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The aim of this paper is to study necessary and sufficient local and global optimality
conditions for nonconvex piecewise linear programming problems as well as to design nu-
merical algorithms to locally and globally solve such problems. Optimality conditions and
algorithms are studied for both unconstrained and constrained piecewise linear programming
problems.

Results obtained in this paper are based on the notion of codifferentials described in [15].
These results can be obtained in more compact form using the notion of exhausters (see, for
example, [2]). However, the use of codifferentials allows one to design ready to use numerical
methods.

The paper is organized as follows. A brief overview of relevant work is given in Section 2.
Section 3 contains some preliminaries on DP functions and their subdifferentials. Necessary
and sufficient conditions for local optimality in unconstrained PWL optimization are given
in Section 4 and such conditions for global optimality are presented in Section 5. Local
search algorithms for minimizing DP functions are described in Section 6 and global search
algorithms for such problems are given in Section 7. Illustrative examples are given in
Section 8 and Section 9 concludes the paper.

2 Related work

First, we provide a brief overview of existing results on optimality conditions and numerical
methods for PWL programming.

Convex PWL programming problems have been extensively investigated. Necessary and
sufficient conditions for such problems can be obtained from optimality conditions for gen-
eral nonsmooth convex programming problems using the subdifferential calculus. There
exist several algorithms for minimization of convex PWL functions. Finite convergent algo-
rithms are presented, for example, in [7, 10, 34]. An interior point method for convex PWL
programming problems is introduced in [8].

Problems with nonconvex PWL objective and/or constraint functions have attracted
less attention despite the fact that such problems have more practical applications than
their convex counterparts. Although some results (for example, global optimality condi-
tions from [28]) can be applied to these problems, necessary and sufficient global optimality
conditions specifically for nonconvex PWL programming problems have not been studied
extensively. Such conditions have been studied for problems where PWL functions are
represented as a difference of two convex polyhedral (DP) functions. The paper [39] uses
conjugate functions as well as codifferentials [15] to derive necessary and sufficient conditions
for the unboundedness and the boundedness of DP functions and necessary and sufficient
global optimality conditions for unconstrained DP problems. Global optimality conditions
for DP functions in terms of codifferentials are also given in [17] and using these conditions
the finite convergent modified codifferential method is designed which does not use the line
search. In [45], the authors investigate various generalized subdifferentials for DP functions.
The set of global minimizers of PWL functions is described using exhausters in [1].

Specialized algorithms for solving optimization problems involving nonconvex PWL func-
tions were introduced in [14, 33, 43]. PWL problems can also be modeled as mixed integer
programming (MIP) problems [11, 13, 32, 36, 37] and solved with a general purpose MIP
solver. In [46], the authors formulate nonconvex PWL programming problems as MIP prob-
lems. In addition, they extend these formulations to problems with lower semicontinuous
PWL objective functions.

MIP models for nonconvex PWL problems have been extensively studied, but exist-
ing comparisons [11, 32] only concentrate on the case in which the functions are separable
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(i.e. can be written as the sum of univariate functions). When a non-separable function is
known analytically it can sometimes be converted into a separable one by algebraic manip-
ulations [43]. However, this conversion might be undesirable for numerical reasons [12, 38].
Furthermore, in many applications the functions come from complicated simulation models
and are not known analytically.

3 Preliminaries

In this section we briefly describe main concepts and definitions used in the paper. In what
follows we denote by Rn n-dimensional Euclidean space, by 〈u, v〉 =

∑n
i=1 uivi the inner

product of vectors u and v in Rn and by ‖ · ‖ the associated norm in Rn. S1 = {v ∈
Rn : ‖v‖ = 1} is the unit sphere centered at 0n ∈ Rn, Bε(x) = {y ∈ Rn : ‖y − x‖ < ε} is
the open ball centered at x ∈ Rn with the radius ε > 0, “conv” denotes convex hull of a set.

Let f : Rn → R be a convex function. The set

∂cf(x) =
{
v ∈ Rn : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ Rn

}
is the subdifferential of f at x ∈ Rn [40]. Each vector v ∈ ∂cf(x) is called a subgradient of f
at x. Given ε > 0, the ε-subdifferential of a convex function f : Rn → R at a point x ∈ Rn

is defined as [40]:

∂εf(x) =
{
v ∈ Rn : f(y) ≥ f(x) + 〈v, y − x〉 − ε ∀y ∈ Rn

}
.

A generalized directional derivative of a locally Lipschitz function f : Rn → R at a point
x ∈ Rn with respect to a direction d ∈ Rn is:

f0(x, d) = lim sup
y→x,α↓0

f(y + αd)− f(y)

α
.

The generalized subdifferential (or Clarke subdifferential) of a locally Lipschitz function
f : Rn → R at x ∈ Rn is defined as [9]:

∂f(x) =
{
v ∈ Rn : f0(x, d) ≥ 〈v, d〉 ∀d ∈ Rn

}
.

For a convex function f : Rn → R one has ∂f(x) = ∂cf(x). Therefore from now on we use
the notation ∂f(x) for subdifferentials. The directional derivative of a function f at x ∈ Rn

with respect to a direction d ∈ Rn is

f ′(x, d) = lim
α↓0

f(x+ αd)− f(x)

α
,

if this limit exists. A locally Lipschitz function f is called Clarke regular at x ∈ Rn if it is
directionally differentiable and f ′(x, d) = f0(x, d) for all d ∈ Rn.

3.1 Piecewise linear functions

A function f : Rn → R is piecewise linear (PWL) if there is a finite set f1, . . . , fm of linear
functions such that fi : Rn → R and for each x ∈ Rn, f(x) = fi(x) for some i ∈ {1, . . . ,m}.
PWL functions appearing in applications can be continuous and discontinuous and in gen-
eral, represented using IF-statements. Continuous PWL functions admit alternative repre-
sentations such as difference of convex polyhedral (DP) functions and a max-min of affine
functions [26].
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In this paper, we assume that DP representations of PWL functions are known. Thus,
we study the following optimization problem:{

minimize f(x)

subject to x ∈ Rn,
(3.1)

where the objective function f is a continuous PWL function and is represented as f(x) =
f1(x)− f2(x), where

f1(x) = max
i∈I1

〈a1i, x〉 − b1i, f2(x) = max
j∈I2

〈a2j , x〉 − b2j .

Here Ik = {1, . . . , lk}, lk ≥ 1, k = 1, 2. Functions f1 and f2 are convex PWL functions,
which are also called convex polyhedral functions. The function f is a DP function. The
class of DP functions is a subset of difference of convex (DC) functions. Results on DC
functions and DC programming can be found, for example, in [29,41,44].

It is obvious that functions fk, k = 1, 2 are Lipschitz continuous on Rn with the Lipschitz
constant

Lk = max
i∈Ik

‖aki‖ <∞

and the function f is Lipschitz continuous on Rn with the constant L = L1 + L2. The
subdifferential of the function fk, k = 1, 2 at x is:

∂fk(x) = conv
{
aki : i ∈ Rk(x)

}
where

Rk(x) =
{
i ∈ Ik : 〈aki, x〉 − bki = fk(x)

}
, k = 1, 2. (3.2)

Denote φki(x) = 〈aki, x〉 − bki, i ∈ Ik, k = 1, 2. At a point x ∈ Rn for functions f1 and f2
define the following sets:

dfk(x) = conv
{
(ξki, a

ki), ξki = φki(x)− fk(x), i ∈ Ik
}
, k = 1, 2.

The sets df1(x), df2(x) are defined in Rn+1. These sets are components of a codifferential
of the function f at x, introduced in [15]. It is obvious that ξki = 0, i ∈ Rk(x) and
ξki < 0, i ∈ Ik \Rk(x), k = 1, 2, that is

max
(ξ,a)∈dfk(x)

ξ = 0, k = 1, 2. (3.3)

Furthermore,

∂f1(x) = {u ∈ Rn : (0, u) ∈ df1(x)} , ∂f2(x) = {v ∈ Rn : (0, v) ∈ df2(x)} .

Proposition 3.1. The mappings x 7→ dfk(x), k = 1, 2 are Lipschitz continuous on Rn in
the Hausdorff metrics that is there exists LH > 0 such that

H(dfk(x), dfk(y)) ≤ LH‖x− y‖, ∀ x, y ∈ Rn, k = 1, 2.

