}(\mathbb{R})\right) \tag{4.4}
\end{equation*}
$$

Finally, if $\exists \eta_{0} \in L^{2}(\mathbb{R})$ such that $\eta_{0} \in\left(\beta\left(y_{0}^{\prime}\right)\right)^{\prime}$, then $y_{t} \in L^{\infty}\left(0, T ; L^{2}(\mathbb{R})\right)$.

Proof. We define in $H=L^{2}(\mathbb{R})$ the operator

$$
\begin{align*}
& A_{0} u=\left\{-\eta^{\prime} \in L^{2}(\mathbb{R}) ;\right.\left.\eta(x) \in \beta\left(u^{\prime}(x)\right), \text { a.e. } x \in \mathbb{R}\right\}, \forall u \in D\left(A_{0}\right) \\
& D\left(A_{0}\right)=\left\{u \in L^{2}(\mathbb{R}), u^{\prime} \in L^{1}(\mathbb{R})\right), \exists \eta \in L^{2}(\mathbb{R})  \tag{4.5}\\
&\left.\eta(x) \in-\left(\beta\left(u^{\prime}(x)\right)\right)^{\prime} \text { a.e. } x \in \mathbb{R}\right\}
\end{align*}
$$

(Here, all the derivatives are taken in sense of distributions, that is, in $\mathcal{D}^{\prime}(\mathbb{R})$.)
Lemma 4.2. The operator $A_{0}$ is m-accretive in $H \times H$.
Proof. We consider the (energy) functional $\varphi: H \rightarrow \overline{\mathbb{R}}=]-\infty,+\infty$ ],

$$
\varphi(u)= \begin{cases}\int_{\mathbb{R}} j\left(u^{\prime}(x)\right) d x & \text { if } u^{\prime} \in L^{1}(\mathbb{R}), j\left(u^{\prime}\right) \in L^{1}(\mathbb{R})  \tag{4.6}\\ +\infty & \text { otherwise }\end{cases}
$$

We set $D(\varphi)=\{u \in H ; \varphi(u)<+\infty\}$. Clearly, $\varphi$ is convex and lower semicontinuous on $H$. Indeed, if $\varphi\left(u_{n}\right) \leq C$ and $u_{n} \rightarrow u$ in $L^{1}(\mathbb{R})$, it follows that for each $\delta>0$ there is $C_{\delta}>0$ such that for any Lebesgue measurable set $Q \subset \mathbb{R}$ with the Lebesgue measure $m(Q) \leq C_{\delta}$, we have

$$
\int_{Q}\left|u_{n}^{\prime}(x)\right| d x \leq \delta, \forall n
$$

The latter follows by assumption (4.1)' taking into account that $\varphi\left(u_{n}\right) \leq C$ implies that

$$
\int_{Q}\left|u_{n}^{\prime}(x)\right| d x \leq \int_{Q \cap\left\{x ;\left|u_{n}^{\prime}(x)\right| \geq N\right\}}+\int_{Q \cap\left\{x ;\left|u_{n}^{\prime}(x)\right| \leq N\right\}} \leq \frac{C}{N}+N m(Q), \forall N>0
$$

Then, by the Dunford-Pettis compactness criterium, it follows that $\left\{u_{n}^{\prime}\right\}$ is weakly compact in $L^{1}(\mathbb{R})$ and, therefore, on a subsequence $u_{n}^{\prime} \rightarrow u^{\prime}$ weakly in $L^{1}(\mathbb{R})$. Since the functional $v \rightarrow \int_{\mathbb{R}} j(v) d x$ is, by Fatou's lemma, lower semicontinuous in $L^{1}(\mathbb{R})$, being convex, it is also weakly lower semicontinuous and so

$$
\liminf _{n \rightarrow \infty} \int_{\mathbb{R}} j\left(u_{n}^{\prime}(x)\right) d x \geq \int_{\mathbb{R}} j\left(u^{\prime}(x)\right) d x
$$

