
2024 DOI: https://doi.org/10.61208/pjo-2023-054

646 Z. DENG AND Z.-H. HUANG

which allow the vector thresholding and objective reduction to be performed simultaneously.
Further developments can be found in [26].

In the last ten years, a class of tensor equations (also called multilinear equations) has
been studied extensively due to its wide range of applications in engineering and scientific
computing such as data mining, numerical partial differential equations, tensor comple-
mentarity problems (TCPs) and high-dimensional statistics. Its model can be described as
follows:

A xm−1 = b, (1.2)

where, for given positive integers m and n, A is an m-th order n-dimensional tensor, i.e.,
A = (ai1i2···im) with ai1i2···im ∈ R for any ij ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}, b ∈ Rm

is a given vector, and A xm−1 ∈ Rm with

(A xm−1)i =
∑

i2,...,im∈{1,2,...,n}

aii2···imxi2 · · ·xim , ∀i ∈ {1, 2, . . . , n}. (1.3)

It is obvious that when m = 2, (1.2) reduces to a system of linear equations with the
coefficient matrix being a square matrix. A large number of methods have been proposed
to solve problem (1.2) [5, 14, 20, 22, 29, 31]. When the tensor A involved is a Z-type
tensor, Luo, Qi and Xiu [24] proved that finding a nonnegative solution of (1.2) is equivalent
to finding a solution to the corresponding TCP (see survey papers [18, 19, 27] for TCPs).
In this case, several methods for finding the least element solution of the TCP (see, for
example, [16, 24, 30, 28]) can be used to find a sparest solution of (1.2), since the least
element solution of the TCP is one of sparest solutions of (1.2). More recently, motivated by
deeply studies in [32, 38] for sparse nonlinear programming, Li, Luo and Chen [21] proposed
a Newton hard-threshold pursuit algorithm for finding a sparse least squares solution of
(1.2) and establish its locally quadratic convergence under some regularity conditions.

Let A be an m-th order l × n × · · · × n-dimensional tensor, i.e., A = (ai1i2···im) with
ai1i2···im ∈ R for any i1 ∈ {1, 2, . . . , l} and ij ∈ {1, 2, . . . , n} with j ∈ {2, 3, . . . ,m}, and
b ∈ Rl be a given vector, we consider the following model:

min f(x) = 1
2∥A xm−1 − b∥2

s.t. ∥x∥0 ≤ k,
(1.4)

which is a sparse least squares optimization model for solving tensor equations:

A xm−1 = b, (1.5)

where A xm−1 ∈ Rl with (A xm−1)i being defined by (1.3) for all i ∈ {1, 2, . . . , l}. When
l = n, the system of tensor equations (1.5) reduces to the one in (1.2) and the sparse least
squares problem (1.4) reduces to the one studied in [21].

In this paper, by splitting the tensor involved, we propose two linearized methods to
solve sparse tensor least squares optimization problem (1.4), which are extensions of Zhao-
Luo’s natural thresholding algorithms [35] to solve the sparse linear least squares problem
(1.1). In particular, we show the proposed algorithms are globally linearly convergent under
appropriate assumptions. We also report preliminary numerical experiments, which verify
the effectiveness of the algorithm numerically.

The rest of this paper is organized as follows. In Section 2, we introduce some symbols,
concepts and results which will be used in subsequent analyses. In Section 3, we describe
the specific algorithms for solving sparse tensor least squares optimization problem (1.4).
In Section 4, we show the theoretical convergence of the proposed methods under proper
assumptions. Preliminary numerical results are reported in Section 5, and the concluding
remarks are given in Section 6.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 647

2 Preliminaries

Throughout this paper, m,n, l, k are given positive integers with l ≤ n and k ≤ n, and we
use [n] to denote the set {1, 2, . . . , n}. The set of all m-th order l× n× · · · × n-dimensional
tensors is denoted by Rl×[m−1,n] and the set of all m-th order n-dimensional tensors is
denoted by R[m,n]. For any x ∈ Rn, we say that x is k-sparse if ∥x∥0 ≤ k, and we use
supp(x) to denote the support set of x, i.e., supp(x) := {i ∈ [n] : xi ̸= 0}. For any
positive integer k ≤ n, let Lk(x) denote the index set of k largest entries of x, and Sk(x)
denote the index set of k smallest entries of x. When Lk(x) is not uniquely determined, we
select the smallest entry indices to avoid the ambiguity in index selection. Similar selection
is used for Sk(x) to ensure that it is also well-defined. Given S ⊆ [n], |S| means the
cardinality of S. Given S ⊆ [n] and x ∈ Rn, the vector xS ∈ Rn is obtained from x by
retaining the entries supported on S and setting other entries to zeros. For any x ∈ Rn, we
denote x[m−1] := (xm−1

1 , xm−1
2 , . . . , xm−1

n)⊤, and use Hk(x) to denote the hard thresholding
operator defined by

Hk(x)i =

{
xi, if i ∈ Lk(|x|),
0, otherwise,

(2.1)

where |x| = (|x1|, |x2|, . . . , |xn|)⊤. We use ‘⊗’ to represent Hadamard product. For example,
for any u, v ∈ Rn, we have u ⊗ v ∈ Rn with (u ⊗ v)i = uivi for all i ∈ [n]. We denote
Rn

+ := {x ∈ Rn : x ≥ 0}, and for any x ∈ Rn, x+ := (max{0, x1}, . . . ,max{0, xn}) ∈ Rn
+.

For any matrix A ∈ Rl×n, we use ∥A∥ to denote the spectrum norm of A defined as ∥A∥ =

maxx∈Rn
∥Ax∥
∥x∥ .

The concepts of the majorization matrix and majorization tensor of an arbitrary square
tensor have been extensively used in the literature, see, for example, [37]. The following is
a simple extension for a tensor that doesn’t have to be square.

Definition 2.1. Let A = (ai1i2···im) ∈ Rl×[m−1,n] with l ≤ n. A tensor M = (m̄i1i2···im) is
called the majorization tensor of A , if for any i1 ∈ [l] and i2, . . . , im ∈ [n],

m̄i1i2···im =

{
ai1i2···im , if i2 = i3 = · · · = im,
0, otherwise,

and the matrix

M := (mij) ∈ Rl×n, where mij = m̄ij···j , ∀i ∈ [l], ∀j ∈ [n] (2.2)

is called the majorization matrix of A .

The concept of the binary regularization function can be found in [36, Definition 2.1],
which is an effective tool for dealing with binary vectors.

Definition 2.2. A real value function ϕ is called a binary regularization if it satisfies

(i) ϕ is a positive and continuously differentiable function over an open neighborhood of
the box D := {w ∈ Rn : 0 ≤ wi ≤ 1, i ∈ [n]}, and

(ii) ϕ(ω) reaches its minimum over D at and only at any binary vectors w ∈ {0, 1}n.

The following condition on the restricted isometry property (RIP condition) can be found
in [3, Definition 1.1], which has been extensively used in the theoretical analysis of algorithms
for the sparsity-based signal recovery.

648 Z. DENG AND Z.-H. HUANG

Definition 2.3. Given a matrix A ∈ Rl×n with l ≤ n, the k-th restricted isometry constant,
denoted by δk, is the smallest number δ ≥ 0 such that

(1− δ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ)∥x∥2 (2.3)

holds for all k-sparse vector x ∈ Rn.

This following lemma is useful for our theoretical analysis.

Lemma 2.4 ([3, 12]). Let u ∈ Rn and Λ ⊆ [n], if |Λ ∪ supp(u)| ≤ t, then

∥[(I −A⊤A)u]Λ∥ ≤ δt∥u∥.

