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proposed embedding hierarchical representations of symbolic data (e.g., text, graph data)
into the Poincaré ball model or Poincaré half-plane model of hyperbolic space.

Riemannian stochastic optimization algorithms are used for solving these optimization
problems on a Riemannian manifold. Various such algorithms have been developed by ex-
tending gradient-based optimization algorithms in Euclidean space. Bonnabel proposed Rie-
mannian stochastic gradient descent (RSGD), which is the most basic Riemannian stochastic
optimization algorithm [3]. Sato, Kasai, and Mishra proposed the Riemannian stochastic
variance reduced gradient (RSVRG) algorithm with a retraction and vector transport [25].
Moreover, they gave a convergence analysis of RSVRG under certain reasonable assump-
tions. In general, the RSVRG algorithm converges to an optimal solution faster than RSGD;
however, the full gradient needs to be calculated every few steps with RSVRG.

Adaptive optimization algorithms such as AdaGrad [6], Adadelta [28], Adam [16], and
AMSGrad [21] are widely used for training deep neural networks in Euclidean space. How-
ever, they cannot be easily extended to general Riemannian manifolds due to the absence of
a canonical coordinate system. Special measures must therefore be considered when extend-
ing them to Riemannian manifolds. Kasai, Jawanpuria, and Mishra proposed generalizing
adaptive stochastic gradient algorithms to Riemannian matrix manifolds by adapting the
row and column subspaces of the gradients [15]. Bécigneul and Ganea proposed the Rie-
mannian AMSGrad (RAMSGrad) algorithm [2]; however, RAMSGrad is defined only on the
product of Riemannian manifolds by regarding each component of the product Riemannian
manifold as a coordinate component in Euclidean space.

Bonnabel presented two types of RSGD convergence analysis on a Hadamard manifold
[3], but both of them are based on unrealistic assumptions, and use only diminishing step
sizes. The first type is based on the assumption that the sequence generated by RSGD
is contained in a compact set of a Hadamard manifold M . Since it is difficult to predict
the complete sequence, this assumption should be removed. The second type is based on an
unrealistic assumption regarding the step-size selection. Specifically, a function (v : M → R)
determined by a Riemannian optimization problem must be computed, and a diminishing
step size (αk divided by v(xk), where xk is a k-th approximation defined by RSGD) must
be used. This is not a realistic assumption because the step size is determined by the
Riemannian optimization problem to be solved and must be adapted manually.

In this paper, we improve the RSGD convergence analysis on a Hadamard manifold in
accordance with the points mentioned above and present four types of convergence analysis
for constant and diminishing step sizes (see Section 3). First, we consider the case in which
an objective function f : M → R is L-smooth (Definition 3.1). Theorems 3.4 and 3.5 are for
convergence analyses with the L-smooth assumption for constant and diminishing step sizes,
respectively. Since calculating the constant L in the definition of L-smooth is often difficult,
we also present convergence analyses for the function f : M → R not L-smooth. Theorems
3.8 and 3.9 support convergence analyses without the L-smooth assumption for constant and
diminishing step sizes, respectively. Table 1 summarizes the existing and proposed analyses.

Moreover, we show that the number of steps K needed for an ε-approximation of RSGD
is convex and monotone decreasing with respect to the batch size b. We also show that
stochastic first-order oracle (SFO) complexity [24] (defined as Kb) is convex with respect
to b and that there exists a critical batch size such that SFO complexity is minimized (see
Section 3.4).

Our contributions are summarized as follows. First, we provide improved theoretical
analyses of RSGD. The convergence analyses with constant learning rates are novel contri-
butions. The convergence analyses with diminishing learning rates are with and without the
L-smooth assumption. Second, we analyze how the number of steps and the SFO complexity
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vary with the choice of batch size. Finally, we perform numerical experiments to support
our theoretical findings.

This paper is organized as follows. Section 2 reviews the fundamentals of Riemannian
geometry and Riemannian optimization. Section 3 presents four novel convergence analyses
of RSGD on a Hadamard manifold. Section 4 experimentally evaluates the performance of
RSGD by solving the Riemannian centroid problem on an SPD manifold for several batch
sizes and evaluates the relationship between the number of steps K and batch size b. Section
5 concludes the paper.

Table 1: Assumptions used in existing convergence analyses given by [3] and our novel
convergence analyses (Theorems 3.4–3.9). In all cases, M is a Hadamard manifold, and
f : M → R is a smooth function.

Theorem
Assumptions

Step size αk Function f Sequence xk

[3]
Diminishing –

(xk)
∞
k=0 ⊂ C

Theorem 2 C: compact set
[3] Determined by

– –
Theorem 3 problem

Theorem 3.4
Constant

L-smooth –
depending on L

Theorem 3.5
Diminishing

L-smooth –
not depending on L

Theorem 3.8 Constant –
(xk)

∞
k=0 ⊂ C

C: bounded set

Theorem 3.9 Diminishing –
(xk)

∞
k=0 ⊂ C

C: bounded set

2 Mathematical Preliminaries

Let R be the set of real numbers and N be the set of natural numbers (i.e., positive integers).
We denote [n] := {1, 2, · · · , n} (n ∈ N), N0 := N ∪ {0} and R++ := {x ∈ R : x > 0}. Let
M be a Riemannian manifold and TxM be a tangent space at x ∈ M . An exponential
map at x ∈ M , written as Expx : TxM → M , is a mapping from TxM to M with the
requirement that a vector ξx ∈ TxM is mapped to the point y := Expx(ξx) ∈ M such that
there exists a geodesic c : [0, 1] → M that satisfies c(0) = x, c(1) = y, and ċ(0) = ξx,
where ċ is the derivative of c [23]. Let ⟨·, ·⟩x be a Riemannian metric at x ∈ M and ∥·∥x
be the norm defined by the Riemann metric at x ∈ M . Let d(·, ·) : M ×M → R++ ∪ {0}
be the distance function on M . A complete simply connected Riemannian manifold of a
nonpositive sectional curvature is called a Hadamard manifold.

