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(locally) weakly convex functions. More specifically, we assume that the following convex-
weakly convex (CwC) decompositions are available:

f(x) = f1(x)− f2(x) and c(x) = c1(x)− c2(x), (1.1b)

with f1, c1 : O → R convex and f2, c2 : O → R weakly convex functions on some neighbour-
hood of each x ∈ O. We adopt the more general definition of weakly convex functions (see
Definition 2.2 below) given in [50, Def. 4.2] so that we can exploit the equivalence between
the families of locally weakly convex and Lower-C2 functions [33, Thm. 1.3, Cor. 1.3] to
highlight the breadth of our approach. In particular, we have in mind the following settings
for f2 (as well as for c2):

i) f2(x) = ϕ(x) is a (possibly nonsmooth) convex function;

ii) f2(x) = −h(x) with h having Lipschitz continuous gradient;

iii) f2(x) = ϕ(x)− h(x), with ϕ and h as given above;

iv) f2(x) is the optimal value of maxt∈T F (t, x), with T a (possibly nonconvex) compact
set and F of class C2;

v) f2(x) = ϕ(G(x)), with ϕ : Rm → R convex and Lipschitz and G : Rn → Rm a smooth
mapping with Lipschitz Jacobian.

Analogous settings for c2, and their combinations with the ones for f2, are covered by our
analysis (see Section 2 below for details).

Weakly convex functions enjoy favorable properties in so much as that they can be recast
as Difference-of-Convex (DC) functions [10]. Hence, problem (1.1) can, in theory, be recast
as a DC-constrained DC program, a setting that proves practical if explicit DC decompo-
sitions are available; see for instance [18, 16, 34, 24, 8, 42, 41, 35] and references therein.
However, if no DC decomposition is known for f or c, the DC machinery is unsuitable, and
the methods proposed in these references are not applicable. This is already the case for the
more straightforward items ii) and iii) above if the underlying Lipschitz constant is unknown
and no upper bound is readily available. The situation becomes even more complicated for
items iv) and v): in general, there are no formulae, rules, or practical insights to obtain a
DC decomposition for f2 in these cases (see Example 1.1 below for a particular case of iv).
A strategy to handle problem (1.1) via DC programming algorithms is to replace functions
fi and ci (i = 1, 2) with fi(x) +

µ
2 ∥x∥

2 and ci(x) +
µ
2 ∥x∥

2 for a large parameter µ > 0
estimating upper bounds on the unknown weakly-convex moduli µf and µc of f2 and c2
(see Proposition 2.4), hoping that f2(x) +

µ
2 ∥x∥

2 and c2(x) +
µ
2 ∥x∥

2 are convex on X. As,
in general, there is no reliable way to assert the convexity of these latter functions, DC
programming algorithms applied in this context must be understood as heuristics. Remark-
ably, the work [40] exploits such a strategy by combining a dynamic rule to update µ with
a nonconvexity test so that convergence is achieved, but only in a probabilistic sense. Dif-
ferently, for a class of nonconvex two-stage stochastic problems, the authors of [20] exploit
an implicitly convex-concave structure of the objective function and propose an algorithm
based on the so-called partial Moreau envelope that disregards DC decompositions at the
price of nonnegligible computational costs.

In contrast to the above references, this work investigates a bundle method approach for
tackling (1.1), which neither requires explicit DC decompositions of the involved functions
(in particular, bounds on the weakly-convex moduli µf and µc need not be known), nor

It is worth noting that in many practical problems, mainly those from data science, an upper bound on
such a constant can be computed.
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relies on (often costly) Moreau envelopes. For the method to work, it suffices to dispose of
a difference of convex and weakly convex (CwC) decomposition of the involved functions,
as in (1.1b). Compared to DC, the latter structure appears more naturally in applications
(see [15, § 7.5]) and has yet to be exploited to design optimality conditions and numerical
algorithms. This work aims to fill this gap.

Our approach broadens and enhances the method proposed in [42] for dealing with DC-
constrained DC-problems in two ways. First, the availability of DC decompositions is no
longer needed, which makes our approach applicable to a larger scope of problems. Second,
it is ensured to compute critical points for the original problem without any additional
assumption on the second components: f2 and c2 need not be continuously differentiable
as assumed in [42, Thm. 2]. In addition, it has a lower cost per iteration (the master
subproblem has fewer constraints than the one of [42]). Similarly to [42], our approach
builds upon a problem reformulation via improvement function, a well-known and successful
strategy in the nonsmooth optimization literature [31, 1, 24]. However, due to the above
modifications, the convergence analysis of our extension of the method proposed in [42]
must be done anew. Furthermore, a new criticality definition for the reformulated problem
links directly with (necessary) optimality conditions for the original problem (1.1), which
makes it a major ingredient for these enhancements. Such a criticality concept is introduced
and analyzed in Section 3 below, where we also extend the alternative characterization of
Bouligand stationarity given in [27] to our CwC setting. Before that, we motivate this work
with the following example that presents a class of problems (of great practical appeal)
where the CwC decomposition arises upon applying a well-known interior-penalty strategy.
An example of a real-life (chance-constrained optimal power flow) problem fitting our CwC
structure without any approximation can be found in the Ph.D. thesis [15, § 7.5].

Example 1.1 (Nonconvex two-stage programming). Let Ξ := {ξ1, . . . , ξS} be a set of
scenarios and πs > 0 the probability of occurrence of event ξs, s = 1, . . . , S. Consider the
following nonconvex two-stage program min

x∈X
f1(x) +

S∑
s=1

πsQ(x; ξs)

s.t. c1(x)− c2(x) ≤ 0

with Q(x; ξ) :=

{
min
y∈Y

q(x, y; ξ)

s.t. ψi(x, y; ξ) ≤ 0, i = 1, . . . ,m.

(1.2)
Assume that:

- f1, c1, c2 : Rn → R are convex (possibly nonsmooth) functions;

- X ⊂ Rn, Y ⊂ Rn2 are two (non-empty) convex and bounded polytopes;

- q, ψi : Rn × Rn2 × Ξ → R, i = 1, . . . ,m, possess the following characteristics: q(·, ·, ξ)
and ψi(·, ·, ξ) are twice-continuously differentiable for every ξ ∈ Ξ fixed and, moreover,
q(x, ·, ξ) and ψi(x, ·, ξ) are convex for every x and ξ fixed;

- the constraints in the subproblem Q(x; ξ) satisfy the Slater condition: for every x ∈ X
and ξ ∈ Ξ, there exists y◦(x; ξ) ∈ Y such ψi(x, y

◦(x; ξ), ξ) < 0, i = 1, . . . ,m.

As presented in [42], the DC constraint c1(x)− c2(x) ≤ 0 above is particularly useful in this
stochastic programming setting to model chance constraints.

Under the above assumptions, evaluating the recourse function Q(x; ξ) amounts to solv-
ing a well-defined convex optimization problem on variable y. Although this essential prop-
erty is present, the recourse function itself fails to be convex on variable x (but Q(·; ξ) is
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continuous as a result of [2, Prop. 4.4]). Furthermore, without further assumptions, comput-
ing a (generalized) subgradient of Q(·; ξ) at x as well as asserting additional properties about
this function are challenging tasks. This could for instance be done if the constraints satisfy
a further Aubin or Lipschitz like property upon exploiting [25, Chapter 4]. Still though, most
likely, at best we would be dealing with subdifferentials inclusions - and concrete algorithms
to handle such general “marginal functions” would be unavailable.

A possible manner to curtail these difficulties is to approximate the recourse function
with a more tractable one. As explained in [3], with the help of the log-barrier penalty
function and a penalization parameter ε > 0, we may approximate Q(x; ξ) with

Qε(x; ξ) := min
y∈Y

q(x, y; ξ)− 1

ε

m∑
i=1

log(−ψi(x, y; ξ)). (1.3)

Given the above assumptions, it is well known that Qε(x; ξ) ↓ Q(x; ξ) as ε ↓ 0 (e.g., [3, §
2.2] and [2, p. 266]), and thus the model{

min
x∈X

f1(x)− f2(x)
s.t. c1(x)− c2(x) ≤ 0

with f2(x) :=

S∑
s=1

πs[−Qε(x; ξs)]

is an accurate approximation of (1.2) when ε > 0 is small enough. Furthermore, as
−Qε(x; ξ) = maxy∈Y

1
ε

∑m
i=1 log(−ψi(x, y; ξ)) − q(x, y; ξ) is a weakly convex function (c.f.

item iv) above), this model fits the structure (1.1). We highlight that Qε(x; ξ) is generally
a nonsmooth (nonconvex) function; hence, the above problem is challenging. To our knowl-
edge, no practical and mathematically sound optimization algorithm could tackle this class
of problems before this work. Indeed, [23] requires f2 to be smooth, [20] assumes q(·, ·, ξ)
and ψi(·, ·, ξ) to be concave-convex functions, and [3] requires another degree of approxima-
tion by adding a Tikhonov regularization to (1.3) to force Qε(x; ξ) be smooth. In all these
references, function c2 is absent. Being nonsmooth, we mention in passing that a (gener-

alized) subgradient of f2 at x can be computed and seen to be
∑S

s=1 πsg(y(x; ξ
s)), where

g(·) := ∇x[
1
ε

∑m
i=1 log(−ψi(x, ·; ξs)) − q(x, ·; ξs)] is the gradient w.r.t. x of the objective

function of (1.3) multiplied by −1, and y(x; ξ) is an arbitrary optimal solution of (1.3) (see
Proposition 2.1 and [30, Thm. 7.3]). □

Our approach is still applicable in more general case, where the probability vector π in
the above example is a function (of class C2) of the first-stage variable x, i.e., πs(x), s =
1, . . . , S. Hence, this work’s class of optimization problems includes the challenging family
of stochastic programming recourse models with decision-dependent uncertainty considered
(e.g. [12] and [20]).

The remainder of this manuscript is organized as follows. Section 2 recalls essential defini-
tions, key elements, and well-known concepts from variational analysis. Necessary optimality
conditions for problem (1.1) are presented in Section 3 as well as the problem reformulation
via an improvement function. Once the link between the reformulated and the original prob-
lem is established in the same section, Section 4 focuses on an improvement-function-based
bundle method for problem (1.1). Section 5 presents the method’s convergence analysis to
critical points, and finally, Section 6 illustrates the practical performance of our approach on
some nonconvex stochastic optimization problems, including a real-life (chance-constrained
optimal power flow) problem from [15, 36], and a compressed sensing problem.

Notation The following notation is employed throughout the text. For a real number a, we
denote by [a]+ the value max{a, 0}. For any points x, y ∈ Rn, ⟨x, y⟩ stands for the Euclidean
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inner product, and ∥ · ∥ for the associated norm, i.e., ∥x∥ =
√
⟨x, x⟩. For a convex set X,

NX(x) stands for its normal cone at the point x, i.e., the set {y : ⟨y, z − x⟩ ⩽ 0 for all z ∈
X} if x ∈ X and the empty set otherwise. The Bouligand tangent cone to a (possibly
nonconvex) set W ⊂ Rn at a point w ∈W is the set TW (w) of all tangent directions in the
following sense: d ∈ TW (w) if there exist a sequence of vectors {wk} ⊂ W converging to w
and a sequence of positive scalars tk → 0 such that d = limk→∞(wk −w)/tk. The indicator
function of X ⊂ Rn is defined as iX(x) = 0 if x ∈ X and iX(x) = +∞ otherwise. The
convex hull of a set X is convX and the relative interior is denoted by riX. The domain
of a function φ : Rn → (−∞,+∞] is represented by Dom(φ) = {x ∈ Rn : φ(x) < +∞}.
NotationO stands for an open convex set of the Euclidean space Rn and, given the definitions
of f and c, we have that O ⊂ Dom(f) and O ⊂ Dom(c). The component functions of f
and c are f1, f2, and c1, c2 respectively: f1 and c1 are convex, whereas f2 and c2 are weakly
convex on some neighbourhood of every x ∈ O. Finally, f∗ stands for the Legendre-Fenchel
transform of a function f : Rn → (−∞,+∞].

2 Definition and Prerequisites

This section starts by recalling the concept of (generalized) directional derivatives and sub-
differentials. Basic subdifferential calculus is summarized in Proposition 2.1 below, followed
by the definitions of weakly convex and lower-C2 functions. The section closes with Propo-
sition 2.4 asserting that the definition of (locally) weakly convex function can be globally
extended to the whole convex and compact set X.

A function f : O → R is said to be locally Lipschitz continuous if for each x′ ∈ O there
is a neighbourhood Vx′ ⊂ O of x′ such that, for some Lx′ ≥ 0,

|f(x)− f(y)| ≤ Lx′∥x− y∥ ∀ x, y ∈ Vx′ .

The function f is said to be Lipschitz continuous on O if Lx′ = L can be taken independent
of x′ ∈ O, and Vx′ in the above inequality is replaced with O.

Directional derivatives and subdifferentials. Let ϕ : O → R be a convex function.
Then ϕ is locally Lipschitz continuous and, for each x ∈ O, the directional derivative

ϕ′(x; d) := lim
τ↓0

ϕ(x+ τd)− ϕ(x)
τ

exists (and is finite) in every direction d ∈ Rn [26, Prop. 2.81 and Cor. 2.82]. Such a deriva-
tive can be represented by ϕ′(x; d) = maxs∈∂ϕ(x)⟨s, d⟩, where ∂ϕ(x) is the subdifferential of
ϕ at point x:

∂ϕ(x) := {s ∈ Rn : ϕ(y) ≥ ϕ(x) + ⟨s, y − x⟩ ∀ y ∈ Rn} . (2.1)

The elements of ∂ϕ(x) are referred to as the subgradients of ϕ at x. The approximate
subdifferential is defined, for ϵ ≥ 0, by

∂ϵϕ(x) := {s ∈ Rn : ϕ(y) ≥ ϕ(x) + ⟨s, y − x⟩ − ϵ ∀ y ∈ Rn} .

Let f : O → R be a locally Lipschitz continuous function. Then the generalized direc-
tional derivative defined by

f◦(x; d) := lim sup
x′ → x, τ ↓ 0

f(x′ + τd)− f(x′)

τ
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is finite for all x ∈ O in every direction d ∈ Rn [4, Prop. 2.1.1(a)]. Such a mathematical
concept permits us to define the Clarke subdifferential of f at x ∈ O,

∂Cf(x) := {g ∈ Rn : ⟨g, d⟩ ≤ f◦(x; d) for all d ∈ Rn}, (2.2)

which is a nonempty, convex, and compact subset of Rn [4, Prop. 2.1.2(a)] satisfying
f◦(x; d) = maxg∈∂Cf(x)⟨g, d⟩. The elements of ∂Cf(x) are referred to as generalized (or Clarke)
subgradients, as they are the usual subgradients, i.e., ∂Cf = ∂f, when f is convex [4, Prop.
2.2.7]. Furthermore, when f is continuously differentiable, ∂Cf(x) reduces to the singleton
{∇f(x)}. An alternative representation, in finite dimensions, of ∂Cf(x) is (see [4, Thm.
2.5.1])

∂Cf(x) := conv
{
lim
ι→∞

∇f(xι), xι → x, f differentiable at xι

}
.

A fundamental result, often evoked in this work, is the following one [4, Prop. 2.1.2]:
the mapping ∂Cf is locally bounded in the interior of Dom(f) := {x ∈ Rn : f(x) <∞}. As a
result, the image ∂Cf(X) of every bounded set X ⊂ O (⊂ Dom(f)) is bounded in Rn. Useful
calculus rules of subdifferentials are listed in Proposition 2.1 below and rely on the concept
of regularity.