3 Algorithm Design

For any given A = (ai1i2···im) ∈ Rl×[m−1,n] with l ≤ n, let M and M be the majorization
tensor and the majorization matrix of A , respectively (see Definition 2.1). For any x ∈ Rn,
denote y := x[m−1], and let

h(x) = A xm−1 −My. (3.1)

Before formally presenting the algorithm, we first describe the main idea of the proposed
algorithm in the following.

Suppose that we have already reached the point of the p-th step iteration, x(p), and let
y(p) := (x(p))[m−1] and

b̄p := −h(x(p)) + b. (3.2)

When m is an even number, we consider

min f (p)(y) = 1
2∥My − b̄p∥2

s.t. ∥y∥0 ≤ k,
(3.3)

and when m is an odd number, we consider

min f (p)(y) = 1
2∥My − b̄p∥2

s.t. y ∈ Rn
+,

∥y∥0 ≤ k.
(3.4)

We choose a stepsize λ > 0, and set

u(p) := y(p) − λ∇f (p)(y(p)) = y(p) − λM⊤(My(p) − b̄p) (3.5)

when m is an even number, and set

u(p) :=
(
y(p) − λ∇f (p)(y(p))

)
+
=

(
y(p) − λM⊤(My(p) − b̄p)

)
+

(3.6)

when m is an odd number. Here, u(p) is a middle vector generated by gradient descent
method at the p-th step iteration. In the following, unless otherwise specified, u(p) means
the one given by (3.5) when m is an even number, and u(p) means the one given by (3.6)
when m is an odd number.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 649

Due to the sparsity of the desired solution, one has to cut off some n− k entries of u(p).
In order to find the optimal k entries to reserve, we consider this following 0-1 model which
was raised by Zhao in [34]:

min 1
2∥M(u(p) ⊗ w)− b̄p∥2

s.t. e⊤w = k, w ∈ {0, 1}n ,
(3.7)

where e is a vector of all ones. However, solving an integer programming problem is expen-

sive. A further approximation of (3.7) is desired. Define Up := diag(u(p)) (i.e., (Up)ii = u
(p)
i

for all i ∈ [n], and (Up)ij = 0 for all i ∈ [n] with i ̸= j), and

ϕ(w) :=

(
w +

1

2
e

)⊤

UpUp

(
3

2
e− w

)
, ∀w ∈ D := [0, 1]n. (3.8)

Then, ϕ(·) is a binary regularization function and it is concave [36].
Let α be a scalar and

gpα(w) :=
1

2
∥M(u(p) ⊗ w)− b̄p∥22 + αϕ(w). (3.9)

We consider the following problem:

min gpα(w)

s.t. e⊤w = k, w ∈ [0, 1]n.
(3.10)

Lemma 3.1 ([36, Lamma 2.3]). Suppose w(αs) is the optimal solution of (3.10) where
α = αs, then any accumulation point of {w(αs)} is the optimal solution of (3.7) when
αs → +∞.

Lemma 3.1 means that if α is large enough, one can get an optimal solution of (3.7) with
desired accuracy level by solving (3.10).

Since u(p)⊗w = Upw, gpα(w) can be written as 1
2∥MUpw− b̄p∥2+αϕ(w). Then, we have

that

∇gpα(w) = (UpM)
⊤ (

MUpw − b̄p
)
+ 2αUpUp (e− w)

and

∇2gpα (w) = (MUp)
⊤
MUp − 2αUpUp = Up

(
MTM − 2αI

)
Up.

Noticed that ∇2gpα(w) can be negative semi-definite if one chooses α properly. In this case,
gpα(w) is concave. Zhao and Luo have further discussed how to choose α in [36]. From
now on, suppose that we have already picked an α appropriately such that the function gpα
defined by (3.9) is concave.

By using first order approximation of gpα(w) at some fixed point w− by the concavity of
the function gpα, instead of (3.10), we consider

min gpα(w
−) + [∇gpα(w

−)]T (w − w−)

s.t. e⊤w = k, w ∈ [0, 1]n.
(3.11)

After removing constant terms, it can be simplified as

min [∇gpα(w
−)]⊤w

s.t. e⊤w = k, w ∈ [0, 1]n.
(3.12)

650 Z. DENG AND Z.-H. HUANG

An explicit solution of (3.12) can be given by

w+ ∈ Rn with w+
i =

{
1, if i ∈ Sk (∇gpα(w

−)) ,
0, otherwise,

∀i ∈ [n].

Now, the algorithm can be formally described as follows:

Algorithm 3.2. Choose x(0) ∈ Rn and let y(0) = (x(0))[m−1]. Choose a real number ε > 0
and an integer Nmax > 0. Set p := 0.
Step 1: If ∥A (x(p))m−1 − b∥ < ε or p > Nmax, stop. Otherwise, at x(p), choose λp > 0
and generate u(p) as (3.5) if m is an even number, and as (3.6) if m is an odd number. Let
w− ∈ Rn be the k-sparse vector given by

w−
i =

{
1, if i ∈ Lk(|u(p)|),
0, otherwise,

∀i ∈ [n]. (3.13)

Compute the gradient ∇gpα(w
−). Then set w+ ∈ Rn as

w+
i =

{
1, if i ∈ Sk (∇gpα(w

−)) ,
0, otherwise,

∀i ∈ [n]. (3.14)

Step 2: Generate yp+1 according to the following procedure:
NT: y(p+1) = u(p) ⊗ w+.

Step 3: Set

x(p+1) = (y(p+1))[
1

m−1]. (3.15)

Set p = p+ 1 and go back to Step 1.

In the following, we call Algorithm 3.2 as Algorithm NT. If Step 2 in Algorithm NT
is replaced by
Step 2 ′: Generate yp+1 according to the following procedure:

NTP: Set Sp+1 = supp(u(p) ⊗ w+), and

y(p+1) = argminz
{
∥b̄p −Mz∥ : supp(z) ⊆ Sp+1

}
(3.16)

if m is an even number, and set

y(p+1) = argminz∈Rn
+

{
∥b̄p −Mz∥ : supp(z) ⊆ Sp+1

}
, (3.17)

if m is an odd number.

Then, the corresponding algorithm is called Algorithm NTP.
For convenience, we will denote the set of iterative indices by

N := {1, 2, . . .}.

4 Convergence Analysis

In this section, we will investigate the convergence of both Algorithm NT and Algorithm
NTP. We will use the following assumption.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 651

Assumption 4.1. Given A ∈ Rl×[m−1,n] and b ∈ Rl. Let x∗ be an optimal solution of
(1.4). The function h defined by (3.1) is the sparse (m−1)-power Lipschitz continuous with
respect to x∗, i.e., there exists a constant c ≥ 0 such that

∥h(x)− h(x∗)∥ ≤ c∥x[m−1] − (x∗)
[m−1]∥ (4.1)

for any k-sparse vector x ∈ Rn.

Two similar assumptions were introduced in [4] and [17], respectively, where the concept
of the (m− 1)-power Lipschitz continuity introduced in [4] has been extensively used in the
literature. Recall that the function h is called the (m − 1)-power Lipschitz continuous if
there exists a constant c̃ ≥ 0 such that

∥h(x)− h(y)∥ ≤ c̃∥x[m−1] − y[m−1]∥ (4.2)

holds for all x, y ∈ Rn. It is easy to see that if the optimal solution of (1.4) x∗ exists,
then condition (4.1) is weaker than the requirement that h is the (m − 1)-power Lipschitz
continuous. In fact, on one hand, the (m− 1)-power Lipschitz continuity of h requires that
(4.2) holds for all x, y ∈ Rn, while one of block variables x and y is fixed as x∗ in (4.1);
and on the other hand, the sparsity restrict in (4.1) can also reduce the requirement of the
corresponding condition. The former is obvious, while the latter can be seen from a simple
example in the following remark.