2.1 Riemannian stochastic optimization problem

We define a Riemannian stochastic optimization problem and two standard conditions.
Given a data point z in data domain Z, a Riemannian stochastic optimization problem
provides a smooth loss function, ℓ(·; z) : M → R. We minimize the expected loss f : M → R
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defined by

f(x) := Ez∼D [ℓ(x; z)] = E [ℓξ(x)] , (2.1)

where D is a probability distribution over Z, ξ denotes a random variable with distribution
function P , and E[·] denotes the expectation taken with respect to ξ. We assume that an
SFO exists such that, for a given x ∈M , it returns the stochastic gradient Gξ(x) of function
f defined by (2.1), where a random variable ξ is supported on Ξ independently of x. The
standard conditions (C1) and (C2) are assumed in the discussion hereafter:

C1 Let (xk)
∞
k=0 ⊂M be the sequence generated by the algorithm. For each iteration k,

Eξk [Gξk(xk)] = grad f(xk),

where ξ0, ξ1, · · · are independent samples, and the random variable ξk is independent
of (xi)

k
i=0. There exists a nonnegative constant σ2 such that

Eξk

[
∥Gξk(xk)− grad f(xk)∥2xk

]
≤ σ2.

C2 For each iteration k ∈ N0, the optimizer samples a batch Bk of size b independently
of k and estimates the full gradient grad f as

grad fBk
(xk) :=

1

b

∑
i∈[b]

Gξk,i
(xk),

where ξk,i is a random variable generated by the i-th sampling in the k-th iteration.

Eξk [·|xk] represents the conditional expectation with respect to the random variable ξk
given xk. We denote Eξk [·] and Eξk [·|xk] simply as E[·] and E[·|xk], respectively. From (C1)
and (C2), we immediately have

E [grad fBk
(xk) | xk] = grad f(xk), (2.2)

E
[
∥grad fBk

(xk)− grad f(xk)∥2xk

∣∣∣ xk

]
≤ σ2

b
. (2.3)

Bonnabel [3] proposed RSGD for solving Riemannian optimization problems. In this
paper, we use RSGD with a variable batch, as shown in Algorithm 1.

Algorithm 1 Riemannian stochastic gradient descent [3].

Require: Initial point x0 ∈M , step sizes (αk)
∞
k=0 ⊂ R++, batch size b ∈ N.

Ensure: Sequence (xk)
∞
k=0 ⊂M .

1: k ← 0.
2: loop
3: ηk := − grad fBk

(xk) = −b−1
∑

i∈[b] Gξk,i
(xk).

4: xk+1 := Expxk
(αkηk).

5: k ← k + 1.
6: end loop
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2.2 Useful Lemma

The following lemma plays an important role in our discussion of the convergence of Rie-
mannian stochastic gradient descent on a Hadamard manifold in Section 3.

Lemma 2.1. Suppose that (C1) and (C2) and M define a Riemannian manifold and that
f : M → R is a smooth function on M . Then, the sequence (xk)

∞
k=0 ⊂ M generated by

Algorithm 1 satisfies

E
[
∥grad fBk

(xk)∥2xk

∣∣∣ xk

]
≤ σ2

b
+ ∥grad f(xk)∥2xk

for all k ∈ N0.

Proof. Using (2.2) and (2.3), we obtain

E
[
∥grad fBk

(xk)∥2xk

∣∣∣ xk

]
= E

[
∥grad fBk

(xk)− grad f(xk) + grad f(xk)∥2xk

∣∣∣ xk

]
= E

[
∥grad fBk

(xk)− grad f(xk)∥2xk

∣∣∣ xk

]
+ 2E

[
⟨grad fBk

(xk)− grad f(xk), grad f(xk)⟩xk

∣∣ xk

]
+ E

[
∥grad f(xk)∥2xk

∣∣∣ xk

]
≤ σ2

b
+ ∥grad f(xk)∥2xk

for all k ∈ N0.

Lemma 2.2 is useful in showing convergence of the limit inferior.

Lemma 2.2. The sequences (αk)
∞
k=0 ⊂ R++ and (βk)

∞
k=0 ⊂ R such that

+∞∑
k=0

αk = +∞,

+∞∑
k=0

αkβk < +∞

satisfy

lim inf
k→+∞

βk ≤ 0.

Zhang and Sra developed the following lemma [30].

Lemma 2.3. Let a, b, and c be the side lengths of a geodesic triangle in a Riemannian
manifold with a sectional curvature lower bounded by κ, and let θ be the angle between sides
b and c. Then,

a2 ≤ ζ(κ, c)b2 + c2 − 2bc cos(θ),

where ζ : R× R++ → R++ is defined as

ζ(κ, c) :=

√
|κ|c

tanh(
√
|κ| c)

.
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3 Convergence of Riemannian Stochastic Gradient Descent
on Hadamard Manifold

In this section, we describe four types of convergence analysis of Algorithm 1 on a Hadamard
manifold.

3.1 Convergence of Riemannian Stochastic Gradient Descent
with L-smoothness

First, we describe the convergence of Algorithm 1 when L-smoothness is assumed. We start
by defining the L-smoothness of a smooth function [11,30].

Definition 3.1 (smoothness). LetM be a Hadamard manifold and f : M → R be a smooth
function on M . For a positive number L ∈ R++, f is said to be geodesically L-smooth if for
any x, y ∈M , ∥∥grad f(x)− Γx

y(grad f(y))
∥∥
x
≤ L

∥∥Exp−1
x (y)

∥∥
x
,

where Γx
y : TyM → TxM is the parallel transport from y to x.

We state the following lemma giving the necessary conditions for L-smooth [30]. Lemma
3.2 plays an important role in convergence analysis with L-smoothness.

Lemma 3.2. Let M be a Hadamard manifold and f : M → R be a smooth function on M .
If f is geodesically L-smooth, it follows that for all x, y ∈M ,

f(y) ≤ f(x) +
〈
grad f(x),Exp−1

x (y)
〉
x
+

L

2

∥∥Exp−1
x (y)

∥∥
x
.

To show the main result of this section (i.e., Theorems 3.4 and 3.5), we present the
following lemma, which plays a central role.

Lemma 3.3. Let M be a Hadamard manifold and f : M → R be a smooth function. We
assume that f is geodesically L-smooth and bounded below by f⋆ ∈ R. Then, the sequence
(xk)

∞
k=0 ⊂M generated by Algorithm 1 satisfies

K−1∑
k=0

αk

(
1− Lαk

2

)
E
[
∥grad f(xk)∥2xk

]
≤ f(x0)− f⋆ +

Lσ2

2b

K−1∑
k=0

α2
k

for all K ∈ N.