Hence $\varphi(u) \leq C$, as claimed.
On the other hand, for each $f \in H$, the equation $u+A u \ni f$, that is,

$$
\begin{align*}
& u-\left(\beta\left(u^{\prime}\right)\right)^{\prime} \ni f \text { in } \mathcal{D}^{\prime}(\mathbb{R}) \\
& u \in L^{2}(\mathbb{R}), \quad u^{\prime} \in L^{1}(\mathbb{R}) \tag{4.7}
\end{align*}
$$

has a solution. Indeed, we associate with (4.7) the minimization problem

$$
\begin{align*}
\operatorname{Min}\left\{\int_{\mathbb{R}}\right. & \left.\left(\frac{1}{2} u^{2}(x)+j\left(u^{\prime}(x)\right)-f(x) u(x)\right) d x ; u \in L^{2}(\mathbb{R}), u^{\prime} \in L^{1}(\mathbb{R})\right\}  \tag{4.8}\\
& =\operatorname{Min}\left\{\frac{1}{2}\|u\|_{L^{2}(\mathbb{R})}^{2}+\varphi(u)-\langle f, u\rangle_{L^{2}(\mathbb{R})}\right\}
\end{align*}
$$

Taking into account that the functional

$$
u \longrightarrow \frac{1}{2}\|u\|_{L^{2}(\mathbb{R})}^{2}+\varphi(u)-\langle f, u\rangle_{L^{2}(\mathbb{R})}
$$

is convex, lower semicontinuous and coercive on $H=L^{2}(\mathbb{R})$, it follows that there is a unique solution $u^{*}$ to equation (4.7). Since for such a $u^{*}$ we have

$$
\int_{\mathbb{R}}\left(u^{*} v+j^{\prime}\left(\left(u^{*}\right)^{\prime}\right) v^{\prime}-f v\right) d x \geq 0
$$

for all $v \in L^{2}(\mathbb{R})$ with $v^{\prime} \in L^{1}(\mathbb{R})$, where $j^{\prime}$ is the directional derivative of $j$, and that $\partial j=\beta$, it follows that $u^{*}$ is a solution to (4.7). Hence, $\mathbb{R}\left(I+A_{0}\right)=H$. Moreover, $A_{0}=\partial \varphi$ is the subdifferential of $\varphi$. Indeed, if $z=-\eta^{\prime} \in A_{0} u$, then, for all $v \in L^{2}(\mathbb{R})$ with $v^{\prime} \in L^{1}(\mathbb{R})$, we have

$$
\eta(x)\left(u^{\prime}(x)-v^{\prime}(x)\right) \geq j\left(u^{\prime}(x)\right)-j\left(v^{\prime}(x)\right), \text { a.e. } x \in \mathbb{R}
$$

and, integrating on $(-\infty,+\infty)$, we get

$$
\int_{\mathbb{R}} z(u-v) d x=\int_{\mathbb{R}} \eta\left(u^{\prime}-v^{\prime}\right) d x \geq \varphi(u)-\varphi(v)
$$

and, therefore, $A_{0} \subset \partial \varphi$. Since $A_{0}$ is $m$-accretive, it is maximal accretive and so this implies $A_{0}=\partial \varphi$.

Proof of Theorem 4.1 (continued). By the general existence theory for the Cauchy problem associated to $m$-accretive nonlinear operators of subdifferential form in Hilbert spaces (see, e.g., [1], p. 157), it follows that, for each $y_{0} \in \overline{D\left(A_{0}\right)}=$ $H$, the Cauchy problem

$$
\begin{align*}
& \frac{d y(t)}{d t}+A_{0} y(t) \ni 0 \quad \text { a.e. } t \in(0, T),  \tag{4.9}\\
& y(0)=y_{0}
\end{align*}
$$

has a unique solution $y \in C([0, T] ; H)$ with $\sqrt{t} \frac{d y}{d t} \in L^{2}(0, T ; H)$. Moreover, if $y_{0} \in D(\varphi)$, then $\frac{d y}{d t} \in L^{2}(0, T ; H)$ and $\varphi(y) \in W^{1,1}([0, T]), \forall T>0$. Finally, if $y_{0} \in D\left(A_{0}\right)$, then $\frac{d y}{d t} \in L^{\infty}(0, T ; H)$, that is, $y \in W^{1, \infty}([0, T] ; H)$.

