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the decision variable xi ∈ C for i = 1, 2, . . . , n, respectively, set E ⊆ {(i, j)|1 ≤ i < j ≤ n},
and Aij with (i, j) ∈ E can be either an interval of the form

[
θij , θij

]
or a discrete set of

the form
{
θ1ij , θ

2
ij . . . , θ

M
ij

}
. We use arg(·) to denote the phase of a complex number and (·)†

to denote the conjugate transpose of a matrix or vector. The constraint arg
(
xix

†
j

)
∈ Aij

restricts the phase difference between the complex variables xi and xj in Aij . This con-
straint arises naturally in the field of transmit beamformer design [1, 4] and optimal power
flow [7, 8]. For example, according to the beamforming design principle, the phase differ-
ence between signals emitted from the antennas is required to be within certain angles to
acquire constructive interference. Similarly, in the optimal power flow problem, the voltage
phase difference between buses is restricted in a given range for stable and secure oper-
ation of the power systems. Moreover, other quadratic programming problems, such as
the multiple-input multiple-output (MIMO) detection problem [11, 14], radar phase code
design[16], angular synchronization problem [2] and the Max-3-Cut problem [5, 19], can be
formulated as special cases of problem (CQP). Therefore, problem (CQP) is very general
and has wide applications in various fields.

Problem (CQP) is NP-hard in general, since the Max-3-Cut problem as its special case
is already known as an NP-hard problem [19]. Therefore, most of the algorithms for solving
(CQP) or its special cases in the literature are suboptimal, including approximate algorithms
[16, 22] and local algorithms [23]. Among these suboptimal algorithms, the approximate
algorithms based on semidefinite relaxations have attracted great attention. One can refer
to [15] for a survey on the applications of semidefinite relaxations in signal processing, and
[18] for the applications in other areas.

On the other hand, some researchers have proposed global algorithms to solve problem
(CQP). Here, we mention some works closely related to our paper. In [3], Chen et al.
proposed a branch-and-bound algorithm to solve (CQP), where the set Aij is a continuous
interval [θij , θij ] with 0 < θij − θij < π. In this paper, we remove this restriction, allowing
the set Aij to be a discrete set or a continuous interval with a range larger than π. The
other two related works are [10] and [12], in which Lu et al. proposed a method to derive
new semidefinite relaxations for two classes of complex quadratic programming problems.
The main idea of their method is to derive new valid inequalities by representing variables
in the polar coordinate form and exploring relations between the radius and phases of vari-
ables. However, when the phase difference constraints are presented in problem (CQP), the
semidefinite relaxations in [10] and [12] are not directly applicable. Recently, Xu et al. [21]
followed the method of [10] and [12] and proposed a new semidefinite relaxation for problem
(CQP). We adopt a cutting-edge semidefinite relaxation in this paper. In addition, we
derive sufficient conditions for the tightness of this relaxation and estimate the relaxation
gap between the relaxation and the original problem. The tightness condition and the gap
estimation are not done in the existing work [21].

Moreover, we propose a branch-and-bound algorithm to globally solve problem (CQP)
with general nonconvex constraints on variable modulus and phase difference. Specifically,
the phase difference of two decision variables is allowed to lie in a discrete or continuous
set with a range larger than π. Such cases cannot be handled by other global algorithms in
the literature. The main feature of the proposed branch-and-bound algorithm is that some
complex variables are selected with their bounds on modules or phase differences partitioned
in the branching procedure. Numerical experiments on two types of beamformer design
problems are reported to verify the efficiency of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, we review the semidefinite
relaxation in [21] and derive the sufficient conditions for the tightness of the relaxation.
Then the gap between the feasible regions of the relaxation and the original problem is es-
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timated. In Section 3, we propose a branch-and-bound algorithm based on the semidefinite
relaxation to solve problem (CQP) globally, and discuss the relationship between the pro-
posed branch-and-bound algorithm and the existing one in [12]. In Section 4, we apply the
proposed algorithm to solve two application problems of (CQP) numerically and compare
its performance with other algorithms. Conclusions are given in Section 5.

The following notations are adopted throughout the paper. For a given complex ma-
trix X ∈ Cn×n, Re(X) and Im(X) denote its componentwise real and imaginary parts,
respectively, and X† denotes the conjugate transpose of X. For a given Hermitian matrix
A ∈ Cn×n, A ⪰ 0 means that A is positive semidefinite. For given two Hermitian matrices
A and B, A ⪰ B means A− B ⪰ 0. Moreover, Trace(A) denotes the trace of A, and A · B
denotes Trace(A†B). For a set S in some vector space, we use Conv(S) to represent the
convex hull of S. Besides, with a slight abuse of notations, for a nonzero complex variable
z and a set A ⊂ R, the notation arg(z) ∈ A means that there exists a k ∈ Z such that

arg(z) + 2kπ is contained in A. Besides, since arg(xix
†
j) is not defined when xix

†
j = 0,

we always regard the constraint arg(xix
†
j) ∈ Aij as being satisfied if xix

†
j = 0 and Aij is

nonempty. For a real number x, ⌊x⌋ is the greatest integer less than or equal to x, and ⌈x⌉
is the least integer greater than or equal to x. diag(X) is defined as the vector consisting of
the diagonal elements of the matrix X.