Proof. From the L-smoothness of f and xk+1 = Expxk
(αkηk), we have

f(xk+1) ≤ f(xk)− αk ⟨grad f(xk), grad fBk
(xk)⟩xk

+
Lα2

k

2
∥grad fBk

(xk)∥2xk
(3.1)

for all k ∈ N0. From (2.2), we obtain

E
[
⟨grad f(xk), grad fBk

(xk)⟩xk

∣∣ xk

]
= ⟨grad f(xk),E [grad fBk

(xk) | xk]⟩xk

= ∥grad f(xk)∥2xk
(3.2)
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for all k ∈ N0. Hence, by taking E[·|xk] of both sides of (3.1), we obtain

E [f(xk+1) | xk] ≤ E [f(xk) | xk]− αkE
[
⟨grad f(xk), grad fBk

(xk)⟩xk

∣∣ xk

]
+

Lα2
k

2
E
[
∥grad fBk

(xk)∥2xk

∣∣∣ xk

]
≤ f(xk)− αk ∥grad f(xk)∥2 +

Lα2
k

2

(
σ2

b
+ ∥grad f(xk)∥2xk

)
= f(xk) +

(
Lαk

2
− 1

)
αk ∥grad f(xk)∥2xk

+
Lσ2α2

k

2b

for all k ∈ N0, where the second inequality comes from (3.2) and Lemma 2.1. Moreover, by
taking E[·] of both sides, we obtain

E [f(xk+1)] ≤ E [f(xk)] +

(
Lαk

2
− 1

)
αkE

[
∥grad f(xk)∥2xk

]
+

Lσ2α2
k

2b

for all k ∈ N0. By summing up the above inequalities from k = 0 to k = K − 1, we obtain

K−1∑
k=0

(
1− Lαk

2

)
αkE

[
∥grad f(xk)∥2xk

]
≤ f(x0)− E[f(xK)] +

Lσ2

2b

K−1∑
k=0

α2
k

≤ f(x0)− f⋆ +
Lσ2

2b

K−1∑
k=0

α2
k

for all K ∈ N. This completes the proof.

We can use Lemma 3.3 to conduct a convergence analysis for a constant step size under
the assumption of L-smoothness.

Theorem 3.4. Let M be a Hadamard manifold and f : M → R be a smooth function. We
assume that f is geodesically L-smooth and bounded below by f⋆ ∈ R. If a constant step size
αk := α (k ∈ N0) satisfies 0 < α < 2/L, the sequence (xk)

∞
k=0 ⊂M generated by Algorithm

1 satisfies,

1

K

K−1∑
k=0

E
[
∥grad f(xk)∥2xk

]
≤ C1

K
+

C2σ
2

b
, (3.3)

for some C1, C2 ∈ R++ and for all K ∈ N.
Proof. From Lemma 3.3, we have

K−1∑
k=0

α

(
1− Lα

2

)
E
[
∥grad f(xk)∥2xk

]
≤ f(x0)− f⋆ +

Lσ2

2b

K−1∑
k=0

α2

for all K ∈ N. Moreover, from 0 < α < 2/L, we have

0 <
Lα

2
< 1,

which implies that

1

K

K−1∑
k=0

E
[
∥grad f(xk)∥2xk

]
≤ 2(f(x0)− f⋆)

(2− Lα)α︸ ︷︷ ︸
C1

· 1
K

+
Lα

(2− Lα)︸ ︷︷ ︸
C2

·σ
2

b
,

for all K ∈ N. This completes the proof.
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Moreover, we can use Lemma 3.3 to conduct a convergence analysis with a diminishing
step size under the assumption of L-smoothness.

Theorem 3.5. Let M be a Hadamard manifold and f : M → R be a smooth function. We
assume that f is geodesically L-smooth and bounded below by f⋆ ∈ R and use a diminishing
step size (αk)

∞
k=0 ⊂ R++ that satisfies

+∞∑
k=0

αk = +∞,

+∞∑
k=0

α2
k < +∞. (3.4)

Then, the sequence (xk)
∞
k=0 ⊂M generated by Algorithm 1 satisfies

lim inf
k→+∞

E
[
∥grad f(xk)∥xk

]
= 0. (3.5)

If the diminishing step size (αk)
∞
k=0 ⊂ (0, 1) is monotonically decreasing, then for all K ∈ N,

1

K

K−1∑
k=0

E
[
∥grad f(xk)∥2xk

]
≤

(
C1 +

C2σ
2

b

K−1∑
k=0

α2
k

)
1

KαK−1
(3.6)

for some C1, C2 ∈ R++.

Proof. From (3.4), we obtain

+∞∑
k=0

αk

(
1− Lαk

2

)
= +∞. (3.7)

In addition, from (3.4), (αk)
∞
k=0 satisfies αk → 0 (k → +∞). This implies that there exists a

natural number k0 ∈ N0 such that, for all k ∈ N0, if k ≥ k0, then 0 < αk < 2/L. Therefore,
we obtain

0 < 1− Lαk

2
< 1,

which, together with Lemma 3.3, means that

K−1∑
k=k0

αk

(
1− Lαk

2

)
E
[
∥grad f(xk)∥2xk

]

≤ f(x0)− f⋆ +
Lσ2

2b

K−1∑
k=0

α2
k −

k0−1∑
k=0

αk

(
1− Lαk

2

)
E
[
∥grad f(xk)∥2xk

]
(3.8)

for all K ≥ k0 + 1. This implies

+∞∑
k=0

αk

(
1− Lαk

2

)
E
[
∥grad f(xk)∥2xk

]
< +∞. (3.9)

By applying Lemma 2.2 with (3.7) and (3.9), we have

lim inf
k→+∞

E
[
∥grad f(xk)∥2xk

]
≤ 0,

In this case, (αk)
∞
k=0 ⊂ (0, 1) need not satisfy the conditions (3.4).
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which, together with the convexity of ∥·∥xk
, means that

0 ≤ lim inf
k→+∞

(
E
[
∥grad f(xk)∥xk

])2 ≤ lim inf
k→+∞

E
[
∥grad f(xk)∥2xk

]
≤ 0.