This concludes the proof.
Remark 4.3. As in the previous case (see Remark 3.2), we have

$$
y(t)=\lim _{h \rightarrow 0} y_{h}(t) \text { in } L^{2}(\mathbb{R}) \text { and uniformly on }[0, T]
$$

where

$$
y_{h}(t)=y_{h}^{i} \text { on }(i h,(i+1) h)
$$

and $y_{h}^{i}$ is defined by the finite difference scheme (3.4). If we set $z_{h}^{i}=\left(y_{h}^{i}\right)^{\prime}$, we have

$$
\begin{align*}
& z_{h}^{i}-h\left(\beta\left(z_{h}^{i}\right)\right)^{\prime \prime} \ni z_{h}^{i-1}, \quad i=1,2, \ldots  \tag{4.10}\\
& z_{h}^{0}=y_{0}^{\prime}
\end{align*}
$$

Since $y_{h}^{\prime}(t) \in L^{1}(\mathbb{R}) \forall t$, we infer that $z_{h}(t) \in L^{1}(\mathbb{R})$ for all $h$, and that, for $y_{0} \in$ $L^{2}(\mathbb{R})$,

$$
z_{h}(t) \rightarrow z(t)=y_{x}(t) \text { in } H^{-1}(\mathbb{R}) \text { uniformly on }[0, T],
$$

where $z \in C\left([0, T] ; H^{-1}(\mathbb{R})\right)$ is the solution to the porous media equation (1.2) with the initial condition $z_{0}=y_{0}^{\prime} \in H^{-1}(\mathbb{R})$.

Remark 4.4. Theorem 4.1 remains true in $\mathbb{R}^{d}, d \geq 1$, for parabolic equations of the form

$$
\begin{array}{ll}
y_{t}(t, x)-\operatorname{div} \beta\left(\nabla_{x} y(t, x)\right) \ni 0, & \forall t \geq 0, x \in \mathbb{R}^{d},  \tag{4.11}\\
y(0, x)=y_{0}(x), & x \in \mathbb{R}^{d},
\end{array}
$$

where $\beta: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a maximal monotone operator of the form $\beta=\partial j$ and $j: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ is a lower semicontinuous convex function satisfying

$$
\begin{equation*}
\lim _{|r|_{d} \rightarrow \infty} \frac{j(r)}{|r|_{d}}=+\infty \tag{4.12}
\end{equation*}
$$

(Here $|\cdot|_{d}$ is the Euclidean norm of $\mathbb{R}^{d}$.) As in the previous case, (4.11) can be rewritten as (4.9), where $H=L^{2}\left(\mathbb{R}^{d}\right)$ and $A_{0}$ is the operator

$$
\begin{gathered}
A_{0} u=\left\{-\operatorname{div} \eta \in L^{2}\left(\mathbb{R}^{d}\right) ; \eta(x) \in \beta(\nabla u(x)), \text { a.e. } x \in \mathbb{R}^{d}\right\}, \forall u \in D\left(A_{0}\right), \\
D\left(A_{0}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right) ; \nabla u \in\left(L^{1}\left(\mathbb{R}^{d}\right)\right)^{d} ; \exists \eta \in\left(L^{2}\left(\mathbb{R}^{d}\right)\right)^{d}\right. \\
\left.\eta(x) \in-\beta(\nabla u(x)) \text { a.e. } x \in \mathbb{R}^{d}\right\}
\end{gathered}
$$

We omit the details.