Proof. Take any x, y ∈ Rn. For any (ξ, a) ∈ dfk(x), where ξ = φki(x) − fk(x) and a = aki

for some i ∈ Ik, choose (η, c) ∈ dfk(y) such that η = φki(y)− fk(y), c = aki. Then

‖(ξ, a)− (η, c)‖ = |φki(x)− fk(x)− [φki(y)− fk(y)]|
≤ |φki(x)− φki(y)|+ |fk(x)− fk(y)| .



DP OPTIMIZATION: OPTIMALITY CONDITIONS AND NUMERICAL METHODS 785

Then it follows form the definition of functions φki, i ∈ Ik, k = 1, 2 that ‖(ξ, a) − (η, c)‖ ≤
2Lk‖x− y‖. This means that for LH = 2Lk the following holds:

max
(ξ,a)∈dfk(x)

min
(η,c)∈dfk(y)

‖(ξ, a)− (η, c)‖ ≤ LH‖x− y‖.

In the same way we can show that

max
(η,c)∈dfk(y)

min
(ξ,a)∈dfk(x)

‖(ξ, a)− (η, c)‖ ≤ LH‖x− y‖.

The proof is completed.

Proposition 3.2. For functions fk, k = 1, 2 the following holds at any x ∈ Rn:

fk(x+ h) = fk(x) + max
(ξ,u)∈dfk(x)

[ξ + 〈u, h〉] , ∀h ∈ Rn. (3.4)

Proof. Consider the following set at the point y = x+ h

Rk(y) =
{
i ∈ Ik : 〈aki, y〉 − bki = fk(y)

}
.

For any j ∈ Rk(y)

fk(y)− fk(x) = φkj(y)− fk(x)

= 〈akj , x〉 − bkj − fk(x) + 〈akj , y − x〉
= ξkj + 〈akj , y − x〉

and for any other j 6∈ Rk(y)

fk(y)− fk(x) > φkj(y)− fk(x) = ξkj + 〈akj , y − x〉.

This completes the proof.

Corollary 3.3. Let x ∈ Rn be a given point. Then there exists ε > 0 such that

fk(x+ h) = fk(x) + max
(0,u)∈dfk(x)

〈u, h〉, k = 1, 2

for all h ∈ Bε(0n).

Proof. Consider the set Rk(x) at the point x given by (3.2). Define the following function

f̂k(y) = max
j∈Rk(x)

φkj(y).

Continuity of functions φkj , j ∈ Ik implies that there exists ε > 0 such that fk(x + h) =

f̂k(x+ h) for all h ∈ Bε(0n). It is clear that

df̂k(x) =
{
(ξ, u) ∈ dfk(x) : ξ = 0

}
.

Then the rest of the proof follows from Proposition 3.2.
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4 Necessary and Sufficient Conditions for Local Optimality

In this section we study local optimality conditions for the PWL optimization problem (3.1).
The following result is true for general DC functions.

Theorem 4.1 ( [42]). Let f1, f2 : Rn → R be convex functions. If x∗ ∈ Rn is a local
minimizer of f = f1 − f2, then

∂f2(x
∗) ⊆ ∂f1(x

∗). (4.1)

Points satisfying (4.1) are called inf-stationary points. The condition (4.1) is sufficient
for local optimality if f2 is a polyhedral convex function. The following proposition follows
from Theorem 4.1.

Proposition 4.2. The condition (4.1) is necessary and sufficient for the point x∗ to be local
minimizer of the problem (3.1).

One can define two other types of stationary points for unconstrained PWL optimization
problems. A point x∗ ∈ Rn is called a Clarke stationary point of the problem (3.1) if 0n ∈
∂f(x∗). A point x∗ ∈ Rn is called a critical point of the problem (3.1) if ∂f1(x

∗)∩∂f2(x∗) 6= ∅.
Any inf-stationary point is also Clarke stationary and critical and any Clarke stationary point
is also critical point. However the reverse is not always true. Examples confirming this are
given in [23,30].

Next we formulate necessary and sufficient local optimality conditions using sets df1(x)
and df2(x). At a point x for a given (0, w) ∈ df2(x) consider the set

L0w(x) = −(0, w) + df1(x).

Proposition 4.3. If a point x∗ ∈ Rn is a local minimizer of the function f then

0n+1 ∈ L0w(x
∗) ∀(0, w) ∈ df2(x). (4.2)

Proof. Assume the contrary, that is x∗ is a local minimizer, however there exists (0, w) ∈
df2(x) such that 0n+1 6∈ Lw(x

∗). Since the set Lw(x
∗) is compact and convex it follows that

‖z0‖ = min{‖z‖ : z ∈ L0w(x
∗)} > 0 with z0 = (ξ0, u

0).

The necessary condition for a minimum implies that

〈z0, z − z0〉 ≥ 0 ∀z = (ξ, u) ∈ L0w(x
∗). (4.3)

First we will show that u0 6= 0n. Assume the contrary, that is u0 = 0n. Since z
0 6= 0n+1 we

get that ξ0 < 0. Then it follows from (4.3) that ξ0(ξ− ξ0) ≥ 0 or ξ ≤ ξ0 < 0. In other words

max
(ξ,u)∈L0w(x∗)

ξ < 0.

It follows from the definition of the set L0w(x
∗) that

max
(ξ,u)∈df1(x∗)

ξ = max
(ξ,u)∈L0w(x∗)

ξ < 0

which contradicts (3.3).
Dividing both sides of (4.3) by −‖z0‖ we get

− ξ0ξ

‖z0‖
+ 〈u, d0〉 ≤ −‖z0‖. (4.4)
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Here d0 = −‖z0‖−1u0 ∈ Rn. It is clear that ‖z0‖−1ξ0 ∈ (−1, 0). It is also obvious that for
sufficiently small α > 0

µ = − αξ0
‖z0‖

∈ (0, 1).

Therefore taking into account that ξ ≤ 0 and (4.4) we get

ξ + α〈u, d0〉 ≤ µξ + α〈u, d0〉 = − αξ0
‖z0‖

ξ + α〈u, d0〉 ≤ −α‖z0‖.

Thus ξ + α〈u, d0〉 ≤ −α‖z0‖ for all z = (ξ, u) ∈ L0w(x
∗). It follows from Proposition 3.2

that

f(x∗ + αd0) = f(x∗) + max
(ξ,u)∈df1(x∗)

[
ξ + α〈u, d0〉

]
− max

(η,v)∈df2(x∗)

[
η + α〈v, d0〉

]
≤ f(x∗) + max

(ξ,u)∈L0w(x∗)

[
ξ + α〈v, d0〉

]
= f(x∗)− α‖z0‖.

Then f(x∗+αd0) < f(x∗) for all sufficiently small α > 0, which contradicts to the fact that
x∗ is a local minimizer.

Remark 4.4. The necessary condition (4.2) for general codifferentiable functions was also
formulated in [15]. However our proof differs from that of [15].

Next we prove that the necessary local optimality condition (4.2) is also sufficient.

Proposition 4.5. A point x∗ ∈ Rn is a local minimizer of Problem (3.1) if and only if the
condition (4.2) holds.

Proof. The necessity is given by Proposition 4.3. Therefore we prove only sufficiency. As-
sume that the condition (4.2) holds. It follows from Proposition 3.2 and Corollary 3.3 that
there exists ε > 0 such that

f(y) = f(x∗) + max
(ξ,u)∈df1(x∗)

[ξ + 〈u, y − x∗〉]− max
(0,w)∈df2(x∗)

〈w, y − x∗〉

for all y ∈ Bε(x
∗). For y ∈ Bε(x

∗) consider

w(y) = argmax
(0,w)∈df2(x∗)

〈w, y − x∗〉.

Then f(y) − f(x∗) ≥ η + 〈v − w(y), y − x∗〉 for all (η, v) ∈ df1(x
∗). This can be rewritten

as f(y) − f(x∗) ≥ η + 〈u, y − x∗〉, (η, u) ∈ L0w(y)(x
∗). In particular, this is true for

(η, u) = (0, 0n) ∈ L0w(y)(x
∗). Since y ∈ Bε(x

∗) is arbitrary we get f(x∗) ≤ f(y) for all
y ∈ Bε(x

∗) that is x∗ is a local minimizer of Problem (3.1).