A locally Lipschitz continuous function f : O → R is subdifferentially regular (or simply
regular) at x ∈ O if for every d ∈ Rn the ordinary directional derivative at x exists and
coincides with the generalized one:

f ′(x; d) = f◦(x; d) ∀ d ∈ Rn.

It holds that smooth functions, as well as convex ones, are regular at every point in the
interior of their domains. Moreover, a finite linear combination (by nonnegative scalars) of
regular functions at x is regular [4, Prop. 2.3.6].

Proposition 2.1. Let ft : O → R, t = 1, 2, . . . ,m, be locally Lipschitz functions and x ∈ O
an arbitrary point. Then

i) ∂C[
∑m

t=1 atft](x) ⊂
∑m

t=1 at∂
Cft(x) for all a ∈ Rm, and equality holds if

- all but one of ft are smooth [4, Prop. 2.3.3 and Cor. 2];

- or if every ft is regular at x and a ∈ Rm
+ [4, Cor. 3];

ii) ∂Cf(x) ⊂ conv{∂Cft(x) : t ∈ I(x)}, for f(x) = maxt=1,...,m ft(x) and I(x) :=
argmaxt=1,...,m ft(x), and equality holds and f is regular if every ft is regular at x, [4,
Prop. 2.3.12].

The last item can be strengthened when more structure is present, such as in the case of
weakly convex functions (see Eq. (2.3) below).

Weakly convex functions: definition and main properties

Definition 2.2 (Def. 4.2 [50]). A function f : O → R is said to be (locally) weakly convex
on O if, on some neighbourhood Vx′ ⊂ O of each x′ ∈ O, there exists µx′ ≥ 0 such that, for
all µ ≥ µx′

ϕ(x) := f(x) +
µ

2
∥x∥2 is finite and convex on Vx′ .

Furthermore, f is said to be weakly convex in the global sense on O if the above property
holds for Vx′ = O and µx′ = µ̄ ≥ 0 regardless of x′ ∈ O. □
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Clearly, a convex function on O is weakly convex in the global sense: it suffices to take
µx′ = 0 and Vx′ = O for all x′ ∈ O. When f is a smooth function with a Lipschitz continuous
gradient, then f is weakly convex in the global sense with µ = L the Lipschitz constant of
∇f [6, Prop. 1]. Moreover, it follows from [7, Lemma 4.2] that the family of composite
functions given in item v) of the Introduction is also weakly convex in the global sense.

Definition 2.2 implies that weakly convex functions are locally DC : the decomposition
f(x) = ϕ(x)− µ

2 ∥x∥
2 holds on some neighbourhood of every x′ ∈ O. As a result, [29, Thm.

10.33] ensures that the class of weakly convex functions coincides with that of Lower-C2

functions; see also [33, Thm. 1.3, Cor. 1.3].

Definition 2.3 (Def. 10.29 [29]). (LC2 functions). A function f : O → R is said to be
Lower-C2 or LC2 on O if, on some neighbourhood Vx′ ⊂ O of each x′ ∈ O, there is a
representation

f(x) = max
t∈T

ft(x).

in which the functions ft are of differentiability class C2 on Vx′ and the index set T is a
compact space such that ft(x), ∇ft(x), and ∇2ft(x) depend continuously not just on x ∈ Vx′

but jointly on (t, x) ∈ T × Vx′ . □

In particular, if f is given by f(x) = max{f1(x), . . . , fm(x)} and all functions f1, ..., fm are
of class C2, then f is Lower-C2/weakly convex. Furthermore, the functions of item iv) are
also weakly convex, since they are Lower-C2 by definition.

An important property of LC2 /weakly convex functions is regularity [28, Thm. 1]: for
every x ∈ O, the equality f ′(x; d) = f◦(x; d) holds in every direction d ∈ Rn. Furthermore,
Theorem 7.3 in [30] gives the following characterization of the Clarke subdifferential of f at
x ∈ O: for I(x) = argmaxt∈T ft(x),

∂Cf(x) = conv {∇xft(x) : t ∈ I(x)} for all x ∈ O. (2.3)

When constrained to a compact convex set X ̸= ∅, we can say more about weakly convex
functions. Indeed, the local property in Definition 2.2 globally extends to the whole X, and
we have the following key result (whose proof can be found in the Appendix A).

Proposition 2.4. Let f : O → Rn be a weakly convex function, and X ⊂ O a compact and
convex set. Then there exist a real number µf ≥ 0 and an open convex set O′ satisfying
X ⊂ O′ ⊂ O such that, for all µ ≥ µf :

i) the function ϕ(x) := f(x) + µ
2 ∥x∥

2 is convex on O′ and ∂ϕ(x) = ∂Cf(x) + µx for all
x ∈ O′;

ii) for all sf ∈ ∂Cf(x) with x ∈ O′, the following inequality holds

f(y) ≥ f(x) + ⟨sf , y − x⟩ −
µ

2
∥y − x∥2 ∀y ∈ X. (2.4)

Concerning the setting of this work where X is compact, the appealing DC decomposi-
tion f(x) = ϕ(x)− µf

2 ∥x∥
2 is, unfortunately, unavailable: the threshold µf in Proposition 2.4

is in general unknown. This fact precludes the application of DC techniques to optimiza-
tion problems featuring general Lower-C2/weakly convex functions. Interested readers are
referred to [40] for a strategy that uses approximated DC decompositions based on item i)
of Proposition 2.4.
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3 Necessary Optimality Conditions and Problem Reformulation

Let f, c : O → R be given by (1.1b). We highlight that some properties of their components
can be transferred to these functions. (To ease the presentation, let us focus only on f(x) =
f1(x) − f2(x), as the same conclusions hold for c.) For instance, f is locally Lipschitz
continuous because f1 and f2 are so. Furthermore, as f1 is convex and f2 is (locally) weakly
convex, they are both directional differentiable and these properties extend to f as well: for
every x ∈ O, the directional derivative of f is finite in every direction d ∈ Rn as result of
the following relation:

f ′1(x; d)− f ′2(x; d) = lim
τ↓0

[f1(x+ τd)− f1(x)
τ

− f2(x+ τd)− f2(x)
τ

]
= f ′(x; d).

However, the important regularity condition of both f1 and f2 does not extend to f as a
mere fact that the latter is not a linear combination with nonnegative coefficients of the two
former functions (see Proposition 2.1.i)). Hence, we cannot expect to have equality in the
following inclusion

∂Cf(x) ⊂ ∂f1(x)− ∂Cf2(x)
unless one of the component functions is smooth at x. Such an inclusion impacts stationary
concepts as we will now discuss. Let us first consider the convexly-constrained problem

min
x∈X

f(x), with f(x) = f1(x)− f2(x). (3.1)

A point x̄ ∈ X is said to be directional (d)-stationary for this problem if f ′(x̄; d) ≥ 0
for all d ∈ TX(x̄). The following result generalizes [27, Prop. 5], where a specific case of
problem (3.1) with f2(x) = max{ψ1(x), . . . , ψm(x)} and convex ψ1, . . . , ψm is considered.

Proposition 3.1. A point x̄ ∈ X is d-stationary to problem (3.1) if, and only if,

x̄ ∈ argmin
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩] ∀ sf2 ∈ ∂Cf2(x̄).

Proof. Observe that TX(x̄) = cl {d ∈ Rn : d = t(x− x̄), x ∈ X, t ∈ R+} due to convexity of
X. Therefore, the definition of d-stationarity can be equivalently written as f ′(x̄;x− x̄) ≥ 0
for all x ∈ X. Recall that f2 is (locally) weakly convex and thus regular, which implies that
f ′2(x̄;x− x̄) = maxsf2∈∂Cf2(x̄)⟨sf2 , x− x̄⟩. Hence,

f ′(x̄;x− x̄) ≥ 0 ∀ x ∈ X
⇔f ′1(x̄;x− x̄)− f ′2(x̄;x− x̄) ≥ 0 ∀ x ∈ X

⇔f ′1(x̄;x− x̄)− ⟨sf2 , x− x̄⟩ ≥ 0 ∀ sf2 ∈ ∂Cf2(x̄), ∀ x ∈ X

⇔x̄ ∈ arg min
x∈X

f1(x)− ⟨sf2 , x− x̄⟩ ∀ sf2 ∈ ∂Cf2(x̄).

A point x̄ ∈ X is said to be Clarke-stationary of problem (3.1) if

0 ∈ ∂Cf(x̄) +NX(x̄). (3.2)

Furthermore, by following the lead of DC programming (see for instance [6, §3.1]), x̄ ∈ X is
said to be a critical point if

0 ∈ ∂f1(x̄)− ∂Cf2(x̄) +NX(x̄). (3.3)
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It is not difficult to see that this inclusion means that

x̄ ∈ argmin
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩] for some sf2 ∈ ∂Cf2(x̄).

Note that the concept of criticality is weaker than that of Clarke-stationarity, which in turn
is weaker than d-stationarity (because f ′(·; d) ≤ f◦(·; d) for all d ∈ Rn). However, criticality
and Clarke-stationarity coincide when at least one component function is smooth (in which
case f is regular). Furthermore, we can see from Proposition 3.1 and the above alterna-
tive characterization of criticality that the three concepts coincide when f2 is continuously
differentiable at x̄.

For the more general problem (1.1), x̄ ∈ X is said to be a Bouligand (B)-stationary point
of (1.1) if f ′(x̄; d) ≥ 0 for all d ∈ TXc(x̄), with Xc the feasible set of (1.1). If the considered
point strictly satisfies the nonconvex constraint, i.e. c(x̄) < 0, then B-stationarity condition
is equivalent to d-stationarity condition for problem (3.1), as TXc(x̄) = TX(x̄). Analogously,
B-stationarity boils down to d-stationarity if constraint c(x) ≤ 0 is absent. Necessary
and sufficient conditions for B-stationarity are given in [27, Prop. 4] for the case of DC-
constrained DC problems. The next result deals with a more general case: we assume that
c2 is convex, while f2 remains a weakly-convex function.

Proposition 3.2. In addition to our assumptions on problem (1.1), let c2 : O → R be a
convex function and x̄ ∈ Xc := {x ∈ X : c(x) ≤ 0} such that c(x̄) = 0. Moreover, assume
that the following constraint qualification (CQ) holds

cl {d ∈ TX(x̄) : c′(x̄; d) < 0} = {d ∈ TX(x̄) : c′(x̄; d) ≤ 0} . (3.4)

Then, x̄ is a B-stationary point of problem (1.1) if and only if x̄ solves the convex problems{
min
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩]
s.t. c1(x)− [c2(x̄) + ⟨sc2 , x− x̄⟩] ≤ 0

}
∀ sf2 ∈ ∂Cf2(x̄), ∀ sc2 ∈ ∂c2(x̄). (3.5)

Proof. Denote Ȳ (x̄) = {x ∈ X : c1(x) ≤ c2(x̄)+c′2(x̄;x−x̄)}. As the CQ (3.4) holds, Proposi-
tion 2.1 of [41] ensures that TXc(x̄)=TȲ (x̄)(x̄)=cl

{
d ∈ Rn : d = t(x− x̄), x ∈ Ȳ (x̄), t ∈ R+

}
.

Thus, the B-stationary definition is equivalent to

f ′(x̄;x− x̄) ≥ 0 ∀ x ∈ Ȳ (x̄)

⇔f ′1(x̄;x− x̄) ≥ ⟨sf2 , x− x̄⟩ ∀ sf2 ∈ ∂Cf2(x̄), ∀ x ∈ Ȳ (x̄). (3.6)

The stated result follows upon establishing the equivalence between (3.6) and (3.5).
[(3.6) ⇒ (3.5)]. Suppose (3.6) holds and let sc2 ∈ ∂c2(x̄) be arbitrary. As

Y (sc2) := {x ∈ X : c1(x) ≤ c2(x̄) + ⟨sc2 , x− x̄⟩} ⊂ Ȳ (x̄)

due to convexity of c2, we conclude that f ′1(x̄;x− x̄) ≥ ⟨sf2 , x− x̄⟩ for all sf2 ∈ ∂Cf2(x̄) and
all x ∈ Y (sc2). Convexity of the latter set implies that x̄ minimizes f1(x)−⟨sf2 , x− x̄⟩ over
Y (sc2) for all sf2 ∈ ∂Cf2(x̄). Thus, condition (3.5) holds because sc2 ∈ ∂c2(x̄) was taken
arbitrarily.

[(3.5) ⇒ (3.6)]. To show the reverse implication, we proceed with a proof by contra-
positive. Suppose that there exist s′f2 ∈ ∂

Cf2(x̄) and x′ ∈ Ȳ (x̄) such that f ′1(x̄;x
′ − x̄) <

⟨s′f2 , x
′ − x̄⟩ (and hence x′ ̸= x̄), i.e., (3.6) does not hold. Let s′c2 ∈ ∂c2(x̄) be such that

c′2(x̄;x
′ − x̄) = ⟨s′c2 , x

′ − x̄⟩. Therefore, x′ is feasible for the convex problem

min
x∈X

f1(x)− [f2(x̄) + ⟨s′f2 , x− x̄⟩]
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s.t. c1(x)− [c2(x̄) + ⟨s′c2 , x− x̄⟩] ≤ 0.

Together with our assumption f ′1(x̄;x
′ − x̄) < ⟨s′f2 , x

′ − x̄⟩, we have that d = x′ − x̄ is a
feasible descent direction for the above problem, and thus x̄ cannot be one of its solution.
Hence, x̄ does not satisfy (3.5). The proof is thus complete.

Note that convexity of c2 plays an important role in the above proposition. Indeed, if c2
is nonconvex, then the set {x ∈ X : c1(x) ≤ c2(x̄) + ⟨sc2 , x− x̄⟩} is not necessarily a subset
of Xc and when solving the linearized subproblem (3.5) we may get a point that is infeasible
for the original problem (1.1).

Example 3.3. Let f1 = x, f2 = 0, c1 = 0, c2 = x3

3 and X = [−2, 2]. We are not in the
framework of Proposition 3.2, since c2 is not convex on [−2, 2], but weakly convex (with
modulus µ = 4). At x̄ = 0, which globally solves (1.1), the convex problem (3.5) becomes
minx∈[−2,2] x (because we have dropped the trivial constraint 0 ≤ 0), and thus does not
provide a feasible point for the original problem. □

However, if the modulus µ is known for the weakly convex function c2, adding a quadratic
term in the constraint of the convex problem (3.5) makes the corresponding set feasible for
the original problem. Moreover, Proposition 3.2 is generalized in case of weakly convex c2.

Corollary 3.4. Let c2 : O → R be a weakly convex function and µc ≥ 0 be a real number
from Proposition 2.4 corresponding to c2. Moreover, assume that the CQ (3.4) holds. Then,
x̄ is a B-stationary point of problem (1.1) if and only if, for any given µ ≥ µc, x̄ solves the
convex problems{

min
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩]
s.t. c1(x)− [c2(x̄) + ⟨sc2 , x− x̄⟩] +

µ
2 ∥x− x̄∥

2 ≤ 0

}
∀ sf2 ∈ ∂Cf2(x̄), ∀ sc2 ∈ ∂Cc2(x̄).

(3.7)

Proof. Consider the convex functions c̃1(x) = c1(x)+
µ
2 ∥x∥

2 and c̃2(x) = c2(x)+
µ
2 ∥x∥

2 with
µ ≥ µc. The result follows from Proposition 3.2 by using instead the DC decomposition
c(x) = c̃1(x)− c̃2(x) and by noting that, for an arbitrary s̃c2 ∈ ∂c̃2(x̄), we obtain

c̃1(x)− [c̃2(x̄) + ⟨s̃c2 , x− x̄⟩] = c1(x)− [c2(x̄) + ⟨sc2 , x− x̄⟩] +
µ

2
∥x− x̄∥2

with sc2 = s̃c2 − µx̄, sc2 ∈ ∂Cc2(x̄).