This implies

lim inf
k→+∞

E
[
∥grad f(xk)∥xk

]
= 0

and ensures that (3.5) follows from the above discussion.
Furthermore, we show that (3.6) follows from the above discussion. From the mono-

tonicity of (αk)
∞
k=0 ⊂ (0, 1) and (3.8), we have

αK−1

(
1− Lαk0

2

) K−1∑
k=k0

E
[
∥grad f(xk)∥2xk

]

≤ f(x0)− f⋆ +
Lσ2

2b

K−1∑
k=0

α2
k +

k0−1∑
k=0

αk

(
Lαk

2
− 1

)
E
[
∥grad f(xk)∥2xk

]
≤ f(x0)− f⋆ +

Lσ2

2b

K−1∑
k=0

α2
k +

k0−1∑
k=0

Lα2
kE
[
∥grad f(xk)∥2xk

]
for all K ∈ N. Hence, for all K ∈ N,

K−1∑
k=k0

E
[
∥grad f(xk)∥2xk

]
≤

2
(
f(x0)− f⋆ +

∑k0−1
k=0 Lα2

kE
[
∥grad f(xk)∥2xk

])
(2− Lαk0

)αK−1

+
Lσ2

b(2− Lαk0)αK−1

K−1∑
k=0

α2
k,

which, together with αk ∈ (0, 1) (k ∈ N0), gives us

1

K

K−1∑
k=k0

E
[
∥grad f(xk)∥2xk

]

≤

2
(
f(x0)− f⋆ +

∑k0−1
k=0 Lα2

kE
[
∥grad f(xk)∥2xk

])
2− Lαk0

+

k0−1∑
k=0

E
[
∥grad f(xk)∥2xk

]︸ ︷︷ ︸
C1

1

KαK−1

+
L

2− Lαk0︸ ︷︷ ︸
C2

· σ2

bKαK−1

K−1∑
k=0

α2
k

for all K ∈ N. This completes the proof.

3.2 Convergence of Riemannian Stochastic Gradient Descent
without L-smoothness

Next, we describe the convergence of Algorithm 1 without the assumption of L-smoothness.
We start by reconsidering the definition of convergence of Algorithm 1. Németh [18] devel-
oped the variational inequality problem on a Hadamard manifold. Motivated by the varia-
tional inequality problem in Euclidean space [12,13], we undertook the following proposition.
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Proposition 3.6. Let M be a Riemannian manifold and f : M → R be a smooth function.
Then, a stationary point x ∈M of f satisfies

grad f(x) = 0⇔ ∀y ∈ Vx,
〈
grad f(x),−Exp−1

x (y)
〉
x
≤ 0,

where Vx is a neighborhood of x ∈M such that Exp−1
x : Vx → TxM is defined.

Proof. If x ∈M satisfies grad f(x) = 0, we have〈
grad f(x),−Exp−1

x (y)
〉
x
=
〈
0x,−Exp−1

x (y)
〉
x
≤ 0

for all y ∈ Vx. We assume that x ∈M satisfies
〈
grad f(x),−Exp−1

x (y)
〉
x
≤ 0 for all y ∈M .

Let y := Expx(−ε grad f(x)), for which we choose a sufficiently small ε > 0 such that y ∈ Vx.
We then have〈

grad f(x),−Exp−1
x (y)

〉
x
=
〈
grad f(x),−Exp−1

x (Expx(−ε grad f(x)))
〉
x

= ⟨grad f(x), ε grad f(x)⟩x
= ε ∥grad f(x)∥2x ≤ 0.

This implies that grad f(x) = 0 and completes the proof.

Note that, for a Hadamard manifold, Vx = M . From Proposition 3.6, we use the perfor-
mance measure of the sequence (xk)

∞
k=0,

Vk(x) := E
[〈
grad f(xk),−Exp−1

xk
(x)
〉
xk

]
,

for all x ∈M . In practice, we can use Vk(x) for showing the convergence of Algorithm 1 in
Theorems 3.8 and 3.9. To show the main result of this section (i.e., Theorems 3.8 and 3.9),
we need the following lemma.

Lemma 3.7. Let M be a Hadamard manifold with a sectional curvature lower bounded by
κ and let f : M → R be a smooth function. Then, the sequence (xk)

∞
k=0 ⊂ M generated by

Algorithm 1 satisfies for all K ∈ N and x ∈M ,

K−1∑
k=0

αkVk(x) ≤
ζ (κ,D(x))

2

K−1∑
k=0

α2
k

(
σ2

b
+ E

[
∥grad f(xk)∥2xk

])
+

1

2

(
E
[∥∥Exp−1

x0
(x)
∥∥2
x0

]
− E

[∥∥Exp−1
xK

(x)
∥∥2
xK

])
,

where ζ : R++ × R++ → R++ is defined as in Lemma 2.3.

Proof. For arbitrary x ∈ M , we consider a geodesic triangle consisting of three points, xk,
xk+1, and x. Let the length of each side be a, b, and c, respectively, such that

a := d(xk+1, x)

b := d(xk, xk+1) = αk ∥grad fBk
(xk)∥xk

c := d(xk, x).

(3.10)

Let θ ∈ R be the angle between sides b and c. It then follows that

cos(θ) :=

〈
Exp−1

xk
(xk+1),Exp

−1
xk

(x)
〉
xk∥∥Exp−1

xk
(xk+1)

∥∥
xk

∥∥Exp−1
xk

(x)
∥∥
xk

.
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From Lemma 2.3 with (3.10), we have∥∥∥Exp−1
xk+1

(x)
∥∥∥2
xk+1

≤ α2
kζ (κ,D(x)) ∥grad fBk

(xk)∥2xk

− 2αk

〈
grad fBk

(xk),−Exp−1
xk

(x)
〉
xk

+
∥∥Exp−1

xk
(x)
∥∥2
xk

.