Remark 4.6. The optimality condition (4.1) is tighter than the condition (4.2). However,
the latter can be extended to global optimality conditions for Problem (3.1). Such conditions
are studied in the next section.
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5 Necessary and Sufficient Conditions for Global Optimality

The following optimality condition is applicable also to DP functions, however it is rather dif-
ficult to utilize in solution algorithms as it requires availability of the whole ε-subdifferential
which is not easy to calculate even for DP functions.

Theorem 5.1 ([28]). Let f1, f2 : Rn → R be convex functions. A DC function f = f1 − f2
attains its global minimum at a point x∗ ∈ Rn, if and only if ∂εf2(x

∗) ⊂ ∂εf1(x
∗) for all

ε ≥ 0.

We study global optimality conditions for Problem (3.1) using mappings x 7→ df1(x) and
x 7→ df2(x). Consider the set

Lθw(x) = −(θ, w) + df1(x), (θ, w) ∈ df2(x).

Proposition 5.2. Suppose that at a point x∗ ∈ Rn

0n+1 ∈ Lθw(x
∗) ∀(θ, w) ∈ df2(x

∗). (5.1)

Then x∗ is a global minimizer of Problem (3.1).

Proof. Take any x ∈ Rn and define

(θ∗, w
∗) ∈ Argmax

(θ,w)∈df2(x∗)

{θ + 〈w, x− x∗〉} .

Then it follows from Proposition 3.2 that

f(x)− f(x∗) = max
(η,v)∈df1(x∗)

[η + 〈v, x− x∗〉]− max
(θ,w)∈df2(x∗)

[θ + 〈w, x− x∗〉]

= max
(η,v)∈df1(x∗)

[η + 〈v, x− x∗〉]− θ∗ − 〈w∗, x− x∗〉

= max
(η,v)∈−(θ∗,w∗)+df1(x∗)

[η + 〈v, x− x∗〉] .

Since 0n+1 ∈ (θ∗, w
∗) + df1(x

∗) we get f(x) ≥ f(x∗) for all x ∈ Rn, that is x∗ is a global
minimizer of Problem (3.1).

The following example demonstrates that the condition (5.1) is not always necessary for
global minimizers of Problem (3.1).

Example 5.3. Consider the function f(x) = max(−2x, 0) − max(−x,−1), depicted in
Figure 1. This function attains its global minimum at the point x∗ = 0, and

df1(x
∗) = conv{(0,−2), (0, 0)}, df2(x

∗) = conv{(0,−1), (−1, 0)}.

It is easy to see that 02 /∈ L(−1,0)(x
∗) = conv{(1,−2), (1, 0)}.

Next we formulate a necessary and sufficient condition for global minimizers of Problem
(3.1). First, we will prove the following useful proposition.

Proposition 5.4. Let us define a polytope U = conv{(µi, u
i) ∈ R × Rn, i = 1, · · · ,m} ⊂

Rn+1. Then
max

(µ,u)∈U

[
µ+ 〈u, d〉

]
≥ 0, ∀d ∈ Rn

if and only if there exists µ ≥ 0 such that (µ, 0) ∈ U .
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Figure 1: Example showing that the sufficient condition (5.1) is not always necessary.

Proof. Define the function

h(d) = max
(µ,u)∈U

[
µ+ 〈u, d〉

]
, d ∈ Rn.

The sufficiency is straightforward. Indeed, if (µ, 0) ∈ U with µ ≥ 0, then by the definition
of h, we have h(d) ≥ µ ≥ 0 for any d ∈ Rn.

Now assume that h(d) ≥ 0 for any d ∈ Rn. Then, as a continuous piecewise linear
function bounded from below, it attains a minimum h∗ at a point d∗ ∈ Rn. Furthermore at
any point d, we have:

h(d)− h(d∗) = max
(µ,u)∈U

[
(µ− h∗) + 〈u, d〉

]
∀d ∈ Rn,

which means that
dh(d∗) =

{
(µ− h∗, u) : (µ, u) ∈ U

}
.

Applying the necessary condition for a minimum of the convex function h we get that
0n+1 ∈ dh(d∗). Therefore there exists (µ, 0) ∈ U such that µ = h∗ ≥ 0.

At a given point x ∈ Rn take any (θ, w) ∈ df2(x) and define the following set:

dθf(x) = {(η, v) ∈ df1(x) : η − θ ≥ 0} .

It is clear that dθf(x) 6= ∅ for any (θ, w) ∈ df2(x). Define the set

L+
θw(x) = −(θ, w) + dθf(x).

Proposition 5.5. A point x∗ ∈ Rn is a global minimizer of Problem (3.1) if and only if
0n ∈ {v : (η, v) ∈ L+

θw(x
∗)} for any (θ, w) ∈ df2(x

∗).

Proof. It follows from Proposition 3.2 that

f(x)− f(x∗) = max
(η,v)∈df1(x∗)

[
η + 〈v, x− x∗〉

]
− max

(θ,w)∈df2(x∗)

[
θ + 〈w, x− x∗〉

]
.

Thus, f(x) ≥ f(x∗) for any x ∈ Rn if and only if

max
(η,v)∈df1(x∗)

[
η + 〈v, x− x∗〉

]
−
[
θ + 〈w, x− x∗〉

]
≥ 0 ∀(θ, w) ∈ df2(x

∗),

that is:
max

(µ,u)∈L+
θw(x)

[
µ+ 〈u, x− x∗〉

]
≥ 0 ∀(θ, w) ∈ df2(x

∗).

The rest of the proof is a direct application of Proposition 5.4.
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Remark 5.6. Although the condition (5.1) is not always necessary for global minimizers
it is much easier to check than the condition in Proposition 5.5. Since the sets df1(x) and
df2(x) are polytopes the condition (5.1) is checked only for extreme points of the set df2(x)
which is equivalent to checking the solvability of a finite number (which is the number of
extreme points of df2(x)) of systems of linear equations.

We now propose the following:

Proposition 5.7. Let A = conv{(α1, a1), . . . , (αm, am)} ⊂ R× Rn. Define A+ = {(α, a) ∈
A : α ≥ 0} and A+ = conv(A ∪ {(−1, 0n)}). Then, 0n ∈ {a : (α, a) ∈ A+} if and only if
0n+1 ∈ A+.

Proof. We know that 0n ∈ {a : (α, a) ∈ A+} if and only if there exist λ1, . . . , λm such that
λi ∈ [0, 1], i = 1, . . . ,m,

∑m
i=1 λi = 1 and

m∑
i=1

λiai = 0,

m∑
i=1

λiαi ≥ 0 (5.2)

and similarly, 0n+1 ∈ A+ if and only if there exist λ1, . . . , λm+1 such that λi ∈ [0, 1], i =

1, . . . ,m+ 1,
∑m+1

i=1 λi = 1 and

m∑
i=1

λiai = 0,

m∑
i=1

λiαi − λm+1 = 0. (5.3)

It suffices to show that the two sets of equations are equivalent. It is obvious that (5.3)
implies (5.2). Assume that (5.2) is true and let β =

∑m
i=1 λiαi. Define

γi =
λi

(β + 1)
, i = 1, . . . ,m, γm+1 =

β

β + 1
.

It is clear that
∑m+1

i=1 γi = 1 and that γi ∈ [0, 1], i = 1 . . . ,m+ 1. Furthermore,

m∑
i=1

γiai =
1

β + 1

m∑
i=1

λiai = 0

and
m∑
i=1

γiαi − γm+1 =
1

β + 1

(
m∑
i=1

λiαi − β

)
= 0.

This completes the proof.