Remark 4.1. For any 1-sparse vector x ∈ Rn, by the definition of h(·) in (3.1), we always
have h(x) = 0. Thus, when k = 1, for any A = (ai1i2···im) ∈ Rl×[m−1,n] and b ∈ Rn, as long
as the optimal solution of (1.4) exists, denoted by x∗, we always have that (4.1) holds for
any 1-sparse vector x ∈ Rn. However, for most tensors A = (ai1i2···im) ∈ Rl×[m−1,n], it is
difficult to ensure that (4.2) holds for any vectors x, y ∈ Rn.

In the following remark, we give several examples to illustrate that Assumption 4.1 is
satisfied in some cases.

Remark 4.2. (i) Let l ≤ n. A = (ai1i2···im) ∈ Rl×[m−1,n] is called a row diagonal tensor,
if its majorization tensor is itself. This is a simple generalization of the related concept
for square tensor. For any row diagonal tensor A and any vector b ∈ Rn, as long as
the optimal solution of (1.4) exists, denoted by x∗, we always have that (4.1) holds for
any x ∈ Rn.

(ii) Suppose A ∈ R6×[3,10], where a1111 = a2333 = a3555 = a4666 = a5777 = a6999 = 1,
a1233 = a2344 = a3455 = a4788 = a5899 = a6,9,10,10 = 5 and other entries are zero. Let
b = (−8, 0, 0, 1, 0, 0)⊤, k = 2 and c = 5. Then x∗ = (−2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤ is a
k-sparse solution of A x3 = b. Since

h(x) = (5x2x
2
3, 5x3x

2
4, 5x4x

2
5, 5x7x

2
8, 5x8x

2
9, 5x9x

2
10)

⊤,

one has h(x∗) = (0, 0, 0, 0, 0, 0)⊤. For any other k-sparse vector x ∈ R10, the value of
h(x) has seven cases:

(a) (0, 0, 0, 0, 0, 0)⊤; (b) (5x2x
2
3, 0, 0, 0, 0, 0)

⊤; (c) (0, 5x3x
2
4, 0, 0, 0, 0)

⊤;

(d) (0, 0, 5x4x
2
5, 0, 0, 0)

⊤; (e) (0, 0, 0, 5x7x
2
8, 0, 0)

⊤; (f) (0, 0, 0, 0, 5x8x
2
9, 0)

⊤;

(g) (0, 0, 0, 0, 0, 5x9x
2
10)

⊤.

652 Z. DENG AND Z.-H. HUANG

In the case (a), we have ∥h(x)− h(x∗)∥ = 0, and hence, (4.1) holds trivially. For other
cases, without loss of generality, we consider the case (b), i.e., h(x) = [5x2x

2
3, 0, 0, 0, 0, 0]

⊤.

In this case, it is obvious that ∥x[m−1] − x∗[m−1]∥ ̸= 0, and

∥h(x)− h(x∗)∥
∥x[m−1] − x∗[m−1]∥

=
5x2x

2
3√

x6
2 + x6

3 + x∗6
1 + x∗6

6

<
5x2x

2
3√

x6
2 + x6

3

.

If x2 = x3, then one has
5x2x

2
3√

x6
2 + x6

3

=
5√
2
< c.

Otherwise, without loss of generality, we assume x2 > x3, and then

5x2x
2
3√

x6
2 + x6

3

<
5x3

2

x3
2

= c.

Thus, ∥h(x)−h(x∗)∥
∥x[m−1]−x∗[m−1]∥ < c for any 2-sparse x ∈ R10. That is, Assumption 4.1 holds.

(iii) Suppose A ∈ R6×[5,10], where a111111 = a233333 = a322222 = a466666 = a577777 =
a699999 = 1, a111333 = a666999 = 3, a233444 = a344555 = a588999 = a6,9,9,10,10,10 = 2
and other entries are zero. Let b = (0, 0,−32, 0, 1, 0)⊤, k = 2 and c = 3. Then
x∗ = (0,−2, 0, 0, 0, 1, 0, 0, 0, 0)⊤ is a k-sparse solution of A x5 = b. Similar discussion
as done in (ii), we can obtain that Assumption 4.1 holds.

(iv) Suppose A ∈ R6×[2,10], where a111 = a222 = a333 = a444 = a555 = a666 = 1,
a123 = a234 = a345 = a478 = a589 = a6,9,10 = 5 and other entries are zero. Let
b = (4, 0, 0, 0, 0, 1)⊤, k = 2 and c = 5. Then x∗ = (0,±2, 0, 0, 0, 0,±1, 0, 0, 0)⊤ is a
k-sparse solution of A x2 = b. Similar discussion as done in (ii), we can obtain that
Assumption 4.1 holds.

First, we discuss the convergence of Algorithm NT. For this purpose, we give two useful
lemmas.

Lemma 4.3. For any a, b ∈ R, one has |a+ − b+| ≤ |a− b|.

Proof. If a, b ≥ 0, then a+ = a and b+ = b, and if a, b ≤ 0, then a+ = b+ = 0. Thus, the
desired result holds obviously for these two cases. Otherwise, if one of a and b is nonnegative
and the other one is negative, without loss of generality, we assume a ≥ 0 and b < 0. In this
case, one has |a+ − b+| = |a| ≤ |a|+ |b| = |a− b|. So, the desired result holds.

By Lemma 4.3, the following result holds obviously.

Corollary 4.4. For any u, v ∈ Rn, one has ∥u+ − v+∥ ≤ ∥u− v∥.

Lemma 4.5. For any z ∈ Rn and any k-sparse x ∈ Rn, let S := supp(x) and S∗ :=
supp(Hk(z)), then one has

∥x−Hk(z)∥ ≤ 2∥(z − x)S∗∪S∥. (4.3)

Proof. From Lemma 4.1 in [35], one has

∥x−Hk(z)∥ ≤ ∥(z − x)S∗∪S∥+ ∥(z − x)S∗\S∥.

Since S∗ \ S ⊂ S∗ ∪ S, it follows that ∥(z − x)S∗\S∥ ≤ ∥(z − x)S∗∪S∥. Thus, we have

∥x−Hk(z)∥ ≤ 2∥(z − x)S∗∪S∥.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 653

Now, we discuss the convergence of Algorithm NT.

Theorem 4.6. Assume that x∗ is an optimal solution of (1.4), and b = A (x∗)m−1 + r,
where r is measurement error. Let M and h(·) be defined by (2.2) and (3.1), respectively,
and let M satisfy the RIP condition given in Definition 2.3. Denote S := supp(x∗) and
y∗ := (x∗)[m−1]. Let the sequence

{
y(p)

}
be generated by Algorithm NT. Suppose that there

exists c > 0 such that (4.1) holds for any k-sparse vector x ∈ Rn. Then for any λ ∈ (0.5, 1],
we have

∥y∗ − y(p)∥ ≤ (c1)
p∥y∗ − y(0)∥+

(p−1∑
i=0

ci1c2

)
∥r∥, ∀p ∈ N ,

where c1 = 2
√
1+δ2k(λδ3k+1−λ)√

1−δ2k
+ c

(
2λ

√
1+δ2k√

1−δ2k
∥M∥+ 2√

1+δ2k

)
and c2 = 2λ

√
1+δ2k√

1−δ2k
∥M∥ +

2√
1+δ2k

.