By taking E[·|xk] of both sides of this inequality, we obtain

E
[∥∥∥Exp−1

xk+1
(x)
∥∥∥2
xk+1

∣∣∣∣ xk

]
≤ α2

kζ (κ,D(x))E
[
∥grad fBk

(xk)∥2xk

∣∣∣ xk

]
− 2αkE

[〈
grad fBk

(xk),−Exp−1
xk

(x)
〉
xk

∣∣∣ xk

]
+ E

[∥∥Exp−1
xk

(x)
∥∥2
xk

∣∣∣ xk

]
≤ α2

kζ (κ,D(x))

(
σ2

b
+ ∥grad f(xk)∥2xk

)
− 2αk

〈
grad f(xk),−Exp−1

xk
(x)
〉
xk

+
∥∥Exp−1

xk
(x)
∥∥2
xk

for all k ∈ N0, where the second inequality comes from Lemma 2.1. Furthermore, by taking
E[·] of both sides, we obtain

E
[∥∥∥Exp−1

xk+1
(x)
∥∥∥2
xk+1

]
≤ α2

kζ (κ,D(x))

(
σ2

b
+ E

[
∥grad f(xk)∥2xk

])
− 2αkVk(x) + E

[∥∥Exp−1
xk

(x)
∥∥2
xk

]
(3.11)

for all k ∈ N0. Hence,

αkVk(x) ≤
1

2

(
E
[∥∥Exp−1

xk
(x)
∥∥2
xk

]
− E

[∥∥∥Exp−1
xk+1

(x)
∥∥∥2
xk+1

])
+

α2
kζ (κ,D(x))

2

(
σ2

b
+ E

[
∥grad f(xk)∥2xk

])
for all k ∈ N0. By summing up the above inequalities from k = 0 to k = K − 1 (K ∈ N), we
obtain

K−1∑
k=0

αkVk(x) ≤
ζ (κ,D(x))

2

K−1∑
k=0

α2
k

(
σ2

b
+ E

[
∥grad f(xk)∥2xk

])
+

1

2

(
E
[∥∥Exp−1

x0
(x)
∥∥2
x0

]
− E

[∥∥Exp−1
xK

(x)
∥∥2
xK

])
for all K ∈ N. This completes the proof.

Here, we make the following assumptions:

Assumption 3.1. Let M be a Hadamard manifold, f : M → R be a smooth function, and
(xk)

∞
k=0 ⊂M be a sequence generated by Algorithm 1.
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(A1) We assume that there exists a positive number G ∈ R++ such that

E
[
∥grad f(xk)∥xk

]
≤ G < +∞

for all k ∈ N0.

(A2) We define D : M → R as

D(x) := sup {E [d(xk, x)] ∈ R++ : k ∈ N0}

and assume that D(x) < +∞ for all x ∈M .

We can use Lemma 3.7 to conduct convergence analysis for a constant step size.

Theorem 3.8. Suppose Assumption 3.1, and let M be a Hadamard manifold with a sec-
tional curvature lower bounded by κ and f : M → R be a smooth function. If we use a
constant step size αk := α > 0 (k ∈ N0), the sequence (xk)

∞
k=0 ⊂M generated by Algorithm

1 satisfies

lim inf
k→+∞

Vk(x) ≤
(
σ2

b
+G2

)
αC (3.12)

for some C ∈ R++. Moreover, for all K ∈ N and x ∈M ,

1

K

K−1∑
k=0

Vk(x) ≤
(
σ2

b
+G2

)
αC1 +

C2

K
(3.13)

for some C1, C2 ∈ R++.

Proof. If grad f(xk0) = 0 for some k0 ∈ N0, then (3.12) follows. Thus, it is sufficient to
prove (3.12) only when grad f(xk) ̸= 0 for all k ∈ N0. Suppose that there exists a positive
number ε ∈ R++ such that

lim inf
k→+∞

Vk(x) >
ζ (κ,D(x))

2

(
σ2

b
+G2

)
α+ ε (3.14)

for all x ∈ M . Furthermore, from the definition of the limit inferior, there exists k0 ∈ N0

such that, for all k ≥ k0,

lim inf
k→+∞

Vk(x)−
ε

2
< Vk(x),

from which, together with (3.14), we obtain

Vk(x) >
ζ (κ,D(x))

2

(
σ2

b
+G2

)
α+

ε

2
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for all k ≥ k0. Here, from (3.11) and αk = α (k ∈ N0), then for all k ≥ k0,

E
[∥∥∥Exp−1

xk+1
(x)
∥∥∥2
xk+1

]
≤ α2ζ (κ,D(x))

(
σ2

b
+ E

[
∥grad f(xk)∥2xk

])
− 2αVk(x) + E

[∥∥Exp−1
xk

(x)
∥∥2
xk

]
,

< E
[∥∥Exp−1

xk
(x)
∥∥2
xk

]
,

+ α2ζ (κ,D(x))

(
σ2

b
+G2

)
− 2α

{
ζ (κ,D(x))

2

(
σ2

b
+G2

)
α+

ε

2

}
= E

[∥∥Exp−1
xk

(x)
∥∥2
xk

]
− αε.

Hence,

0 ≤ E
[∥∥∥Exp−1

xk+1
(x)
∥∥∥2
xk+1

]
< E

[∥∥∥Exp−1
xk0

(x)
∥∥∥2
xk0

]
− αε(k + 1− k0). (3.15)

When k diverges to +∞, the right side of (3.15) diverges to −∞. By contradiction, we have

lim inf
k→+∞

Vk(x) ≤
ζ (κ,D(x))

2︸ ︷︷ ︸
C

(
σ2

b
+G2

)
α.

Next, we show the upper bound of (1/K)
∑K−1

k=0 Vk(x) such as expressed by (3.13). From
Lemma 3.7 with αk = α (k ∈ N0), we have that, for all K ∈ N,

K−1∑
k=0

αVk(x) ≤
ζ (κ,D(x))

2

K−1∑
k=0

α2

(
σ2

b
+ E

[
∥grad f(xk)∥2xk

])
+

1

2

(
E
[∥∥Exp−1

x0
(x)
∥∥2
x0

]
− E

[∥∥Exp−1
xK

(x)
∥∥2
xK

])
≤ ζ (κ,D(x))

2

(
σ2

b
+G2

)
Kα2 +

D(x)

2
,

which implies

1

K

K−1∑
k=0

Vk(x) ≤
ζ (κ,D(x))

2︸ ︷︷ ︸
C1

(
σ2

b
+G2

)
α+

D(x)

2α︸ ︷︷ ︸
C2

· 1
K

for all K ∈ N. This completes the proof.