## 5. Equations with singular diffusivity

We shall study here equation (1.1) in the special case

$$
\beta(r)=\operatorname{sign} r= \begin{cases}\frac{r}{|r|} & \text { for } r \neq 0  \tag{5.1}\\ {[-1,1]} & \text { for } r=0\end{cases}
$$

that is,

$$
\begin{align*}
& y_{t}(t, x)-\left(\operatorname{sign} y_{x}(t, x)\right)_{x}=0, t \in(0, T), x \in \mathbb{R} \\
& y(0, x)=y_{0}(x), \quad x \in \mathbb{R} \tag{5.2}
\end{align*}
$$

The corresponding operator $A_{0}$ defined by (4.5) is no longer $m$-accretive in $H=$ $L^{2}(\mathbb{R})$.

In fact, the corresponding energy functional $\varphi: H \rightarrow \overline{\mathbb{R}}=]-\infty,+\infty]$,

$$
\varphi(u)= \begin{cases}\int_{\mathbb{R}}\left|u^{\prime}(x)\right| d x & \text { if } u^{\prime} \in L^{1}(\mathbb{R})  \tag{5.3}\\ +\infty & \text { otherwise }\end{cases}
$$

is not lower semicontinuous, and its $\ell$. s.c. closure $\bar{\varphi}: H \rightarrow \overline{\mathbb{R}}$ is given by

$$
\bar{\varphi}(u)= \begin{cases}\int_{\mathbb{R}}|D u| & \text { if } u \in B V(\mathbb{R})  \tag{5.4}\\ +\infty & \text { otherwise }\end{cases}
$$

where $\int_{\mathbb{R}}|D u|$ is the total variation of $u$ and $B V(\mathbb{R})$ is the space of functions $u$ : $\mathbb{R} \rightarrow \mathbb{R}$ with bounded variation. The function $\bar{\varphi}$ is convex and lower semicontinuous on $H$ and so its subdifferential $\partial \bar{\varphi}=A_{1}$ is $m$-accretive in $H \times H$. Then, by the general existence theory, for each $y_{0} \in L^{2}(\mathbb{R})$ there is a unique $y^{*} \in C\left([0, T] ; L^{2}(\mathbb{R})\right)$ such that

$$
\begin{align*}
& \frac{d y^{*}}{d t}(t)+\partial \bar{\varphi}\left(y^{*}(t)\right) \ni 0, \quad \text { a.e. } t \in(0, T),  \tag{5.5}\\
& y^{*}(0)=y_{0},
\end{align*}
$$

$$
\begin{equation*}
\sqrt{t} \frac{d y^{*}}{d t} \in L^{2}((0, T) \times \mathbb{R}) \tag{5.6}
\end{equation*}
$$

If $y_{0} \in B V(\mathbb{R})$, then

$$
\begin{equation*}
\frac{d y^{*}}{d t} \in L^{2}((0, T) \times \mathbb{R}) \tag{5.7}
\end{equation*}
$$

However, since $\partial \bar{\varphi}$ is hard to describe, we get an idea of how (5.5) looks like from the following approximating process.

For each $\varepsilon>0$, we set

$$
\begin{aligned}
& \left(A_{1}\right)_{\varepsilon} u=-\left(\left|u^{\prime}\right|^{\varepsilon} \operatorname{sign} u^{\prime}\right)^{\prime} \\
& \left.D\left(A_{1}\right)_{\varepsilon}\right)=\left\{u \in L^{2}(\mathbb{R}) ; u^{\prime} \in L^{1}(\mathbb{R}),\left(\left(u^{\prime}\right)^{\varepsilon} \operatorname{sign} u^{\prime}\right)^{\prime} \in L^{2}(\mathbb{R})\right\}
\end{aligned}
$$

