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PARABOLIC GRADIENT EQUATIONS ON R

VIOREL BARBU

ABSTRACT. We study here the existence and uniqueness of solutions to non-
linear divergence parabolic equations in R = (—oo, +00) via nonlinear semigroup
theory.

1. INTRODUCTION

We consider the Cauchy problem

ye(t,z) — (B(yz(t,x)))z 20, z€R = (—00,+00),
(1.1) tel0,7], 0<T < o0,

y(0,z) = yo(x), z €R.

Here y; and y, denote the time and space derivatives of y and f : R — 2R is a
maximal monotone multivalued graph such that 0 € 3(0) and yo € L'(R). This
equation arises in the theory of crystal growth (see, e.g., [4], [5], [6], [7]) as well as
in image restoring techniques (see [8]). In general, it has not a classical solution and
it will be treated here by using the theory of nonlinear semigroups of contractions
in L!(R) in connection with the porous media equation in L!(R),

ze(t,x) — (B(2(t,2)))zz 20, z€R, te(0,T),
2(0,2) = 20(z) = (yo)u(z), xR,
which is formally obtained from (1.1) by differentiating with respect to = and setting
Z = Yg.
On the other hand, for equation (1.2) there is a complete existence theory in
LY(R) because the operator

T(z) = {~An}, Vz € D(T) = {z € L'(R); Jn € L. (R),

loc

n(z) € B(z(x)) a.e. x € R, An € LYR)}

is m-accretive in L' (R) if 0 € int D(B) (see [1], p. 126).

It should be said, however, that the equivalence of problems (1.1) and (1.2) is
quite a delicate matter and is dependent of the smoothness of the initial data .
This will be discussed in some details later on.

In the special case

(1.2)

(1.3)

B(r) = ¢*(r)r,
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where ¢ : R — 2F is bounded, it follows that the solution z to (1.2) has the
probabilistic representation (see [3])

(1.4) z(t,x) = Law density {Y(¢)},
where Y is the process defined by the stochastic equation
(1.5) dY = ¢(t, Y (1))dW(t), Y(0) = Yo,

and W is a Wiener process. Then, such a representation remains true for z = y,, if
y is a solution to (1.1).

Notations. LP(R), 1 < p < oo, is the space of Lebesgue p-integrable functions on
R = (—o00,+00) and L} (R) that of p-integrable functions on compact intervals of

R. By C(R) denote the space of all continuous and bounded functions on R and
by BV (R) the space of all functions with bounded variations on R. By W;"!(R) we

loc

denote the space of functions y € Ll (R) with distributional derivative y’ € L{ (R).

By 3" we shall denote the second order derivative of y again in sense of distributions.
Given a Banach space X with the norm || - ||x, the operator A : D(A) C X — X
is called accretive in X x X if

(1.6) (I + AA) "L — (T +A4)lx < |lu—vlx,

for all A > 0 and all u,v € R(I +\A). (Here R(I 4+ AA) is the range of the operator
I+ MA and I is the identity operator.)

The operator A : D(A) C X — X is said to be m-accretive if it is accretive and
for all A > 0 or, equivalently, for some A > 0, R(I + AA) = X.

The multivalued function (graph) 3 : R — 2R is said to be maximal monotone if
it is m-accretive in R x R.

In Sections 2 and 3, we shall study existence for (1.1) in L!(R). In Section 4, we
shall study (1.1) under the additional assumption R(f) = R, and in Section 5 for

B(r) = signr.

2. THE m-ACCRETIVE OPERATOR ASSOCIATED TO EQUATION (1.1)

Everywhere in the following we assume that
(i) B is a maximal monotone graph in R x R with the domain D(8) = R and
0 € 5(0).
Let X be the Banach space

X = {u e WEU(R), o € LM(R), lim u(z) = o}

loc T—00
with the norm

(2.1) fullx = [ W @lda.

—0o0

Consider on X the operator A : D(A) C X — X defined by

Ay = {—n € L}(R); n(z) € B(v/(x)), a.e. x € R},
(2:2) D(A) = {yeX; Ine L (R), n(z) € By (2)),
ae. v €R, o € LY(R)}.