Now let us use Lemma 3.7 to conduct a convergence analysis for a diminishing step size.

Theorem 3.9. Suppose Assumption 3.1, and let M be a Hadamard manifold with sectional
curvature lower bounded by κ and f : M → R be a smooth function. If we use a diminishing
step size (αk)

∞
k=0 ⊂ R++ such as (3.4), the sequence (xk)

∞
k=0 ⊂ M generated by Algorithm

1 satisfies

lim inf
k→+∞

Vk(x) ≤ 0. (3.16)

If the diminishing step size (αk)
∞
k=0 ⊂ R++ is monotone decreasing, then for all K ∈ N and

In this case, (αk)
∞
k=0 ⊂ R++ need not satisfy the conditions (3.4).
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x ∈M ,

1

K

K−1∑
k=0

Vk(x) ≤
(
σ2

b
+G2

)
C1

K

K−1∑
k=0

αk +
C2

αK−1K
(3.17)

for some C1, C2 ∈ R++.

Proof. Using Lemma 3.7, for all K ∈ N and x ∈M , we obtain

K−1∑
k=0

αkVk(x) ≤
ζ (κ,D(x))

2

(
σ2

b
+G2

)K−1∑
k=0

α2
k +

1

2
E
[∥∥Exp−1

x0
(x)
∥∥2
x0

]
,

from which, together with
∑+∞

k=0 αk < +∞, we obtain

K−1∑
k=0

αkVk(x) < +∞ (3.18)

for all K ∈ N. From Lemma 2.2 with
∑+∞

k=0 αk = +∞ and (3.18), we have that

lim inf
k→+∞

Vk(x) ≤ 0.

(3.16) follows immediately.

Next, we show an upper bound of (1/K)
∑K−1

k=0 Vk(x) such as (3.17). From Lemma 3.7,
we obtain

1

K

K−1∑
k=0

Vk(x) ≤
ζ (κ,D(x))

2K

(
σ2

b
+G2

)K−1∑
k=0

αk

+
1

2K

K−1∑
k=0

E
[∥∥Exp−1

xk
(x)
∥∥2
xk

]
− E

[∥∥∥Exp−1
xk+1

(x)
∥∥∥2
xk+1

]
αk︸ ︷︷ ︸

XK(x)

for all K ∈ N. Hence,

XK(x) :=
E
[∥∥Exp−1

x0
(x)
∥∥2
x0

]
α0

+

K−1∑
k=1

E
[∥∥Exp−1

xk
(x)
∥∥2
xk

]
αk

−
E
[∥∥Exp−1

xk
(x)
∥∥2
xk

]
αk−1


−

E
[∥∥Exp−1

xK
(x)
∥∥2
xK

]
αK−1

≤ D(x)

α0
+D(x)

K−1∑
k=0

(
1

αk
− 1

αk−1

)
=

D(x)

αK−1
,

where the second inequality comes from the monotonicity of (αk)
∞
k=0. Therefore, it follows

that

1

K

K−1∑
k=0

Vk(x) ≤
ζ (κ,D(x))

2︸ ︷︷ ︸
C1

(
σ2

b
+G2

)
1

K

K−1∑
k=0

αk +
D(x)

2︸ ︷︷ ︸
C2

· 1

αK−1K
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for all K ∈ N and x ∈M . This completes the proof.

3.3 Convergence Rate of Practical Step Sizes

Here, we calculate the convergence rate for practical step sizes.
First, we consider the constant step size defined as αk := α ∈ R++. From Theorems 3.4

and 3.8, we immediately obtain the convergence rate for the constant step size. Hence, the
convergence rates with and without L-smoothness are

O
(

1

K
+

σ2

b

)
, and O

(
1

K

)
+

(
σ2

b
+G2

)
α,

respectively.
Next, we consider the diminishing step size defined as αk := 1/

√
k + 1. Substituting

αk := 1/
√
k + 1 for the right side of (3.6), we obtain(

C1 +
C2σ

2

b

K−1∑
k=0

α2
k

)
1

KαK−1
≤
(
C1 +

C2σ
2

b
(1 + logK)

)
1√
K

,

where

K−1∑
k=0

1

K + 1
≤ 1 +

∫ K

1

dt

t
= 1 + logK.

Substituting αk := 1/
√
k + 1 for the right side of (3.17), we obtain(

σ2

b
+G2

)
C1

K

K−1∑
k=0

αk +
C2

αK−1K
≤ C1

(
σ2

b
+G2

)(
2√
K
− 1

K

)
+

C2√
K

, (3.19)

where

1

K

K−1∑
k=0

1√
K + 1

≤ 1

K

(
1 +

∫ K

1

dt√
t

)
=

2√
K
− 1

K
.

Therefore, the convergence rates of αk := 1/
√
k + 1 with and without L-smoothness are

O
(
logK√

K

)
, and O

((
1 +

σ2

b

)
1√
K

)
,

respectively.
Finally, we consider the diminishing step size defined as αk := αγpk , where α, γ ∈ (0, 1),

n, T ∈ N and

pk := min

{
max

{
m ∈ N0 : m ≤ k

T

}
, n

}
.

This step size is explicitly represented as

α, α, · · · , α︸ ︷︷ ︸
T

, αγ, αγ, · · · , αγ︸ ︷︷ ︸
T

, αγ2, αγ2, · · · , αγ2︸ ︷︷ ︸
T

,

· · · , αγn−1, αγn−1, · · · , αγn−1︸ ︷︷ ︸
T

, αγn, αγn, · · · ,
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which means that 0 < αγn ≤ αk ≤ α for all k ∈ N0. Substituting αk := αγpk for the right
side of (3.6), we obtain(

C1 +
C2σ

2

b

K−1∑
k=0

α2
k

)
1

KαK−1
≤ C1

αγnK
+

C2ασ
2

γnb
.