Proof. Denote

b̄ := −h(x∗) + b. (4.4)

Then, we have

b̄ = A (x∗)m−1 + r − h(x∗) = My∗ + r. (4.5)

For any fixed iteration index p ∈ N , let x(p) be the p-th step iteration point generated by
Algorithm NT, and let u(p) be obtained by (3.5) when m is an even number, and by (3.6)
when m is an odd number. From the definition of w− in (3.13), it follows that w− ⊗ u(p) =
Hk(u

(p)). By the definition of ϕ and the k-sparsity of w+ and w−, one has ϕ(w+) = ϕ(w−) =
ϕmin. From the optimality of w+ for (3.11) and the concavity of gpα, one has

gpα(w
+) ≤ gpα(w

−) +∇gpα(w
−)⊤(w+ − w−)

≤ gpα(w
−) +∇gpα(w

−)⊤(w− − w−)

= gpα(w
−).

Combining with ϕ(w+) = ϕ(w−), we have∥∥∥b̄p −M
(
u(p) ⊗ w+

)∥∥∥ ≤
∥∥∥b̄p −M

(
u(p) ⊗ w−

)∥∥∥ ,
which, together with y(p+1) = w+ ⊗ u(p), implies that

∥b̄p −My(p+1)∥ ≤ ∥b̄p −MHk(u
(p))∥. (4.6)

Since both y∗ and y(p+1) are k-sparse vectors, it follows that y∗−y(p+1) is a 2k-sparse vector.
By (4.5) and the triangular inequality, we have

∥b̄p −My(p+1)∥ = ∥b̄p − b̄+ b̄−My(p+1)∥

=
∥∥∥b̄p − b̄+M

(
y∗ − y(p+1)

)
+ r

∥∥∥
=

∥∥∥h(x(p))− h(x∗) +M
(
y∗ − y(p+1)

)
+ r

∥∥∥
≥

∥∥∥M (
y∗ − y(p+1)

)∥∥∥−
∥∥∥h(x(p))− h(x∗) + r

∥∥∥

654 Z. DENG AND Z.-H. HUANG

≥
√
1− δ2k

∥∥∥y∗ − y(p+1)
∥∥∥−

∥∥∥h(x(p))− h(x∗) + r
∥∥∥ , (4.7)

where the second equality follows from (4.5), the third equality holds from (4.4) and (3.2),
and the last inequality holds from (2.3). Similarly, we have

∥b̄p −MHk(u
(p))∥ = ∥b̄p − b̄+ b̄−MHk(u

(p))∥

=
∥∥∥b̄p − b̄+M

(
y∗ −Hk(u

(p))
)
+ r

∥∥∥
=

∥∥∥h(x(p))− h(x∗) +M
(
y∗ −Hk(u

(p))
)
+ r

∥∥∥
≤

∥∥∥M (
y∗ −Hk(u

(p))
)∥∥∥+

∥∥∥h(x(p))− h(x∗) + r
∥∥∥

≤
√
1 + δ2k∥y∗ −Hk(u

(p))∥+ ∥h(x(p))− h(x∗) + r∥. (4.8)

Combining (4.6) and (4.7) with (4.8), we can obtain that

∥y∗ − y(p+1)∥ ≤
√
1 + δ2k√
1− δ2k

∥y∗ −Hk(u
(p))∥+ 2√

1− δ2k
∥h(x(p))− h(x∗) + r∥. (4.9)

Define S∗ := supp(Hk(u
(p))). By (4.3), one has

∥y∗ −Hk(u
(p))∥ ≤ 2∥(y∗ − u(p))S∪S∗∥. (4.10)

Since |(S ∪ supp(y(p)))∪ (S ∪ S∗)| = |S ∪ supp(y(p))∪ S∗| ≤ 3k holds from the k-sparsity of
vectors y∗, y(p) and Hk(u

(p)), it follows from Lemma 2.4 that∥∥∥((I −M⊤M)(y∗ − y(p))
)
S∗∪S

∥∥∥ ≤ δ3k∥y∗ − y(p)∥. (4.11)

In addition,

when m is an even number, by using (3.5), we have

∥(y∗ − u(p))S∪S∗∥ =
∥∥∥(y∗ − y(p) +M⊤(My(p) − b̄p)

)
S∪S∗

∥∥∥ ,
when m is an odd number, by using (3.5), we have∥∥∥(y∗ − u(p)

)
S∪S∗

∥∥∥ =

∥∥∥∥(y∗ − (
y(p) −M⊤(My(p) − b̄p)

)
+

)
S∪S∗

∥∥∥∥ ,
which, together with Corollary 4.4, implies that∥∥∥(y∗ − u(p)

)
S∪S∗

∥∥∥ ≤
∥∥∥(y∗ − y(p) +M⊤

(
My(p) − b̄p

))
S∪S∗

∥∥∥ .
Thus, whether m is an even number or an odd number, we always have∥∥∥(y∗ − u(p)

)
S∪S∗

∥∥∥
≤

∥∥∥(y∗ − y(p) + λM⊤
(
My(p) − b̄p

))
S∪S∗

∥∥∥
=

∥∥∥(y∗ − y(p) + λM⊤
(
My(p) − b̄+ b̄− b̄p

))
S∪S∗

∥∥∥

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 655

=
∥∥∥((I − λM⊤M

) (
y∗ − y(p)

))
S∗∪S

+
(
λM⊤

(
r + h(x∗)− h(x(p))

))
S∗∪S

∥∥∥
≤

∥∥∥((I − λM⊤M
) (

y∗ − y(p)
))

S∗∪S

∥∥∥+
∥∥∥λM⊤

(
r + h(x∗)− h(x(p))

)∥∥∥
=

∥∥∥(λ (
I −M⊤M

)
+ (1− λ)I

(
y∗ − y(p)

))
S∗∪S

∥∥∥+
∥∥∥λM⊤

(
r + h(x∗)− h(x(p))

)∥∥∥
≤ ∥λ(I −M⊤M)(y∗ − y(p))S∗∪S + (1− λ)(y∗ − y(p))S∗∪S∥+ λ∥M⊤(r + h(x∗)− h(x(p)))∥

≤ (λδ3k + 1− λ)∥y∗ − y(p)∥+ λ
∥∥∥M⊤

(
r + h(x∗)− h(x(p))

)∥∥∥
≤ (λδ3k + 1− λ)∥y∗ − y(p)∥+ λ∥M∥

∥∥∥r + h(x∗)− h(x(p))
∥∥∥ , (4.12)

where the penultimate inequality holds because of (4.11) and λ ∈ (0.5, 1].
Now, combining (4.9) and (4.10) with (4.12), we can obtain that

∥y∗ − y(p+1)∥ ≤ 2
√
1 + δ2k(λδ3k + 1− λ)√

1− δ2k
∥y∗ − y(p)∥+

(
2λ

√
1 + δ2k√

1− δ2k
∥M∥+ 2√

1 + δ2k

)
∥r∥

+

(
2λ

√
1 + δ2k√

1− δ2k
∥M∥+ 2√

1 + δ2k

)∥∥∥h(x∗)− h(x(p))
∥∥∥

This, together with (4.1), implies that

∥y∗ − y(p+1)∥ ≤
(
2
√
1 + δ2k(λδ3k + 1− λ)√

1− δ2k
+ c

(
2λ

√
1 + δ2k√

1− δ2k
∥M∥+ 2√

1 + δ2k

))∥∥∥y∗ − y(p)
∥∥∥

+

(
2λ

√
1 + δ2k√

1− δ2k
∥M∥+ 2√

1 + δ2k

)
∥r∥

:= c1∥y∗ − y(p)∥+ c2∥r∥ (4.13)

holds for any fixed p ∈ N .
Finally, by a recursive method, we can obtain from (4.13) that

∥y∗ − y(p)∥ ≤ (c1)
p∥y∗ − y(0)∥+

(p−1∑
i=0

ci1c2

)
∥r∥, ∀p ∈ N .