In other words, $\left(A_{1}\right)_{\varepsilon}=\partial \varphi_{\varepsilon}$, where

$$
\varphi_{\varepsilon}(u)= \begin{cases}\frac{1}{1+\varepsilon} \int_{-\infty}^{\infty}\left|u^{\prime}\right|^{1+\varepsilon} d x & \text { if } u^{\prime} \in L^{1+\varepsilon}(\mathbb{R})  \tag{5.8}\\ +\infty & \text { otherwise }\end{cases}
$$

By Theorem 4.1, there is a unique solution $u_{\varepsilon} \in C\left([0, T] ; L^{2}(\mathbb{R})\right)$ with $\sqrt{t} \frac{\partial u_{\varepsilon}}{\partial t} \in$ $L^{2}((0, T) \times \mathbb{R})$ of the equation

$$
\begin{align*}
& \frac{\partial y_{\varepsilon}}{\partial t}-\left(\left|\left(y_{\varepsilon}\right)_{x}\right|^{\varepsilon} \operatorname{sign}\left(y_{\varepsilon}\right)_{x}\right)_{x}=0, \text { a.e. } t>0, x \in \mathbb{R}  \tag{5.9}\\
& y_{\varepsilon}(0, x)=y_{0}(x)
\end{align*}
$$

On the other hand, for each $\lambda>0$ and $f \in L^{2}(\mathbb{R})$, the solution $u^{\varepsilon} \in D\left(\left(A_{0}\right)_{\varepsilon}\right)$ to the equation

$$
u_{\varepsilon}-\lambda\left(\left|\left(u_{\varepsilon}\right)^{\prime}\right|^{\varepsilon} \operatorname{sign}\left(u_{\varepsilon}\right)^{\prime}\right)^{\prime}=f \text { in } \mathbb{R}
$$

or equivalently

$$
u_{\varepsilon}=\arg \min \left\{\int_{\mathbb{R}}\left(\frac{1}{2}|u|^{2}+\frac{\lambda}{1+\varepsilon}\left|u^{\prime}\right|^{1+\varepsilon}-f u\right) d x\right\}
$$

converges in $L^{2}(\mathbb{R})$ to

$$
u=\arg \min _{u}\left\{\int_{\mathbb{R}}\left(\frac{1}{2}|u|^{2}-f u\right) d x+\int_{\mathbb{R}}|D u|\right\}
$$

Indeed, for each $\varepsilon>0$,

$$
\int_{\mathbb{R}}\left(\frac{1}{2}\left|u_{\varepsilon}\right|^{2}+\frac{\lambda}{1+\varepsilon}\left|\left(u_{\varepsilon}\right)^{\prime}\right|^{1+\varepsilon}-f u^{\varepsilon}\right) d x \leq \int_{\mathbb{R}}\left(\frac{1}{2}|u|^{2}+\frac{\lambda}{1+\varepsilon}\left|u^{\prime}\right|^{1+\varepsilon}-f u\right) d x
$$

$\forall u \in D(\bar{\varphi})$, and, letting $\varepsilon \rightarrow 0$, we get $u_{\varepsilon} \rightarrow \widetilde{u}$ weakly in $L^{2}(\mathbb{R})$ and

$$
\widetilde{u}=\arg \min _{u \in B V}\left\{\int_{\mathbb{R}}\left(\frac{1}{2}|u|^{2}-f u\right) d x+\lambda \int_{\mathbb{R}}|D u|\right\}
$$

Hence

$$
\widetilde{u}=\left(I+\lambda A_{1}\right)^{-1} f
$$

Then, by the Trotter-Kato theorem for nonlinear semigroups of contractions (see, e.g., [1], p. 170), we have

$$
\begin{equation*}
y_{\varepsilon}(t) \rightarrow y^{*}(t) \text { strongly in } C\left([0, T] ; L^{2}(\mathbb{R})\right) \tag{5.10}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$, where $y^{*}$ is the solution to (5.5). In this generalized sense, $y^{*}$ can be viewed as a solution to (5.2).