2 An Enhanced Semidefinite Relaxation

In this section, we review a semidefinite relaxation for problem (CQP) which has been
proposed in [21] and give a sufficient condition for the tightness of the relaxation. Then we
derive some inequalities to estimate the gap when the relaxation is not tight.

2.1 A semidefinite relaxation for (CQP) in [21]

For completeness of this paper, we briefly review how to obtain a positive semidefinite
relaxation of problem (CQP). We refer the readers to [21] for more details.

By introducing an n × n complex Hermitian matrix X := xx†, problem (CQP) can be
equivalently reformulated as

min
X

Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, 2, . . . ,m,

l2i ≤ Xii ≤ u2
i , i = 1, 2, . . . , n,

arg (Xij) ∈ Aij , (i, j) ∈ E ,
rank(X) = 1.

(CQP2)

where X ∈ Cn×n is decision variable. After dropping the phase difference constraints
arg(Xij) ∈ Aij for (i, j) ∈ E and relaxing the nonconvex constraint rank(X) = 1 to semidef-
inite constraint X ⪰ 0, we have the following classic semidefinite relaxation of (CQP):

min
X

Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, 2, . . . ,m,

l2i ≤ Xii ≤ u2
i , i = 1, 2, . . . , n,

X ⪰ 0.

(CSDP)

It is notable that the bound provided by the relaxation problem (CSDP) may not be
tight since the constraints arg(Xij) ∈ Aij , (i, j) ∈ E have been dropped directly and Aij is
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not even involved in (CSDP). Therefore, it is likely to improve the tightness of relaxation
(CSDP) by deriving new valid inequalities from the phase difference constraints. For this
purpose, we first reformulate problem (CQP) by introducing a new matrix variable R as
follows:

min
X,R

Q0 ·X

s.t. Qi ·X ≤ bi, i = 1, . . . ,m,
l2i ≤ Xii = Rii ≤ u2

i , i = 1, . . . , n,
R2

ij = RiiRjj , (i, j) ∈ E ,
|Xij | = Rij , arg (Xij) ∈ Aij , (i, j) ∈ E ,
X ⪰ 0.

(CQP3)

where X ∈ Cn×n and R ∈ Rn×n are decision variables. The equivalence between (CQP)
and (CQP3) above is obvious by noting that Xij = xixj and Rij = |xi||xj |. By relaxing
the nonconvex constraints R2

ij = RiiRjj and |Xij | = Rij in problem (CQP3), we have the
following semidefinite relaxation of problem (CQP):

min
X,R

Q0 ·X

s.t. Qi ·X ≤ bi, i = 1, . . . ,m,
l2i ≤ Rii = Xii ≤ u2

i , i = 1, . . . , n,
(Rii, Rjj , Rij) ∈ Conv (Hij) , (i, j) ∈ E ,
Xij ∈ Conv (Gij (Rij)) , (i, j) ∈ E ,
X ⪰ 0.

(ECSDP1)

where the sets Hij and Gij (Rij) are defined as

Hij :=
{
(Rii, Rjj , Rij) | l2i ≤ Rii ≤ u2

i , l
2
j ≤ Rjj ≤ u2

j , R
2
ij = RiiRjj

}
, (2.1)

and
Gij (Rij) := {Xij | |Xij | = Rij , arg (Xij) ∈ Aij} , (2.2)

respectively. Usually, it may be hard to describe the convex hull of a given set. Fortunately,
[3] and [21] show that the convex hulls of Hij and Gij(Rij) in problem (CQP3) have a
closed-form characterization. We cite the related results here with some modifications in
the notation.

Theorem 2.1 (Corollary 5 in [3]). The following two linear inequalities are valid for Hij

with a given index (i, j) ∈ E:

(li + ui) (lj + uj)Rij ≥
(
l2j + ljuj

)
Rii +

(
l2i + liui

)
Rjj + liljuiuj − l2i l

2
j , (2.3)

and

(li + ui) (lj + uj)Rij ≥
(
u2
j + ljuj

)
Rii +

(
u2
i + liui

)
Rjj + liljuiuj − u2

iu
2
j . (2.4)

Moreover, the convex hull of Hij can be represented as follows:

Conv (Hij) =

 (Rii, Rjj , Rij)
l2i ≤ Rii ≤ u2

i , l2j ≤ Rjj ≤ u2
j

R2
ij ≤ RiiRjj

(Rii, Rjj , Rij) satisfies inequalities (2.3) and (2.4)

 .

(2.5)

As for the set Gij (Rij), its convex hull depends on the structure of Aij . The next theorem
describes the convex hull of Gij (Rij).
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Theorem 2.2 (Propositions 1 and 2 in [21]). For a given index (i, j) ∈ E and Rij, when
Aij =

[
θij , θij

]
and θij − θij < 2π, the convex hull of Gij (Rij) is

Conv (Gij (Rij)) =

{
Xij

aij Re (Xij) + bij Im (Xij) ≥ cijRij

|Xij | ≤ Rij

}
, (2.6)

where

aij = cos

(
θij + θij

2

)
, bij = sin

(
θij + θij

2

)
and cij = cos

(
θij − θij

2

)
.