Except for some particular cases, checking B-stationarity numerically is out of reach.
Therefore, weaker stationarity concepts need to come into play: x̄ ∈ X is said to be Clarke-
stationary for (1.1) if there exists a Lagrange multiplier λ̄ such that{

0 ∈ ∂Cf(x̄) + λ̄ ∂Cc(x̄) +NX(x̄)

c(x̄) ≤ 0, λ̄ c(x̄) = 0, λ̄ ≥ 0, x̄ ∈ X.
(3.8)

Analogously, x̄ is a critical point of (1.1) if there exists a Lagrange multiplier λ̄ such that{
0 ∈ ∂f1(x̄)− ∂Cf2(x̄) + λ̄ [∂c1(x̄)− ∂Cc2(x̄)] +NX(x̄)

c(x̄) ≤ 0, λ̄ c(x̄) = 0, λ̄ ≥ 0, x̄ ∈ X.
(3.9)

Observe that if f1 or f2 and c1 or c2 are smooth, then criticality boils down to Clarke
stationarity. Next, we revisit the proximal bundle method of [42] and extend it to the
more general setting of problem (1.1). To this end, the method must be modified, and its
convergence analysis must be done anew.
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3.1 Problem reformulation via improvement function

Nonsmooth and noncovex constraints in optimization problems are in general numerically
treated via exact penalization [17, 21, 34, 14], linearization of certain components [27, 40],
and improvement functions [31, 1, 42]. The latter has a recognized good practical perfor-
mance, does not require the additional assumptions normally assumed in exact penalization
methods, and employs parameters that are simple to set. For these reasons, we handle
problem (1.1) via the improvement function H : O ×O → R given by

H(x; y) = max {f(x)− τf (y), c(x)− τc(y)} , (3.10a)

with τf (y) = f(y) + ρ[c(y)]+ and τc(y) = σ[c(y)]+, for ρ ≥ 0 and σ ∈ [0, 1).
(3.10b)

Observe that if x̄ is a global solution of (1.1), then H(x; x̄) ≥ 0 for all x ∈ X andH(x̄; x̄) = 0.
Improvement functions (also known as progress functions) have been considered within

bundle methods in [31, 49, 39] for convex problems, in [1] for a class of (nonconvex) optimal
control problems, and in [24, 42] for DC-constrained DC programs. In what follows we
exploit some relevant mathematical properties of (3.10) and its link to the original prob-
lem (1.1). To this end, we need to consider necessary conditions for a point x̄ to be a local
solution of the reformulated problem

min
x∈X

H(x; x̄) . (3.11)

As the second argument of H is fixed, it follows from (3.2) that x̄ ∈ X is a Clarke-stationary
point of (3.11) if

0 ∈ ∂C1H(x̄; x̄) +NX(x̄), (3.12)

where ∂C1H stands for the generalized subdifferential of H with respect to the first argument.
Proposition 2.1 ii) yields

∂C1H(x̄; x̄) ⊂

 ∂Cc(x̄) if f(x̄)− τf (x̄) < c(x̄)− τc(x̄)
conv {∂Cf(x̄), ∂Cc(x̄)} if f(x̄)− τf (x̄) = c(x̄)− τc(x̄)
∂Cf(x̄) if f(x̄)− τf (x̄) > c(x̄)− τc(x̄).

Since we do not work with generalized subgradients of either f or c, but only with subgradi-
ents of the functions yielding their CwC decompositions (1.1b), we must consider a weaker
stationary definition: we say that x̄ ∈ X is a critical point of the composite problem (3.11)
with CwC decompositions (1.1b) if

0 ∈ NX(x̄)+

 ∂c1(x̄)− ∂Cc2(x̄) if f(x̄)− τf (x̄) < c(x̄)− τc(x̄)
conv {∂f1(x̄)− ∂Cf2(x̄), ∂c1(x̄)− ∂Cc2(x̄)} if f(x̄)− τf (x̄) = c(x̄)− τc(x̄)
∂f1(x̄)− ∂Cf2(x̄) if f(x̄)− τf (x̄) > c(x̄)− τc(x̄).

(3.13)
Note that if both f and c are regular, then the above condition coincides with that of
Clarke stationarity: recall (3.2), Proposition 2.1 i), and observe that the set defined by
the expressions in the curly brackets above is nothing but ∂C1H(x̄; x̄). The following result,
inspired by both [1, Lemma 5.1] that deals with the (stronger) Clarke stationarity and [42,
Thm. 2] that works with the (weaker) criticality definition from DC programming, links
condition (3.13) with criticality of the original problem.

Theorem 3.5. Let x̄ ∈ X be a point satisfying condition (3.13). Then, the following hold:
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i) If c(x̄) > 0, then x̄ is a critical point (in the sense of (3.3)) of the optimization
problem

min
x∈X

c1(x)− c2(x). (3.14)

ii) If c(x̄) = 0 and x̄ is not a critical point of (3.14), then x̄ satisfies (3.9) for some
λ̄ > 0.

iii) If c(x̄) < 0, then x̄ satisfies (3.9) with λ̄ = 0.

Proof. With the τ function defined in (3.10b), note that

f(x̄)− τf (x̄)− [c(x̄)− τc(x̄)] =

 −[ρ+ (1− σ)]c(x̄) < 0 if c(x̄) > 0,
0 if c(x̄) = 0,

−c(x̄) > 0 if c(x̄) < 0.

Hence,

c(x̄) > 0 ⇔ f(x̄)− τf (x̄) < c(x̄)− τc(x̄),
c(x̄) = 0 ⇔ f(x̄)− τf (x̄) = c(x̄)− τc(x̄),
c(x̄) < 0 ⇔ f(x̄)− τf (x̄) > c(x̄)− τc(x̄),

and items i) and iii) follow directly from (3.13). To show item ii), recall that c(x̄) = 0 and
condition (3.13) ensures the existence of λ ∈ [0, 1] such that

0 ∈ λ[∂f1(x̄)− ∂Cf2(x̄)] + (1− λ)[∂c1(x̄)− ∂Cc2(x̄)] +NX(x̄).

By assumption, x̄ is not a critical point of (3.14). Then 0 ̸∈ ∂c1(x̄) − ∂Cc2(x̄) + NX(x̄),
implying that λ above must be strictly positive. Dividing the displayed inclusion by λ > 0
we obtain the criticality condition (3.9) with λ̄ = (1− λ)/λ > 0.

At item ii) above, the assumption that x̄ is not a critical point of (3.14) can be seen as
a constraint qualification, which turns out to be more restrictive than (3.4). Indeed, the
latter excludes d-stationary points of (3.14), but not necessarily critical ones. The following
example gives a critical point x̄ of (3.14) that satisfies (3.4) but not the criticality condition
(3.9) for the nonlinearly-constrained problem (1.1).

Example 3.6. Take c1(x) = max{x, 2x}, c2(x) = max{2x, 4x}, X = [−2, 2] and x̄ = 0.
Then TX(x̄) = R, NX(x̄) = {0}, and x̄ is a critical point of (3.14) because 0 ∈ ∂c1(x̄) −
∂c2(x̄) = [1, 2]− [2, 4] = [−3, 0]. Furthermore, note that

c′1(x̄; d) = max
s∈[1, 2]

sd =

{
2d if d ≥ 0
d if d ≤ 0

and c′2(x̄; d) = max
s∈[2, 4]

sd =

{
4d if d ≥ 0
2d if d ≤ 0,

thus c′(x̄; d) = min{−d,−2d}. We conclude that {d ∈ TX(x̄) : c′(x̄; d) < 0} = R+, whereas
{d ∈ TX(x̄) : c′(x̄; d) ≤ 0} = R+ ∪ {0}, showing that x̄ = 0 satisfies the CQ (3.4). However,
if we take f1(x) = 0 and f2(x) = − 1

2x
2 + x, the following system does not have a solution:{

0 ∈ ∂f1(0)− ∂Cf2(0) + λ̄[∂c1(0)− ∂c2(0)]
λ̄ ≥ 0

≡
{

0 ∈ −1 + λ̄[−3, 0]
λ̄ ≥ 0

≡
{

0 ∈ [−3λ̄− 1,−1]
λ̄ ≥ 0,
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Figure 1: Function f(x) = 1
2x

2 − x in red and c(x) = max{x, 2x} −max{2x, 4x} in blue.

i.e., x̄ does not satisfy (3.9). Figure 1 illustrates the objective and constraint function in
this example: it is clear that x̄ is indeed a global maximizer of f(x) under the constraints
x ∈ X and c(x) ≤ 0.

□

This example shows that, at item ii) of Theorem 3.5, we cannot replace the assumption
that x̄ is not a critical point of (3.14) with the CQ (3.4).

3.2 The DC setting.

In the DC setting, functions f2 and c2 are convex and the improvement function (3.10) is
DC. Indeed, for x̄ fixed, we can write

H(x; x̄) =F (x; x̄)−G(x), with{
F (x; x̄) = max {f1(x) + c2(x)− τf (x̄), f2(x) + c1(x)− τc(x̄)} ,
G(x) = f2(x) + c2(x).

(3.15)

Since F and G are convex functions, the criticality condition (3.3) for (3.11) (under this DC
decomposition) reads as

0 ∈ ∂1F (x̄; x̄)− ∂G(x̄) +NX(x̄), (3.16)

where ∂1F stands for the subdifferential of F with respect to the first argument. It turns
out that our new condition (3.13) is stronger than (3.16), used in [42].

Lemma 3.7. In addition to our basic assumptions on problem (1.1), suppose that f2 and
c2 are convex. Then the necessary optimality condition (3.13) implies (3.16).

Proof. Let x̄ ∈ X be a point satisfying (3.13). Let us first observe that since f2, c2 are
convex and thus regular, we have ∂G(x̄) = ∂f2(x̄) + ∂c2(x̄). A similar observation can be
made concerning the computation for F . Our analysis splits into three possible cases.

a) f(x̄)− τf (x̄) < c(x̄)− τc(x̄). It follows from (3.13) that

0 ∈ NX(x̄) + ∂c1(x̄)− ∂c2(x̄) ⊂ NX(x̄) + ∂f2(x̄) + ∂c1(x̄)− [∂f2(x̄) + ∂c2(x̄)].

We claim that this inclusion implies (3.16). To see that, observe that the above
inequality implies f1(x̄) + c2(x̄) − τf (x̄) < f2(x̄) + c1(x̄) − τc(x̄), which in turn
gives ∂1F (x̄; x̄) = ∂f2(x̄) + ∂c1(x̄). Therefore, the right-hand side of the above
inclusion is (3.16).
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b) f(x̄) − τf (x̄) = c(x̄) − τc(x̄). It follows from (3.13) that there exists λ ∈ [0, 1]
such that

0 ∈ NX(x̄) + λ[∂f1(x̄)− ∂f2(x̄)] + (1− λ)[∂c1(x̄)− ∂c2(x̄)]
= NX(x̄) + λ[∂f1(x̄) + ∂c2(x̄)]− λ∂f2(x̄) + (1− λ)∂c1(x̄)− ∂c2(x̄)
⊂ NX(x̄) + λ[∂f1(x̄) + ∂c2(x̄)] + (1− λ)[∂f2(x̄) + ∂c1(x̄)]− [∂f2(x̄)+∂c2(x̄)]

⊂ NX(x̄) + ∂1F (x̄; x̄)− ∂G(x̄).

c) f(x̄)− τf (x̄) > c(x̄)− τc(x̄). Again, (3.13) gives

0 ∈ NX(x̄) + ∂f1(x̄)− ∂f2(x̄) ⊂ NX(x̄) + ∂f1(x̄) + ∂c2(x̄)− [∂f2(x̄) + ∂c2(x̄)].

The proof is complete because in this case ∂1F (x̄; x̄) = ∂f1(x̄) + ∂c2(x̄) due to
the fact that f1(x̄) + c2(x̄)− τf (x̄) > f2(x̄) + c1(x̄)− τc(x̄).

Remark 3.8. In the DC setting, the three concepts of criticality (3.12), (3.13), and (3.16)
are equivalent when f2 and c2 are continuously differentiable at x̄. Indeed, in this case f
and c are regular at x̄ and (3.12) coincides with (3.13) (regardless of convexity of f2 and c2).
Theorem 2 in [42] ensures that, under these assumptions, (3.16) is equivalent to (3.12). □

The following example shows that (3.16) does not necessarily imply (3.13) in the nondiffer-
entiable DC case.

Example 3.9. Let X = [−1, 1], f1 = 2x, f2 = |x|, c1 = 4x and c2 = 2|x|. At x̄ = 0,
f(x̄) = c(x̄) = 0 and thus, τf (x̄) = τc(x̄) = 0 due to (3.10b). Furthermore, we have that

∂f1(0) = {2}, ∂f2(0) = [−1, 1], ∂c1(0) = {4}, and ∂c2(0) = [−2, 2].

As a result, ∂f1(0) − ∂f2(0) = [1, 3], ∂c1(0) − ∂c2(0) = [2, 6], ∂f1(0) + ∂c2(0) = [0, 4], and
∂f2(0) + ∂c1(0) = [3, 5]. As in NX(0) = {0}, we conclude that

0 ̸∈ [1, 6] = conv{∂f1(0)− ∂f2(0), ∂c1(0)− ∂c2(0)}+NX(0),

whereas

conv{∂f1(0) + ∂c2(0), ∂c1(0) + ∂f2(0)}+NX(0) = [0, 5]

and ∂f2(0) + ∂c2(0) = [−3, 3], showing that (3.16) is satisfied but not (3.13). □

The paper [42] proposes a bundle method for DC-constrained DC programs employing
the DC decomposition H = F−G above. Once a critical point satisfying (3.16) is computed,
the link with criticality of the original problem is adequate if f2 and c2 are continuously
differentiable at x̄. In the next section we modify that method to compute a point satisfying
the stronger criticality condition (3.13). As a result, the link with criticality of the original
problem is nicely established by Theorem 3.5 without any additional assumption. In fact,
f2 and c2 need not even be convex, but weakly convex on some neighbourhood of each
x ∈ O. We, therefore, strengthen the analysis provided in [42] even though significantly
fewer assumptions are required: [42] works in the DC configuration, whereas here, we deal
with the more general CwC structure. These improvements, together with the optimality
conditions presented above, feature the main contributions of this work.



MINIMIZING CWC FUNCTIONS VIA BUNDLE METHOD 713

4 Proximal Bundle Method with Improvement Function

This section extends the proximal bundle method of [42] for computing a critical point of
problem (1.1). The main tool in our analysis is the improvement function H given in (3.10).
In the DC setting, the algorithm of [42] works with the explicit DC decomposition (3.15) of
H and computes a point x̄ ∈ X satisfying the classic criticality condition in DC programming
(3.16). In this section we do not decompose H and consider the milder assumption that f2
and c2 are weakly convex and target the stronger criticality condition (3.13).

4.1 The method’s main ingredients: model, subproblem, and descent test

The algorithm requires four oracles (black-boxes) providing, for every given x ∈ X, i ∈ {1, 2},
the function values fi(x), ci(x), arbitrary subgradients sf1 ∈ ∂f1(x), sc1 ∈ ∂c1(x) (c.f.,
(2.1)) and arbitrary generalized subgradients sf2 ∈ ∂Cf2(x), sc2 ∈ ∂Cc2(x) (c.f. (2.2)). We
do not impose any assumption on these (generalized) subgradients, as they are assumed to
be computed by (external) oracles that do not accept any intervention from the algorithm.
(This is particularly useful in industrial applications where companies do not want or cannot
share information on the underlying functions with optimizers.)