Corollary 5.8. The point x∗ is a global minimizer of Problem (3.1) if and only if

0n+1 ∈ conv (Lθw(x
∗) ∪ {(−1, 0)}) ∀(θ, w) ∈ df2(x

∗). (5.4)

Proof. The proof derives directly from Propositions 5.5 and 5.7.
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5.1 Constrained piecewise linear optimization problems

In this subsection we propose necessary and sufficient conditions for solutions of the following
problem: {

minimize f(x)

subject to 〈gi, x〉 ≤ pi, i = 1, . . . , l,
(5.5)

where f is defined as in (3.1) and gi ∈ Rn, pi ∈ R, i = 1 . . . , l.
For a given x ∈ Rn, let αi(x) = 〈gi, x〉 − pi.

Proposition 5.9. A point x∗ ∈ Rn is a global minimizer of Problem (5.5) if and only if

0n ∈ conv
{
v : (η, v) ∈ L+

θw(x
∗)
}
∪
{
(αi(x

∗), gi)
}

for any (θ, w) ∈ df2(x
∗).

Proof. The point x∗ is a solution to the problem (5.5) if and only if for any x ∈ Rn, either
f(x)− f(x∗) ≥ 0 or, 〈gi, x〉 > pi for some i ∈ {1, . . . , l}. Thus, x∗ is a solution if and only if

max
(µ,u)∈Lθw(x∗)

[
µ+ 〈u, x− x∗〉

]
≥ 0 ∀(θ, w) ∈ df2(x

∗)

or
max

i=1,...,l

[
〈gi, x− x∗〉+ (〈gi, x∗〉 − pi)

]
≥ 0,

that is, if and only if

max
(

max
(µ,u)∈Lθw(x∗)

[
µ+ 〈u, x− x∗〉

]
,max
1,...,l

[
αi(x) + 〈gi, x− x∗〉

])
≥ 0.

This completes the proof.

Applying Proposition 5.4 we obtain the following result.

Corollary 5.10. The point x∗ is a global minimizer of Problem (3.1) if and only if

0n+1 ∈ conv
(
Lθw(x

∗) ∪ {(αi(x
∗), gi)} ∪ {(−1, 0)}

)
∀(θ, w) ∈ df2(x

∗). (5.6)

The proof derives directly from Propositions 5.7 and 5.9.

5.2 Examples

In this subsection we present some examples to demonstrate necessary and sufficient global
optimality conditions.

Example 5.11. For the function f from Example 5.3 elements of the set df2(0) can be
represented as (1− α, α) where α ∈ [0, 1]. Then we get that:

L+
(1−α,α)(0) = [−2 + α, α].

It is clear that 0 ∈ L+
(1−α,α)(0) for any α ∈ [0, 1]. Then it follows from Proposition 5.5 that

the point x∗ = 0 is a global minimizer of f .
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Example 5.12. Consider the PWL function f(x) = f1(x)− f2(x), where

f1(x) = max
{
3x1 + 3x2 − 6,−6x1 + 3x2 − 12, 3x1 − 9x2 − 6,−9x1 + 3x2 − 6

}
,

f2(x) = max
{
− x1 − x2 − 3,−3x1 − 3x2 − 3,−4x1 + 3x2 − 5

}
.

The graph of this function is depicted in Figure 2. Take a point x = (0, 0). Then

df1(0, 0) = conv
{
(0, 3, 3), (−6,−6, 3), (0, 3,−9), (0,−9, 3)

}
,

df2(0, 0) = conv
{
(0,−1,−1), (0,−3,−3), (−2,−4, 3)

}
.

It is clear that 0n+1 ∈ −(θ, w) + df1(0, 0) for all (θ, w) ∈ df2(0, 0). Then it follows from
Proposition 5.2 that the point x = (0, 0) is a global minimizer of the function f and f(0, 0) =
−3.

Figure 2: Plot of the function from Example 5.12.

Example 5.13. Consider the following function [16]:

f(x) = min
{
max{−x1 − 2x2 + 4, 2x1 + 4x2 − 5}, max{−2x1 − x2 + 21, 6x1 + 3x2 − 15}

}
.

Its graph is depicted in Figure 3.

Figure 3: Plot of the function from Example 5.13.
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This function is DP: f(x) = f1(x)− f2(x) where

f1(x) = max
{
− x1 − 2x2 + 4, 2x1 + 4x2 − 5

}
+max

{
− 2x1 − x2 + 21, 6x1 + 3x2 − 15

}
,

f2(x) = max
{
− x1 − 2x2 + 4, 2x1 + 4x2 − 5,−2x1 − x2 + 21, 6x1 + 3x2 − 15

}
.

The function f has two sets of local minimizers:

X∗
1 =

{
x ∈ R2 : x1 + 2x2 = 3

}
, X∗

2 =
{
x ∈ R2 : 2x1 + x2 = 9

}
.

f(x) = 1 for all x ∈ X∗
1 and f(x) = 12 for all x ∈ X∗

2 . Thus the set X∗
1 is the set of global

minimizers of the function f over R2. Take the point x0 = (1, 1) ∈ X∗
1 . Then

df1(x
0) = conv

{
(0,−3,−3), (0, 0, 3), (−24, 5, 1), (−24, 8, 7)

}
,

df2(x
0) = conv

{
(−17,−1,−2), (−17, 2, 4), (0,−2,−1), (−24, 6, 3)

}
.

It is easy to show that (0,−2,−1), (−24, 6, 3) ∈ df1(x
0), however (−17,−2,−1), (−17, 2, 4) 6∈

df1(x
0). Again this example demonstrates that the condition (5.1) is not always necessary

for global minimizers.

The sets L+
θw(x

0) for extreme points (0,−2,−1), (−24, 6, 3) are as follows:

L+
(0,−2,−1)(x

0) = conv
{
(−1,−2), (2, 4)

}
,

L+
(−24,6,3)(x

0) = conv
{
(−9,−6), (−6, 0), (−1,−2), (2, 4)

}
.

It is clear that 02 ∈ L+
(0,−2,−1)(x

0) and 02 ∈ L+
(−24,6,3)(x

0). For other two points sets are as

follows:

L+
(−17,−1,−2)(x

0) = (1, 2) +
{
v ∈ Rn : v = α1(−3,−3) + α2(0, 3) + α3(5, 1) + α4(8, 7),

α1 + α2 + α3 + α4 = 1, α3 + α4 ≤ 17/24, αi ≥ 0, i = 1, 2, 3, 4
}
,

L+
(−17,2,4)(x

0) = (2, 4) +
{
v ∈ Rn : v = α1(−3,−3) + α2(0, 3) + α3(5, 1) + α4(8, 7),

α1 + α2 + α3 + α4 = 1, α3 + α4 ≤ 17/24, αi ≥ 0, i = 1, 2, 3, 4
}
.

One can show that 02 ∈ L+
(−17,−1,−2)(x

0) and 02 ∈ L+
(−17,2,4)(x

0). Then it follows from

Proposition 5.5 that the point x0 = (1, 1) is a global minimizer of the function f .

6 Numerical Methods for Local Minimization of DP Functions

In this section we describe algorithms to locally solve Problem (3.1). We will design both
exact and inexact algorithms for finding local minimizers of DP functions.
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6.1 An exact algorithm for local minimization of DP functions

Before the description of the exact algorithm we present some results on the properties of
steepest descent directions of DP functions. Assume that x ∈ Rn is not a stationary point
which means that ∂f2(x) 6⊂ ∂f1(x). Let

R(x) =
{
(i, j) ∈ I × J : i ∈ R1(x), j ∈ R2(x)

}
,

where the sets Rk(x), k = 1, 2 are defined by (3.2). Compute v̄ ∈ ∂f1(x) and w̄ ∈ ∂f2(x)
such that

‖v̄ − w̄‖ = max
w∈∂f2(x)

min
v∈∂f1(x)

‖v − w‖. (6.1)

It is clear that ‖v̄ − w̄‖ > 0. Define the direction

d̄ = −(v̄ − w̄). (6.2)

A direction d0 = ‖d̄‖−1d̄ is the steepest descent direction of f at x [15]. Compute λ̄ by

λ̄ = sup{λ : R(x+ λd̄) ⊂ R(x)}.

If λ̄ = ∞, then the function f is unbounded along the ray {x+λd̄ : λ ≥ 0}. Main properties
of the direction d̄ are summarized in the following proposition.

Proposition 6.1. Assume that x ∈ Rn is not a stationary point and the direction d̄ is
defined by (6.2). Then the following hold:

1. λ̄ > 0;

2. f(x+ λd̄) ≤ f(x)− λ‖d̄‖2 for λ ∈ [0, λ̄).