When Aij =
{
θ1ij , θ

2
ij , . . . , θ

M
ij

}
where 0 ≤ θ1ij < θ2ij < · · · < θMij < 2π, the convex hull of

Gij(Rij) is

Conv (Gij (Rij)) =

{
Xij

atij Re (Xij) + btij Im (Xij) ≤ ctijRij

t = 1, 2, . . . ,M

}
, (2.7)

where θM+1
ij := θ1ij + 2π and

atij = cos

(
θtij + θt+1

ij

2

)
, btij = sin

(
θtij + θt+1

ij

2

)
, ctij = cos

(
θt+1
ij − θtij

2

)
for t = 1, 2, . . . ,M.

In addition, the constraint R ⪰ 0 implies the constraints R2
ij ≤ RiiRjj for all (i, j) ∈ E ,

hence R2
ij ≤ RiiRjj becomes redundant if R ⪰ 0 is added into (ECSDP1). In this way, we

have another semidefinite relaxation of (CQP) as follows:

min
X,R

Q0 ·X

s.t. Qi ·X ≤ bi, i = 1, . . . ,m,
l2i ≤ Rii = Xii ≤ u2

i , i = 1, . . . , n,
Xij ∈ Conv (Gij (Rij)) , (i, j) ∈ E ,
(Rii, Rjj , Rij) satisfies (2.3) and (2.4), (i, j) ∈ E ,
X ⪰ 0, R ⪰ 0.

(ECSDP2)

We point out that (ECSDP2) could be tighter than (ECSDP1). Section 4 of [21] provides an
example of (CQP) to support this claim and explores the relationship between (ECSDP1)
and other relaxations in the literature.

2.2 Tightness and relaxation gap

Since (ECSDP1) and (ECSDP2) are two relaxations of problem (CQP), a natural concern is
the tightness of these relaxations. We address this issue from two perspectives. We first es-
tablish the conditions under which the proposed relaxation (ECSDP1) is tight. Subsequently,
we quantify the disparity between the sets Hij and Gij(Rij) and their corresponding convex
hulls Conv(Hij) and Conv(Gij(Rij)), respectively.

The following theorem gives the condition for the tightness of the relaxation (ECSDP1)
whose proof line is similar to the one in [9] and [13].

Theorem 2.3. Assume that the undirected graph U = (V, E) with the node set V =
{1, 2, . . . , n} and the edge set E ⊆ {(i, j)|1 ≤ i ≤ j} is connected, and (X,R) is an op-

timal solution of (ECSDP1). If X satisfies Xii > 0 for i = 1, 2, . . . , n and XiiXjj = |Xij |2
for (i, j) ∈ E, then the rank of matrix X is one, and there is no gap between (ECSDP1) and
(CQP).
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Proof. Since X is a positive definite Hermite matrix, it has a decomposition X = V †V with
V = [v1, v2, . . . , vn] and vi ∈ Cn. Since Xii > 0, vi and vj are all nonzero vectors. Then the

equation XiiXjj = |Xij |2 can be expressed equivalently as |vi|2|vj |2 = |vi†vj |
2
. Based on the

Cauchy-Schwartz inequality, the equation |vi|2|vj |2 = |vi†vj |
2
holds if and only if there exists

a λij ∈ C, such that vi = λijvj for any (i, j) ∈ E . For any two different columns vp and vq
in V , under the assumption that U is a connected graph, there is a path connecting p and q.
Without loss of generality, such a path can be denoted by a set {s1, s2, . . . , sℓ} where s1 = p,
sℓ = q and (si, si+1) ∈ E for i = 1, 2, . . . , ℓ − 1. It follows that vsi = λsisi+1

vsi+1
for some

nonzero λsisi+1
, i = 1, 2, . . . , ℓ − 1. Hence, vp =

∏ℓ−1
i=1 λsisi+1

vq, i.e., vp and vq is linearly
dependent for any p, q ∈ {1, 2, ..., n}. It follows that the matrix V = [v1, v2, . . . , vn] is rank-
one, and so is X. That is, X has a rank-one decomposition as X = xx† for some x, which is
an optimal solution of (CQP). The tightness of (ECSDP1) then holds straightforward.

Remark 2.4. Since relaxation (ECSDP2) is at least as tight as (ECSDP1), the condition
in Theorem 2.3 is also sufficient for the tightness of (ECSDP2).

In general, there may be a non-zero gap between (CQP) and the relaxation (ECSDP1).
In this case, Theorem 2.3 implies that there is at least one index (i, j) ∈ E such that
Rij <

√
RiiRjj or |Xij | < Rij for the optimal solution (X,R) of (ECSDP1). That is,

(Rii, Rjj , Rij) ∈ Conv(Hij) \ Hij or Xij ∈ Conv(Gij(Rij) \ Gij(Rij). Next, we derive some
inequalities to bound the difference between Rij and

√
RiiRjj , and the difference between

|Xij | and Rij in the following two theorems, respectively.

Theorem 2.5. For a given index (i, j) ∈ E, Rij and Xij ∈ Conv(Gij(Rij)), when Aij =[
θij , θij

]
and θij − θij < 2π, the following inequality holds

Rij ≥ |Xij | ≥ Rij cos

(
θij − θij

2

)
. (2.8)

When Aij =
{
θ1ij , θ

2
ij , . . . , θ

M
ij

}
where 0 ≤ θ1ij < θ2ij < · · · < θMij < 2π, the following inequality

holds

Rij ≥ |Xij | ≥ Rij cos

(
θMij − θ1ij

2

)
(2.9)

Proof. For the case Aij =
[
θij , θij

]
with θij − θij < 2π, by the definition of Conv(Gij(Rij))

in (2.5), we have |Xij | ≤ Rij . Thus we only need to show that

|Xij | ≥ Rij cos

(
θij − θij

2

)
.