At iteration k ∈ N, given a trial point xk ∈ X, we construct a linearization of every
component (here skfi , s

k
ci , i ∈ {1, 2}, denote the respective - generalized - subgradients at

xk):

f̄ki (x) := fi(x
k) + ⟨skfi , x− x

k⟩ (i = 1, 2) (4.1a)

c̄ki (x) := ci(x
k) + ⟨skci , x− x

k⟩ (i = 1, 2). (4.1b)

Due to convexity of f1 and c1, we have the following inequalities

f̄k1 (x) ≤ f1(x) and c̄k1(x) ≤ c1(x) for all x ∈ Rn. (4.2)

Since X is compact and components f2 and c2 are assumed to be only weakly convex on
some neighbourhood of each x ∈ O, we have weaker inequalities for these functions. Let
O′ ⊂ O be an open convex set and µf , µc real numbers ensured by Proposition 2.4. As
xk ∈ X ⊂ O′, the following inequalities are due to Proposition 2.4, item ii)

f̄k2 (x) ≤ f2(x) +
µ̄
2 ∥x− x

k∥2 and c̄k2(x) ≤ c2(x) +
µ̄
2 ∥x− x

k∥2 for all x ∈ X, (4.3)

where µ̄ := max{µf , µc} > 0. Observe that the threshold µ̄ is in general unknown, and the
inequalities in (4.3) are only supposed to hold for x in X, in contrast with the (subgradient)
inequalities in (4.2).

Let Bkf and Bkc be two index sets gathering the bundle of information (function values and

subgradients) given by the oracles. In general, Bkf ,Bkc ⊂ {0, . . . , k} but other possibilities
exist making it possible to design a limited-memory method (see Remark 5.5 below). These
index sets are useful to define the following individual cutting-plane models for the convex
functions f1 and c1:

f̌k1 (x) := max
j∈Bk

f

f̄ j1 (x) ≤ f1(x) for all x ∈ Rn

čk1(x) := max
j∈Bk

c

c̄j1(x) ≤ c1(x) for all x ∈ Rn.
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Furthermore, let ℓk ∈ {0, . . . , k} be the iteration index of the best candidate solution (stabil-
ity center, in the parlance of bundle methods) among the trial points {x0, . . . , xk}: whenever
a better candidate solution xk+1 is computed by the algorithm, at a so-called serious step,
such a point becomes the new stability center and the counter ℓ is increased by one: for
κ ∈ (0, 1

2 ), we declare a serious step and let ℓk+1 := k + 1 if xk+1 ̸= xℓk and the inequality

H(xk+1;xℓk) ≤ H(xℓk ;xℓk)− κ

2
∥xk+1 − xℓk∥2 (4.5)

holds, and declare a null step and let ℓk+1 := ℓk otherwise. Since the descent test is
independent of the model, the following result from [42] also holds in our framework.

Lemma 4.1 (Lemma 1 in [42]). Let xℓk ∈ X be the stability center at iteration k. Then
H(xℓk ;xℓk) ≥ 0 and if inequality (4.5) holds, we have that either

i) f(xk+1) ≤ f(xℓk)− κ
2 ∥x

k+1 − xℓk∥2 and c(xk+1) ≤ 0 when c(xℓk) ≤ 0; or

ii) c(xk+1) ≤ c(xℓk)− κ
2 ∥x

k+1 − xℓk∥2 when c(xℓk) > 0.

The rationale of serious iterates is to ensure sufficient decrease on one component function
of H(·;xℓk) while maintaining feasibility for (1.1) once reached. Having all these ingredients
at our disposal, we can now define our convex model for the improvement function (3.10) at
iteration k :

Ȟk(x;xℓk) = max
{
f̌k1 (x)− f̄

ℓk
2 (x)− τf (xℓk), čk1(x)− c̄

ℓk
2 (x)− τc(xℓk)

}
. (4.6)

(Even in the particular setting where f2 and c2 are convex functions, this model differs from
the one employed in [42] and is crucial to obtain convergence results stronger than the ones
in that paper.) Given a prox-parameter µk > 0 estimating the threshold µ̄ in (4.3), the next
iterate is the solution of the following strict convex subproblem

xk+1 = argmin
x∈X

Ȟk(x;xℓk) +
µk

2
∥x− xℓk∥2, (4.7)

which can be transformed into a QP (provided X is a polyhedron) by adding an extra
variable r ∈ R 

min
x, r

r + µk

2 ∥x− x
ℓk∥2

s.t. f̄ j1 (x)− f̄
ℓk
2 (x)− r ≤ τf (xℓk) ∀ j ∈ Bk

f

c̄j1(x)− c̄
ℓk
2 (x)− r ≤ τc(xℓk) ∀ j ∈ Bk

c

x ∈ X, r ∈ R.

(4.8)

The optimality condition for (4.7) gives

xk+1 = xℓk − 1

µk
[pk+1 + sk+1

X ], with

{
pk+1 ∈ ∂1Ȟk(xk+1;xℓk)

sk+1
X ∈ NX(xk+1).

(4.9)

As usual in bundle methods, we may remove from the model the inactive linearizations
to keep (4.8) small. To this end, we denote by B̄kf ⊂ Bk

f and B̄kc ⊂ Bk
c the index set of active

linearizations in the QP subproblem (4.8), i.e.,

B̄kf :=
{
j ∈ Bk

f : αj
f > 0

}
and B̄kc :=

{
j ∈ Bk

c : αj
c > 0

}
(4.10)



MINIMIZING CWC FUNCTIONS VIA BUNDLE METHOD 715

where αj
f ≥ 0, j ∈ Bk

f , denote the Lagrange multipliers associated with the first set of

constraints and αj
c ≥ 0, j ∈ Bk

c , the ones associated with the second family of constraints.
We mention in passing that the index sets Bkf and Bkc can be kept bounded at the price of
including artificial (aggregate) linearizations. We postpone this discussion to Remark 5.5,
right after the analysis of null steps (the only place in the convergence analysis where bundle
management plays a role.)

We can now present the following proximal bundle method algorithm for CwC-constrained
CwC programs (1.1), which modifies [42, Alg. 1] in two ways. First, the convex model (4.6)
for the improvement function is distinct. On the one hand, it is a key element to obtain the
stronger criticality condition (3.13), and on the other hand, it leads to a simpler/smaller
strongly convex QP (4.8) (more details can be found in Subsection 4.2 below). Second,
Algorithm 4.2 employs an ad-hoc rule to update the proximal parameter µk so that no pre-
estimation of the underlying weakly-convex moduli is needed. The proposed rule employs
the following value

νk := 2max

{
f̄ ℓk2 (xk+1)− f2(xk+1)

∥xk+1 − xℓk∥2
,
c̄ℓk2 (xk+1)− c2(xk+1)

∥xk+1 − xℓk∥2
, 0

}
. (4.11)

(For numerical performance it can be preferable to replace the last term (equal to zero) in
(4.11) by a small machine epsilon.)

Algorithm 4.2. Proximal Bundle Method for CwC-constrained CwC programs - CwC-PBM

Step 0 (Initialization) Let x0 ∈ X, κ ∈ (0, 12 ), κ ≤ µ0, ρ ≥ 0, σ ∈ [0, 1), and Tol ≥ 0
be given.
Call the oracles to compute fi(x

0), ci(x
0), and (generalized) subgradients s0fi ,

s0ci , i = 1, 2.
Define k := ℓk = 0 and B0f = B0c := {0}.

Step 1 (Trial point) Compute xk+1 by solving the QP (4.8).

Step 2 (Stopping test) If ∥xk+1 − xℓk∥ ≤ Tol, then stop and return xℓk .

Step 3 (Oracles call) Compute fi(x
k+1), ci(x

k+1), and subgradients sk+1
fi

, sk+1
ci , i =

1, 2.

Step 4 (Descent test)

(a) If (4.5) holds, then declare a serious step: define ℓk+1 := k + 1, choose
Bk+1
f ,Bk+1

c ⊂ {0, . . . , k + 1} with {k + 1} ∈ Bk+1
f ∩ Bk+1

c and arbitrarily

select µk+1 ∈ (0, µk].

(b) Else, declare a null step: define ℓk+1 := ℓk and choose Bk+1
f ,Bk+1

c ⊂
{0, . . . , k + 1} with B̄kf ∪ {k + 1, ℓk} ⊂ Bk+1

f and B̄kc ∪ {k + 1, ℓk} ⊂ Bk+1
c

(B̄kf and B̄kc as in (4.10)).

Compute νk by (4.11). If νk ≥ µk − 2κ, set µk+1 = νk + 1; otherwise
µk+1 = µk.

Step 5 (Loop) Set k := k + 1 and go back to Step 1.

A drawback of the rule for updating the prox-parameter is that µk only increases after a
null step when the inequality νk ≥ µk−2κ is verified. As a result, µk may never increase: this
is, for instance, the case when f2 and c2 are convex (thus νk = 0 for all k). The motivation



716 K. SYRTSEVA, W. DE OLIVEIRA, S. DEMASSEY AND W. VAN ACKOOIJ

for this rule is to eventually keep the prox-parameter fixed if the algorithm performs an
infinite sequence of null steps after a last serious step (see Lemma 5.1). This is a condition
necessary to prove Proposition 5.4 below. We care to mention that increasing µk after a
null step is a simple strategy that pays off in practice: it helps the algorithm to either stop
or produce a new serious step, and thus accelerate the numerical performance.

4.2 The DC setting: a comparison with the earlier bundle method for DC
programs

In the DC setting, both functions f2 and c2 are convex and the improvement function (3.10)
is DC. The DC decomposition given in (3.15), with x̄ replaced with xℓk , was exploited in the
bundle method of [42] through the following model for the improvement function H(·;xℓk)
(see Eq. (18) therein):

max
{
f̌k1 (x) + čk2(x)− τf (xℓk), f̌k2 (x) + čk1(x)− τc(xℓk)

}
− [f̄ ℓk2 (x) + c̄ℓk2 (x)]. (4.12)

Differently from our model (4.6), the above gathers also cutting-planes for f2 and c2 and,
although gathering more information, only the weaker criticality condition (3.16) is ensured
by the method of [42]. Hence, the proposed model (4.6) is more advantageous than (4.12)
from both practical and theoretical point of view:

- the quadratic program (QP) issued by our model has only half of the linearizations,
and is thus simpler to solve;

- convexity of f2 and c2 are required in (4.12), but not in (4.6);

- both models (4.6) and (4.12) are iteratively updated to ensure that every cluster point
x̄ ∈ X of the sequence of stability centers satisfies a criticality condition. To show that
such a point is also critical for (the DC counterpart of) (1.1), [42, Thm. 2] requires both
f2 and c2 to be continuously differentiable at x̄. As we will show in Theorem 5.8 below,
neither convexity nor differentiability of f2 and c2 are required to establish that x̄ issued
by Algorithm 4.2 is also critical for (1.1) in the sense of (3.9). Thus, Algorithm 4.2
strengthens the results of [42] even though significantly fewer assumptions are required.

Although the apparently small changes concerning [42, Alg. 1], the convergence analysis
in that paper cannot be reused here. The reason is that the analysis in [42] strongly depends
on the DC decomposition of the employed model for the improvement function. That
reasoning is no longer valid for our new model, even if f2 and c2 were convex. Furthermore,
our more general setting requires extra steps to cope with the weakly convex functions.

5 Convergence Analysis

The goal of this section is to show that every cluster point x̄ of the sequence {xℓk}k ⊂ X
generated by Algorithm 4.2 satisfies the necessary optimality condition (3.13). To this end,
we first observe that the sequence of prox-parameters issued by Algorithm 4.2 is bounded.

Lemma 5.1. The value µmax := supk∈N µ
k is finite. Furthermore, if the algorithm produces

an infinite sequence of null steps after a last serious step, then the prox-parameter becomes
eventually constant.
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Proof. Let µ̄ := max{µf2 , µc2 , µ
0} > 0 be given, where µf2 and µc2 are as in Proposition 2.4

for the weakly convex functions f2 and c2, and µ
0 is the parameter given to the algorithm

at initialization. Then, by taking y := xk+1 and x := xℓk in (2.4) it follows that

2
f̄ ℓk2 (xk+1)− f2(xk+1)

∥xk+1 − xℓk∥2
≤ µ̄, and 2

c̄ℓk2 (xk+1)− c2(xk+1)

∥xk+1 − xℓk∥2
≤ µ̄ for all k with xk+1 ̸= xℓk .

As a result, νk ≤ µ̄ for all k. Note that the prox-parameter is only increased after a null
step such that νk ≥ µk − 2κ. In this case, the rule employed in Step 4 of the algorithm sets
µk+1 = νk + 1, which gives µk+1 = νk + 1 ≤ µ̄ + 1. Since the algorithm does not increase
the prox-parameter after a serious step or null step such that νk < µk − 2κ, we conclude
that µmax := supk∈N µ

k ≤ µ̄ + 1 is finite. Finally, note that the prox-parameter is sharply
increased after a null step such that νk ≥ µk − 2κ: µk+1 = νk + 1 ≥ µk − 2κ + 1 > µk + δ
because κ ∈ (0, 12 ), with δ = 1

2 − κ > 0. As a result, if the algorithm produces an infinite
sequence of null steps after a last serious step, then the inequality νk < µk − 2κ will be
satisfied for all k large enough and the prox-parameter will become constant (otherwise µk

would increase indefinitely, which contradicts that µmax is finite).

We now define the following function H̄ : O×O → R, which is of key importance in our
analysis:

H̄(x; y) := max {f1(x)− [f2(y) + ⟨sf2 , x− y⟩]− τf (y), c1(x)− [c2(y) + ⟨sc2 , x− y⟩]− τc(y)} ,
(5.1)

with sf2 ∈ ∂Cf2(y) and sc2 ∈ ∂Cc2(y). As these subgradients are not specified, the above
definition is ambiguous. However, when y is a point previously computed by the algorithm,
say y = xj for j ≤ k, then sjf2 ∈ ∂

Cf2(x
j) and sjc2 ∈ ∂

Cc2(x
j) are the subgradients provided

by the oracles and ambiguity disappears:

H̄(x;xj) := max
{
f1(x)− f̄ j2 (x)− τf (xj), c1(x)− c̄

j
2(x)− τc(xj)

}
.

It follows from convexity of f1 and c1 that, for every y ∈ O fixed, the function H̄(·; y) is
convex and satisfies H̄(·;xℓk) ≥ Ȟk(·;xℓk) for all k. Furthermore, as ℓk ∈ Bk

f ∩ Bk
c for all k,

we have that f̌ki (x
ℓk) = fi(x

ℓk), čki (x
ℓk) = ci(x

ℓk), i = 1, 2, and thus

H̄(xℓk ;xℓk) = Ȟk(xℓk ;xℓk) = H(xℓk ;xℓk). (5.2)

The following lemma is of particular interest in the remainder of this work.

Lemma 5.2. Suppose that x̄ minimizes H̄(·; x̄) over X. Then, x̄ satisfies the necessary
optimality condition (3.13).

Proof. Convexity of H̄(·; x̄) in the first argument and assumption on x̄ ∈ X imply that
0 ∈ ∂1H̄(x̄; x̄) + NX(x̄). The result follows by noting that, for some pair of generalized
subgradients s̄f2 ∈ ∂Cf2(x̄) and s̄c2 ∈ ∂Cc2(x̄), the following set

∂1H̄(x̄; x̄) =

 ∂c1(x̄)− s̄c2 if f(x̄)− τf (x̄) < c(x̄)− τc(x̄)
conv {∂f1(x̄)− s̄f2 , ∂c1(x̄)− s̄c2} if f(x̄)− τf (x̄) = c(x̄)− τc(x̄)
∂f1(x̄)− s̄f2 if f(x̄)− τf (x̄) > c(x̄)− τc(x̄)

is contained in the one defined by the curly brackets in (3.13).