Proof. 1) Since both functions f1 and f2 are piecewise linear the upper semicontinuity of
the subdifferential mappings ∂f1(x) and ∂f2(x) implies that there exists δ > 0 such that
∂fi(y) ⊆ ∂fi(x), i = 1, 2 for all y ∈ Bδ(x). This means that λ̄ ≥ δ > 0.

2) For any λ ∈ [0, λ̄), we have:

f1(x+ λd̄) = max
i∈R1(x)

[
〈a1i, x+ λd̄〉 − b1i

]
≤ max

i∈R1(x)

[
〈a1i, x〉 − b1i

]
+ λ max

i∈R1(x)
〈a1i, d̄〉 (6.3)

= f1(x) + λ max
i∈R1(x)

〈a1i, d̄〉.

Necessary condition for a minimum implies that

〈v − v̄, v̄ − w̄〉 ≥ 0 ∀v ∈ ∂f1(x). (6.4)

Since a1i ∈ ∂f1(x), i ∈ R1(x) it follows from (6.4) that 〈a1i, d̄〉 ≤ 〈v̄, d̄〉 and therefore apply-
ing (6.3) we have f1(x+λd̄) ≤ f1(x)+λ〈v̄, d̄〉. On the other hand the subgradient inequality
implies that f1(x + λd̄) ≥ f1(x) + λ〈v̄, d̄〉 and so combining the above two inequalities, we
obtain

f1(x+ λd̄) = f1(x) + λ〈v̄, d̄〉. (6.5)

Applying the subgradient inequality to the function f2 we get f2(x+ λd̄) ≥ f2(x) + λ〈w̄, d̄〉,
and therefore

f(x+ λd̄) ≤ f(x) + λ〈v̄ − w̄, d̄〉 = f(x)− λ〈d̄, d̄〉 = f(x)− λ‖d̄‖2.

This completes the proof.
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Remark 6.2. In order to find v̄ and w̄ in (6.1) it is sufficient to find the distance between
each extreme point of the set ∂f2(x) and the polytope ∂f1(x). Since the set ∂f2(x) is also a
polytope finding v̄ and w̄ is equivalent to solving a finite number of quadratic programming
problems. The number of these quadratic programming problems is the number of extreme
points of the set ∂f2(x).

The exact algorithm uses subdifferentials ∂f1(x), ∂f2(x) of component functions of the
DP function f and proceeds as follows.

Algorithm 6.3. An exact algorithm for local minimization of DP functions.

Step 1. Select any starting point x1. Set k := 1.

Step 2. If ∂f2(x
k) ⊆ ∂f1(x

k), then stop. xk is a local minimizer. Otherwise, select jk ∈
R2(x

k) such that
0n 6= a2jk ∈ Argmax

w∈∂f2(xk)

min
v∈∂f1(xk)

‖v − w‖ (6.6)

and solve the following convex piecewise linear minimization problem:{
minimize gjk(x) = f1(x)− 〈a1jk , x〉+ b2jk
subject to x ∈ Rn.

(6.7)

If this problem is unbounded, then stop. Otherwise, let xk∗ be a solution.

Step 3. Set xk+1 := xk∗, k := k + 1 and go to Step 2.

Remark 6.4. The problem (6.7) is convex and there exist finite convergent algorithms for
its solution. For example, it has been shown that an algorithm proposed in [7] converges to
the solution of the problem (6.7) in finite iterations.

Remark 6.5. It should be noted that solving (6.1) and (6.6) are equivalent. In fact the
optimal value of Problem (6.1) is the deviation of ∂f2(x) from the set ∂f1(x). Since both
sets are polytopes it is sufficient to find the maximum distance between extreme points of
∂f2(x) and the set ∂f1(x). Thus, a2jk in (6.6) is found among extreme points of the set
∂f2(x).

Next we prove that Algorithm 6.3 is finite convergent.

Proposition 6.6. At any iteration k we have f(xk+1) < f(xk).

Proof. The proof follows immediately from Item 2) of Proposition 6.1 and the fact that at
the first step of the k-th iteration the descent direction coincides with the descent direction
from (6.1).

Proposition 6.7. For any iteration m > k, jm 6= jk.

Proof. The point xm+1 is a minimizer of the function gjm , while according to (6.6), xm is
not. Therefore,

gjm(xm+1) < gjm(xm) = f(xm) ≤ f(xk+1) ≤ gjk(x
k+1) ≤ gjk(x

m+1).

We can conclude that jm 6= jk.

Proposition 6.8. Algorithm 6.3 converges in a finite number of iterations, and either con-
cludes that the problem (3.1) is unbounded, or attains a local minimizer of the problem.



796 A. M. BAGIROV AND J. UGON

Proof. By Proposition 6.7 and the fact that the set J is finite the algorithm terminates in
at most |J | iterations, where | · | stands for the cardinality of a set. It is clear from the
algorithm that either it returns a point x∗ such that ∂f2(x

∗) ⊆ ∂f1(x
∗), or there exists

j ∈ J such that gj is unbounded. In such a case, since f(x) ≤ gj(x) for any x ∈ Rn, the
function f is also unbounded. Then we conclude that the maximum number of iterations of
Algorithm 6.3 is finite.

Remark 6.9. It is clear that the function f in (3.1) can be represented as follows:

f(x) = min
j∈J

max
i∈I

[
〈a1i − a1j , x〉 − (b1i − b2j)

]
which means that minimization of the function f is equivalent to the minimization of |J |
convex piecewise linear functions:

φ(x) = max
i∈I

[
〈a1i − a2j , x〉 − (b1i − b2j)

]
, j ∈ J.

However, Algorithm 6.3 allows one to avoid solving of most of these problems and to consider
only those which contribute to local minimizers.

6.2 Inexact method for local minimization of DP functions

In this subsection we will design an algorithm for finding the so-called ε-approximate solu-
tions to the problem (3.1). This algorithm uses the sets df1(x) and df2(x). We start with
the definition of the ε-approximate stationary point.

Definition 6.10. A point x∗ is called an ε-approximate stationary point of Problem (3.1)
iff:

0n+1 ∈ L0w(x
∗) +Bε(0n+1) ∀(0, w) ∈ df2(x

∗).

Proposition 6.11. Assume that the point x is not a stationary point of the problem (3.1)
and for some (0, w) ∈ df2(x)

‖z̄‖2 ≡ ‖(η̄, v̄)‖2 = min
{
‖z‖2 : z ∈ L0w(x)

}
> 0.

Then v̄ 6= 0n. Moreover, if η̄ = 0 then the function f is unbounded from below and if η̄ < 0
then for ᾱ = −1/η̄ > 0

f(x− ᾱv̄)− f(x) ≤ −‖z̄‖ (6.8)

and
f(x− ᾱv̄)− f(x) ≤ η̄. (6.9)

Proof. If x is not a stationary point then it follows from (4.2) that there exists (0, w) ∈ df2(x)
such that 0n+1 6∈ L0w(x). This means that

min
z∈L0w(x)

‖z‖2 > 0.

Let z̄ = (η̄, v̄) = argmin{‖z‖2 : z ∈ L0w(x)}. Then it follows from the necessary condition
for a minimum that

η̄(η − η̄) + 〈v̄, v − v̄〉 ≥ 0, ∀(η, v) ∈ L0w(x)

which means that
−〈v̄, v〉 ≤ −‖v̄‖2 + η̄(η − η̄). (6.10)
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It can be proved that if ‖z̄‖ > 0 then v̄ 6= 0n. Indeed if v̄ = 0n then it follows from (3.3)
that η̄ < 0. In this case (6.10) implies that η ≤ η̄ for all (η, v) ∈ df1(x) which contradicts
(3.3). Thus v̄ 6= 0n. It follows from (3.4) and (6.10) that for any α > 0

f(x− αv̄) = f(x) + max
(η,v)∈df1(x)

[η − α〈v̄, v〉]− max
(µ,u)∈df2(x)

[µ− α〈v̄, u〉]

≤ f(x) + max
(η,v)∈df1(x)

[η − α〈v̄, v〉]− α〈v̄, w〉

= f(x) + max
(η,v)∈L0w(x)

[η − α〈v̄, v〉]

≤ f(x) + max
(η,v)∈L0w(x)

[
η − α‖v̄‖2 + αη̄(η − η̄)

]
= f(x) + max

(η,v)∈L0w(x)

[
η(1 + αη̄)− α(‖v̄‖2 + η̄2)

]
= f(x) + max

(η,v)∈L0w(x)
η(1 + αη̄)− α‖z̄‖2.