Since Xij ∈ Conv(Gij(Rij)), we have

aij Re (Xij) + bij Im (Xij) ≥ cijRij ,

where aij , bij and cij are defined in Theorem 2.2. Using the Cauchy-Schwartz inequality, it
follows that

aij Re (Xij) + bij Im (Xij) ≤
√[

a2ij + b2ij
] [

Re2 (Xij) + Im2 (Xij)
]
= |Xij | .
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The previous two inequalities show that |Xij | ≥ cijRij . Using the definition of cij , we obtain
the desired inequality

Rij ≥ |Xij | ≥ Rij cos

(
θij − θij

2

)
.

When Aij =
{
θ1ij , θ

2
ij , . . . , θ

M
ij

}
, we have the following inequality hold when t = M from

Conv(Gij(Rij)) defined in (2.7):

cos

(
θ1ij + θMij

2

)
Re (Xij) + sin

(
θ1ij + θMij

2

)
Im (Xij) ≥ cos

(
θMij − θ1ij

2

)
Rij .

Again, using the Cauchy-Schwartz inequality, we have |Xij | ≥ Rij cos
( θM

ij −θ1
ij

2

)
. On the

other hand, Conv(Gij(Rij)) defined in (2.7) is the polyhedral set generated by the set of
extreme points {A1, A2, . . . , AM}, which all lie on a circle with radius Rij . So we have
|Xij | ≤ Rij . This completes the proof.

Theorem 2.6. If (Rii, Rjj , Rij) ∈ Conv(Hij), then the following inequality holds

√
RiiRjj −Rij ≤

1

2
ui (uj − lj) +

1

2
uj (ui − li) . (2.10)

Proof. Following from the inequalities (2.3) and (2.4), we have the following two inequalities:

√
RiiRjj −Rij ≤

√
RiiRjj −

(
l2j + ljuj

)
Rii +

(
l2i + liui

)
Rjj + liljuiuj − l2i l

2
j

(li + ui) (lj + uj)
,

√
RiiRjj −Rij ≤

√
RiiRjj −

(
u2
j + ljuj

)
Rii +

(
u2
i + liui

)
Rjj + liljuiuj − u2

iu
2
j

(li + ui) (lj + uj)
.

Adding the above two inequalities and dividing both sides by 2, we have

√
RiiRjj −Rij ≤

1

2

[
(uiuj − lilj)

2 −
(
(lj + uj)

√
Rii − (li + ui)

√
Rjj

)2
(li + ui) (lj + uj)

]
.

Dropping the two terms involving
√
Rii and

√
Rjj in the right-hand side of the above

inequality, we have √
RiiRjj −Rij ≤

1

2

[
(uiuj − lilj)

2

(li + ui) (lj + uj)

]
.

Since ui > li ≥ 0 and uj > lj ≥ 0, it follows that

uiuj − lilj
(li + ui) (lj + uj)

≤ uiuj − lilj
uiuj

≤ 1. (2.11)

Now we have
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√
RiiRjj −Rij ≤

(uiuj − lilj)
2

2 (li + ui) (lj + uj)

≤ 1

2
(uiuj − lilj)

=
1

2
(li (uj − lj) + lj (ui − li) + (uj − lj) (ui − li))

≤ 1

2
(li (uj − lj) + lj (ui − li) + 2 (uj − lj) (ui − li))

=
1

2
ui (uj − lj) +

1

2
uj (ui − li)

where the second inequality follows from (2.11) and the last inequality follows from ui >
li ≥ 0 and uj > lj ≥ 0.

Theorems 2.5 and 2.6 show that the bounds on |Xij | − Rij and
√
RiiRjj − Rij are

controlled by θij −θij and ui− li, uj − lj , respectively. When θij −θij approaches zero, |Xij |
will be close to Rij . Similarly, When ui − li and uj − lj become close to zero, RiiRjj will be
close to Rij . That is, for problem (CQP), if the bounds on the modulus of variables and the
phase difference are narrow, the relaxation (ECSDP1) may provide a good approximation.
Furthermore, the relaxation (ECSDP2) could be tighter than (ECSDP1), so it may provide
an even better lower bound.

3 A New Branch-and-Bound Algorithm for (CQP)

This section presents a new branch-and-bound algorithm for solving problem (CQP) based
on semidefinite relaxation (ECSDP2) (since it could provide a tighter lower bound than
(ECSDP1)). Then we discuss the relationship between the proposed algorithm and the
existing one in [12].

3.1 The proposed algorithm

The proposed branch-and-bound algorithm is an enumeration procedure that partitions
the feasible region into smaller subregions and recursively generates subproblems over the
partitioned subregions. The algorithm estimates a lower bound of problem (CQP) by solving
the semidefinite relaxation (ECSDP2) in each enumeration node. Meanwhile, an upper
bound is calculated using a local or heuristic algorithm. The procedure ends when the
difference between the upper and lower bounds is less than a given error tolerance ϵ. Then
an ϵ-optimal solution is found.