This completes the proof.

Corollary 4.7. Suppose that all assumptions in Theorem 4.6 are satisfied, and r = 0. For
any λ ∈ (0.5, 1], if

4λ2δ33k + 4λ(2− λ)δ23k + (5− 4λ2)δ3k + 4λ2 − 8λ+ 3 < 0 (4.14)

and

c <

√
1− δ23k − 2(1 + δ3k)(λδ3k + 1− λ)

2λ(1 + δ3k)∥M∥+ 2
(4.15)

are satisfied, where c is the constant given in (4.1), the sequence
{
(x(p))[m−1]

}
generated by

Algorithm NT is globally linearly convergent to (x∗)[m−1].

Proof. Since r = 0, it follows from Theorem 4.6 that

∥y∗ − y(p)∥ ≤ (c1)
p∥y∗ − y(0)∥, ∀p ∈ N , (4.16)

656 Z. DENG AND Z.-H. HUANG

where

c1 =
2
√
1 + δ2k(λδ3k + 1− λ)√

1− δ2k
+ c

(
2λ

√
1 + δ2k√

1− δ2k
∥M∥+ 2√

1 + δ2k

)
. (4.17)

Noticed that y∗ = (x∗)[m−1] and y(p) = (x(p))[m−1] for all p ∈ N , in order to ensure that
the sequence

{
(x(p))[m−1]

}
is globally linearly convergent to (x∗)[m−1], we only make sure

that the sequence
{
y(p)

}
is globally linearly convergent to y∗.

It is easy to see from (4.16) that
{
y(p)

}
is globally linearly convergent to y∗ if c1 < 1.

To make sure that c1 < 1 holds, from (4.17), it is enough if

c

(
2λ

√
1 + δ2k√

1− δ2k
∥M∥+ 2√

1 + δ2k

)
< 1− 2

√
1 + δ2k(λδ3k + 1− λ)√

1− δ2k
.

The above inequality holds if

2
√
1 + δ2k(λδ3k + 1− λ)√

1− δ2k
< 1 (4.18)

and

c <

√
1− δ22k − 2(1 + δ2k)(λδ3k + 1− λ)

2λ(1 + δ2k)∥M∥+ 2
(4.19)

hold. For any a ∈ [0, 1), we denote κ := 2λ∥M∥ > 0, and define φ1(a) :=
√
1 + a, φ2(a) :=

1√
1−a

, φ3(a) :=
√
1− a2 and φ4(a) :=

1
κ(1+a)+2 . Observe that φ1(a) and φ2(a) are increasing

in [0, 1), then we have
√
1+a√
1−a

= φ1(a)φ2(a) is nonnegative and increasing in [0, 1). Similarly,

since φ3(a) and φ4(a) are nonnegative and decreasing in [0, 1), it follows that
√
1−a2

κ(1+a)+2 =

φ3(a)φ4(a) is decreasing in [0, 1). Based on the above observation, by using 0 ≤ δ2k < δ3k ≤
1, we obtain that (4.18) holds if

2
√
1 + δ3k(λδ3k + 1− λ)√

1− δ3k
< 1 (4.20)

holds, and (4.19) holds if

c <

√
1− δ23k − 2(1 + δ3k)(λδ3k + 1− λ)

2(1 + δ3k)∥M∥+ 2
(4.21)

holds. Furthermore, (4.20) holds if

4λ2δ33k + 4λ(2− λ)δ23k + (5− 4λ2)δ3k + 4λ2 − 8λ+ 3 < 0,

which is equivalent to condition (4.14), and (4.21) is equivalent to condition (4.15). Note
that (4.14) requires that 4λ2 − 8λ + 3 < 0, which holds if 0.5 < λ ≤ 1. Thus, if the
conditions (4.14) and (4.15) hold, then the sequence {(x(p))[m−1]} generated by Algorithm
NT is globally linearly convergent to (x∗)[m−1]. That is, the result of the corollary holds.

Remark 4.8. (i) Although the condition (4.14) may seem complicated, it is easy to verify.
For example, when λ = 1, if δ3k < 0.34, one has (4.14) holds. (ii) In Corollary 4.7, the
condition r = 0 means that x∗ is a k-sparse solution of A xm−1 = b.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 657

Remark 4.9. In Theorem 4.6 and Corollary 4.7, we require λ ∈ (0.5, 1]. In fact, these two
results hold when λ ∈ (0.5, 1.5). However, if λ > 1, the penultimate inequality in (4.12)
turns to

· · ·
≤ (λδ3k + λ− 1)

∥∥∥y∗ − y(p)
∥∥∥+ λ

∥∥∥M⊤
(
r + h(x∗)− h(x(p))

)∥∥∥
· · · ,

and hence, c1 turns to 2
√
1+δ2k(λδ3k+λ−1)√

1−δ2k
+ c

(
2λ

√
1+δ2k√

1−δ2k
∥M∥+ 2√

1+δ2k

)
. Accordingly, (4.14)

turns to

4λ2δ33k + 4λ(3λ− 2)δ23k + (12λ2 − 16λ+ 5)δ3k + 4λ2 − 8λ+ 3 < 0.

In this case, the requirement of δ3k would be too strong. For example, when λ = 1.2, the
convergence property holds if δ3k < 0.15. Such a requirement for δ3k is stronger than the
condition δ3k < 0.34 in the case of λ = 1. So, all things considered, we restrict λ ∈ (0.5, 1]
in Theorem 4.6 and Corollary 4.7.

Second, we show the convergence of Algorithm NTP. Since the next iteration point
of Algorithm NTP generated by a projection map, we give this following lemma before
discussing the convergence of Algorithm NTP.

Lemma 4.10. Assume that x∗ is an optimal solution of (1.4), and b = A (x∗)m−1 + r,
where r is measurement error. Denote y∗ := (x∗)[m−1]. Suppose that M is defined by (2.2)
and it satisfies the RIP condition given in Definition 2.3. Let x(p) be the p-th step iteration
point generated by Algorithm NTP and y(p) := (x(p))[m−1]. Suppose that there exists c > 0
such that (4.1) holds for any k-sparse vector x ∈ Rn, and b̄p = b − h(x(p)) with h(·) being
defined (3.1). Then, for any k-sparse vector u ∈ Rn, the optimal solution

z∗ = argminz
{
∥b̄p −Mz∥2 : supp(z) ⊆ supp(u)

}
(4.22)

satisfies that

∥z∗ − y∗∥ ≤
√
1 + δ2k√
1− δ2k

∥y∗ − u∥+ 2c√
1− δ2k

∥y(p) − y∗∥+ 2√
1− δ2k

∥r∥. (4.23)

Proof. On one hand, since y∗ − z∗ is 2k-sparse and M satisfies the RIP condition, one has

∥My∗ −Mz∗∥ = ∥M (y∗ − z∗)∥ ≥
√
1− δ2k ∥z∗ − y∗∥ . (4.24)

On the other hand, one has

∥My∗ −Mz∗∥ = ∥Mz∗ − (b̄− r)∥
= ∥Mz∗ − b̄p + (b̄p − b̄) + r∥
= ∥Mz∗ − b̄p + h(x∗)− h(x(p) + r∥
≤ ∥Mu− b̄p∥+ ∥h(x∗)− h(x(p)∥+ ∥r∥
≤ ∥Mu− b̄p∥+ c∥y(p) − y∗∥+ ∥r∥, (4.25)

where the first equality follows from (4.5), the third equality follows from (3.2) and (4.4),
the first inequality follows from (4.22), and the second inequality follows from Assumption
4.1. Besides, one can also have

∥Mu− b̄p∥ = ∥Mu− b̄+ b̄− b̄p∥

658 Z. DENG AND Z.-H. HUANG

= ∥Mu− (My∗ + r) + (h(x∗)− h(x(p))∥
≤

√
1 + δ2k∥u− y∗∥+ c∥y(p) − y∗∥+ ∥r∥. (4.26)

Combining (4.24) and (4.25) with (4.26), one has√
1− δ2k∥z∗ − y∗∥ ≤

√
1 + δ2k∥u− y∗∥+ 2c∥y(p) − y∗∥+ 2∥r∥,

which is equivalent to (4.23).