PARABOLIC GRADIENT EQUATIONS ON R 3
(If 5 is single-valued, then Ay = —(8(y')) with the domain D(A) = {y € X;
B(Y) € Lin(R), (B(y')) € L'(R)})
Lemma 2.1. The operator A is m-accretive in X x X.
Proof. Let f € X and let y € D(A) be a solution to (I + AA)y > f, that is,
y—ABW)) > f iR,
y € LYR), y(+00) =0, (B(y)) € L'(R),
in sense of distributions. We set 3y’ = z and get by (2.3)

(2.3)

(2.4) z—XB(2)" > f, ae inR; ze€ L'(R).
Similarly, if f € X and (I + AA)y > f, we get
(2.5) Z—MB(())" > f, ae inR, ze LY(R).

Taking into account that the operator I defined by (1.3) is accretive in L*(R), we
get by (2.4)—(2.5) that

ly = 7llx =1y = 7wy = 1z = 2wy < I = Fllow =1 = flix-
Hence A is accretive. On the other hand, by m-accretivity of the operator I' in
LY(R) it follows that for each f € X equation (2.4) has a unique solution z € L!(R)
and so y(z) = — [° 2(s)ds, Vo € R, is a solution to (2.3). Hence R(I + A\A) = X,
VA > 0, as claimed.

3. THE SEMI-FLOW GENERATED BY THE OPERATOR A

In terms of A, equation (1.1) can be written as the infinite dimensional Cauchy
problem

dy
y(0) = wyo.

By the Crandall-Liggett theorem (see, e.g., [1], p. 131), it follows that — A generates
on X a semigroup e~ of nonlinear contractions, that is, for each 5y € X (in
particular, for yo € W1H(R)),

(3.2) e~ Ayo = nh—{%o <I + ;A) nyo in X, uniformly in ¢ on [0, T].
Such a function y(t) = e *4yq is called mild solution to equation (3.1) and, respec-
tively (1.1), and, for each h > 0, one has
y(t) + hAy() = ylt—h) V>0,
y(t) = wo vt < 0.
We have, therefore,

Theorem 3.1. For every yo € X, the Cauchy problem (1.1) has a unique mild
solution y € C([0,T1; X) given by the finite difference scheme

(3.3) y(t) = lim yn(t), vt € [0, 71,
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where
(3.4) yn(t) = yj, fort € [ih, (i + 1)h), i =1,2,.., [£],
(3.5) o) — h(B()) = yi ' in R, i=1,2,..., [%],

Yh = Yo.

By the definition of X, we have also
(3.6) vo € ([0, T); L'(R)), y € C([0, T}; L' (R)) N C([0, T] x R).
Remark 3.2. If we set z! = (y}), we see by (3.5) that

zi —h(B(2)))" =2 ' inR,

0

(3.7) )
Zn =%

and zp,(t) b9 2(t) = y,(t) in LY(R™). Hence z = vy, is the "mild” solution to the
porous media equation (1.2).

We may conclude that at the level of the spaces (X, L*(R)), equations (1.1)~(1.2)
are equivalent through the transformation z = y,.

4. EQUATION (1.1) FOR R(5) =R
We assume here that § is a maximal monotone graph in R x R such that
(4.1) R(B) =R,

where R(f3) is the range of 3.

Let j : R — R be the potential of 3, that is, a lower semicontinuous convex
function such that § = 9 and j(0) = 0. (Here 97 is the subdifferential of j.) We
note that condition (3.2) is equivalent to

lim ir) = +o00. (4.1
rl—o0 |7
We have

Theorem 4.1. Let yg € L*(R). Then there is a unique solution y : [0,T] x R — R
which satisfies

y € C([0,T]; L*(R)),  yx € L(8, T; L*(R)),

(4.2) DR
ye € L=(6,T; L*(R)), Vo € (0,7T),
(4 3) yt(t’x) - (B(yw(tax)))x > Oa a.ce. (t,l‘) € (O7T) X R)
. y(0,2) = yo(z), a.e. x €R.
Moreover, if yy € LY(R) and j(y}) € L*(R), then
(4.4) J(ya(t,x)) € WHH([0,T]; LY(R)), e € L*((0,T); L*(R)).
Finally, if Iny € L*(R) such that ny € (B(y}))’, then yr € L>°(0,T; L*(R)).
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Proof. We define in H = L?(R) the operator
Agu = {—n' € L*(R); n(z) € B(u'(x)), a.e. x € R}, Yu € D(Ay),
(4.5) D(A4g) = {u € L2(R), v/ € LY(R)), 3n € L%(R),
1(z) € —(B(/(2))) ae. © €R}.