For ease of description, we adopt the following notations. For each enumeration node,
we associate it with a set of parameters {x, (X,R), L, U,A,R}, where x is a feasible solution
obtained by a local or heuristic algorithm, (X,R) is the optimal solution of the relaxation
in the enumeration node, L and U are the lower and upper bounds of the node, respectively,
A collects the upper and lower bounds on the phase differences, and R is the set of upper
and lower bounds on the modulus of variables. Let ECSDP (A,R) denote the semidefinite
relaxation for this instance with parameters Aij ∈ A for (i, j) ∈ E , and [li, ui] ∈ R, i =
1, 2, ..., n.

The main procedures of the proposed algorithm are described as below.
Lower Bound: For a generic node indexed by k, the optimal value Lk of each relaxation

problem with parameter sets Ak and Rk serves as a lower bound for the subproblem. Then,
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L∗, the minimal value of the lower bounds of all incumbent nodes, is a valid lower bound of
problem (CQP).

Upper Bound: If the relaxation problem (ECSDP2) of a node is infeasible, then this
node is fathomed. If the convex relaxation (ECSDP2) at a node in the search tree is exact,
which means that the optimal solution of (ECSDP2) satisfies |Xij | = Rij and R2

ij = RiiRjj

for all (i, j) ∈ E , then the current node is also fathomed and its optimal value is a valid upper
bound of (CQP). Otherwise, we will try to recover a feasible solution of problem (CQP)
from the optimal solution of the relaxation problem. In detail, let (X,R) be the optimal
relaxation solution, and let v be the eigenvector corresponding to the largest eigenvalue of
the solution X. Then, we construct a solution x by setting

|x| = diag(X) and arg(x) = arg(v).

Note that x may not satisfy the nonconvex quadratic constraints, thus we use it as an initial
point for a local solver, such as IPOPT [20], to solve the subproblem to find a feasible
solution x of problem (CQP). In the case where x is found, its objective value is an upper
bound of the subproblem. We use U∗ and x∗ to denote the best upper bound and the best
feasible solution throughout the enumeration process.

Node Selection Rule: Once the upper bound U∗ of problem (CQP) is updated,
any node with the lower bound no less than U∗ is fathomed. Let P denote the set of all
incumbent nodes that are not yet fathomed. In the enumeration procedure, we always select
an active node with the smallest lower bound from P. If there is a tie in the selection of the
node, we break it arbitrarily.

Branching Rule: Our goal is to continuously obtain tighter lower bounds via effective
branching. Theorems 2.5 and 2.6 indicate that the tightness of the proposed semidefinite
relaxation may be affected by the values of θij − θij and ui − li, uj − lj . Therefore, our
branching strategy aims to partition the modular and phase spaces such that the ranges of
modulus and phase difference become narrow.

Let {Ak,Rk} be the parameter of a selected node k in the current enumeration, and
(Xk, Rk) is the optimal solution of the relaxation ECSDP (Ak,Rk). We calculate the
following two groups of values:

Sk
1 = max

(i,j)∈E

{
Rk

ij − |Xk
ij |
}
,
(
ik1 , j

k
1

)
= arg max

(i,j)∈E

{
Rk

ij − |Xk
ij |
}
,

and

Sk
2 = max

(i,j)∈E

{√
Rk

iiR
k
jj −Rk

ij

}
,
(
ik2 , j

k
2

)
= arg max

(i,j)∈E

{√
Rk

iiR
k
jj −Rk

ij

}
.

If multiple indices achieve the maximum, we select the smallest one. The quantity
max{Sk

1 , S
k
2 } serves as a proxy for the relaxation gap. If Sk

2 ≤ Sk
1 , then motivated by

the bound in Theorem 2.6, we select Aik1j
k
1
∈ Ak to branch. When Aik1j

k
1
is an interval

[θik1jk1 , θik1jk1 ], it will be partitioned into [θik1jk1 , (θik1jk1 +θik1jk1 )/2] and [(θik1jk1 +θik1jk1 )/2, θik1jk1 ].

When Aik1j
k
1

is a discrete set
{
θ1
ik1j

k
1
, θ2

ik1j
k
1
, . . . , θM

ik1j
k
1

}
, it will be branched into{

θ1
ik1j

k
1
, θ2

ik1j
k
1
, . . . , θ

⌊M/2⌋
ik1j

k
1

}
and

{
θ
⌈M/2⌉
ik1j

k
1

, θ
⌈M/2⌉+1

ik1j
k
1

, . . . , θM
ik1j

k
1

}
. Otherwise, if Sk

2 ≥ Sk
1 , we

choose the longer of the intervals [lik2 , uik2
] and [ljk2 , ujk2

], and partition it into two equal
length subintervals.

Based on the above description, the pseudo code of the proposed algorithm is given in
Algorithm 1.
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Algorithm 1 A branch-and-bound algorithm for problem (CQP).

Require: A feasible instance of (CQP) with parameters A and R, a limit on iteration
number K and a given error tolerance ϵ.