Remark 4.11. In Lemma 4.10, if (4.22) is replaced by

z∗ = argminz∈Rn
+

{
∥b̄p −Mz∥2 : supp(z) ⊆ supp(u)

}
,

then it follows from the proof of Lemma 4.10 that the inequality (4.23) is still satisfied.

Theorem 4.12. Suppose that all assumptions in Lemma 4.10 are satisfied. Let S :=
supp(x∗) and the sequence

{
y(p)

}
be generated by Algorithm NTP. Then for any λ ∈ (0.5, 1],

we have

∥y∗ − y(p)∥ ≤ (c̃1)
p∥y∗ − y(0)∥+

(p−1∑
i=0

c̃i1c̃2

)
∥r∥, ∀p ∈ N ,

where c̃1 = 2(λδ3k+1−λ)(1+δ2k)
1−δ2k

+2c
(

2√
1−δ2k

+ 1+δ2k
1−δ2k

λ∥M∥
)
and c̃2 = 4√

1−δ2k
+ 2(1+δ2k)

1−δ2k
λ∥M∥.

Proof. For any fixed iteration index p ∈ N , let ŷ := u(p)⊗w+, and y(p+1) be the solution of
the orthogonal projection (3.16) when m is an even number, and of the orthogonal projection
(3.17) when m is an odd number. Then, by Lemma 4.10 and Remark 4.11, we have

∥y(p+1) − y∗∥ ≤
√
1 + δ2k√
1− δ2k

∥ŷ − y∗∥+ 2c√
1− δ2k

∥y(p) − y∗∥+ 2√
1− δ2k

∥r∥. (4.27)

It can be seen that the intermediate point ŷ generated at the p-th step iteration of Algorithm
NTP has exactly the same form as y(p) generated at the p-th step iteration of Algorithm
NT. Thus, similar to the proof of Theorem 4.6, we can obtain that for any fixed iteration
index p ∈ N ,

∥y∗ − ŷ∥ ≤ c1∥y∗ − y(p)∥+ c2∥r∥, (4.28)

where c1, c2 are given in Theorem 4.6.
Combining (4.27) with (4.28), we can get that

∥y(p+1) − y∗∥ ≤ c̃1∥y∗ − y(p)∥+ c̃2∥r∥,

where

c̃1 =
c1
√
1 + δ2k + 2c√
1− δ2k

=
2(λδ3k + 1− λ)(1 + δ2k)

1− δ2k
+ 2c

(
2√

1− δ2k
+

1 + δ2k
1− δ2k

λ∥M∥
)
.

and

c̃2 =
c2
√
1 + δ2k + 2√
1− δ2k

=
4√

1− δ2k
+

2(1 + δ2k)

1− δ2k
λ∥M∥.

Thus, by a recursive method, we can obtain that the result of the theorem holds.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 659

Corollary 4.13. Suppose that all assumptions in Theorem 4.12 hold, and r = 0. If

2λδ23k + 3δ3k + 1− 2λ < 0, (4.29)

and

c <
1− δ23k − 2(λδ3k + 1− λ)(1 + δ3k)

4
√
1− δ3k + 2λ(1 + δ3k)∥M∥

(4.30)

are satisfied, then the sequence
{
(x(p))[m−1]

}
generated by Algorithm NTP is globally linearly

convergent to (x∗)[m−1].

Proof. Since r = 0, it follows from Theorem 4.12 that

∥y∗ − y(p)∥ ≤ (c̃1)
p∥y∗ − y(0)∥, ∀p ∈ N .

In order to show that
{
(x(p))[m−1]

}
is globally linearly convergent to (x∗)[m−1], it is enough

to ensure c̃1 < 1, i.e.,

2c

(
2√

1− δ2k
+

1 + δ2k
1− δ2k

λ∥M∥
)

< 1− 2(λδ3k + 1− λ)(1 + δ2k)

1− δ2k
.

Since 0 ≤ δ2k < δ3k, the above inequality holds if

2c

(
2√

1− δ3k
+

1 + δ3k
1− δ3k

λ∥M∥
)

< 1− 2(λδ3k + 1− λ)(1 + δ3k)

1− δ3k
.

This inequality holds if δ3k and c satisfy

2(λδ3k + 1− λ)(1 + δ3k)

1− δ3k
< 1 and c <

1− δ23k − 2(λδ3k + 1− λ)(1 + δ3k)

4
√
1− δ3k + 2λ(1 + δ3k)∥M∥

. (4.31)

The first inequality in (4.31) holds if

2λδ23k + 3δ3k + 1− 2λ < 0,

which is equivalent to (4.29). In addition, it is easy to check that the second inequality in
(4.31) is equivalent to inequality of (4.30). Thus, the desired result holds if (4.29) and (4.30)
are satisfied.

Remark 4.14. It is easy to verify the condition (4.29). For example, when λ = 0.8, (4.29)
holds if δ3k < 0.18; when λ = 0.9, (4.29) holds if δ3k < 0.23; and when λ = 1, (4.29) holds
if δ3k < 0.28. We use the result of λ = 1 later in the numerical experiments.

5 Numerical Experiments

In this section, we perform numerical experiments on a laptop (Windows 10, 64-bit, 8042 MB
physical memory, Intel(R) Core (TM) i5-6200U CPU @ 2.30GHZ) by MATLAB(R2016a).

We only consider the numerical experiments for Algorithm NTP. In our experiments, th
parameters are set as follows:

tol = 1e− 6, MaxIter = 150, α = 3, λ = 1.

We will display the iteration number, residual error and CPU time, where the residual error
is defined as ∥A xm−1 − b∥ with x being the final output solution. We will divide our
experiments into the following two parts.

Part 1. In this part, we test three examples, where A ∈ Rl×[m−1,n] and b ∈ Rl involved
in (1.4) are given deterministically.

660 Z. DENG AND Z.-H. HUANG

Example 5.1. Consider problem (1.4), where A ∈ R6×[3,10] and b ∈ R6 are given as those
in (ii) of Remark 4.2, and k = 2.

We use Algorithm NTP to test the problem in Example 5.1, and the numerical results
are displayed in Table 1, where ‘iniP’, ‘time’, ‘niter’, ‘res’ and ‘solu’ denote the initial
point, CPU time, iteration number, residual error and final output x, respectively; and
x1
0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)⊤, x2

0 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)⊤, x3
0 = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1)⊤,

x4
0 = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0)⊤, x5

0 =randn(10, 1) (i.e., x5
0 is generated randomly). For the

case of the initial point being x5
0, we test the problem 10 times, where we test the problem

once for each randomly generated initial point x5
0, and in this case, ‘time’, ‘niter’, ‘res’

denote the average CPU time, average iteration number and average residual error for 10
times testings.