718 K. SYRTSEVA, W. DE OLIVEIRA, S. DEMASSEY AND W. VAN ACKOOIJ

We begin the convergence analysis for the case Tol = 0 with the remark that the sequence
of stability centers {xℓk}k has at least one cluster point, since it is contained in the compact
set X. We split the analysis into three cases: the algorithm performs only finitely many
steps; the algorithm performs infinitely many steps and the sequence {xℓk}k is either finite
or infinite.

Proposition 5.3 (Finitely many iterations). Assume that Algorithm 4.2 stops at iteration
k with Tol = 0. Then, the last stability center x̄ := xℓk = xk+1 satisfies condition (3.13).

Proof. It follows from the model’s definition (4.6) and (5.1) that H̄(x;xℓk) ≥ Ȟk(x;xℓk) for
all x ∈ O. Hence, as xℓk ∈ X we have that

H̄(xℓk ;xℓk) ≥ min
x∈X

H̄(x;xℓk) +
µk

2
∥x− xℓk∥2

≥ min
x∈X

Ȟk(x;xℓk) +
µk

2
∥x− xℓk∥2

= Ȟk(xk+1;xℓk) +
µk

2
∥xk+1 − xℓk∥2

= Ȟk(xℓk ;xℓk) = H̄(xℓk ;xℓk),

where the first equality is due to (4.7), the second one follows by the fact that xk+1 = xℓk

since the algorithm stops at iteration k with Tol = 0, and the last one is due to (5.2).
Hence, xℓk minimizes H̄(·;xℓk)+ µk

2 ∥ ·−x
ℓk∥2 over X and the quadratic term vanishes in the

corresponding optimality condition: 0 ∈ ∂1H̄(x̄;xℓk) +NX(x̄) and the stated result follows
from Lemma 5.2.

If the algorithm performs finitely many serious steps and infinite number of null steps,
the following result shows that the last stability center satisfies (3.13).

Proposition 5.4 (Finitely many serious steps). Suppose that Algorithm 4.2 with Tol = 0
does not stop but produces only finitely many serious steps. Then the last stability center x̄
satisfies the condition (3.13), and limk→∞ xk = x̄.

Proof. Let ℓ ∈ N denote the last serious iteration, then x̄ = xℓ and note that, for all
subsequent (null) iterations k > ℓ, ℓk = ℓ and the linearizations f̄ ℓ2 and c̄ℓ2 are fixed in
the model Ȟk(·; x̄), which is in this case a cutting-plane model for the convex function
H̄(·; x̄). Here we take τ ℓf = τf (x

ℓ), τ ℓc = τc(x
ℓ), and function H̄(·; x̄) defined with the fixed

linearizations f̄ ℓ2 and c̄ℓ2, i.e.,

H̄(·;xℓ) := max
{
f1(·)− f̄ ℓ2(·)− τ ℓf , c1(·)− c̄ℓ2(·)− τ ℓc

}
.

We highlight that the updating rule for µk in Algorithm 4.2 ensures that the sequence
{µk}k>ℓ is non-decreasing and becomes constant at a certain value µ′ ∈ (0, µmax] after
finitely many steps k′ > ℓ, as a consequence of Lemma 5.1. More precisely, the updating
rule at Step 4(b) of Algorithm 4.2 ensures that

µk = µ′ and νk + 2κ < µ′ for all k > k′. (5.3)

Hence, from iteration k′ on, Algorithm 4.2 becomes a cutting-plane procedure to compute
the unique solution x̃ of

min
x∈X

H̄(x; x̄) +
µ′

2
∥x− x̄∥2. (5.4)
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As the algorithm keeps all the active linearizations in the bundles (Step 4(b)), standard
arguments from the convex bundle methods’ theory (see [5, Prop. 4.3]) ensure that

limk→∞ xk = x̃ and limk→∞[Ȟk(xk+1; x̄)− H̄(xk+1; x̄)] = 0.

(The last inequality implies that the convex model asymptotically coincides with the function
at the limit point.) We claim that x̃ = x̄. To show that, let us assume the opposite, i.e.,
x̃ ̸= x̄, and arrive to a contradiction. In this case, for some δ > 0, we may find and index k1
such that ∥xk+1 − x̄∥2 > δ for all k ≥ k1. We may furthermore find an index k2 such that
Ȟk(xk+1; x̄)− H̄(xk+1; x̄) ≥ −κ

2 δ for all k ≥ k2 as the left-hand side vanishes. Therefore, for
k′′ ≥ max{k1, k2, k′}, we have

Ȟk(xk+1; x̄)− H̄(xk+1; x̄) ≥ −κ
2
∥xk+1 − x̄∥2 ̸= 0 for all k > k′′.

The following chain of inequalities holds at every iteration k > k′′:

Ȟk(x̄; x̄)

≥ Ȟk(xk+1; x̄) +
µ′

2
∥xk+1 − x̄∥2 (by (4.7) and (5.3))

= [Ȟk(xk+1; x̄)− H̄(xk+1; x̄)] + H̄(xk+1; x̄) +
µ′

2
∥xk+1 − x̄∥2

≥ −κ
2
∥xk+1 − x̄∥2 + H̄(xk+1; x̄) + µ′

2 ∥x
k+1 − x̄∥2

≥ −κ
2
∥xk+1 − x̄∥2 +max

{
f1(x

k+1)− f̄ ℓ2(xk+1)− τ ℓf + µ′

2 ∥x
k+1 − x̄∥2

c1(x
k+1)− c̄ℓ2(xk+1)− τ ℓc + µ′

2 ∥x
k+1 − x̄∥2

}
(by (5.1))

> −κ
2
∥xk+1 − x̄∥2 +max

{
f1(x

k+1)− f̄ ℓ2(xk+1)− τ ℓf + νk+2κ
2 ∥xk+1 − x̄∥2

c1(x
k+1)− c̄ℓ2(xk+1)− τ ℓc + νk+2κ

2 ∥xk+1 − x̄∥2

}
(by (5.3))

≥ −κ
2
∥xk+1 − x̄∥2 +max

{
f1(x

k+1)− f2(xk+1)− τ ℓf + 2κ
2 ∥x

k+1 − x̄∥2
c1(x

k+1)− c2(xk+1)− τ ℓc + 2κ
2 ∥x

k+1 − x̄∥2
}

(by (4.11))

= H(xk+1; x̄) +
κ

2
∥xk+1 − x̄∥2. (by (3.10))

As x̄ = xℓ and Ȟk(xℓ;xℓ) = H(xℓ;xℓ) due to (5.2), we have shown that the descent test (4.5)
is satisfied at xk+1 ̸= xℓ:

H(xk+1;xℓ) ≤ H(xℓ;xℓ)− κ

2
∥xk+1 − xℓ∥2,

contradicting thus the assumption that only null steps are performed for k > ℓ. Hence, x̃ = x̄
and the last stability center solves (5.4). This allows us to conclude (thanks to convexity of
H̄(·; x̄)) that x̄ = xℓ solves minx∈X H̄(x;xℓ). Lemma 5.2 then concludes the proof.

Remark 5.5 (Bundle compression). It is worth mentioning that the index sets Bkf and

Bkc gathering the information bundle can be kept bounded; each one having at most Mmax
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indices, for a chosen integer Mmax ≥ 3. Indeed, it suffices to keep in the bundles the
linearizations issued by the stability center xℓk , the new trial point xk+1 and the so-called
aggregate linearization as in [5, Eq. 4.5]. When transcribed to our setting, the aggregate
linearizations for f1 and c1 read as

f̄
ak
f

1 (x) := f̌k1 (x
k+1) + ⟨pkf , x− xk+1⟩ ≤ f1(x) ∀x ∈ Rn

c̄
ak
c

1 (x) := čk1(x
k+1) + ⟨pkc , x− xk+1⟩ ≤ c1(x) ∀x ∈ Rn,

with pkf :=
∑

j∈Bk
f
αj
fs

j
f1
, pkc :=

∑
j∈Bk

c
αj
cs

j
c1 and multipliers αf , αc as in (4.10). We claim

that the following economical rule for managing Bkf and Bkc (in Step 4 of Algorithm 4.2) is
enough to ensure convergence:

Serious step: set Bk+1
f = {k + 1} and Bk+1

c = {k + 1};

Null step: set Bk+1
f = {k + 1, ℓk, a

k
f} and Bk+1

c = {k + 1, ℓk, a
k
c}.

Indeed, Proposition 5.4 is still valid if the algorithm employs the above economical rule for
updating the bundles: the key Proposition 4.3 from [5] still applies and thus the displayed
equations right after (5.4) hold. As it can be noted in the sequel, no bundle management
restriction (besides the requirement that k + 1 ∈ Bk+1

f ∩ Bk+1
c ) is required after a serious

steps. □

We consider now the case of infinitely many serious steps. To this end, we need the following
auxiliary result.

Lemma 5.6. There exist constants L,M > 0 such that, for all k ∈ N, the three following
conditions hold for pk+1 ∈ ∂1Ȟk(xk+1;xℓk), sk+1

X ∈ NX(xk+1), and ek+1 = L||xk+1 − xℓk ||:

||pk+1 + sk+1
X || ≤ µmax ||xk+1 − xℓk || ≤M, (5.5a)

pk+1 + sk+1
X ∈ ∂ek+1

[
H̄(xℓk ;xℓk) + iX(xℓk)

]
, (5.5b)

pk+1 ∈ ∂ek+1H̄(xℓk ;xℓk). (5.5c)

Proof. As µk ∈ (0, µmax] (c.f. Lemma 5.1), expression (4.9) yields the first inequality in
(5.5a). Recall that the iterates xk+1 and xℓk are contained in the bounded set X for all k.
The second inequality in (5.5a) then follows. Convexity of the function Ȟk + iX and (4.9)
gives that, for all x ∈ Rn,

Ȟk(x;xℓk) + iX(x) ≥ Ȟk(xk+1;xℓk) + ⟨pk+1 + sk+1
X , x− xk+1⟩

≥ Ȟk(xk+1;xℓk) + ⟨pk+1 + sk+1
X , x− xℓk⟩+ ⟨pk+1 + sk+1

X , xℓk − xk+1⟩

≥ Ȟk(xk+1;xℓk) + ⟨pk+1 + sk+1
X , x− xℓk⟩ −M ||xℓk − xk+1||,

(5.6)
where the last inequality is due to (5.5a) and Cauchy-Schwarz inequality. Definition (4.6)
of Ȟk(·;xℓk) as well as the fact that ℓk ∈ Bk

f ∩ Bk
c give the following chain of inequalities:

Ȟk(xk+1;xℓk) ≥ max
{
f̄ ℓk1 (xk+1)− f̄ ℓk2 (xk+1)− τf (xℓk), c̄ℓk1 (xk+1)− c̄ℓk2 (xk+1)− τc(xℓk)

}
= max

{
f1(x

ℓk)− f2(xℓk) + ⟨sℓkf1 − s
ℓk
f2
, xk+1 − xℓk⟩ − τf (xℓk),
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c1(x
ℓk)− c2(xℓk) + ⟨sℓkc1 − s

ℓk
c2 , x

k+1 − xℓk⟩ − τc(xℓk)
}

≥ max
{
f1(x

ℓk)− f2(xℓk)− τf (xℓk), c1(xℓk)− c2(xℓk)− τc(xℓk)
}

+min
{
⟨sℓkf1 − s

ℓk
f2
, xk+1 − xℓk⟩, ⟨sℓkc1 − s

ℓk
c2 , x

k+1 − xℓk⟩
}
.

Since X ⊂ O is compact, we have that ∂f1(X), ∂c1(X), ∂Cf2(X), and ∂Cc2(X) are bounded
sets (see Section 2). Hence, there exist Kf > 0 and Kc > 0 such that, ∥sℓkf1 − s

ℓk
f2
∥ ≤ Kf

and ∥sℓkc1 − s
ℓk
c2∥ ≤ Kc for all k. Applying the Cauchy-Schwarz inequality to the inequalities

above and recalling that

max
{
f1(x

ℓk)− f2(xℓk)− τf (xℓk), c1(xℓk)− c2(xℓk)− τc(xℓk)
}
= H(xℓk ;xℓk) = H̄(xℓk ;xℓk)

by definition, we get

Ȟk(xk+1;xℓk) ≥ H̄(xℓk ;xℓk)− L0 ||xk+1 − xℓk ||, with L0 = max{Kf ,Kc}. (5.7)

Recall that H̄(x;xℓk) ≥ Ȟk(x;xℓk) for all x ∈ Rn and combine (5.6) with (5.7) to obtain

H̄(x;xℓk) + iX(x) ≥ Ȟk(x;xℓk) + iX(x)

≥ Ȟk(xk+1;xℓk) + ⟨pk+1 + sk+1
X , x− xℓk⟩ −M ||xℓk − xk+1||

≥ H̄(xℓk ;xℓk)− (L0 +M)||xk+1 − xℓk ||+ ⟨pk+1 + sk+1
X , x− xℓk⟩.

We have thus shown (5.5b) with L = M + L0. To prove the last inclusion (5.5c), observe
that this chain of inequalities remains true if the term iX(x) is excluded together with
corresponding subdifferential sk+1

X : for all x ∈ Rn,

H̄(x;xℓk) ≥ Ȟk(x;xℓk) ≥ Ȟk(xk+1;xℓk) + ⟨pk+1, x− xℓk⟩ −M ||xℓk − xk+1||
≥ H̄(xℓk ;xℓk) + ⟨pk+1, x− xℓk⟩ − (L0 +M)||xk+1 − xℓk ||.

Lemma 5.6 can be applied to any iteration k + 1 between the serious step ℓk and ℓk+1

(ℓk+1 included). Indeed, equation (4.9) used to show (5.5a) holds true. Other arguments
used in the proof remain valid for any iteration between ℓk and ℓk+1, as from the point of
view of the algorithm, the only change is the bundle information, which is not explicitly
used in the proof.

Observe that Ȟk(·;xℓk) given in (4.6) is the pointwise maximum of finitely many affine
functions. Hence, its subdifferential is the convex hull of the “active” linearization slopes,
i.e., Proposition 2.1 ii) asserts that

∂1Ȟ
k(xk+1;xℓk) := conv

{{
sjf1 − s

ℓk
f2

}
j∈B̄k

f

,
{
sjc1 − s

ℓk
c2

}
j∈B̄k

c

}
, (5.8)

with B̄kf and B̄kc given in (4.10). Since X ⊂ O is compact, we have that ∂f1(X), ∂c1(X),

∂Cf2(X), and ∂Cc2(X) are bounded sets (see Section 2). Thus, (4.9) and (5.8) certificate
that the sequence of model’s subgradients

{
pk
}
is bounded. This property is used in the

proof of the following proposition.

Proposition 5.7 (Infinitely many serious steps). Assume that the algorithm performs in-
finitely many serious steps. Then, any cluster point x̄ ∈ X of the sequence {xℓk}k satisfies
the necessary optimality condition (3.13).
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Proof. We first show that
lim
k→∞

∥xℓk+1 − xℓk∥ = 0 . (5.9)

To this end, we must analyze the two cases of Lemma 4.1. In case i), Algorithm 4.2 produces
a feasible point for (1.1) after finitely many serious steps and all subsequent points are
feasible. Let xℓk1 be the first feasible serious iterate. Then, Lemma 4.1 i) yields

f(xℓk+1) ≤ f(xℓk)− κ
2 ∥x

ℓk+1 − xℓk∥2 and c(xℓk+1) ≤ 0 for all k ≥ ℓk1
.