If we set $y_{x}=z$, we may rewrite (5.2) as the porous media equation

$$
\begin{align*}
& z_{t}-(\operatorname{sign} z)_{x x}=0, \quad t \geq 0  \tag{5.11}\\
& z(0)=y_{0}^{\prime}=z_{0}
\end{align*}
$$

which in the above sense, for $z_{0} \in M(\mathbb{R})$ (the space of Borelian measures on $\mathbb{R}$ ), has a solution $z \in C([0, T] ; M(\mathbb{R})), \forall T>0$.
Remark 5.1. The above existence result for (5.2) extends in $\mathbb{R}^{d}$ mutatis-mutandis to the equation

$$
\begin{aligned}
& y_{t}-\operatorname{div}\left(\frac{\nabla y}{|\nabla y|}\right)=0, \quad x \in \mathbb{R}^{d} \\
& y(0, x)=y_{0}(x)
\end{aligned}
$$

In this case, $H=L^{2}\left(\mathbb{R}^{d}\right)$, and $\left.\left.\bar{\varphi}: H \rightarrow\right]-\infty,+\infty\right]$ is given by

$$
\bar{\varphi}(u)= \begin{cases}\int_{\mathbb{R}^{d}}|D u| & \text { if } u \in B V\left(\mathbb{R}^{d}\right) \\ +\infty & \text { otherwise }\end{cases}
$$

where $B V\left(\mathbb{R}^{d}\right)$ is the space of functions with bounded variation on $\mathbb{R}^{d}$.
This equation is relevant in image restoring techniques (see [2] and [8]).
Remark 5.2. The results of this section extends to the maximal monotone graphs $\beta: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ such that, for some $\rho>0$,

$$
\begin{equation*}
\eta r \geq \rho|r|, \quad \forall \eta \in \beta(r), \quad r \in \mathbb{R} \tag{5.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta=\partial j \text { and } j(r) \geq \rho|r|, \forall r \in \mathbb{R} \tag{5.13}
\end{equation*}
$$

In this case, $\bar{\varphi}$ is the closure of the functional

$$
\varphi(u)= \begin{cases}\int_{\mathbb{R}} j\left(u^{\prime}\right) d x, & u^{\prime} \in L^{1}(\mathbb{R}) \\ +\infty, & \text { otherwise }\end{cases}
$$

and so

$$
\bar{\varphi}(u) \geq \rho \int_{\mathbb{R}}|D u|, \forall u \in D(\varphi)
$$

We omit the details.

## 6. An EXAMPLE

The nonlinear parabolic equation

$$
\begin{align*}
& y_{t}-a\left(y_{x}\right)\left(W^{\prime}\left(y_{x}\right)\right)_{x}=0, t \geq 0, x \in \mathbb{R} \\
& y(0, x)=y_{0}(x), x \in \mathbb{R} \tag{6.1}
\end{align*}
$$

where $W$ is a convex function on $\mathbb{R}, u(0)=0$ and $a$ is a given nonnegative continuous function, is relevant in materials sciences as a model of interface evolution of two phases of materials as well as in crystal growth and was studied in [4], [5], [6].

By the formal substitution

$$
\begin{equation*}
\beta(y)=\int_{0}^{y} a(r) W^{\prime \prime}(r) d r, y \in \mathbb{R} \tag{6.2}
\end{equation*}
$$

it reduces to (1.1). However, if $W^{\prime \prime}$ is not in $L_{\mathrm{loc}}^{1}(\mathbb{R})$, assuming that $a$ is smooth (of class $C^{1}$ with $\left.a^{\prime \prime} \in L_{\mathrm{loc}}^{1}(\mathbb{R})\right), \geq 0$ and $W(0)=0,0 \in \partial W(0)$, we can take $\beta$ as