Table 1: Numerical results of Example 5.1

iniP time niter res solu

x1
0 0.0156 3 0 (−2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x2
0 0.0938 3 0 (−2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x3
0 0.0156 1 0 (−2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x4
0 0.0156 3 0 (−2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x5
0 0.0219 2.4 0 (−2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

Example 5.2. Consider problem (1.4), where A ∈ R6×[3,10] and b ∈ R6 are given as those
in (iii) of Remark 4.2, and k = 2.

We use Algorithm NTP to test the problem in Example 5.2, and the numerical results
are displayed in Table 2, where ‘iniP’, ‘time’, ‘niter’, ‘res’, ’solu’, and the initial points
x1
0, x

2
0, x

3
0, x

4
0, x

5
0 are the same as those in Example 5.1.

Table 2: Numerical results of Example 5.2

iniP time niter res solu

x1
0 0.0625 3 0 (0,−2, 0, 0, 0, 0, 1, 0, 0, 0)⊤

x2
0 0.0313 3 0 (0,−2, 0, 0, 0, 0, 1, 0, 0, 0)⊤

x3
0 0.0313 3 0 (0,−2, 0, 0, 0, 0, 1, 0, 0, 0)⊤

x4
0 0.0313 3 0 (0,−2, 0, 0, 0, 0, 1, 0, 0, 0)⊤

x5
0 0.0688 2.6 0 (0,−2, 0, 0, 0, 0, 1, 0, 0, 0)⊤

Example 5.3. Consider problem (1.4), where A ∈ R6×[2,10] and b ∈ R6 are given as those
in (iv) of Remark 4.2, and k = 2.

We use Algorithm NTP to test the problem in Example 5.3, and the numerical results
are displayed in Table 3, where ‘iniP’, ‘time’, ‘niter’, ‘res’, ’solu’, and the initial points
x1
0, x

2
0, x

3
0, x

4
0, x

5
0 are the same as those in Example 5.1.

From Tables 1, 2 and 3, one can see that Algorithm NTP can recover the desired sparse
solution completely with low CPU time cost and few iteration steps for three specific prob-
lems given in Examples 5.1, 5.2 and 5.3.

Part 2. In this part, we test two examples, where A ∈ Rl×[m−1,n] and b ∈ Rl involved
in (1.4) are generated randomly.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 661

Table 3: Numerical results of Example 5.3

iniP time niter res solu

x1
0 0.0625 2 0 (2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x2
0 0.0625 2 0 (2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x3
0 0.0156 2 0 (2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x4
0 0.0313 1 0 (2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

x5
0 0.0156 2 0 (2, 0, 0, 0, 0, 1, 0, 0, 0, 0)⊤

Example 5.4. Consider problem (1.4), where, for given positive integers m,n, and l, A ∈
Rl×[m−1,n], b ∈ Rl, and the sparsity k are given as follows:

• Tensor A : take m = 4, l = 40 and n = 80. Let U and V be l × l and n × n
orthogonal matrices, respectively, and they are generated randomly in [0, 1]. Let Σ :=(
Dl×l, Ol×(n−l)

)
be an l×n real matrix, where Dl×l and Ol×(n−l) denote l× l diagonal

matrix and l × (n − l) zero matrix, respectively, and each entry of D is generated
randomly in [0.9, 1.1]. Denote M := UΣV . Suppose M is the majorization matrix of
tensor M ∈ Rl×[m−1,n] and other entries of M are zero. Let A = M .

• Sparsity k: we choose the sparsity k such that k = ⌈ρn⌉, where ⌈a⌉ represents the
smallest integer greater than or equal to a, and ρ ∈ [0.02, 0.12].

• Vector b: let x∗ = zeros(n, 1) and x∗(k+1 : 2∗k) = randn(k, 1), and let b := A (x∗)m−1.

Remark 5.5. We claim that Assumption 4.1 and the RIP condition given in Definition
2.3 are satisfied for each problem in Example 5.4. It is obvious that the former holds since
h(x) = 0 for any x ∈ Rn. We explain below why the latter is also true.

In order to satisfy the restriction of the RIC δ3k of the majorization matrix M of A
given in (4.29), we have to put some requirements on M . Let di denote the i-th diagonal
entry of matrix D for any i ∈ [n]. Then, for any z ∈ Rn, one has

∥Mz∥2 = z⊤V ⊤Σ⊤U⊤UΣV z =

n∑
i=1

d2i z
2
i .

Let dmax and dmin denote the maximal diagonal entry and the minimal diagonal entry of
D, respectively. Then,

d2min∥z∥2 ≤ ∥Mz∥2 ≤ d2max∥z∥2, ∀z ∈ Rn.

In addition, if z is k-sparse, then, according to RIP condition, one has

(1− δk)∥z∥2 ≤ ∥Mz∥2 ≤ (1 + δk)∥z∥2.

Since 0 ≤ δk < δ3k, the above inequality holds if

(1− δ3k)∥z∥2 ≤ ∥Mz∥2 ≤ (1 + δ3k)∥z∥2.

Thus, in order to ensure that the RIP condition holds, it is enough if we choose di for all
i ∈ [n] such that

d2min = 1− δ3k and d2max = 1 + δ3k.

662 Z. DENG AND Z.-H. HUANG

By δ3k < 0.28 given in (4.29), we only need to choose di for all i ∈ [n] such that

dmin ≥
√
0.72 and dmax ≤

√
1.28.

In actual experiments, we will set the range of diagonal entries of D in a little bit smaller
than

[√
0.72,

√
1.28

]
. This can be ensured by setting each diagonal entry of D be in [0.9, 1.1].

We use Algorithm NTP to test problems in Example 5.4. For each problem (i.e., the case
given a set of values m, l, n, k), we test 10 times, and display the numerical results in Table
4. For every test, the initial point is chosen as x0 = zeros(n, 1) and x0(1 : k) = randn(k, 1).
In Table 4, ‘Atime’, ‘Aniter’, and ‘Ares’ represent the average CPU time, average iteration
number, and average residual error of 10 times tests, respectively.

Table 4: Numerical results of Example 5.4

k Anitr Atime Ares

⌈0.12n⌉ 7 0.1156 8.9912e− 08
⌈0.1n⌉ 5.8 0.0750 1.9288e− 09
⌈0.07n⌉ 5.3 0.0656 2.2543e− 10
⌈0.05n⌉ 4.7 0.0578 1.0363e− 15
⌈0.02n⌉ 3.6 0.0578 6.0177e− 16

Example 5.6. Consider problem (1.4), where, for given positive integers m,n, and l, A =
M − µB with M being generated in the same way as the one in Example 5.4, µ = 0.001
and all entries of B being generated randomly in [0, 1], and b ∈ Rl is generated in the same
way as the one in Example 5.4. For different values of m, l and n in our experiments, we
choose k = ⌈0.05n⌉ or ⌈0.1n⌉.

We use Algorithm NTP to test problems in Example 5.6. We test each problem 10 times
with the initial points being generated in the same way as those in Example 5.4, and display
the numerical results in Table 5, where ‘Atime’, ‘Aniter’, and ‘Ares’ are the same as those
in Example 5.4.

Table 5: Numerical results of Example 5.6

m l n k Anitr Atime Ares

4 4 5 1 1.3 0.0187 2.9212e− 17
4 8 10 1 1.4 0.0297 7.5876e− 16
4 12 15 1 1.4 0.0234 1.4239e− 16
4 12 15 2 3.5 0.0328 1.9781e− 07
6 8 10 1 1.6 0.0391 1.0858e− 09

From Tables 4 and 5, one can see that Algorithm NTP can recover the desired sparse
solution completely with low CPU time cost and few iteration steps for randomly generated
problems given in Examples 5.4 and 5.6.