(Here, all the derivatives are taken in sense of distributions, that is, in D'(R).)

Lemma 4.2. The operator Ag is m-accretive in H x H.

Proof. We consider the (energy) functional ¢ : H — R =] — 00, +00],
Ja i @)do it € LMR), j(') € L'(R),
(4.6) plu) = { . .
+00 otherwise.

We set D(¢) = {u € H; ¢(u) < +o0}. Clearly, ¢ is convex and lower semicontinuous
on H. Indeed, if p(u,) < C and u, — u in L'(R), it follows that for each § > 0
there is Cy > 0 such that for any Lebesgue measurable set ) C R with the Lebesgue
measure m(Q) < Cy, we have

/ |ul, (x)|dx < 8, Vn.
Q

The latter follows by assumption (4.1)" taking into account that ¢(u,) < C implies
that

/]u |dx</ —I—/ <Q+Nm(Q), VN > 0.
Q{zslul,@)>NY  JQn{zu, ())<Ny ~ N

Then, by the Dunford-Pettis compactness Crlterlum, it follows that {u]} is weakly
compact in L!(R) and, therefore, on a subsequence u/, — u’ weakly in L!(R). Since
the functional v — [; j(v)dx is, by Fatou’s lemma, lower semicontinuous in L!(R),
being convex, it is also Weakly lower semicontinuous and so

lim inf /R J(d (2))d > /R (0 (2))dz.

n—oo

Hence ¢(u) < C, as claimed.
On the other hand, for each f € H, the equation u + Au > f, that is,

u—(B)) 3 f in D'(R),

(4.7) u € L*(R), ' € L'(R),

has a solution. Indeed, we associate with (4.7) the minimization problem

(48) Mm{/R@ u2(fc)+j(U’(fv))—f(fv)u(m)) dv;u € L*(R),u' € LI(R)}
8

(1
= Mind Ll o)+ 9(0) = (e -
Taking into account that the functional

u— HUHLQ(R o) = (i) 2@
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is convex, lower semicontinuous and coercive on H = L?(R), it follows that there is
a unique solution u* to equation (4.7). Since for such a u* we have

/ (v + 7 (W)W — fo)dz > 0,
R

for all v € L?(R) with v € L'(R), where j' is the directional derivative of j, and
that 07 = 3, it follows that u* is a solution to (4.7). Hence, R(I + Ap) = H.
Moreover, Ag = Oy is the subdifferential of . Indeed, if 2 = —1n’ € Agu, then, for
all v € L?(R) with ¢/ € L'(R), we have

n(@) (W () - v'(2) > j(u(2)) - j(v'(2)), ae. ¢ € R

and, integrating on (—oo, +00), we get

/Rz(u —v)da = /Rn(u/ —)dz > (u) — p(v)

and, therefore, Ag C Jp. Since Ay is m-accretive, it is maximal accretive and so
this implies Ag = J¢p.

Proof of Theorem 4.1 (continued). By the general existence theory for the
Cauchy problem associated to m-accretive nonlinear operators of subdifferential
form in Hilbert spaces (see, e.g., [1], p. 157), it follows that, for each yo € D(Ap) =
H, the Cauchy problem

(4.9) di/g) + Aoy(t) 20 ae. t€(0,7),

y(0) = yo,

has a unique solution y € C([0,T]; H) with \/E% € L?*(0,7;H). Moreover, if
yo € D(p), then % ¢ L2(0,T; H) and ¢(y) € WU ([0,T]), VT > 0. Finally, if
Yo € D(Ag), then % € L(0,T; H), that is, y € W>([0,T]; H).

This concludes the proof.