If η̄ = 0 then taking into account (3.3) we have

f(x− αv̄) ≤ f(x) + max
(η,v)∈df1(x)

η − α‖z̄‖2

= f(x)− α‖z̄‖2.

In this case f(x−αv̄) → −∞ as α→ +∞ and therefore f is unbounded from below on Rn.
If η̄ < 0 then one can take ᾱ = −1/η̄ > 0. In this case 1 + ᾱη̄ = 0. Then

f(x− ᾱv̄)− f(x) ≤ 1

η̄
‖z̄‖2.

Since −η̄ < ‖z̄‖ we have

f(x− ᾱv̄)− f(x) ≤ −‖z̄‖ and f(x− ᾱv̄)− f(x) ≤ η̄.

The proof is completed.

Based on Proposition 6.11 we propose the following algorithm for solving Problem (3.1).
Let ε > 0 be a given sufficiently small number.

Algorithm 6.12. An approximate algorithm for local minimization of DP functions.

Step 1. Select a starting point x1 ∈ Rn and set k := 1.

Step 2. Compute z̄k = (η̄k, v̄
k) ∈ Rn+1 such that

‖z̄k‖2 = max
(0,w)∈df2(xk)

min
z∈L0w(xk)

‖z‖2.

Step 3. If η̄k = 0 and v̄k = 0n then the algorithm terminates. xk is a local minimizer.

Step 4. If η̄k = 0 and v̄k 6= 0n then f∗ = −∞. The algorithm terminates. The objective
function f is unbounded from below.

Step 5. If ‖z̄k‖ < ε, then the algorithm terminates. xk is an ε-approximate solution.

Step 6. Compute ᾱk = −1/ηk and xk+1 = xk − ᾱkv̄
k, set k := k + 1 and go to Step 2.

Finite convergence of Algorithm 6.12 is proved in the next proposition.
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Theorem 6.13. Suppose that the function f is bounded from below, that is f∗ > −∞. Then
Algorithm 6.12 finds an ε-approximate solution of Problem (3.1) in finitely many iterations
m > 0 where

m ≤
⌊
f(x1)− f∗

ε

⌋
+ 1.

Proof. Since f∗ > −∞ the stopping criterion in Step 4 will never happen. It is sufficient to
show that the stopping criterion in Step 5 will happen in finitely many iterations. Assume
the contrary that is the algorithm is infinite convergent. Then ‖z̄k‖ ≥ ε for all k ≥ 1 and
therefore it follows from (6.8) that

f(xk − ᾱkv̄
k)− f(x1) ≤ −kε, k ≥ 2.

This means that f(xk) → −∞ as k → ∞. We get the contradiction. It is clear that the
maximum number m of iterations necessary for the stopping criterion in Step 5 to happen
is:

m ≤
⌊
f(x1)− f∗

ε

⌋
+ 1.

The proof is complete.

Remark 6.14. Even though Algorithm 6.12 reaches only an approximate solution, its
convergence rate does not depend on the number of extreme points in df2(x), and so it may
reach a solution faster than the exact Algorithm 6.3 in practice. It is possible to combine
these two algorithms by using the approximate solution obtained by Algorithm 6.12 as a
starting point for Algorithm 6.3.

7 Numerical Methods for Global Minimization of DP Functions

In this section we design an algorithm for finding global minimizers of Problem (3.1). This
algorithm consists of two main steps. First we apply an algorithm for local minimization
of DP functions. This algorithm either finds a local minimizer or determine that the ob-
jective function is unbounded from below, in which case the global minimization algorithm
terminates. In the former case we apply an algorithm to escape from the local minimizer
that finds better starting point for a local minimization algorithm and repeat the process as
many times as necessary. Therefore we start by presenting results on computation of global
search directions of DP functions.

In order to compute a descent direction at local minimizers (which are not global ones) of
DP functions we will apply the sufficient condition given in Proposition 5.2 and the necessary
and sufficient condition given in Proposition 5.5.

Proposition 7.1. Suppose that a point x ∈ Rn is not a global minimizer of the function f
and 0n+1 6∈ Lθw(x) for some (θ, w) ∈ df2(x). Let

‖z̄‖2 ≡ ‖(µ̄, ū)‖2 = min
z∈Lθw(x)

‖z‖2 > 0.

We have:

1) If µ̄ < 0, then ū 6= 0n and f(x− αū) < f(x)− α‖z̄‖2 for α = −1/µ̄;

2) If µ̄ = 0, then ū 6= 0n and f(x−αū) < f(x) for all α > θ/‖z̄‖2. Moreover, in this case
the function f is unbounded from below;
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3) If µ̄ > 0, 0 < θ < ‖z̄‖ and ū 6= 0n, then f(x − αū) < f(x) for all α > θ/(‖z̄‖2 − θ2).
In this case the function f is unbounded from below.

Proof. The necessary condition for a minimum implies that

〈z̄, z − z̄〉 ≥ 0 ∀z ∈ Lθw(x). (7.1)

It is clear that z̄ = (µ̄, ū) = (−θ + η̄,−w + v̄) where (η̄, v̄) ∈ df1(x). First we will consider
the case when µ̄ ≤ 0 and show that in this case ū = −w + v̄ 6= 0n. Since z̄ 6= 0n+1 if µ̄ = 0
we have that ū 6= 0n. Consider the case µ̄ < 0 and assume the contrary, that is ū = 0n. It
follows from (7.1) that µ̄(µ − µ̄) ≥ 0 for all (µ, u) ∈ Lθw(x). Since for any (µ, u) ∈ Lθw(x)
one can write µ = −θ + η, (η, v) ∈ df1(x) we get that

µ̄(η − η̄) ≥ 0 for all (η, v) ∈ df1(x). (7.2)

On the other hand µ̄ = −θ+ η̄ < 0 and therefore η̄ < θ. It follows from (3.3) that θ ≤ 0 and
consequently η̄ < 0. Since µ̄ < 0, (7.2) implies that η ≤ η̄ < 0 for all (η, v) ∈ df(x). This
contradicts (3.3). Therefore ū 6= 0n.

It follows from (7.1) that

〈u,−ū〉 ≤ µ̄µ− ‖z̄‖2 ∀(µ, u) ∈ Lθw(x).

The formula (3.3) implies that
θ = max

(µ,u)∈Lθw(x)
µ. (7.3)

Then for any α ≥ 0 we have

f(x− αū) = f(x) + max
(η,v)∈df1(x)

[η − α〈v, ū〉]− max
(ω,c)∈df2(x)

[ω − α〈c, ū〉]

≤ f(x) + max
(η,v)∈df1(x)

[η − α〈v, ū〉] + θ − α〈w, ū〉

= f(x) + max
(µ,u)∈Lθw(x)

[µ− α〈u, ū〉]

≤ f(x) + max
(µ,u)∈Lθw(x)

[
µ(1 + αµ̄)− α‖z̄‖2

]
= f(x)− α‖z̄‖2 + max

(µ,u)∈Lθw(x)
µ(1 + αµ̄).

If µ̄ < 0 then for α = −1/µ̄ we have

max
(µ,u)∈Lθw(x)

µ(1 + αµ̄) = 0

and therefore f(x− αū) ≤ f(x)− α‖z̄‖2.
If µ̄ = 0 then (7.3) implies that f(x− αū) ≤ f(x)− α‖z̄‖2 + θ. Then f(x− αū) < f(x)

for any α > θ/‖z̄‖2 > 0. If we take αm = mθ/‖z̄‖2 > θ/‖z̄‖2, m = 2, 3, . . . then

f(x− αmū) < f(x)− (m− 1)θ, m = 2, 3, . . . .

It is obvious that f(x − αmū) → −∞ as m → +∞, that is in this case the function f is
unbounded from below.