The telescopic sum of the first inequality above yields

∞∑
k=k1

∥xℓk+1 − xℓk∥2 ≤ 2

κ

∞∑
k=k1

(
f
(
xℓk

)
− f

(
xℓk+1

))
≤ 2

κ

(
f
(
xℓk1

)
− lim

k→∞
f
(
xℓk+1

))
.

Since f is finite-valued and continuous over the bounded set X, the right-hand side of the
above inequality is finite. Hence, (5.9) holds. Assume now that the sequence {xℓk} is
infeasible for (1.1). Lemma 4.1 ii) yields

0 < c(xℓk+1) ≤ c(xℓk)− κ
2 ∥x

ℓk+1 − xℓk∥2 for all ℓ.

Once again, by using the telescopic sum we get (5.9).
As X ⊂ O is compact, with O an open set contained in the domains of component

functions, and the generalized subdifferential is locally compact, we conclude that for sℓkf2 ∈
∂Cf2(x

ℓk) and sℓkc2 ∈ ∂
Cc2(x

ℓk){
xℓk

}
,

{
sℓkf2

}
and

{
sℓkc2

}
are bounded sequences.

By taking subsequences, we can define an index set K ⊂ {0, 1, 2, . . .} such that

lim
K∋k→∞

xℓk = x̄ ∈ X, lim
K∋k→∞

sℓkf2 = s̄f2 ∈ ∂Cf2(x̄) and lim
K∋k→∞

sℓkc2 = s̄c2 ∈ ∂Cc2(x̄),

where the two last limits are due to the fact that the generalized subdifferential is outer-
semicontinuous [4, Prop. 2.1.5(b)]. Let us now define φk(·) = H̄(·;xℓk) and φ(·) = H̄(·; x̄),
with the latter defined in (5.1) with y = x̄ and the pair of generalized subgradients (s̄f2 , s̄c2)
above. For every x ∈ Rn fixed, the above limits imply

lim
K∋k→∞

H̄(x;xℓk) = H̄(x; x̄),

i.e., {φk}k∈K converges pointwise to φ. Applying Lemma 5.6 for k + 1 = ℓk+1, we obtain
pℓk+1 ∈ ∂eℓk+1φℓ(x

ℓk) (Eq. (5.5c)). Furthermore, as the sequence {pℓk+1} is bounded (see
the paragraph right before this proposition), we may take another subsequence indexed by
K′ ⊂ K so that limK′∋ℓ→∞ pℓk+1 = p̄ ∈ Rn and limK′∋ℓ→∞ eℓk+1 = 0 in view of (5.9) and
definition of ek+1 given in Lemma 5.6. With these conditions at hand, Lemma A.1 (in

Appendix A) ensures that p̄ ∈ ∂φ(x̄), i.e., p̄ ∈ ∂1H̄(x̄; x̄). Next, observe that {sℓk+1

X } is a
bounded sequence as the inequality

||pℓk+1 + s
ℓk+1

X || ≤ µmax||xℓk+1 − xℓk || (5.10)

holds due to Lemma 5.6 (with µmax finite due to Lemma 5.1). By definition of the convex

normal cone, it follows that there exists a suitable subsequence of {sℓk+1

X }k∈K′′ , with K′′ ⊂ K′
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converging to a cluster point s̄ ∈ NX(x̄) = ∂iX(x̄). Hence, since X is polyhedral and
ri(Dom(H̄(·; x̄))) = O ̸= ∅,

p̄+ s̄ ∈ ∂1H̄(x̄; x̄) + ∂iX(x̄) = ∂1
[
H̄(x̄; x̄) + iX(x̄)

]
. (5.11)

Finally, inequality (5.10) combined with (5.9) yield p̄+s̄ = 0. Hence, 0 ∈ ∂1
[
H̄(x̄; x̄)+iX(x̄)

]
,

showing that x̄ minimizes H̄(·; x̄) over X. Lemma 5.2 thus concludes the proof.

The following theorem sums up the algorithm’s convergence analysis.

Theorem 5.8 (Convergence analysis). Let X ̸= ∅ be a bounded polyhedron contained in the
open set O, f1, c1 : O → R convex, and f2, c2 : O → R weakly convex functions on some
neighbourhood of each x ∈ O. If in Algorithm 4.2 the stopping test tolerance Tol is set to
zero, then any cluster point x̄ of the sequence of stability centers {xℓk} satisfies the necessary
optimality condition (3.13).

Furthermore, concerning the original problem (1.1), the following holds:

i) If c(x̄) > 0 (which cannot happen if x0 is feasible), then x̄ is a critical point of
min
x∈X

c1(x)− c2(x).

ii) If c(x̄) = 0 and x̄ is not a critical point of minx∈X c1(x) − c2(x), then x̄ satisfies the
criticality condition (3.9) with λ̄ > 0.

iii) If c(x̄) < 0, then x̄ satisfies the criticality condition (3.9) with λ̄ = 0.

If Tol > 0, then the algorithm stops after finitely many steps k ∈ N with an approximate
critical point xℓk of (3.13).

Proof. For the case Tol = 0, condition (3.13) follows directly from Proposition 5.3 if {xℓk}
is finite, from Proposition 5.4 if the the algorithm produces only finitely many serious steps
followed by an infinite sequence of null steps, and from Proposition 5.7 if infinitely many
serious steps are produced.

Furthermore, the connection with the necessary optimality condition for the original
problem (1.1) is established by Theorem 3.5.

Proposition 5.4 ensures that lim
k→∞

||xk+1−xℓ|| = 0 if xℓ is the last stability center. Other-

wise, lim
k→∞

||xℓk+1 −xℓk || = 0, as shown in the proof of Proposition 5.7. Thus, Algorithm 4.2

stops after finitely many steps provided Tol > 0.

6 Illustrative Numerical Examples

A deep analysis of the numerical performance of Algorithm 4.2 (CwC-PBM) is out of the
scope of this paper. Instead, this section aims to illustrate our approach to solving some
challenging test problems. Here we have two goals: show that it provides good-quality
critical points (examples of Subsection 6.2 - Subsection 6.5) and is able to solve problems
that, to the best of our knowledge, could not be resolved with other solvers (Subsection 6.1).
We consider four nonconvex stochastic optimization problems and one coming from signal
processing. Notice that the stochastic problems (example of Subsection 6.1 - Subsection
6.3) do not have explicit DC decompositions, and thus DC programming algorithms are not
directly applicable.

Numerical experiments were performed using MATLAB R2020a and Gurobi 9.5.1 (for
solving the master QP subproblem (4.8) in Algorithm 4.2) on a personal computer with the
following characteristics: Windows 10 Professional, 32 Go, Intel i7-10850H (6 cores). Our
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implementation allows for simpler problems without non-linear constraints (as in the case
of the problem in Subsection 6.2). We invite the interested reader to check Appendix B for
a brief presentation of how the approach can be simplified in this case.

Unless otherwise specified, the choice of the parameters in Algorithm 4.2 is as follows:
ρ = σ = 1

2 , κ = 0.3, µ0 = 102 and Tol = 10−4.

6.1 Highly nonconvex chance-constrained problem

In this section we investigate the following optimization problem (having weakly-convex
constraint):

min
x∈Rn

c⊤x

s.t. P
[
1

2
ξ⊤Qj(x)ξ + qj(x)

⊤ξ + dj(x) ≤ 0, j = 1, ..., k

]
≥ p (6.1)

x ≤ x ≤ x̄.

We first note that as a result of [48] and the upfollowing concrete data, that the probability
function is continuously differentiable. Furthermore the underlying feasible set is compact
and so we are in case ii) of the introduction: c1(x) = p and −c2 indicating the probability
function. The underlying data is not convex in the parameter replaced by the random vector.
As a result, the underlying feasible set is not expected to be convex. Concretely we will
consider the following data, for k = 2:

Q1(x) =

[
3(x1 − 1) −x2
−x2 3(x1 − 1)

]
, Q2(x) =

[
−2x2 x1 − 1
x1 − 1 −2x2

]
as well as

q1(x) =

[
3
1

]
(x1 − 1), q2(x) =

[
1
4

]
x2

d1(x) = −2, d2(x) = −2. We have also picked p = 0.7 together with c = (−1,−1), x =
(−2,−2), x = (2, 2). The random vector is taken to be multivariate Gaussian with mean
vector 0 and covariance matrix

Σ =

[
2 −1
−1 2

]
.

This optimization problem is quite challenging. First it can be observed that an al-
ternative sample average approximation along the lines of [22] would be a MILP. It is thus
tempting to first try to solve the resulting optimization problem with such a formulation. We
have done so for the following sample sizes {100, 1000, 5000, 10000, 50000}, using CPLEX
12.10. The resulting computation times are 0.5, 4, 22, 100, > 8000 seconds respectively. The
last computation was aborted still showcasing a 25.9% gap after more than 2 hours of com-
putation. Unfortunately, none of the obtained solutions turn out to be feasible, quite to the
contrary: the typically obtained final probability value is roughly 0.04 being far from the
required 0.7. We have also performed a run of a sampled problem with 10000 random real-
izations, but with a significantly higher probability level of 0.9. In this case, after roughly
one hour of computation, the resulting solution being at a MIPgap of 3.3 %, is still highly
infeasible having only a probability value of 0.02.

Furthermore, we have tested IPOPT solver for the problem resolution: tests have been
performed for the six initial points listed in Table 1 and default tolerance 10−4. After at most
26 seconds of computation, IPOPT halted with highly infeasible points with a probability
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Figure 2: Probability distribution associated with the chance constraint in (6.1)

constraint value equal to 0. The difficulty of generating feasible points might come from the
form of probability distribution as the probability level sharply raises from zero (blue, Figure
2) to nearly 1 (yellow, Figure 2) when approaching the feasible area from most directions,
which causes the loss of gradient information in a large zone of zero probability. But of
course this gradient information is not exploited by the MILP formulation at all.

In contrast, as Table 1 shows, the CwC-PBM algorithm manages to improve the prob-
ability level if the starting point is infeasible, and to improve the objective function value
while satisfying probability constraint for a feasible initial point. Moreover, for one of the
tested starting points we have managed to generate the near (globally) optimal solution
(1.2400;−0.1126). Since the problem is indeed very difficult, a precise internal sampling
scheme for the probability function is required. This amounts to the number of samples
used to compute a formula of the type (6.4), which subsequently leads to design of the
oracle for c2 component. We can prematurely end further sampling, very much like the
implementation of Genz’ code [9], by checking if sampling variance - in fact the confidence
interval bounds - are sufficiently small. Unlike Genz’ code a crude antithetic Monte-Carlo
scheme has been used for sampling, thus leaving much room for significant improvement in
terms of speed and precision, by using for instance QMC as, in [11].

Initial point Time (s) Iterations Initial
probability

level

Final
probability

level

Objective
value

(1.2, −0.1)⊤ 47.6 17 0.80 0.70 -1.1097

(1.5, −0.4)⊤ 78.4 28 0.43 0.70 -1.1346

(1.6, −0.3)⊤ 36.9 14 0.42 0.70 -1.0815

(1.7, −0.4)⊤ 59.8 20 0.36 0.70 -1.1443

(1.1, −0.4)⊤ 21.3 10 0.43 0.43 -0.7001

(1, −0.8)⊤ 10.8 9 0.18 0.18 -0.2001

Table 1: Results obtained with the CwC-PBM algorithm for problem (6.1) depending on
initialization.
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6.2 Investment like problems

We will see how the structure of Example 1.1 can appear in practice. Here we will follow the
general discussion in [47]. We are interested in the situation wherein we dispose of a set of
different technologies i = 1, ...,m capable of generating electricity. Each technology comes
with a specific and detailed set of constraints Pi, cost function ci attributing to pi ∈ RT the
cost of generation. Altogether, the various technologies are meant to ensure the satisfaction
of a given customer load d ∈ RT . We are interested in finding the optimal mix. Thus for
i = 1, ...,m, we are given θi ∈ N, the number of “units” of a given type we would like to
invest in. The vector θ comes with an investment cost F (θ). In a deterministic setting this
would amount to solving

min
θ∈Θ,pj

i∈Pi

F (θ) +

m∑
i=1

θi∑
j=1

ci(p
j
i )

s.t.

m∑
i=1

θi∑
j=1

pji ≥ d.

Now should for each i, the mappings ci as well as the feasible sets Pi be convex, then it must
be so that the averaged solution: p∗i = 1

θi

∑θi
j=1(p

j
i )

∗, in which each power plant of technology
i produces exactly this amount is also optimal. This follows from using convexity of Pi

showing feasibility of p∗i and through using Jensen’s inequality for ci. This is also exactly
what would happen if we would solve the subproblems of the Lagrangian dual (w.r.t. the load
constraint) for a given fixed investment vector. The convexifying effect of the Lagrangian is
well known, e.g., [19, 45] and thus for this dual setting convexity of ci or Pi would not be
essential. Either way, as a result we may thus assume that each power plant of the same
technology produces the same amount. This would thus lead to the simpler problem (less
variables):

min
θ∈Θ,pi∈Pi

F (θ) +

m∑
i=1

θici(pi)

s.t.

m∑
i=1

θipi ≥ d.

We will investigate a two-stage stochastic version of the last problem, wherein d is uncertain.
We thus define:

Q(θ, ξ) = min
pi∈Pi

m∑
i=1

θici(pi) s.t.

m∑
i=1

θipi ≥ d. (6.2)

and consider the optimization problem

min
θ∈Θ

F (θ) + E[Q(θ, ξ)], (6.3)

where for the sake of simplicity we will assume θ to be allowed to take continuous values
(Θ is a polytope). We will also assume that the feasible set Pi is convex, although one
could investigate problem (6.3) without this assumption - for instance by arguing through
Lagrangian duality.

Let us now look at a concrete instance. We will consider a time horizon of t = 1, ..., T
time steps where each time step is considered to be ∆t hours long. The problem disposes
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of m types of technology, having the following characteristics. Each technology type has a
maximum power output level pmxi , proportional cost ci and gradient condition gi. Addition-
ally, each unit is assumed to dispose of a carbon emission rate ei, and the system subject
to a carbon cost f . Concretely this means that the proportional cost gets updated through
the formula ci ← ci + fei.

The system is moreover endowed with a given customer load that we will assume to be
multivariate Gaussian with a given mean and positive definite Covariance matrix. We refer
to [37, § 5] for the description of Pi (polyhedral). Furthermore for the various technologies
we will assume that F (θ) = F⊤θ. The purpose of our experiment is to showcase how
concretely the new algorithm can process specifically structured problems such as these.

Following the description of Example 1.1, we need to compute Qε(θ, ξ) at each given θ.
The latter involves the solution of a convex optimization problem, wherein ψt is given by
the t-th component of d −

∑m
i=1 θipi. As a result of the logarithm, the objective function

defining Qε is convex in y. We will therefore use a cutting-plane approach to internally
compute Qε, as well as it’s gradient. The inner optimization is initialized from the optimal
solution y0 of the inner optimization problem of Q(x, ξ). The latter can be computed by
solving a linear program. This will give us the oracle for f2 (in the notation of Subsection
4.1).

Table 2 provides the concrete data.