6 Concluding Remarks

In this paper, we proposed a model of sparse least squares problem for solving tensor equa-
tions and two linearized methods (i.e., Algorithm NT and Algorithm NTP) for solving it.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 663

We showed the global linear convergence of the proposed method under two assumptions.
The first assumption is that the majorization matrix of the tensor involved satisfies the RIP
condition, which is commonly used in the field of sparse optimization. The second assump-
tion is that the function h defined by (3.1) is the sparse (m− 1)-power Lipschitz continuous
with respect to a solution of the concerned tensor equations, which is new, but trivially true
when the model we consider returns to the case of compressed sensing. The latter assump-
tion plays a key role in obtaining the convergence of the proposed algorithm. How to weaken
this condition is a topic worthy of further study. In addition, in the existing studies of tensor
equations and their least squares problems, the tensors involved are assumed to be square
tensors, which greatly limits their applications. The sparse tensor least squares problem
proposed in this paper is a generalization of the classical compressed sensing model. Since
the classical compressed sensing model has many practical applications, we believe that this
new model will have many practical applications. Therefore, the effective algorithms to solve
this model and its practical application problems are worthy of further study.

References

[1] T. Blumensath and M. Davies, Iterative hard thresholding for sparse approximation,
J. Fourier Anal. Appl. 14 (2008) 629–654.

[2] T. Blumensath and M. Davies, Normalized iterative hard thresholding: Guaranteed
stability and performance, IEEE J. Sel. Top. Signal Process. 4 (2010) 298–309.

[3] E.J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory
51 (2005) 4203–4215.

[4] P.F. Dai. A fixed point iterative method for tensor complementarity problems, J. Sci.
Comput. 84 (2020): 49

[5] W. Ding and Y. Wei, Solving multi-linear systems with M-tensors, J. Sci. Comput. 68
(2016) 689–715.

[6] D.L. Donoho, De-noising by soft-thresholdinng, IEEE Trans. Inf. Theory 41 (1995)
613–627.

[7] D.L. Donoho and I. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Bioma-
trika 81 (1994) 425–455.

[8] M. Elad, Why simple shrinkage is still relevant for redundant representations? IEEE
Trans. Inf. Theory 52 (2006) 5559–5569.

[9] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing, Springer, NY, 2010.

[10] Y.C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cam-
bridge University Press, Cambridge, UK, 2012.

[11] M. Fornasier and R. Rauhut, Iterative thresholding algorithms, Appl. Comput. Harmon.
Anal. 25 (2008) 187–208.

[12] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,
Springer, NY, 2013.

664 Z. DENG AND Z.-H. HUANG

[13] S. Foucart and S. Subramanian, Iterative hard thresholding for low-rank recovery from
rank-one projections, Linear Algebra Appl. 572 (2019) 117–134.

[14] L. Han, A homotopy method for solving multilinear systems with M-tensors, Appl.
Math. Lett. 69 (2017) 49–54.

[15] K. Herrity, A. Gilbert and J. Tropp, Sparse approximation via iterative thresholding,
in: IEEE ICASSP, 2006, pp. 624–627.

[16] Z.H. Huang, Y.F. Li, and X.H. Miao, Finding the least element of a nonnegative solution
set of a class of polynomial inequalities, SIAM J. Matrix Anal. Appl. 44 (2023) 530–558.

[17] Z.H. Huang, Y.F. Li, and Y. Wang, A fixed point iterative method for tensor comple-
mentarity problems with the implicit Z-tensors, J. Global Optim. 86 (2023) 495–520.

[18] Z.H. Huang and L. Qi, Tensor complementarity problems part I: basic theory, J. Optim.
Theory Appl. 183 (2019) 1–23.

[19] Z.H. Huang and L. Qi, Tensor complementarity problems-part III: applications, J.
Optim. Theory Appl. 183 (2019) 771–791.

[20] D.H. Li, S.L. Xie, and H.R. Xu, Splitting methods for tensor equations, Numer. Linear
Algebra Appl. 24 (2017): e2102.

[21] X. Li, Z. Luo and Y. Chen, Sparse least squares solutions of multilinear equations, To
appear in Linear Multilinear Algebra (2023).

[22] Z. Li, Y. Dai, and H. Gao, Alternating projection method for a class of tensor equations,
J. Comput. Appl. Math. 346 (2019) 490–504.

[23] H. Liu and R.F. Barber, Between hard and soft thresholding: Optimal iterative thresh-
olding algorithms, Information and Inference: A Journal of the IMA 9 (2020) 899-–933.

[24] Z. Luo, L. Qi, and N. Xiu, The sparsest solutions to Z-tensor complementarity problems,
Optim. Lett. 11 (2017) 471–482.

[25] N. Meng and Y.-B. Zhao, Newton-step-based hard thresholding algorithms for sparse
signal recovery, IEEE Trans. Signal Process. 68 (2020) 6594–6606.

[26] N. Meng, Y.B. Zhao, M. Kocvara, and Z.F. Sun, Partial gradient optimal threshold-
ing algorithms for a class of sparse optimization problems, J. Global Optim. (2022),
doi.org/10.1007/s10898-022-01143-1.

[27] L. Qi and Z.H. Huang, Tensor pomplementarity problems-part II: solution methods, J.
Optim. Theory Appl. 183 (2019) 365–385.

[28] S.L. Xie, D.H. Li, and H.R. Xu, An iterative method for finding the least solution to
the tensor complementarity problem, J. Optim. Theory Appl. 175 (2017) 119–136.

[29] Z. Xie, X. Jin, and Y. Wei, Tensor methods for solving symmetric M-tensor systems,
J. Sci. Comput. 74 (2018) 412–425.

[30] H.R. Xu, D.H. Li, and S.L. Xie, An equivalent tensor equation to the tensor comple-
mentarity problem with positive semi-definite Z-tensor, Optim. Lett. 13 (2019) 685–694.

SPARSE LEAST SQUARES SOLUTIONS OF TENSOR EQUATIONS 665

[31] J. Yan, Y. Xu, and Z.H. Huang, A homotopy method for solving multilinear systems
with strong completely positive tensors, Appl. Math. Lett. 124 (2022): 107636.

[32] C. Zhao, N. Xiu, H. Qi, et al. A lagrange-Newton algorithm for sparse nonlinear pro-
gramming, Math. Program. 195 (2022) 903–928.

[33] Y.B. Zhao, Sparse Optimization Theory and Methods, CRC Press, Boca Raton, FL,
2018.

[34] Y.B. Zhao, Optimal k-thresholding algorithms for sparse optimization problems, SIAM
J. Optim. 30 (2020) 31–55.

[35] Y.B. Zhao and Z.Q. Luo, Analysis of optimal k-thresholding algorithms for compressed
sensing, Signal Process. 187 (2021) 108–148.

[36] Y.B. Zhao and Z.Q. Luo, Natural thresholding algorithms for signal recovery with
sparsity, IEEE Open J. Signal Process. 3 (2022) 417–431.

[37] X.H. Zheng, Y. Wang and Z.H. Huang, A linearized method for solving
tensor complementarity problems with implicit Z-tensors, Optim. Lett. 2023,
https://doi.org/10.1007/s11590-023-02043-3

[38] S. Zhou, N. Xiu and H. Qi, Global and quadratic convergence of newton hard-
thresholding pursuit, J. Mach. Learn. Res. 22 (2021) 1–45.

Manuscript received 11 September 2023
revised 11 December 2023

accepted for publication 25 December 2023

Zixin Deng
School of Mathematics, Tianjin University
Tianjin 300350, P.R. China
E-mail address: dengzx@tju.edu.cn

Zheng-Hai Huang
School of Mathematics, Tianjin University
Tianjin 300350, P.R. China
E-mail address: huangzhenghai@tju.edu.cn