Finally, assume that µ̄ > 0, θ < ‖z̄‖ and ū 6= 0n. It follows from (7.3) that µ̄ ≤ θ. Then
for any α ≥ 0

f(x− αū) ≤ f(x)− α‖z̄‖2 + θ(1 + αθ)



800 A. M. BAGIROV AND J. UGON

and f(x−αū) < f(x) for all α > θ/(‖z̄‖2−θ2). If we take αm = mθ/(‖z̄‖2−θ2), m = 2, 3, . . .
then

f(x− αmū) < f(x)− (m− 1)θ, m = 2, 3, . . . .

Therefore f(x−αmū) → −∞ as m→ +∞, that is in this case the function f is unbounded
from below.

Remark 7.2. Proposition 7.1 shows how one can compute global descent direction at a
point x which is not a global minimizer. It is sufficient to compute an element z̄ only for
extreme points of the set df2(x). The element z̄ is found by solving a quadratic programming
problem. The number of such problems solved at the point x is no greater than the number
of extreme points of df2(x). In many cases this number is small because one stops as soon
as a global descent direction is found and therefore not considering all extreme points of the
set df2(x).

The number of quadratic programming problems to be solved is especially small when
the point x is a local minimizer which is not a global one. In this case all extreme points of
the set df2(x) of the form (0, w) are excluded from consideration because 0n+1 ∈ L0w(x) for
all (0, w) ∈ df2(x). This means that finding the global descent directions at local minimizers
is easier than at any other points.

Proposition 7.3. Suppose that a point x ∈ Rn is not a global minimizer of the function f .
Then there exist (θ̄, w̄) ∈ df2(x) and y ∈ Rn such that

max
(µ,u)∈Lθ̄w̄(x)

{µ+ 〈u, y − x〉} < 0 (7.4)

and f(y) < f(x).

Proof. It follows from (3.4) that for any y ∈ Rn

f(y)− f(x) = max
(η,v)∈df1(x)

{η + 〈v, y − x〉} − max
(θ,w)∈df2(x)

{θ + 〈w, y − x〉} .

Since x is not a global minimizer there exists y ∈ Rn such that f(y) < f(x) and therefore

max
(η,v)∈df1(x)

{η + 〈v, y − x〉} − max
(θ,w)∈df2(x)

{θ + 〈w, y − x〉} < 0.

Let
(θ̄, w̄) = argmax

(θ,w)∈df2(x)

{θ + 〈w, y − x〉} .

Then (7.4) is satisfied for (θ̄, w̄) ∈ df2(x) and in this case f(y) < f(x).

Remark 7.4. Proposition 7.3 implies that if a point x ∈ Rn is not a global minimizer then

min
y∈Rn

min
(θ,w)∈df2(x)

max
(µ,u)∈Lθw(x)

{µ+ 〈u, y − x〉} < 0

or
min

(θ,w)∈df2(x)
min
y∈Rn

max
(µ,u)∈Lθw(x)

{µ+ 〈u, y − x〉} < 0.

This means that in order to find a global descent direction at a point x one can minimize a
convex piecewise linear function

ψ(y) = max
(µ,u)∈Lθw(x)

{µ+ 〈u, y − x〉}

for each (θ, w) ∈ df2(x).
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Corollary 7.5. Let x be a local minimizer of the function f which is not a global one. Then
for any (0, w) ∈ df2(x) and y ∈ Rn

max
(µ,u)∈L0w(x)

{µ+ 〈u, y − x〉} ≥ 0.

Proof. Since x is a local minimizer then the necessary condition for a minimum implies that
0n+1 ∈ L0w(x) for all (0, w) ∈ df2(x) which completes the proof.

Remark 7.6. Corollary 7.5 implies that if the point x is a local minimizer but not a global
one all elements of the set df2(x) of the form (0, w) should be excluded when the global
descent direction is computed at this point. Therefore the complexity of computation of
descent directions at local minimizers can be reduced significantly.

Based on results from Propositions 7.1 and 7.3 we propose the following algorithm for
solving Problem (3.1). Let ε > 0 be a sufficiently small number.

Algorithm 7.7. Global minimization of DP functions.

Step 1. Select a starting point x1 ∈ Rn, set x̄ = x1 and k := 1.

Step 2. Starting from the point x̄ apply either Algorithm 6.3 or Algorithm 6.12 to find
the local minimizer of Problem (3.1). As a result these algorithms either compute a local
minimizer ȳ or find that Problem (3.1) is unbounded from below.

Step 3. (The first stopping criterion). If the function f is unbounded from below, then stop.
Problem (3.1) has no solution. Otherwise set xk+1 = ȳ and k := k + 1.

Step 4. (The second stopping criterion). If 0n+1 ∈ Lθw(x
k) for all (θ, w) ∈ df2(x

k), then
stop. xk is a global minimizer.

Step 5. (The third stopping criterion). If 0n ∈ {v : (η, v) ∈ L+
θw(x

k)} for any (θ, w) ∈
df2(x

k), then stop. xk is a global minimizer.

Step 6. Compute (θ, w) ∈ df2(x
k) and z̄k = (µ̄k, ū

k) ∈ Lθw(x
k) such that

‖z̄k‖ = min
z∈Lθw(xk)

‖z‖ > 0.

Step 7. If µ̄k < 0, then set αk = −1/µ̄k and go to Step 9. If µ̄k = 0 or µ̄k > 0, 0 < θ < ‖z̄k‖
and ūk 6= 0n, then stop. The objective function f is unbounded from below and Problem
(3.1) has no solution. Otherwise go to Step 8.

Step 8. Compute (θ, w) ∈ df(xk) and y ∈ Rn such that

max
(µ,u)∈Lθw(x)

{
µ+ 〈u, y − xk〉

}
< 0.

Set αk := 1, ūk := xk − y.

Step 9. Compute x̄ = xk − αkū
k and go to Step 2.

Remark 7.8. Some explanation on Algorithm 7.7 follows. The algorithm starts with the
choice of the starting point which can be any point from Rn (Step 1). Then starting from
this point we apply one of the local search algorithms (either Algorithm 6.3 or Algorithm
6.12) and find a local minimizer (Step 2). Steps 3-5 contain three stopping criteria. Both
Algorithm 6.3 or Algorithm 6.12 may find that the objective function is not bounded from
below. In this case the problem has no solution and the algorithm terminates. This is done
in Step 3. In Step 4 we check the sufficient condition (5.1) for global optimality. If it is
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satisfied then the global minimizer has been found and the algorithm terminates. Finally, in
Step 5 we check the necessary and sufficient condition from Proposition 5.5. If it is satisfied
then the global minimizer has been found and the algorithm terminates.

Note that the sufficient condition (5.1) is easier to check than the necessary and sufficient
condition from Proposition 5.5. If none of these stopping criteria are satisfied then in Steps
6-8 we compute the global search direction −ūk and step length αk > 0. In Steps 6 and 7
we apply results from Proposition 7.1 to do so. In these two steps we either compute the
global search direction and the step length or find that Problem (3.1) has no solution. If
the conditions in Step 7 are not satisfied then in Step 8 we apply results from Proposition
7.3 to find the global search direction and the step length. Again we have to point out that
Steps 6 and 7 are easier to implement than Step 8. We follow the global descent in Step 9
and find a better starting point x̄ for the local search.

The proof of the following theorem about the complexity of Algorithm 7.7 is straightfor-
ward.

Theorem 7.9. Algorithm 7.7 terminates after finite number K > 0 of iterations and either
determines that the objective function is unbounded from below or finds the global solution
to Problem (3.1). Here

K ≤ 2lNp if one applies Algorithm 6.3 in Step 2

and

K ≤ N

[
f(x)− f∗

ε
+ 1

]
if one applies Algorithm 6.12 in Step 2.

Here f∗ is the value of the global minimum and N is the number of local minimizers of
Problem (3.1).

8 Illustrative Examples

In this section we present three examples to demonstrate how Algorithm 7.7 works.

Example 8.1. Consider the following DP function

f(x) = min{1, |x|} = max{1 + x, 1− x} −max{1, x,−x}, x ∈ R.