Substituting αk := αγpk for the right side of (3.17), we obtain(
σ2

b
+G2

)
C1

K

K−1∑
k=0

αk +
C2

αK−1K
≤
(
σ2

b
+G2

)
C1α+

C2

αγnK
. (3.20)

Therefore, the convergence rates of αk := αγpk with and without L-smoothness are

O
(

1

K
+

σ2

b

)
, and O

(
1

K

)
+O

((
σ2

b
+G2

)
α

)
,

respectively.
We summarize the convergence rates of practical step sizes in Table 2 It shows that

increasing the batch size improves RSGD performance and that the constant α in learning
rates should be sufficiently small.

Table 2: Convergence rates of three practical step sizes with and without assumption of
L-smoothness (γ ∈ (0, 1), G,α > 0, σ2 ≥ 0, and b is batch size).

Step size αk
Convergence rate

with L-smooth without L-smooth

αk = α O
(

1

K
+

σ2

b

)
O
(

1

K

)
+

(
σ2

b
+G2

)
α

(Constant)

αk = 1/
√
k + 1 O

(
logK√

K

)
O
((

1 +
σ2

b

)
1√
K

)
(Diminishing)

αk = αγk

O
(

1

K
+

σ2

b

)
O
(

1

K

)
+O

((
σ2

b
+G2

)
α

)
(Diminishing)

3.4 Existence of a Critical Batch Size

Motivated by the work of Zhang and others [12,26,29], we will use the SFO complexity as the
performance measure for a Riemannian stochastic optimizer. In particular, we will define
SFO complexity as Kb, where K is the number of steps needed for solving the problem, and
b is the batch size used in Algorithm 1. Furthermore, we will let b⋆ be the critical batch size
for which Kb is minimized.

Our analyses (i.e., Theorems 3.8 and 3.9) give the number of steps K needed to satisfy
an ε-approximation, which is defined as

1

K

K−1∑
k=0

Vk(x) ≤ ε.
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Theorem 3.10. Suppose Assumption 3.1 is true, and let M be a Hadamard manifold with
sectional curvature lower bounded by κ and f : M → R be a smooth function. Then, the
numbers of steps K needed to satisfy an ε-approximation for αk = α, αk = 1/

√
k + 1, and

αk = αγpk are respectively

K =
C2b

εb− (σ2 +G2b)αC1
, b >

(σ2 +G2b)αC1

ε
,

K =

(
2C1σ

2 + (2C1G
2 + C2)b

εb

)2

K =
C2bα

−1γ−n

εb− (σ2 +G2b)αC1
, b >

(σ2 +G2b)αC1

ε
.

Here, K is convex and monotone decreasing with respect to b. SFO complexity Kb is convex
with respect to b, and there exist critical batch sizes b⋆ for αk = α, αk = 1/

√
k + 1, and

αk = αγpk

b⋆ =
2C2σ

2α

ε−G2αC1
,

b⋆ = exp

{(
2C1G

2 + C2

2C1σ2

)2
}
,

b⋆ =
2C2σ

2α

ε−G2αC1
.

Proof. First, let us consider the case of αk = α. From the upper bound of (3.13), we have(
σ2

b
+G2

)
αC1 +

C2

K
= ε,

which implies

K =
C2b

εb− (σ2 +G2b)αC1
, b >

(σ2 +G2b)αC1

ε
.

Since

dK

db
= − C1C2ασ

2

{εb− (σ2 +G2b)αC1}2
≤ 0,

d2K

db2
=

2C1C2ασ
2(ε−G2αC1)

{εb− (σ2 +G2b)αC1}3
≥ 0,

where the second inequality comes from ε = (σ2/b + G2)αC1 + C2/K > G2αC1, and K
is convex and monotone decreasing with respect to the batch size b. Moreover, the SFO
complexity, defined as

Kb :=
C2b

2

εb− (σ2 +G2b)αC1
,

is convex with respect to b since

d2(Kb)

db2
=

2C2
1C2α

2σ4

{εb− (σ2 +G2b)αC1}3
≥ 0.
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As well, from

d(Kb)

db
=

C2b(εb− bG2αC1 − 2σ2αC1)

{εb− (σ2 +G2b)αC1}2
,

d(Kb)/db = 0 if and only if b = 2C2σ
2α/(ε − G2αC1). Therefore, SFO complexity Kb is

minimized at

b⋆ :=
2C2σ

2α

ε−G2αC1
,

which is the critical batch size.
Next, let us consider the case of αk = 1/

√
k + 1. From (3.19), we have

2C1√
K

(
σ2

b
+G2

)
+

C2√
K

= ε,

which implies

K =

(
2C1σ

2 + (2C1G
2 + C2)b

εb

)2

.

Moreover, from

d(Kb)

db
= −

(
2C1σ

2

ε

)2

log b+

(
2C1G

2 + C2

ε

)2

,

d(Kb)/db = 0 if and only if log b = {(2C1G
2 + C2)/(2C1σ

2)}2. Therefore, SFO complexity
Kb is minimized at

b⋆ := exp

{(
2C1G

2 + C2

2C1σ2

)2
}
,

which again is the critical batch size.
Finally, let us consider the case of αk = αγpk . From (3.20), we have(

σ2

b
+G2

)
C1α+

C2

αγnK
= ε,

which implies

K =
1

αγn
· C2b

εb− (σ2 +G2b)αC1
, b >

(σ2 +G2b)αC1

ε
.

Since this shows that we can multiply the result of α = α by α−1γ−n > 0, the proof follows
immediately from the above discussion.

Table 3 shows the relationship between the number of steps K and batch size b for each
step size.

4 Numerical Experiments

The experiments were run on a MacBook Air (2020) laptop with a 1.8 GHz Intel Core i5
CPU, 8 GB 1600 MHz DDR3 memory, and the Monterey operating system (version 12.2).
The algorithms were written in Python 3.10.7 using the PyTorch 1.13.1 package and the Mat-
plotlib 3.6.2 package. The code is available at https://github.com/iiduka-researches/
rsgd-kylberg.git.
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Table 3: Relationship between number of steps K needed for ε-approximation and batch
size b (γ ∈ (0, 1), G,α,C1, C2, ε > 0, and σ2 ≥ 0).