$$
\begin{equation*}
\beta(y)=a(y) \partial W(y)-a^{\prime}(y) W(y)+\int_{0}^{y} a^{\prime \prime}(s) W(s) d s \tag{6.3}
\end{equation*}
$$

and so Theorem 3.1 is applicable in this case. Moreover, if

$$
\begin{equation*}
\beta(+\infty)=+\infty, \beta(-\infty)=\infty \tag{6.4}
\end{equation*}
$$

then we may apply Theorem 4.1.
Finally, if $W(y)=|y|$ and

$$
\begin{equation*}
a(y) \geq \rho, \quad \forall y \in \mathbb{R},(-1)^{k} a^{(k)} \geq 0, k=1,2 \tag{6.5}
\end{equation*}
$$

then $\beta$ satisfies condition (5.13) and so the equation

$$
\begin{align*}
& y_{t}-a\left(y_{x}\right)\left(\operatorname{sign} y_{x}\right)_{x}=0, x \in \mathbb{R} \\
& y(0, x)=y_{0}(x) \tag{6.6}
\end{align*}
$$

has, for each $y_{0} \in L^{2}(\mathbb{R})$, a unique solution $y \in C\left([0, T] ; L^{2}(\mathbb{R})\right)$ in sense of (5.5)(5.7).

Consequently, the porous media equation

$$
\begin{align*}
& z_{t}-\left(a(z)(\operatorname{sign} z)_{x}\right)_{x}=0, \quad x \in \mathbb{R}, t \geq 0 \\
& z(0, x)=y_{0}^{\prime}(x) \tag{6.7}
\end{align*}
$$

has a (generalized) solution $z \in L^{2}\left(0, T ; H^{-1}(\mathbb{R})\right)$.

## 7. Equation (1.1) WITh PERIODIC CONDITIONS

Theorem 4.1 remains true if the space $L^{2}(\mathbb{R})$ or $L^{1}(\mathbb{R})$ is replaced by

$$
L_{\pi}^{2}(\mathbb{R})=\left\{u \in L_{\mathrm{loc}}^{2}(\mathbb{R}) ; u(x+L) \equiv u(x), x \in \mathbb{R}\right\}
$$

with the standard Hilbertian norm. For instance, the operator $A_{0}$ defined by (4.5) is replaced in this case by

$$
\begin{array}{ll}
A_{\pi} u & =-\left(\beta\left(u^{\prime}\right)\right)^{\prime}, \quad u \in D\left(A_{\pi}\right) \\
D\left(A_{\pi}\right) & =\left\{u \in H_{\pi}(\mathbb{R}) ; u^{\prime} \in L_{\mathrm{loc}}^{1}(\mathbb{R}),\left(\beta\left(u^{\prime}\right)\right)^{\prime} \in H_{\pi}\right\}
\end{array}
$$

The details are omitted.

## References

[1] V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010.
[2] V. Barbu, Nonlinear diffusion equations in image processing, Revue Roumaine Math. Pures Appl. 2 (2013), 175-204.
[3] V. Barbu, M. Röckner and F. Russo, Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case, Probab. Theory Related Fields 151 (2011), 1-43.
[4] M. H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Archive Rat. Mech. Anal. 141 (1998), 117-198.
[5] R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Statistical Physics 95 (1999), 1187-1220.
[6] R. Kobayashi and Y. Giga, On constrained equations with singular diffusivity, Methods and Applications of Analysis 10 (2003), 253-278.
[7] P. Rybka, A crystalline motion: uniqueness and geometric properties, SIAM J. Appl. Math. 57 (1997), 53-72.
[8] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variations based noise removal algorithms, Physica, D 60 (1992), 259-262.

Manuscript received 12 October 2015
revised 3 January 2016
V. Barbu

Al.I. Cuza University and Octav Mayer Institute of Mathematics of the Romanian Academy, Romania

E-mail address: vb41@uaic.ro