Remark 4.3. As in the previous case (see Remark 3.2), we have

y(t) = flbin%) yn(t) in L*(R) and uniformly on [0, 77,

—
where
yn(t) = yj, on (ih, (i +1)h)

and y is defined by the finite difference scheme (3.4). If we set z} = (y})’, we have
Zi —h(B(z}))" > 22—17 i=1,2 ..,
2 = Yo
Since y},(t) € LY(R) Vt, we infer that z;(t) € L'(R) for all h, and that, for yo €
L*(R),

(4.10)

2p(t) = 2(t) = yo(t) in H~Y(R) uniformly on [0, 77,

where z € C([0,T]; H-(R)) is the solution to the porous media equation (1.2) with
the initial condition 2y =y} € H 1(R).
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Remark 4.4. Theorem 4.1 remains true in R%, d > 1, for parabolic equations of
the form

yi(t,x) — div B(Vey(t,z)) 20, Vt>0, 2 € RY,

(4.11) y(0,z) = yo(x), z € RY,

where 3 : R — R? is a maximal monotone operator of the form 8 = 95 and
j R — (—o0, +00] is a lower semicontinuous convex function satisfying

(4.12) lim ir) = +o0.
Irla—o0 |7]a

(Here | - |4 is the Euclidean norm of R%.) As in the previous case, (4.11) can be
rewritten as (4.9), where H = L%(R%) and Ay is the operator

Agu = {—divn € L2(R?); n(x) € B(Vu(z)), a.e. x € R4}, Vu € D(Ay),
D(4o) = {u € L*(R%); Vu € (L'(R))% 3n € (L*(RY))",
n(z) € —B(Vu(z)) a.e. € RI}.
We omit the details.
5. EQUATIONS WITH SINGULAR DIFFUSIVITY
We shall study here equation (1.1) in the special case
(5.1) B(r) =sign r = { ﬁ forr 79,
[—1,1] forr=0,

that is,
(5.2) ye(t,x) — (sign y.(t,x)), =0, t € (0,T), z € R,
' y(0,2) = yo(z), = eR.

The corresponding operator Ag defined by (4.5) is no longer m-accretive in H =
L3(R).

In fact, the corresponding energy functional ¢ : H — R =] — o0, +o<],
(5.3) o) = Jg W (@)|dz if v’ € LY(R),
' 400 otherwise,

is not lower semicontinuous, and its £.s.c. closure % : H — R is given by

sO(u):{ Ja |Dul if u € BV(R),

(5.4) |
400 otherwise,

where [ |Dul is the total variation of v and BV (R) is the space of functions w :
R — R with bounded variation. The function % is convex and lower semicontinuous
on H and so its subdifferential 0p = A; is m-accretive in H x H. Then, by the
general existence theory, for each yo € L2(R) there is a unique y* € C([0,T]; L?(R))
such that

dy*
(5.5) dt

y*(0) = %o,

(t)+09(y*(t)) 20, ae te(0,T),
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(5.6) Vit % € L*((0,T) x R).

If yo € BV(R), then

*

dy

o€ L*((0,T) x R).

(5.7)

However, since 0% is hard to describe, we get an idea of how (5.5) looks like from
the following approximating process.
For each € > 0, we set
(AD)ew = —(Ju/[Fsign ')
D(A1):) = {ue L*(R);u' € LY(R), ((u)"sign o) € L*(R)}.
In other words, (A1) = Ope, where

Lfoo |u/['Tedz  if o' € LY*E(R),
(Pe(u> :{ 14+ J—o0

(5.8)
+o00 otherwise.

By Theorem 4.1, there is a unique solution u. € C([0,T]; L*(R)) with v/t 65‘; €
L?((0,T) x R) of the equation
Fye
(5.9) ot
yf(ou l‘) = 3/0(95)
On the other hand, for each A > 0 and f € L?(R), the solution u € D((4p).) to
the equation

— (|(ye)z|"sign(ye)z)z = 0, a.e. t >0, x € R,

us — A(|(ue)'"sign(ue)’)’ = f in R,
or equivalently

. 1 A
u. = arg min {/R <2 |u|? + Tte /|1 e — fu) dac} ,

converges in L?(R) to

u:argmin{/ <;\u|2—fu) dx+/|Du|}.
w R R

Indeed, for each € > 0,

1 A 1 A
[ (a2 ey = oo < [ (G 2 a1 = fu)as

Vu € D(), and, letting ¢ — 0, we get u. — @ weakly in L*(R) and

~ . -
u—argurél}gr%/{/R (2 |u| —fu> d:v+)\/R|Du|}.