Step size αk
Relationship Lower bound

between K and b of b

αk = α
K =

C2b

εb− (σ2 +G2b)αC1

(σ2 +G2b)αC1

ε(Constant)

αk = 1/
√
k + 1

K =

(
2C1σ

2 + (2C1G
2 + C2)b

εb

)2

–
(Diminishing)

αk = αγk

K =
C2bα

−1γ−n

εb− (σ2 +G2b)αC1

(σ2 +G2b)αC1

ε(Diminishing)

4.1 Geometry of Symmetric Positive Definite Manifold

The set of d× d SPD matrices

Sd++ := {P ∈ Rd×d : P⊤ = P, ∀x ∈ Rd − {0}, x⊤Px > 0}

endowed with the affine-invariant metric,

⟨XP , YP ⟩P := tr(X⊤
P P−1YPP

−1),

where P ∈ Sd++ and XP , YP ∈ TPSd++, is a d(d+1)/2 dimensional Hadamard manifold (i.e.,
sectional curvatures of Sd++ are less than or equal to zero). This Riemannian manifold is
called an “SPD manifold with an affine-invariant Riemannian metric” [7,9,20,25]. Criscitiello
and Boumal [5] showed that the sectional curvatures of Sd++ are at least −1/2.

The exponential map ExpP : TPSd++ → Sd++ at a point P ∈ Sd++ was computed using

ExpP (XP ) = P
1
2 exp

(
P− 1

2XPP
− 1

2

)
P

1
2 ,

where XP ∈ TPSd++ [7].

4.2 Riemannian centroid problem on SPD manifold

We considered the Riemannian centroid problem of a set of SPD matrices {Ai}ni=0, which is
frequently used in computer vision problems such as visual object categorization and pose
categorization [14]. The loss function can be expressed as

f(M) :=
1

N

N∑
i=0

∥∥∥log (A− 1
2

i MA
− 1

2
i

)∥∥∥2
F
,

where ∥·∥F is the Frobenius norm.
We took preprocessing steps similar to ones used elsewhere [10] and used the Kylberg

dataset [17], which contains 28 texture classes of different natural and human-made surfaces.
Each class has 160 unique samples imaged with and without rotation. The original images
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were scaled to 128 × 128 pixels and covariance descriptors were generated from 1024 4 × 4
non-overlapping pixel grids. The feature vector at each pixel was represented as

xu,v =

[
Iu,v,

∣∣∣∣∂I∂u
∣∣∣∣ , ∣∣∣∣∂I∂v

∣∣∣∣ , ∣∣∣∣∂2I

∂u2

∣∣∣∣ , ∣∣∣∣∂2I

∂v2

∣∣∣∣] ,
where Iu,v is the intensity value.

We evaluated Algorithm 1 for several batch sizes by solving the Riemannian centroid
problem on an SPD manifold on the Kylberg dataset. We used three learning rates: αk = α
(constant), αk = 1/

√
k + 1 (diminishing1), and αk = αγpk (diminishing2). We used α =

5×10−4, γ = 0.5, and n = 10. We defined T as the number of steps until all the elements in
the data set had been used once. Numerical experiments had been performed for all batch
sizes between 24 and 29.

4.3 Numerical Results

Figures 1 and 2 plot the number of steps K needed by Algorithm 1 to achieve f(xk) < ε
versus the batch size b. The results are for ε = 1/2 and ε = 1/4, respectively. It can be
seen that the number of steps K is monotone decreasing and convex with respect to the
batch size, which is in support of the discussion in Section 3.4. Figures 3 and 4 plot SFO
complexity Kb for the number of steps K needed to satisfy f(xk) < ε versus the batch size.
Tresults are for ε = 1/2 and ε = 1/4, respectively. It is clear that the SFO complexity is
convex with respect to b, in support of the discussion in Section 3.4.

Figure 3 shows that if ε = 1/2, the critical batch sizes for the constant, diminishing1,
and diminishing2 learning rates are 247, 205, and 247, respectively. Figure 4 shows that
if ε = 1/4, the critical batch sizes are 28, 233 and 28, respectively. These results support
Theorem 3.10, which implies that the constant and diminishing2 learning rates have the same
critical batch size and that it decreases as ε is increased. As indicated by Theorem 3.10, the
critical batch size of diminishing1 for ε = 1/2 is almost the same as that of diminishing1 for
ε = 1/4.

Table 4 shows the number of calculations of the objective function before an ε-approximation
for each step size (i.e., b = 24, 25, 26, 27, 28, 29). In particular, its shows the ε-approximation
for two cases ε = 1/2 and ε = 1/4. Overall, it shows that our theory and numerical experi-
ments are consistent.

5 Conclusion

Our novel convergence analyses of Riemannian stochastic gradient descent on a Hadamard
manifold, which incorporate the concept of mini-batch learning, overcome several problems
with the previous analyses. We analyzed the relationship between batch size and the number
of steps and demonstrated the existence of a critical batch size. In practice, the number
of steps for ε-approximation is monotone decreasing and convex with respect to batch size.
Moreover, stochastic first-order oracle complexity is convex with respect to batch size, and
there exists a critical batch size that minimizes this complexity. Numerical experiments in
which we solved the Riemannian centroid problem on a symmetric positive definite manifold
were performed using several batch sizes to verify the results of theoretical analysis. With a
constant step size, as ε decreases, the critical batch size increases. With a diminishing step
size (αk = αγk), the critical batch size matches that for the constant step size. Therefore,
the experiments give numerical evidence in support of the theoretical analysis.
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Figure 1: Number of steps K of Algorithm 1 versus batch size b when ε = 1/2.

Figure 2: Number of steps K of Algorithm 1 versus batch size b when ε = 1/4.
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Figure 3: SFO complexity Kb of Algorithm 1 versus batch size b when ε = 1/2.

Figure 4: SFO complexity Kb of Algorithm 1 versus batch size b when ε = 1/4.
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Table 4: Number of calculations of the objective function value before an ε-approximation
is achieved for different batch sizes and ε.

constant diminshing1 diminishing2

ε = 1/2

b = 24 152 - 152
b = 25 76 388 76
b = 26 37 99 37
b = 27 18 26 18
b = 28 9 11 9
b = 29 8 23 10

ε = 1/4

b = 24 279 - 304
b = 25 139 948 151
b = 26 70 235 75
b = 27 35 58 37
b = 28 14 22 18
b = 29 12 32 58
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