1 2 3 4 5 6 7 8 9 10
pmx (MW) 900 900 900 300 300 200 200 200 100 10000
g (MW/h) 100 100 100 30 30 20 20 70 70 5000
c (e/MWh) 30 35 37 45 47 60 100 110 150 10000
F inv (e) 493151 493151 493151 41096 41096 32877 32877 32877 21918 0
e (t/MW) 0 0 0 1 1 0.5 0.5 0.5 1.1 0

Table 2: Data for the stylized investment problem

We can observe that the last unit described in the previous table is an imbalance unit
- a computational trick to ensure that one can always meet the load, in this case even
despite a potentially completely unbalanced set of invested assets. In terms of constraints
on investment, we do not allow investment in this last unit, the capacity will remain at 1.
The cost of investment was set up using typical values of investment cost per kW, upon
rescaling to match T and while accounting for life span of the various technologies. The
data of the case is stylized and the general purpose of the study is more a demonstration of
the capabilities of the algorithm rather than an attempt to provide practical insights into
investment regarding the electrical system.

We have performed tests with the CwC-PBM algorithm and IPOPT solver, both applied
to approximation with Qε, ε = 10−2, for f = 0 (zero carbon cost) and f = 100. The
latter case enables to see the potential impact of such a penalized setting for emitting
technologies. The methods provide comparable results in terms of objective value with the
average relative difference of 0.98% (both for default tolerance 10−4), see Table 3. (Both
algorithms exploit the problem’s decomposable structure and employ the same oracles.)
The average execution time (among 6 considered cases) is 2 579 seconds for the CwC-PBM

algorithm, and constitutes to 2 241 seconds for IPOPT (including function evaluation). For
initial states v2 = (1 1 1 1 1 0 1 0 1 1)⊤, the resulting total amount of installed capacity is
less for the case with f = 100 (around 3 500 MW for both methods) compared to the case
with zero carbon cost (more than 3 900 MW for both methods). While the latter remains



728 K. SYRTSEVA, W. DE OLIVEIRA, S. DEMASSEY AND W. VAN ACKOOIJ

close to the nominal investment vector, the methods update the set of installed capacities
quite significantly, by shifting essentially all generation from carbon emitting technologies to
technologies 1− 3 not emitting CO2 at all for the case with f = 100. This can be explained
since the original setting was slightly overcapacitated - and as a result of the introduction
of the ”fictive” imbalance unit - infeasibility is no longer an issue. The maximum load
over the considered scenarios being roughly 3 500 as well. A similar situation occurs for the
initial state v3 = (1 1 1 1 1 1 1 1 1 1)⊤ (roughly, 4 000 MW for f = 100 against 3 700 MW for
zero carbon cost). For v1 = (1 1 1 1 1 0 0 0 0 1)⊤, the solution found by IPOPT corresponds to
3 700 MW of installed capacity for f = 100, compared to approximately 3 500 MW suggested
by the CwC-PBM algorithm. This numerical experiment thus clearly shows that the CwC-PBM

algorithm provides meaningful good quality solutions for this type of problems.

CwC-PBM algorithm IPOPT solver
Initial state CO2 cost Iterations Objective

value
Iterations Objective

value

v1 = (1 1 1 1 1 0 0 0 0 1)⊤
0 49 5 781 983 16 5 864 083
100 33 5 886 797 10 6 001 847

v2 = (1 1 1 1 1 0 1 0 1 1)⊤
0 29 5 965 697 9 5 865 690
100 31 5 938 787 15 5 920 723

v3 = (1 1 1 1 1 1 1 1 1 1)⊤
0 16 5 985 021 6 5 970 187
100 32 5 945 049 11 5 930 397

Table 3: Results obtained with CwC-PBM algorithm and IPOPT solver for (6.3) for carbon
cost f = 0 and 100. Average execution time is 2 579 seconds for the CwC-PBM algorithm and
2 241 seconds for IPOPT.

Setting the prox-parameter µ0 equal to its value at the first serious step µl1 predictably
speeds up the CwC-PBM algorithm’s performance. For initialization at v2 and v3, the prox-
parameter µl1 is of the order of 106, while it is equal to its default value of 102 for initialization
at v1. The number of iterations decreases significantly for the former cases–down to 15
and 24 in the case of v2, and 9 and 28 in the case of v3–with an average improvement
of 27% in execution time. When altering the stopping test tolerance Tol within the set
{10−4, 10−6, 10−8, 10−12} (with fixed µ0 = µl1), we observe that the objective value does
not change for all considered initial states and carbon costs. To progress to the next tolerance
level within the specified set, the algorithm undergoes between 1 and 4 iterations, resulting
in duration ranging from 44 to 456 seconds depending on the case. Moreover, the objective
value shows minimal variation with alterations in the parameter κ. Varying κ within the set
{0.001, 0.01, 0.03, 0.1, 0.3}, the objective value remains within the limits of ±0.01% (tests
have been performed with the initial state v2). The algorithm is thus robust with respect
to the choice of Tol and κ and can be accelerated with the selection of an appropriate
prox-parameter µ.
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6.3 Decision dependent probability constraints in two stage problems

In this section we consider the following stochastic problem having different random vectors: min
x∈X

f1(x) +

S∑
s=1

πsQ(x; ξs)

s.t. P[A1x+ b1 ≥ ω1] ≥ p1
with Q(x; ξ) :=

{
min
y∈Y

q(x, y; ξ)

s.t. Px[A2(ξ)y + b2(ξ) ≥ ω2(x)] ≥ p2.

In this problem, ξ ∈ Ξ := {ξ1, . . . , ξS}, ω1 ∼ N (µ1,Σ1), and ω2(x) ∼ N (µ2(x),Σ2(x)). The
latter random vector depends on the first-stage decisions. We assume that the covariance
matrices Σ1 and Σ2(x) are positive definite for all x ∈ X. As a result, the probability
functions are twice-differentiable [13, 46]. Furthermore, as the multivariate Gaussian dis-
tribution is log-concave, we get that c1(x) = log(p1) − log(P[A1x + b1 ≥ ω1]) is a convex
function and so is the objective of the penalized subproblem

Qε(x; ξ) = min
y∈Y

q(x, y; ξ)− 1
ε log

(
Px[A2(ξ)y + b2(ξ) ≥ ω2(x)]− p2

)
.

We are thus in the setting of Example 1.1 with f2(x) =
∑S

s=1 πs[−Qε(x; ξs)]. We can observe
that the just given optimization problem is a version of two-stage stochastic program having
unhedgeable, or post-decision random realizations.

Now in order to compute the gradient of both of the involved probability functions,
we can rely on two different formulæ for the gradients. The mapping c1 is continuously
differentiable and its gradient can be evaluated by employing the results shown in [44]. The
second stage probability function is also differentiable under a mild regularity condition, its
gradient can be evaluated using the formulæ from [43, Thm. 5.1]. Indeed with L2(x) the
matrix resulting from the Cholesky decomposition Σ2(x) = L2(x)L2(x)

⊤, we may write

ci2(x, y) = P[−A2(ξ
i)y − b2(ξi) + µ2(x) + L2(x)ω2 ≤ 0],

where ω2 ∈ Rm, ω2 ∼ N (0, I). Hence we can observe that:

∇ci2(x, y)

=

∫
v∈Sm−1:J∗(v) ̸=∅,|J∗∗(v)|=1

− χ(ρ̂(v))

(L2(x))j(v)v

(
ρ̂(v)∇(L2(x))j(v),.v)+∇µ2(x),−(A2)

⊤
j(v),:

)
dµζ(v)

(6.4)

with

J∗(v) = {j = 1, ..., r : (L2(x))jv > 0}

ρ̂(v) = min
j∈J∗(v)

A2y + b2 − µ2(x)

(L2(x))jv

J∗∗(v) =

{
j ∈ J∗(v) : ρ̂(v) =

A2y + b2 − µ2(x)

(L2(x))jv

}
.

and j(v) being the unique element of J∗∗(v). In this case since L2 has linearly independent
rows - which is the case since Σ2 is positive definite - the aforementioned regularity condition
(R2CQ) holds true. In fact (R2CQ) holds true locally and as a consequence it is indeed so
that both c1 and c2 are twice continuously differentiable. This was already clear for c1 upon
using well known classic arguments.
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Let us now consider the following concrete example of a problem of this kind. We
are interested in a situation considering a manufacturer capable of producing two different
products. The first-stage decision variables of the problem consist of setting prices for
the products and an advertisement levels. The price will be assumed to be in relation to
the average second-stage demand for the given product. We will use the following rule
µ2(x) = (µ̄1/x1, µ̄2/x2), with x1, x2 being the price levels for product 1 and 2 respectively.
Advertisement is assumed to have a beneficial effect on the variance of the demand, but
simultaneous advertisement for both products will be counterproductive. In other words:

Σ2(x) :=

[
(0.1µ̄1/x1x3)

2 −0.4(0.01µ̄1/x1x3µ̄2/x2x4)
−0.4(0.01µ̄1/x1x3µ̄2/x2x4) (0.1µ̄2/x2x4)

2

]
.

The second stage decision y involves the production of the goods. The production process
of the goods is subject to some possible unreliability as the amount of actually produced
goods are concerned. The matrix A2 is thus a diagonal matrix, where the first entry is a
uniform random variable over the interval [0.9, 1] - on average only 95% of the commissioned
products actually get manufactured. The second diagonal entry is uniform over the interval
[0.8, 1] - the process of production here is more unreliable. However producing with the
more unreliable process is slightly cheaper. Any products that are manufactured but not
sold, will incur a penalty. The second stage cost function is thus given by

q(x, y, ξ) = (2− x1)y1 + (1− x2)y2 + 12E[max {y1 − (ω2)1, 0}] + 12E[max {y2 − (ω2)2, 0}].

The last two terms correspond to the penalization of produced, but not sold goods. It turns
out that the latter expectations can be computed “analytically” as they are related to the
computation of an expectation of a truncated Gaussian random variable. Therefore, we can
observe that the following identity holds true:

E[max {y1 − (ω2)1, 0}] = Φ((y1 − (µ2(x))1)x1/(0.1µ̄1x3))(y1 − (µ2(x))1)

− 1√
2π
e−

1
2 ((y1−(µ2(x))1)x1/(0.1µ̄1x3))

2

0.1µ̄1/x1x3.

The second formula is of course immediately deduced as it is analogous. Both products
require a different setup of the factory, so y1 + y2 ≤ 10. Furthermore, the first-stage cost
function is related to the cost of advertisement f1(x) = q1x

2
3 + q2x

2
4. Furthermore all first-

stage variables are bounded.
The implementation of this example requires first the implementation of the formulae

for the gradient of the probability function. Here we can exploit the earlier given formula
immediately. It can be observed (see the more extensive discussion in [38]) that the proba-
bility value itself can be computed with exactly the same cost. Subsequently the algorithm
scheme is very similar to the one of the investment problem. In particular, combining the
computations for probability function value and subgradient (6.4) with the reasoning of the
previous example, we will obtain the oracle for f2 component (in the notation of Subsection
4.1), while the oracle for f1 is straightforward from the formula of the advertisement cost.

Therefore, we have also run this case with the CwC-PBM algorithm and found an approx-
imate critical solution after a total of 12 iterations (1600 seconds on personal laptop). The
found solution is x = (3.37, 3.21, 0.096, 0.784), showing that there is interest in balancing the
prices, i.e., not taking maximal prices, while also investing in advertisement. We have done
the same test with IPOPT solver. The computation was aborted after 50 000 seconds with
the resulting infeasible point x = (9.997, 9.983, 0.0004, 0.167) slowly approaching the bound
(10, 10, 0, 0).
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This example thus shows that the new algorithm allows us to consider settings beyond
classic convexity, even when dealing with probability functions - in this case with decision
dependent random vectors.

6.4 Compressed sensing problem

In this section we focus on the problem of compressed sensing considered in [51]:

min
x∈Rn

∥x∥1 − ∥x∥ (6.6)

s.t. ∥Ax− b∥2LL2,γ ≤ δ,

where A ∈ Rq×n is a full row rank matrix and b ∈ Rq. For given γ > 0, Lorentzian norm
∥ · ∥LL2,γ of a vector y ∈ Rq is defined as

∥y∥2LL2,γ =

q∑
i=1

log

(
1 +

y2i
γ2

)
.

As discussed in [51], the problem (6.6) is DC with twice continuously differentiable con-
straint, whose modulus of Lipschitz gradient is known. This allows us to construct the oracle
for the constraint component. To compute subgradient of the component f1(x) = ∥x∥1, we
have chosen the sign function.

As in [51], we have generated A ∈ Rq×n with normally distributed random entries nor-
malizing it so that each column has a unit norm. To set the original point, we have chosen a
subset of size s0 = [ q9 ] among basis vectors and generated a s0-sparse vector xorig with i.i.d.
normally distributed random entries. We have taken b = Axorig + 0.01η, each ηi having a
standard Cauchy distribution, and δ = 1.1∥0.01η∥LL2,γ with γ = 0.02.

We have performed tests with the CwC-PBM algorithm and SCPls algorithm coded
based on Algorithm 2.1 of the paper [51] for q = 720 i, n = 2560 i, with i = 1 (Figure
3) and i = 5 (Figure 4). Both algorithms were initialized at x0 = A+b with matrix A+

denoting the Moore-Penrose pseudoinverse of A. The gap between solution provided by the
SCPls algorithm (with tolerance 10−4) and CwC-PBM algorithm is 4.45% and 2.71% for 2 400
and 3 000 iterations, respectively, for the case i = 1. It constitutes 2.2% and 1.16% for
2 400 and 3 000 iterations, respectively, for the case i = 5, Table 4. However, the execution
time of the CwC-PBM algorithm is higher compared to SCPls, which was designed for a
more specific framework (constraint functions have Lipschitz continuous gradient, and the
objective function is decomposed as a sum of a smooth function and DC function), Table 4.

We have also run the CwC-PBM algorithm with initialization at zero vector. It manages to
obtain a feasible solution after 50 iterations (for both i = 1 and 5), as well as to recover an
optimal solution within tolerance 3.2× 10−4 for i = 1 (10 000 iterations) and 1.2× 10−3 for
i = 5 (3 000 iterations) with execution time of 1 347 seconds and 2 717 seconds, respectively.
The SCPls algorithm cannot be applied in this case, as a feasible initial point is required.
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CwC-PBM algorithm. SCPls algorithm.

Figure 3: Computed solutions (marked by circle) of (6.6) and xorig (marked by asterisk) for
i = 1

CwC-PBM algorithm SCPls algorithm
Iterations Time (s) Objective

value
Time (s) Objective

value

i=1
2 400 324.27 54.16

16.02 51.85
3 000 592.92 53.26

i=5
2 400 2 396.65 289.52

133.37 283.27
3 000 3 180.52 286.56

Table 4: Results obtained with CwC-PBM and SCPls algorithms for (6.6) with the initial point
x0 = A+b

6.5 Chance-Constrained Optimal Power Flow

This section is dedicated to the operational planning problem of distribution energy grid
under uncertainties related to the probabilistic nature of nodal generation and consumption
considered in [15, 36]. It is formulated as a chance-constrained Optimal Power Flow (OPF)
where the objective function constitutes to the operational planning cost, deterministic
constraints are convex and reflect contractual engagements related to the grid operation,
and the joint probability constraint incorporates the stochastic nature of the model. More
precisely, it ensures that for an operational decision, grid operating conditions remain within
technical limits with a given probability 1−α (security level). An operational decision bears
on power modulation of a grid user (limitation of power injected to the grid for producers
and power curtailment for consumers). Power modulation conditions can be individually
contractualized with producers (generators), which may reduce the operational cost due to
lower price of power modulation within the specified limits.

Following notations in [36], we denote the set of producers with such individual contracts
by NSCP , and the corresponding decisions on power modulation within contractualized
limits by (pγ

i , q
γ
i ), i ∈ NSCP . Decisions on power modulation above those limits as well as

decisions concerning other users are denoted by (pβ
i , q

β
i ) with corresponding set of indexes

i ∈ NFiT . To simplify the notation, if there is no need to distinguish user types, we will
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CwC-PBM algorithm. SCPls algorithm.