= (I+MA)Lf.
Then, by the Trotter—Kato theorem for nonlinear semigroups of contractions (see,
e.g., [1], p. 170), we have

(5.10) y-(t) — y*(t) strongly in C([0,T]; L*(R)),

Hence
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as ¢ — 0, where y* is the solution to (5.5). In this generalized sense, y* can be
viewed as a solution to (5.2).
If we set y, = z, we may rewrite (5.2) as the porous media equation

2t — (sign 2)z =0, ¢ >0,
2(0) = y6 = %0,

which in the above sense, for zg € M (R) (the space of Borelian measures on R), has
a solution z € C([0,T]; M(R)), VT > 0.

(5.11)

Remark 5.1. The above existence result for (5.2) extends in R? mutatis-mutandis
to the equation

yp — div (‘gﬂ) =0, z€R?
(1

y(0,2) = yo ().
In this case, H = L?(R%), and % : H —] — 00, +-00] is given by

-_ Jga |Du| if u € BV(R?)
u) =
4 400 otherwise,

where BV (R?) is the space of functions with bounded variation on R
This equation is relevant in image restoring techniques (see [2] and [8]).

Remark 5.2. The results of this section extends to the maximal monotone graphs
B : R — 28 such that, for some p > 0,

(5.12) nr > plrl, Vn€ B(r), r €R,
or
(5.13) B =05 and j(r) > p|r|, Vr € R.

In this case, ¥ is the closure of the functional
Jri(W)dz, o e L'(R),
plu) = { 400, otherwise,
and so
P(u) > p/R [Dul, Yu € D(¢p).

We omit the details.

6. AN EXAMPLE

The nonlinear parabolic equation
6.1) yr — a(Ya) W' (yz))e =0, t 20, z €R,
' y(0,2) = yo(x), = € R,

where W is a convex function on R, (0) = 0 and a is a given nonnegative continuous
function, is relevant in materials sciences as a model of interface evolution of two
phases of materials as well as in crystal growth and was studied in [4], [5], [6].
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By the formal substitution
y
(62) 5w = [ at)W"(r)dr, y € B,
0

it reduces to (1.1). However, if W” is not in L] (R), assuming that a is smooth (of

class C! with a” € L{ (R)), > 0 and W(0) = 0, 0 € 9W(0), we can take 3 as

loc
y
(63) 8(0) = alw)IW () ~ W) + [ o' (W (s)ds
and so Theorem 3.1 is applicable in this case. Moreover, if

(6.4) B(400) = 400, B(—00) = o0,

then we may apply Theorem 4.1.
Finally, if W(y) = |y| and

(6.5) aly) >p, WeR, (~1)*a® >0, k=1,2,
then [ satisfies condition (5.13) and so the equation
Yt — a(yz)(sign Yz )o = 0, = €R,
y(0,7) = yo(x),

has, for each yy € L*(R), a unique solution y € C([0,7T]; L*(R)) in sense of (5.5)—
(5.7).
Consequently, the porous media equation

zt — (a(z)(sign 2)z), =0, z€R, t>0,
2(0,2) = yp(x),
has a (generalized) solution z € L?(0,T; H(R)).

(6.6)

(6.7)

7. EQUATION (1.1) WITH PERIODIC CONDITIONS
Theorem 4.1 remains true if the space L?(R) or L!(R) is replaced by
LZ(R) = {u € Li,o(R); u(z + L) = u(z), = € R}

with the standard Hilbertian norm. For instance, the operator Ay defined by (4.5)
is replaced in this case by

A = —(B(), ue D(Ay),
D(A) = {ueHq(R); o' € LL (R), (B()) € Hy}.

The details are omitted.
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