Here f1(x) = max{1+x, 1−x}, f2(x) = max{1, x,−x}. The global minimizer of this function
is x = 0 with f(0) = 0. Any point y ∈ R belonging to the set U = {x ∈ R : x ≤ −1 or x ≥ 1}
is a local minimizer with f(y) = 1. Take the point x = 2, which is a local minimizer. We
have

df1(2) = conv{(−4,−1), (0, 1)} and df2(2) = − conv{(−4,−1), (0, 1), (−1, 0)}.

Since 02 ∈ −(0, 1) + df1(2) the necessary and sufficient condition for local optimality is
satisfied. It is obvious that 02 ∈ −(−4,−1) + df2(2), however 02 6∈ −(−1, 0) + df1(2). We
define L(−1,0)(2) = conv{(−3,−1), (1, 1)} and then compute

‖(−0.2, 0.4)‖ = min
{
‖(µ, u)‖ : (µ, u) ∈ L(−1,0)(2)

}
.

In order to find the global descent direction we apply Proposition 7.1. Since µ̄ = −0.2 it
follows from Proposition 7.1, 1) that the descent direction is ū = −0.4 and α = −1/µ̄ = 5.
Then we find x̄ = x + αū = 0 which is the global minimizer of the function. This example
demonstrates that Proposition 7.1 can be applied to find global descent directions from local
minimizers.
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Example 8.2. Consider the following DP function

f(x) = max{0, 2(x− 1)} −max{−x, x}, x ∈ R.

Here f1(x) = max{0, 2(x − 1)}, f2(x) = −max{−x, x}. This function is unbounded from
below that is f∗ = −∞. The point x = 1 is a local minimizer of f and f(1) = −1. Take the
point x = 2. We have f(2) = 0 and

df1(2) = conv{(−2, 0), (0, 2)}, df2(2) = conv{(0,−1), (4, 1)}.

Compute

L(0,−1)(2) = conv {(−2,−1), (0, 1)} and L(4,1)(2) = conv {(2, 1), (4, 3)} .

Since 02 6∈ L(0,−1)(2) it follows that x = 2 is not a local minimizer. It is easy to see that

‖(−1/2, 1/2)‖ = min{‖(µ, u)‖ : (µ, u) ∈ L(0,−1)(2)}.

Then µ̄ = −1/2 and applying Algorithm 6.12 we find the step length α = −1/µ̄ = 2 and
descent direction ū = −1/2 in Step 2 of Algorithm 7.7. We have x̄ = x + αū = 1 which is
the local minimizer. For x̄ = 1 we have

df1(1) = conv{(0, 0), (0, 2)} and df2(1) = conv{(0,−1), (2, 1)}.

Then we compute

L(−1,0)(1) = conv{(0,−1), (0, 1)} and L(2,1)(1) = conv{(2, 1), (2, 3)}.

Since x = 1 is a local minimizer the necessary condition for a minimum implies that 02 ∈
L(−1,0)(1). It is easy to see that 02 6∈ L(2,1)(1) and

‖z̄‖ ≡ ‖(2, 1)‖ = min
(µ,u)∈L(2,1)(1)

‖(µ, u)‖.

In this case µ̄ > 0, ū = −1 6= 0 and θ = 2 < ‖z̄‖. Therefore we can apply Proposition 7.1,
3) which implies that the function f is unbounded from below.

Example 8.3. Consider the following function [16]:

f(x) = f1(x)− f2(x)

where

f1(x) = max{−x1 − 2x2 + 4, 2x1 + 4x2 − 5}+max{−2x1 − x2 + 21, 6x1 + 3x2 − 15},

f2(x) = max{−x1 − 2x2 + 4, 2x1 + 4x2 − 5,−2x1 − x2 + 21, 6x1 + 3x2 − 15}.

To minimize it we take x0 = (4, 4) as a starting point. We have f(x0) = 19 and

df1(x
0) = conv{(−39,−3,−3), (−27, 5, 1), (−12, 0, 3), (0, 8, 7)},

df2(x
0) = conv{(29, 1, 2), (2,−2,−4), (12, 2, 1), (0,−6,−3)}.

In order to find the local descent direction we consider the set:

L(0,−6,−3)(x
0) = conv{(−39,−9,−6), (−27,−1,−2), (−12,−6, 0), (0, 2, 4)}.
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Then

‖(−1.71429, 0.85714, 3.42857)‖ = min{‖(µ, u)‖ : (µ, u) ∈ L(0,−6,−3)(x
0)}.

Since µ̄ < 0 the step length α > 0 is defined as α = −1/µ̄. The descent direction is
ū = (−0.85714,−3.42857). Applying Algorithm 6.12 we have x1 = x0 + αū = (3.5, 2) and
f(x1) = 12. Next we compute:

df1(x
1) = conv{(−13.5,−3,−3), (−13.5, 5, 1), (0, 0, 3), (0, 8, 7)},

df2(x
1) = conv{(15.5, 1, 2), (2,−2,−4), (0, 2, 1), (0,−6,−3)}.

We have

L(0,2,1)(x
1) = conv{(−13.5,−1,−2), (−13.5, 7, 2), (0, 2, 4), (0, 10, 8)},

L(0,−6,−3)(x
1) = conv{(−13.5,−9,−6), (−13.5,−1,−2), (0,−6, 0), (0, 2, 4)}.

For the set L(0,−6,−3)(x
1) we get

‖(−0.73469,−1.10204, 2.20408)‖ = min{‖(µ, u)‖ : (µ, u) ∈ L(0,−6,−3)(x
1)}.

Therefore µ̄ = −0.73469 < 0 and the descent direction ū = (1.10204,−2.20408). Applying
Algorithm 6.12 we have x̄2 = (5,−1) and f(x̄2) = 1. For the set L(0,2,1)(x

1) we get

‖(−1.78218, 1.60396, 3.20792)‖ = min{‖(µ, u)‖ : (µ, u) ∈ L(0,2,1)(x
1)}.

Then µ̄ = −1.78218 < 0 and the descent direction ū = (−1.60396,−3.20792). Applying
Algorithm 6.12 we have x̃2 = (2.6, 0.2) and f(x̃2) = 1. We take x2 = x̄2. Then

df1(x
2) = conv{(0,−3,−3), (0, 5, 1), (0, 0, 3), (0, 8, 7)},

df2(x
2) = conv{(11, 1, 2), (11,−2,−4), (0, 2, 1), (0,−6,−3)}

and

L(0,2,1)(x
2) = conv{(0,−1,−2), (0, 7, 2), (0, 2, 4), (0, 10, 8)},

L(0,−6,−3)(x
2) = conv{(0,−9,−6), (0,−1,−2), (0,−6, 0), (0, 2, 4)}.

02 ∈ L(0,2,1)(x
2) and 02 ∈ L(0,−6,−3)(x

2). This means that x2 is a local minimizer of the
function f . In order to check global optimality conditions at the point x2 we consider the
following two sets:

L(11,1,2)(x
2) = conv{(11,−2,−1), (11, 6, 3), (11, 1, 5), (11, 9, 9)},

L(11,−2,−4)(x
2) = conv{(11,−5,−7), (11, 3,−3), (11,−2,−1), (11, 6, 3)}.

Here (11, 0, 0) ∈ L(11,1,2)(x
2) and (11, 0, 0) ∈ L(11,−2,−4)(x

2). Since η = 0 for any (η, v) ∈
df1(x

2) it follows from the necessary and sufficient condition for global optimality of Propo-
sition 5.5 that the point x2 is a global minimizer of f .
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9 Conclusions

In this paper, we develop new algorithms to both locally and globally minimize continuous
piecewise linear functions represented as a difference of polyhedral functions. We present
two algorithms to locally minimize DP functions. One of these algorithms is based on the
subdifferential of the component functions, it is exact and finite convergent. The second
algorithm is based on the concept of codifferential, it converges to approximate local mini-
mizers in a finite number of iterations. We then develop an algorithm to globally minimize
DP functions. This algorithm consists of two main steps. In the first, we apply one of the
local search algorithms to find local minimizers of DP functions and then apply an algorithm
based on the codifferential to escape from those local minimizers and find better starting
points for local search algorithms. We prove that this algorithm is finite convergent.
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