Figure 4: Computed solutions (marked by circle) of (6.6) and xorig (marked by asterisk) for
i = 5

denote decision variables by

p := ({pγ
i }i∈NSCP

, {pβ
i }i∈NFiT

) ∈ Rn

q := ({qγ
i }i∈NSCP

, {qβ
i }i∈NFiT

) ∈ Rn

with n = |NSCP |+ |NFiT |.
In [36] the chance-constrained optimal power flow is reformulated as a DC-constrained

DC-problem (with convex objective function, i.e. f2 = 0)

min
(p,q)∈X

∑
i∈NSCP

Ci|pγ
i |+

∑
i∈NFiT

C̃i|pβ
i |+

∑
i∈NSCP

ci(pγ
i )

2 +
∑

i∈NFiT

c̃i(pβ
i )

2 (6.7)

s.t. c1(p,q)− c2(p,q) ≤ 0.

Here all the coefficients Ci, ci, i ∈ NSCP , as well as C̃i, c̃i, i ∈ NFiT are positive, c1, c2
are convex functions. This reformulation is made based on an oracle enabling to find a DC
decomposition of the constraint under probability sign ([36], Section 3.1), which imposes the
OPF solution to be in the required bounds. Applying the sample average approximation, it
leads to a DC approximation of the probability constraint ([36], Section 3.2). This procedure
thus provides oracles for the DC constraint in problem (6.7). The proximal bundle algorithm
from [42] (PBMDC2) is applied to solved it.

As in [36], we consider the case of 33-bus network accommodating 31 loads with 3
generation units among them. One producer has individual contract with corresponding
costs C1 = 4.2 · 10−5, and c1 = 0 for power modulation up to 50% of his generation. Above
this volume, the costs are C̃1 = 4.2 · 10−3 and c̃1 = 0.01. For two other producers, the
costs are C̃2 = C̃1, C̃3 = 0.02 and c̃2 = c̃1, c̃3 = 0.1, while for the remaining 28 consumers
C̃i = c̃i = 1. We use data from Enedis Open Data on July 27, 2020, to construct load
and generation profiles for N = 1000 scenarios, only 545 among which satisfy the technical
limits (i.e. the security level is 0.545 without power modulation).

https://data.enedis.fr/explore/dataset/coefficients-des-profils/table
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We have run this problem with the CwC-PBM algorithm and PBMDC2 algorithm. The
parameters ρ, σ, κ and Tol for both methods are set to: ρ = 107, σ = 0.5, κ = 0.3 and
Tol = 10−5. The parameter µ0 is chosen to be 80 for the CwC-PBM algorithm, while µ0 = 102,
µmin = 10−6 and µmax = 106 for PBMDC2. We set 11 values of the security level 1−α ranging
from 0.75 to 1 with a step size of 0.025. The initial vector (p0,q0) is equal to zero, which
corresponds to the case with no power modulation.

For all values of security level 1−α, the CwC-PBM algorithm yields an approximate critical
point of (6.7). It is not necessarily the case for PBMDC2, as c2 needs to be differentiable
[42][Thm. 2], but this condition does not hold for (6.7) (see Section 3.1 of [36]).

The CwC-PBM algorithm provides better solutions in terms of the objective value for all
values of security level 1−α, Figure 5 (a). The maximal improvement is of 13.33% is obtained
for 1 − α = 0.775, and constitutes 3.56% in average. As explained in [36], the obtained
security level is less than 1 − α (Figure 5 (b)) due to DC approximation of probability
constraint. The relative maximal difference between the targeted and obtained security
level is 5.07% for the CwC-PBM algorithm compared to 4.93% for the PBMDC2 algorithm (both
at 1− α = 0.75). Nevertheless, solutions supplied by both algorithms are feasible for (6.7).
The average execution time is less for the PBMDC2 algorithm: 1340 seconds compared to 4232
for CwC-PBM. However, the objective value corresponding to PBMDC2’s solution is attained
after 2387 seconds in average. The latter difference can be explained by the fact that we
have not exploited the DC structure in the CwC-PBM algorithm.

This use case thus shows that the new algorithm is applicable to real-life industrial
problems and capable to generate approximate critical points in DC-constrained framework,
without assumptions on differentiability of DC components. However, achieving criticality
comes at the cost of an increase in execution time.

(a) Objective value (b) Security level

Figure 5: Objective value and security level obtained with CwC-PBM and PBMDC2 algorithms.

7 Conclusion

In this manuscript, we have considered nonsmooth and nonconvex optimization problems
where the objective function and nonlinear constraint are represented as the difference of
convex and weakly convex functions (CwC). Our work studies various stationary conditions
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and a bundle method approach enabling to compute critical (generalized KKT) points. The
latter broadens and enhances the algorithm developed in [42] for the case of Difference-of-
Convex (DC)-constrained DC-problems, and likewise relies on problem reformulation via
an improvement function. To the best of our knowledge, proposed method is the first one
that directly exploits the CwC-structure of the involved functions and does not require
additional assumptions or transformations as, for instance, explicit Difference-of-Convex de-
compositions or Moreau envelopes. We have illustrated the method performance with a
few stochastic problems, including two-stage and chance-constrained problems, and a com-
pressed sensing problem with nonlinear constraint. Preliminary results are meaningful and
show that the algorithm enables tackling settings beyond the classic Difference-of-Convex
setting.

Appendices

A Some Mathematical Results

Proof of Proposition 2.4. Since f : O → Rn is weakly convex, it follows by definition
that, relative to some neighbourhood Vx′ of each point x′ ∈ O, there exist µx′ > 0 such
that for all µ ≥ µx′ the function ϕ(x) = f(x) + µ

2 ∥x∥
2 is finite and convex on Vx′ . In such a

representation, there is no loss of generality in assuming that Vx′ ⊂ O (if necessary we can
define a new/smaller neighbourhood as Vx′ ∩ O for which the above conclusion obviously
stands). By considering all the points in X, let V := {Vx′ : x′ ∈ X} be the collection of all
such neighbourhoods. Then, by construction, V is an open cover of the compact set X and,
by definition of compactness, it has a finite open subcover, i.e., there exists finitely many
points {x′1, . . . , x′m} ⊂ X such that O′ := ∪mi=1Vx′

i
⊃ X, and by construction O′ is an open

subset of O. The first part of item i) thus follows by taking µf := maxi=1,...,m µx′
i
<∞. By

writing f(x) = ϕ(x)− µ
2 ∥x∥

2 and recalling Proposition 2.1 i) we get ∂Cf(x) = ∂ϕ(x)−µx for
all x ∈ O′. This concludes item i).

To show item ii), let us now define ϕ̃(x) = f(x) + µ
2 ∥x∥

2 + iO′(x), an extended real-

valued convex function: ϕ̃ : Rn → R ∪ {∞}. Note that for each x ∈ O′, there exists a
neighbourhood Vx ⊂ O′ such that ϕ̃(x′) = ϕ(x′) for all x′ ∈ Vx. This fact permits us to
conclude that ∂ϕ̃(x) = ∂ϕ(x) for all x ∈ O′. It thus follows from item i) that, for every
x ∈ O′ and every s ∈ ∂ϕ̃(x), there exists sf ∈ ∂Cf(x) such that s = sf + µx and the
subgradient inequality reads as

ϕ̃(y) ≥ ϕ̃(x) + ⟨sf + µx, y − x⟩ ∀y ∈ Rn,

i.e., f(y) + µ
2 ∥y∥

2 + iO′(y) ≥ f(x) + µ
2 ∥x∥

2 + iO′(x) + ⟨sf + µx, y − x⟩ for all y ∈ Rn. The
latter simplifies to

f(y) + iO′(y) ≥ f(x) + ⟨sf , y − x⟩ −
µ

2
∥y − x∥2 ∀y ∈ Rn.

By restricting y to the set X and recalling that sf = s − µx ∈ ∂Cf(x) is an arbitrary

subgradient (because no restriction was imposed to s ∈ ∂ϕ̃(x)), the above inequality becomes
(2.4). □

Lemma A.1. Let φ : Rn → R be a convex function, and {φℓ}ℓ∈N a sequence of convex
functions φℓ : Rn → R converging pointwise to φ, i.e., lim

ℓ→∞
φℓ(x) = φ(x) for every given
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point x. Furthermore, let {xℓ} ⊂ Rn be such that lim
ℓ→∞

xℓ = x̄ and {ϵℓ} ⊂ R+ satisfy

lim
ℓ→∞

ϵℓ = 0. If gℓ ∈ ∂ϵℓφℓ(x
ℓ) for all ℓ and lim

ℓ→∞
gℓ = ḡ, then ḡ ∈ ∂φ(x̄).

Proof. First, let us prove that lim infℓ φℓ(x
ℓ) ≥ φ(x̄). Since dom(φℓ) = dom(φ) = Rn, it

follows from [32, Cor. 2C] that the pointwise convergence of {φℓ}ℓ∈N is equivalent to epi-
convergence, which in turn is equivalent (see [32, Eq. (4.2)]) to epi-convergence of {φ∗

ℓ}ℓ∈N,
the sequence of conjugate functions to φℓ. Hence, it follows that limℓ φ

∗
ℓ (x) = φ∗(x) for

every given x ∈ Rn. Now consider the following development:

φℓ(x
ℓ) = (φ∗

ℓ )
∗(xℓ) = sup

y∈Rn

[⟨y, xℓ⟩ − φ∗
ℓ (y)] ≥ ⟨y, xℓ⟩ − φ∗

ℓ (y) ∀y ∈ Rn.

Accordingly, lim infℓ φℓ(x
ℓ) ≥ lim infℓ[⟨y, xℓ⟩−φ∗

ℓ (y)] = ⟨y, x̄⟩−φ∗(y) for all y ∈ Rn, showing
that

lim inf
ℓ

φℓ(x
ℓ) ≥ sup

y
[⟨y, x̄⟩ − φ∗(y)] = (φ∗)∗(x̄) = φ(x̄).

Recall that gℓ ∈ ∂ϵℓφℓ(x
ℓ). Then, φℓ(x) ≥ φℓ(x

ℓ) + ⟨gℓ, x − xℓ⟩ − ϵℓ for all x ∈ Rn. By
taking the limit when ℓ goes to infinity we get

φ(x) = lim
ℓ
φℓ(x) = lim inf

ℓ
φℓ(x) ≥ lim inf

ℓ
[φℓ(x

ℓ) + ⟨gℓ, x− xℓ⟩ − ϵℓ]

≥ lim inf
ℓ

φℓ(x
ℓ) + lim inf

ℓ
⟨gℓ, x− xℓ⟩ − lim sup

ℓ
ϵℓ

≥ φ(x̄) + ⟨ḡ, x− x̄⟩,

showing that ḡ ∈ ∂φ(x̄).

B Simplified Algorithm for the Case without Nonlinear Constraints

This section describes how Algorithm 4.2 can be simplified to deal with the simpler convexly-
constrained problem

min
x∈X

f(x), with f(x) = f1(x)− f2(x). (B.1)

In this case, the problem’s model (4.6) reduces to Ȟk(x;xℓk) = f̌k1 (x) − f̄ ℓk2 (x), and the
descent test (4.5) becomes f(xk+1) ≤ f(xℓk) − κ

2 ∥x − xℓk∥2. Hence, Algorithm 4.2 boils
down to the following plainer scheme.

Algorithm B.1. Proximal Bundle Method for Convexly-Constrained CwC programs

Step 0 (Initialization) Let x0 ∈ X, κ ∈ (0, 12 ), κ ≤ µ
0, and Tol ≥ 0 be given.

Call the oracles to compute fi(x
0) and (generalized) subgradients s0fi , i = 1, 2.

Define k := ℓk = 0 and B0f := {0}.

Step 1 (Trial point) Compute xk+1 the (x-part) solution of the QP
min
x, r

r + µk

2 ∥x− x
ℓk∥2

s.t. f̄ j1 (x)− f̄
ℓk
2 (x)− r ≤ 0 ∀ j ∈ Bk

f

x ∈ X, r ∈ R.

Step 2 (Stopping test) If ∥xk+1 − xℓk∥ ≤ Tol, then stop and return xℓk .
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Step 3 (Oracles call) Compute fi(x
k+1), and subgradients sk+1

fi
, i = 1, 2.

Step 4 (Descent test)

(a) If f(xk+1) ≤ f(xℓk)− κ
2 ∥x−x

ℓk∥2 holds, then declare a serious step: define

ℓk+1 := k + 1, choose Bk+1
f ⊂ {0, . . . , k + 1} with {k + 1} ∈ Bk+1

f and

arbitrarily select µk+1 ∈ (0, µk].

(b) Else, declare a null step: define ℓk+1 := ℓk and choose Bk+1
f ⊂ {0, . . . , k+1}

with B̄kf ∪ {k + 1, ℓk} ⊂ Bk+1
f (B̄kf as in (4.10)).

Compute νk := 2max

{
f̄
ℓk
2 (xk+1)−f2(x

k+1)

∥xk+1 − xℓk∥2 , 0

}
. If νk ≥ µk − 2κ, set µk+1 =

νk + 1; otherwise µk+1 = µk.

Step 5 (Loop) Set k := k + 1 and go back to Step 1.

Convergence analysis for Algorithm B.1 follows from that of Algorithm 4.2 upon several
simplifications. Instead of doing this exercise, we simply state the following result.

Theorem B.2. Consider problem (B.1) with X ̸= ∅ a bounded polyhedron contained in the
open set O, f1 : O → R convex, and f2 : O → R weakly convex on some neighbourhood of
each x ∈ O. If in Algorithm B.1 the stopping test tolerance Tol is set to zero, then any
cluster point x̄ of the sequence of stability centers {xℓk} satisfies the necessary optimality
condition (3.3).

If Tol > 0, then the algorithm stops after finitely many steps k ∈ N with an approximate
critical point xℓk of (3.3).

To have an intuition of why the above theorem is valid, the reader may think of adding
a dummy convex nonlinear convex function c(x) = c1(x)− 0 to (B.1) and rely on the results
from Sections 4 and 5. Indeed, by selecting a constant M > 0 large enough and function
c such that c(x) ≤ −M < 0 for all x ∈ X, we can see that Algorithm 4.2 applied to
(B.1) with the additional and superfluous constraint c(x) ≤ 0 boils down to Algorithm B.1.
Furthermore, in this artificial setting, the above convergence result follows directly from
Theorem 5.8, item iii).
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[5] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization,
Math. Program. 62 (1993) 261–275.



738 K. SYRTSEVA, W. DE OLIVEIRA, S. DEMASSEY AND W. VAN ACKOOIJ

[6] W. de Oliveira, The ABC of DC programming, Set-Valued Var. Anal. 28 (2020) 679–
706.

[7] D. Drusvyatskiy and C. Paquette, Efficiency of minimizing compositions of convex
functions and smooth maps, Math. Program. 178 (2019) 503–558.

[8] M. Gaudioso, G. Giallombardo, G. Miglionico and A. M. Bagirov, Minimizing non-
smooth DC functions via successive DC piecewise-affine approximations, J. Global
Optim. 71 (2018) 37–55.

[9] A. Genz, Numerical computation of multivariate normal probabilities, J. Comput.
Graph. Statist. 1 (1992) 141–149.

[10] P. Hartman, On functions representable as a difference of convex functions, Pacific J.
Math. 9 (1959) 167–198.

[11] H. Heitsch, On probabilistic capacity maximization in a stationary gas network, Opti-
mization 69 (2000) 575–604.

[12] L. Hellemo, P.I. Barton and A. Tomasgard, Decision-dependent probabilities in stochas-
tic programs with recourse. Comput. Manag. Sci. 15 (2018) 369–395.
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