1: Set k = 0, initialize Ak = A and Rk = R. Set the node list P = ∅.
2: Solve root node relaxation ECSDP (A0,R0) for its optimal solution (X0, R0) and opti-

mal value L0.
3: Compute a feasible point x0 using a local solver or heuristic method (if possible) and

get an upper bound U0.
4: Set the initial optimal upper bound L∗ = L0 and optimal lower bound U∗ = U0.
5: Add {x0, (X0, R0), L0, U0,A0,R0} into the node list P.
6: while (U∗ − L∗)/U∗ > ϵ and k < K do
7: Set k = k + 1
8: Use Node Selection Rule, choose a node from P, denoted as

{xk, (Xk, Rk), Lk, Uk,Ak,Rk}
9: Delete the chosen node from P.

10: Use the Branching Rule to either branch Ak into Ak
− and Ak

+ or branch Rk into
Rk

+ and Rk
−.

11: for s ∈ {+,−} do
12: Solve relaxation ECSDP (Ak

s ,Rk
s) to get an optimal solution (Xk

s , R
k
s ) and a

lower bound Lk
s .

13: Obtain an feasible solution xk
s and get an upper bound Uk

s from xk
s by using the

method in the Upper Bound procedure.
14: if Uk

s ≤ U∗ then
15: Update U∗ = Uk

s and x∗ = xk
s .

16: end if
17: if Lk

s ≤ U∗ then
18: Insert the node {xk

s , (X
k
s , R

k
s ), L

k
s , U

k
s ,Ak

s ,Rk
s} into P.

19: end if
20: end for
21: Delete all the nodes in P whose lower bound is larger than U∗.
22: Update lower bound L∗ according to Lower Bound procedure.
23: end while
24: Return x∗, L∗ and U∗.

3.2 Comparison with the algorithm in [12]

In this subsection, we analyze the relationship between the proposed branch-and-bound
algorithm and the one in [12].

Lu et al. have studied the following nonhomogeneous quadratic programming problem
in [12]:

min
1

2
x†Q0x+Re(c†x)

li ≤ |xi| ≤ ui, i = 1, 2, . . . , n,

arg(xi) ∈ Ai ⊆ [0, 2π], i = 1, 2, . . . , n.

(3.1)

Note that problem (3.1) is a subclass of problem (CQP). In fact, by appending xn+1 to the
vector x ∈ Cn and setting xn+1 = 1, the constraint arg(xi) ∈ Ai ⊆ [0, 2π] can be rewritten
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as arg(xix
†
n+1) ∈ Ai ⊆ [0, 2π], i = 1, 2, . . . , n. In this way, problem (3.1) is a special case of

(CQP) by setting Qi = 0, bi = 0, i = 1, 2, ...,m, and E = {(1, n+1), (2, n+1), ..., (n, n+1)}.
In [12], Lu et al. propose a branch-and-bound algorithm, called ECSDR-BB, for problem

(3.1) based on the following semidefinite relaxation:

min
1

2
Q0 ·X +Re(c†x)

li ≤ ri ≤ ui, i = 1, 2, . . . , n,

xi ∈ Conv(Gi(ri)), i = 1, 2, . . . , n,

Xii ≥ r2i , Xii − (li + ui)ri + liui ≤ 0, i = 1, 2, . . . , n,

X ⪰ xx†,

(ECSDP3)

where Gi(ri) := {xi | ri = |xi|, arg(xi) ∈ Ai} for ri > 0 and Gi(0) = {0}.
We now compare the relaxations adopted in the proposed algorithm and ECSDR-BB.

Theorem 7 in [21] shows that (ECSDP1) is equivalent to (ECSDP3). Indeed, it is straight-
forward to check that, if (X,x, r) is a feasible solution of (ECSDP3), the following solution
(Y,R) such that

Y =

[
X x
x† 1

]
and R =

[
rr† r
r† 1

]
(3.2)

is a feasible solution of (ECSDP1), and vice versa. Hence, ECSDR-BB uses (ECSDP1) as the
relaxation for the lower bound, while the proposed algorithm in this paper uses (ECSDP2).
As we have mentioned in Section 2.1, (ECSDP2) could be tighter than (ECSDP1), the lower
bounds returned by the proposed algorithm is at least as tight as the one by ECSDR-BB.

We then analyze the relationship between the branching rules of the two algorithms. In
ECSDR-BB, after obtaining an optimal solution (X̄, x̄, r̄) of (ECSDP3), a feasible solution
x̂ of (3.1) is generated as follows:

x̂ = Scale(x, r) :=
[
r̄1e

i arg(x̄1), r̄2e
i arg(x̄2), . . . , r̄ne

i arg(x̄n)
]⊤

.

Let
i∗1 = argmax

i
{|x̂i − x̄i|} , S∗

1 = max
i

{|x̂i − x̄i|} ,

i∗2 = argmax
i

{
X̄ii − (r̄i)

2
}
, S∗

2 = max
i

{
X̄ii − (r̄i)

2
}
.

(3.3)

If S∗
1 ≤ S∗

2 , ECSDR-BB selects Ai∗1
to branch; otherwise, ECSDR-BB selects the interval

[li∗2 , ui∗2
]. That is, the branching rule of ECSDR-BB only selects the index i ∈ {1, 2, . . . , n}.

Since problem (3.1) can be formulated as (CQP), the branching rule of ECSDR-BB is
equivalent to the one of the proposed algorithm, in which E is set to {(1, n + 1), (2, n +

1), . . . , (n, n + 1)}. On the other hand, we can add the redundant constraints arg(xix
†
j) ∈

Aij = [0, 2π] for (i, j) with 1 ≤ i < j ≤ n into (CQP), that is, E is extended by adding
(i, j)’s with 1 ≤ i < j ≤ n. In this case, the candidate for branching in the proposed
algorithm is the entire set of elements (i, j) with 1 ≤ i < j ≤ n+ 1, which strictly includes
the original set E = {(1, n + 1), (2, n + 1), . . . , (n, n + 1)}. Therefore, the branching rule in
the proposed algorithm measures the proxy of the relaxation gap over a wider set, making
branch decisions that could lead to smaller relaxation gaps in the child nodes.

In summary, the proposed algorithm is different from ECSDR-BB in the following two
aspects.

(1) The proposed algorithm uses the tighter relaxation (ECSDP2) than (ECSDP1) which
in turn is equivalent to the relaxation (ECSDP3) used in ECSDR-BB.
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(2) The branching rule of the proposed algorithm allows us to select candidates in the
set {(i, j) | 1 ≤ i < j ≤ n + 1}, while the branching rule of ECSDR-BB only considers the
set {(1, n+ 1), (2, n+ 1), . . . , (n, n+ 1)}.

4 Numerical Experiment

In this section, we evaluate the performance of the proposed branch-and-bound algorithm.
Two subclasses of problem (CQP) are selected to test the proposed algorithm: discrete
beamforming problem and virtual beamforming problem. For both subclasses, we compare
the proposed algorithm with the existing ones in the literature. Specifically, for the discrete
beamforming design problem, we draw a comparison with the one in [4], while for the virtual
beamforming design problem, our benchmark is the algorithm proposed in [12].

All experiments are carried out on a personal computer with Intel Core(TM) i5-7300HQ
CPU (3.5 GHz) and 16 GB RAM. We use Mosek (Version 10.0) [17] to solve the semidefinite
relaxations, and Gurobi [6] for mixed integer linear problems. Algorithms are implemented
in Matlab R2019a.

4.1 Discrete beamforming problem

We refer to [4] for an introduction and a model of the discrete beamforming problem as
below. Transmit beamforming design has found widespread applications in different fields
such as communications, radar, sonar, etc. In the field of communications, there is a strong
interest in the use of a transmit beamformer at the base station in order to improve the
quality of service (QoS) and maximize the signal-to-noise ratio (SNR) for the users. Practical
hardware in radar and communication systems is composed of discrete phase and amplitude
shifters, hence the discrete transmit beamforming problem can be formulated as follows:

max
t,x

t

s.t. x†Qkx ≥ tγkσ
2
k, k = 1, 2, . . . , N,

|xi|2 ≤ Pmax, i = 1, 2, . . . ,M,
x†x ≤ Ptot,
arg (xi) ∈ {0, ξ, 2ξ, . . . , (2n − 1) ξ} , ξ = 2π/2n,
|xi| ∈ {∆, 2∆, . . . , 2m∆} , ∆ =

√
Pmax/2

m,

(DBP)

where t ∈ R and x ∈ Cn are decision variables, M is the number of transmit antennas, N
is the number of receivers, Qk = hkh

†
k with hk ∈ CM being the complex channel vector for

the k-th receiver, Pmax is the maximal per-antenna power, Ptot is the total transmit power,
γk is the power proportion for the k-th target, m and n are the number of bits to represent
the discrete phase and amplitude, respectively, and ξ and ∆ are the discrete step size for
phase and amplitude, respectively.

In [4], problem (DBP) is reformulated as a mixed integer problem (MIP), and solved
by the off-the-shelf solver Gurobi. Meanwhile, (DBP) can also be solved by the proposed
Algorithm 1 in its original formulation. To compare the performance of the two algorithms,
we randomly generated several groups of instances as follows: We set M ∈ {4, 5}, N ∈
{4, 8, 12}, n ∈ {3, 4}, m ∈ {3, 4}, γk = 1, σ2

k = 1 for k = 1, 2, . . . , N , Pmax = 20 and Ptot =
225. For each given group of parameter setting (M,N, n,m), the real and imaginary parts
of the complex vector hk ∈ CM are randomly sampled from the standard M -dimensional
Gaussian distribution. Ten instances are generated for each group. For all instances, the
tolerance for relative optimality is set to 0.01%, and the running time is limited to 600
seconds.
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Table 1: Numerical results on discrete beamforming problem.

Group
Gurobi Algorithm 1

Solved Time (Sec.) Solved Time (Sec.)

M = 4, N = 4, n = 3,m = 3 10/10 1.35 10/10 0.71
M = 4, N = 8, n = 3,m = 3 10/10 3.12 10/10 1.57
M = 4, N = 12, n = 3,m = 3 10/10 3.31 10/10 4.34
M = 4, N = 4, n = 4,m = 4 10/10 11.70 10/10 0.51
M = 4, N = 8, n = 4,m = 4 10/10 55.51 10/10 2.88
M = 4, N = 12, n = 4,m = 4 9/10 120.82 10/10 21.38
M = 5, N = 4, n = 4,m = 4 8/10 143.95 10/10 1.53
M = 5, N = 8, n = 4,m = 4 3/10 177.68 10/10 11.51
M = 5, N = 12, n = 4,m = 4 2/10 274.86 10/10 35.53

The computational results for problem (DBP) are shown in Table 1. The column
“Solved” lists the number of instances that can be solved within 600s, and the column
“Time” lists the average computational time over instances that can be solved within the
time limit of 600 seconds. It is evident that, on average, the proposed algorithm is much
faster than Gurobi in solving problem (DBP). As the instance size rises, Gurobi fails to
solve more cases and requires more time to solve larger instances, while the proposed algo-
rithm successfully solves all instances within one minute on average regardless of problem
size. The main reason is probably that the semidefinite relaxation applied in the proposed
algorithm is much tighter than the linear relaxation used in Gurobi, and the mixed integer
reformulation introduces a lot of binary variables as the problem size increases. In addition,
the special branching rule in the proposed algorithm, which chooses bounds on the modulus
or phase of the complex variables for branching, may be also effective in reducing the gap.

4.2 Virtual beamforming problem

In this subsection, we investigate the performance of the proposed algorithm in the case of
continuous phase difference constraints. In [12], Lu et al. proposed a branch-and-bound
algorithm called ECSDR-BB for the virtual beamforming problem, which can formulated as
follows:

min
y

1

2
y†Q̃0y

li ≤ |yi| ≤ ui, i = 1, 2, . . . , n,

arg(yiy
†
j ) ∈ Aij , (i, j) ∈ E

yn+1 = 1,

(VBP)

where E = {(1, n+ 1), (2, n+ 1), . . . , (n, n+ 1)} and Q̃0 =

[
Q0 c
c† 0

]
∈ C(n+1)×(n+1).

To compare the performance of the proposed algorithm with ECSDR-BB, we generated
instances using the following settings: Ai = [0, 2π], li = 1, ui = 2 for all i = 1, 2, . . . , n.
The elements of Q0 ∈ Cn×n and c ∈ Cn are randomly sampled from the standard Gaussian
distribution. We set the size of the instances n = 10, 15, 20, 25. For each size n, we randomly
generated 10 instances and solved them using two algorithms. The tolerance for relative
optimality is set to 0.001% and the running time is limited to 600 seconds.
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The performance of the two algorithms is reported in Table 2. The column ”Enum” lists
the average number of enumerations over the instances that can be solved within a time
limit. Other column names have the same meaning as in Table 1.

Table 2: Numerical results on virtual beamforming problem.

n
ECSDR-BB in [12] Algorithm 1

Solved Enum Time (Sec.) Solved Enum Time (Sec.)

10 10/10 23.5 1.02 10/10 15.8 0.90
15 10/10 232.7 14.11 10/10 154.6 11.78
20 10/10 1050.4 99.10 10/10 701.0 78.87
25 7/10 871.9 107.35 9/10 918.1 121.23

From the results in Table 2, we can observe that the proposed algorithm is faster than
ECSDR-BB in terms of solution time. In detail, when n ≤ 20, the proposed algorithm is
about one order faster than ECSDR-BB. In addition, the proposed algorithm can solve more
instances than ECSDR-BB when n = 25. The results indicate that the proposed algorithm
is more efficient and robust than ECSDR-BB for the virtual beamforming problem. The
superior performance of the proposed algorithm over ECSDR-BB in [12] is not surprising.
According to the discussion in Section 3.2, the proposed algorithm adopts tighter semidefinite
relaxation (ECSDP2) than the one used in ECSDR-BB for the virtual beamforming problem,
and the branching rule in the proposed algorithm selects in a wider range of candidates for
possible better improvement of lower bounds during the progress.

5 Conclusions

In this paper, we propose a branch-and-bound algorithm for a general class of complex
quadratic programming problems containing nonconvex quadratic constraints and various
modulus and phase difference constraints. The adaptive branching strategy selects the
modulus or phase difference to branch for the purpose of efficiency and flexibility. Numerical
results on the discrete and virtual beamforming problems show that the proposed algorithm
is superior to the commercial solver Gurobi and other algorithms in the literature.
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[20] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming, Math. Program. 106 (2005)
25–57.

[21] Y. Xu, C. Lu, Z. Deng and Y.-F. Liu, New semidefinite relaxations for a class of complex
quadratic programming problems, J. Global Optim. 87 (2023) 255–275.

[22] S. Zhang and Y. Huang, Complex quadratic optimization and semidefinite program-
ming, SIAM J. Optim. 16 (2006) 871–890.

[23] S. Zhang and Y. Xia, Two fast Complex-Valued algorithms for solving complex
quadratic programming problems, IEEE Transactions on Cybernetics 46 (2016) 2837–
2847.

Manuscript received 11 September 2023
revised 11 December 2023

accepted for publication 25 December 2023

Yingzhe Xu
School of Economics and Management
North China Electric Power University, Beijing 102206, China
E-mail address: xuyingzhe1@163.com

Jintao Xu
Department of Applied Mathematics
The Hong Kong Polytechnic University, Hong Kong, China
E-mail address: jintao.xu@polyu.edu.hk

Cheng Lu
School of Economics and Management
North China Electric Power University, Beijing 102206, China
E-mail address: lucheng1983@163.com

Shu-Cherng Fang
Department of Industrial and System Engineering
North Carolina State University, Raleigh 27695-7906, USA
E-mail address: fang@ncsu.edu

Zhibin Deng
School of Economics and Management
University of Chinese Academy of Sciences, Beijing 100190, China
E-mail address: zhibindeng@ucas.edu.cn


